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Abstract: 

Comprehension of degraded speech requires higher-order expectations informed by         

prior-knowledge. Accurate top-down expectations of incoming degraded speech cause a          

subjective semantic “pop-out” or conscious breakthrough experience. Indeed, the same          

stimulus can be perceived as meaningless when no expectations are made in advance. We              

investigated the ERP correlates of these top-down expectations, their error signals, and the             

subjective pop-out experience in healthy participants. We manipulated expectations in a           

word-pair priming noise-vocoded speech task and investigated the role of top-down           

expectation with a between-groups attention manipulation. Consistent with the role of           

expectations in comprehension, repetition priming significantly enhanced perceptual        

intelligibility of the noise-vocoded degraded targets for attentive participants. An early ERP            

was larger for mismatched (i.e. unexpected) targets than matched targets, indicative of an             

initial error signal not reliant on top-down expectations. Subsequently, a P3a-like ERP was             

larger to matched targets than mismatched targets only for attending participants - i.e. a              

pop-out effect. Rather than relying on complex post hoc interactions between prediction error             

and precision to explain this apredictive pattern, we consider our data to be consistent with               

prediction error minimisation accounts for early stages of processing followed by Global            

Neuronal Workspace-like breakthrough and processing in service of task goals.   
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Introduction 

Prediction error minimisation accounts of perception propose that the brain seeks to            

minimise the mismatch between incoming sensory information and top-down expectations          

(Friston, 2010; Rao & Ballard, 1999). To successfully comprehend speech, a prediction error             

minimisation account argues that the listener must generate a set of expectations at multiple              

levels of representation to attempt to most accurately explain the auditory input (Paczynski &              

Kuperberg, 2012). Consistent with the role of expectations in speech comprehension, the            

amplitude of the N400 event-related potential (ERP) in response to the final word of a               

sentence increases with how unexpected that word is, given the context of the sentence              

(Kutas et al., 1984; Kutas & Federmeier, 2011). The N400 can, therefore, be characterised              

as an index of the amount of mismatch between a semantic prediction and the incoming               

stimulus - i.e. a semantic prediction error (Bornkessel-Schlesewsky & Schlesewsky, 2019;           

Paczynski & Kuperberg, 2012). Indeed, prediction error minimisation accounts of global           

brain function, such as free energy (Friston, 2010), propose that all evoked activity in the               

brain reflects this mismatch of prediction and stimulus, i.e. the prediction error (Clark, 2013;              

Rao & Ballard, 1999). 

However, not all ERPs can be characterised parsimoniously within a narrow prediction error             

framework. For example, highly predictable events in rapid serial visual presentation (RSVP)            

that are associated with a subjective experience of conscious ‘breakthrough’ or ‘pop-out’            

also elicit large ERPs from ~300ms post-stimulus (i.e. the P300; (Donchin & Coles, 1988),              

while unpredictable events in the same stream of stimuli will elicit almost no evoked              

response (Bowman et al., 2013; Rohaut et al., 2015) - the opposite of what would be                

predicted if ERPs indexed prediction error only. To account for these apparently apredictive             

effects, prediction error minimisation accounts propose that attention increases the precision           

of predictions, and that prediction error is subsequently weighted by this precision (Kok et              

al., 2012). As a result, a range of ERP magnitudes, including late apredictive components              

such as the P300 in RSVP, can be explained as contributions from independently varying              

precision and prediction error (see also Heilbron & Chait, 2018). 

The Global Neuronal Workspace is an alternative theory of neural processing that proposes             

that such apredictive evoked positivities with onsets ~300ms post-stimulus reflect the ignition            

of a stimulus representation into a frontoparietal network for conscious access - whether that              

stimulus was or was not expected - while earlier ERPs index preconscious processes,             

including prediction errors (Dehaene et al., 1998; Sergent et al., 2005). Applying this model              

to speech comprehension, Rohaut et al. (2015) proposed a two-stage ERP profile, with an              
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initial unconscious semantic prediction error in response to each word (the N400, typically             

onsetting around 200ms post-stimulus) and a late positive complex (LPC; in this case             

onsetting around 600ms post-stimulus) reflecting the ignition of meaning into conscious           

access. In support of this proposal, the N400 ERP has been observed in states of relative                

unawareness such as sleep, coma, and vegetative state (or unresponsive wakefulness           

syndrome) (Beukema et al., 2016; Ibáñez et al., 2006; Kotchoubey et al., 2005; Rämä et al.,                

2010) while the LPC has only been reported in conscious individuals, or in those who were                

conscious of and subsequently could report target words (Rohaut et al., 2015; Sergent et al.,               

2005; van Gaal et al., 2014). 

We sought to test the proposal that early ERPs (<300ms post-stimulus) reflect preconscious             

prediction error processes and later ERPs (>300ms post-stimulus) reflect conscious access           

by investigating the comprehension of speech that has been degraded by noise-vocoding            

(Shannon et al., 1995). Consistent with the role of expectations in speech comprehension, a              

noise-vocoded speech stimulus that is entirely unintelligible to a naive listener can be             

rendered intelligible through priming - for example, by presenting a non-degraded version of             

the stimulus (i.e. a ​matched prime) immediately prior to the degraded stimulus (i.e. the              

target). When successfully primed in such a word-pair listening task, listeners experience a             

“pop-out” of the meaning of the degraded speech - i.e. subjective conscious access (Davis et               

al., 2005) - while an unrelated (or, ​mismatched​) prime will not facilitate comprehension of the               

subsequent target. 

Evidence suggests that successful comprehension of noise-vocoded speech requires         

attentional effort (Hervais-Adelman et al., 2012) and top-down expectations from frontal           

lobes (Sohoglu et al., 2012; Wild, Yusuf, et al., 2012). Therefore, we predict that distracted               

participants will be unable to use a prime word to generate a top-down expectation of the                

identity of an upcoming target, and will, therefore, neither exhibit a differential prediction             

error signal nor any subsequent apredictive evoked response to the target. Conversely, we             

expect that attentive participants will use the prime to generate top-down expectations of the              

identity of the degraded stimulus, and will therefore more readily comprehend the target.             

Consequently, and consistent with a two-stage Global Neuronal Workspace account (Rohaut           

et al., 2015), we expect attentive participants’ ERPs to exhibit an initial prediction error signal               

(i.e. larger evoked response to mismatched targets; cf. (Sohoglu et al., 2012) followed by an               

apredictive “pop-out” effect in which the ERP to the correctly-expected and comprehended            

targets is larger than that to the unexpected and predominantly unintelligible targets. 
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Methods 

Participants 

We recruited participants from the University of Birmingham via advertisement on posters or             

the online SONA Research Participation Scheme until we had achieved our desired sample             

size of 48 participants with usable data (24 per group; Median age = 20 years, Range =                 

18-33 years). Our inclusion criteria were: right-handed (from self-report), 18 to 35-years-old,            

monolingual speakers of British English, with no self-reported epilepsy, dyslexia, or           

uncorrected hearing impairment. We compensated participants with course credit or          

£10/hour of their time. The STEM Research Ethics Board of the University of Birmingham              

granted ethical approval for this study and written informed consent was completed by all              

participants. To achieve our final sample, we recruited 77 participants but rejected data from              

29 participants due to an error of randomisation in the experimental code. 

Stimuli 

A male first-language British English speaker recorded 288 monosyllabic English nouns           

taken from previous priming studies in our lab (see ​https://osf.io/m9ud5/ for the full stimuli              

list; mean length = 440ms, range = 264-657ms, sampling rate = 44100Hz). First, we              

randomly assigned the stimuli to one of four equal-sized lists (72 words per group), and               

manually swapped words across lists until the lists were matched on imageability, frequency             

(BNC), length in phonemes, and length in letters. Frequentist tests (ANOVAs) indicated no             

evidence that the four lists differed in word frequency (F(3, 284) = 0.233, ​p ​= 0.873),                

imageability (F(3, 231) = 0.779, ​p ​= 0.507), length in phonemes (F(3, 284) = 0.217, ​p ​=                 

0.885), or length in letters (F(3, 284) = <0.001, ​p ​= 1; see Supplementary Materials), and                

Bayesian equivalent tests (conducted with (JASP Team, n.d.); (Morey & Rouder, n.d.))            

revealed strong evidence in favour of the null hypothesis for all variables (all BF10 = < .05;                 

see Supplementary Materials). From these four matched lists, we created counterbalanced           

conditions across participants (see ​Procedure​). 

We manipulated the intelligibility of targets through noise-vocoding - originally a form of             

auditory distortion used to simulate the experience of hearing by the means of a cochlear               

implant (Shannon et al., 1995) (for scripts, see        

https://github.com/conorwild/matlab-audio-scripts/ ​). Noise-vocoding retains the coarse     

temporal structure of the speech but reduces spectral clarity and fine temporal detail. The              

amplitude envelope from (approximately) logarithmically-spaced frequency bands is        

extracted and applied to bandpass-filtered noise of the same frequency band. Finally, the             

bands of envelope-modulated noise are recombined to create the final noise-vocoded           
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stimulus (Davis et al., 2005). Using this method, we created six-band noise-vocoded            

versions of each stimulus to be used as the targets, and subsequently normalised each              

stimulus to its RMS ((Wild, Davis, et al., 2012; Wild, Yusuf, et al., 2012).  

Procedure 

We randomly assigned each participant to be in the attentive or distracted group. In the               

attentive group, each trial began with the auditory presentation of the prime followed by the               

target with a stimulus onset asynchrony (SOA) of 1 second (see Figure 1). After              

2.2-seconds, participants were cued by a tone (500Hz, 200ms duration) to rate the             

“noisiness” of the target on a scale of 1 (low) to 5 (high) via keyboard press. Following each                  

rating, the next trial began after an inter-trial interval of between 1 and 2 seconds, selected                

randomly from a uniform distribution on every trial. 

In the distracted group, participants listened to the same auditory stimuli but did not              

complete the noisiness judgment task; instead, they performed a visual task (see below).             

Therefore, the timing of the auditory stimuli in the distracted group was identical to the               

attentive group, with the exception that the time between the onset of each target and the                

onset of the next trial was between 1 and 2 seconds, selected randomly from a uniform                

distribution on every trial. 

While listening to the auditory stimuli, both attentive and distracted groups of participants             

watched a sequence of rapidly changing visual stimuli. However, only those in the distracted              

group were instructed to complete a task on the basis of the visual stimuli, and to ignore the                  

auditory stimuli. The distraction task was a 1-back visual monitoring task, in which the              

sequence of visual stimuli was comprised of a series of images of ambiguous black shapes               

presented on a white background. Each ambiguous image was shown for 200ms with an              

800ms fixation period between each image. For each participant, the order of images was              

randomized and the task was to press a key every time a repetition occurred (i.e. a 1-back                 

task; 20% of trials). We subsequently calculated task accuracy to ensure that participants in              

the distracted group were distracted from the auditory stimuli by attending to the visual              

1-back task. Participants in the attentive group watched the same visual stimuli, but were              

instructed to ignore them and to attend to the auditory stimuli only. 

Upon completion of the above task, all participants completed a surprise recognition memory             

test, which included all 144 words from the mismatched condition of the word-pair priming              

task (i.e. 72 unrelated primes and 72 unrelated targets), as well as 72 new memory test                

items. We did not include the matched targets in the memory test as they were presented                

twice (as a clear prime and as a degraded target) and therefore cannot be compared to the                 
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unrelated targets or primes which were only presented once. In the memory test, each word               

was presented visually for 300ms, with a fixation point present for 2 to 3 seconds (selected                

randomly from a uniform distribution on each trial) between each word. We randomised the              

order of words for each participant. Participants made an old/new discrimination for each             

word on a 6-point remember-know scale, made up of the following responses; ‘definitely             

new, probably new, not sure, probably old, definitely old and remember’ (Ritchey et al.,              

2015). We reversed the scale for half of the participants to control for potential effects of                

response hand. 

During the experiment, each participant heard all four word lists (see ​Stimuli​), with each list               

comprising either the matched words, mismatched primes, mismatched targets, or new           

memory test items. For each of the 12 possible combinations of word lists for mismatched               

primes and mismatched targets, we manually ensured that there was no phonological,            

semantic, or associative overlap between the target and the prime. In total, there were 24               

possible sets of stimuli to achieve full counterbalancing of lists. Therefore, across all             

participants, each word was heard an equal number of times in every possible condition. 

 

Figure 1. Schematic of event timing during the task. 

EEG pre-processing 

We recorded EEG with a 128-channel Biosemi ActiveTwo system at a sample rate of 256Hz,               

with two additional electrodes recording from the mastoid processes. Offline, we digitally            
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filtered the EEG signal between 0.5 and 40 Hz, segmented the data into epochs from               

500-ms before the onset of the prime until 1000-ms after the onset of the target,               

re-referenced the data to the average of the mastoids, and baseline-corrected to the 200-ms              

pre-prime period. Unless otherwise stated, all offline pre-processing was performed with a            

combination of the Matlab toolbox EEGLAB (version 14.0.0b, (Delorme & Makeig, 2004))            

and custom scripts. Note that all scripts are available online at ​https://osf.io/m9ud5/​. 

Artefact rejection proceeded in the following steps. First, we used an automated procedure,             

based on FASTER (Nolan et al., 2010), to identify and remove bad channels. Specifically,              

bad channels were those with absolute z-scores of >2.5 on any of the following measures:               

variance of voltage, mean correlations with other channels, and Hurst exponent. Across            

participants, a median of 7 channels were discarded (range 2-14). Second, we used an              

automated procedure, also based on FASTER (Nolan et al., 2010), to identify and remove              

trials with non-stationary artefacts. Specifically, a trial was bad if its absolute z-score was              

>2.5 on any of the following measures: mean range of voltages across channels, mean              

variance of voltages across channels, and the deviation of the trial average voltage from the               

average voltage across all channels. Third, we conducted Independent Component Analysis           

(ICA) of the remaining data (EEGLAB’s ​runica ​algorithm) and used the toolbox ADJUST             

(Mognon et al., 2011) to automatically identify and remove components with the expected             

spatial and temporal features of blinks, eye-movements, and generic discontinuities. Next,           

we interpolated any previously removed channels back into the data. Finally, trials with             

artefacts that had not been effectively cleaned by the above procedure were identified with              

visual inspection and discarded. After these pre-processing steps, a median of 65.5 trials             

contributed to the match condition (range: 39-71) and a median of 66 trials contributed to the                

mismatch condition (range: 37-71). Prior to analysis, all data were re-referenced to the             

average of all channels. 

For our subsequent memory ERP contrasts, we only included data from the attentive group              

as recognition memory was not significantly greater than chance for the distracted group.             

We also excluded those participants who contributed fewer than 12 trials to either of the two                

categories (i.e. targets that were subsequently remembered [hits] versus targets that were            

subsequently forgotten [misses]) and those whose recognition memory was not greater than            

zero, resulting in a subgroup of 13 participants (hits: median 21, range 13-36; misses:              

median 26, range 12-49). 

EEG / MRI co-registration 
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The electrode locations of each participant were recorded relative to the surface of the head               

with a Polhemus Fastrak device using the Brainstorm Digitize application (Brainstorm v. 3.4;             

Tadel et al., 2011) running in Matlab (Mathworks). Furthermore, on a separate day, we              

acquired a T1-weighted anatomical scan of the head (nose included) of each participant with              

a 1mm resolution using a 3T Philips Achieva MRI scanner (32 channel head coil). This               

T1-weighted anatomical scan was then co-registered with the digitised electrode locations           

using Fieldtrip (Oostenveld et al., 2011).  

Sensor analyses: ERPs 

Prior to analysis, we calculated participant-wise average ERPs for each condition separately            

using the robust averaging method of SPM12 (default params) that iteratively down-weights            

outlier voltages across trials. As recommended in the SPM12 documentation, the           

subsequent average ERPs were then low-pass filtered at 20Hz, and baseline-corrected to            

the 200ms prior to the onset of the target. 

Analyses of ERPs proceeded in two stages, and in a similar way to (Sohoglu et al., 2012).                 

First, we calculated the global field power (Skrandies, 1990) of the grand average of all trials                

(i.e. both conditions together) to identify time-windows of interest. Global field power (GFP) is              

the root mean square of average-referenced voltages, and is a principled means of             

identifying component peak latencies from an orthogonal contrast (Skrandies, 1990). We           

then identified a time-window around each peak by inspecting the global dissimilarity            

(Skrandies, 1990) – the mean of the root mean square of voltage differences between              

consecutive time-points, after the data have been scaled by the global field power.             

Deflections in the time-course of global dissimilarity therefore suggest boundaries between           

scalp topographies. On this basis, we selected the following ERP topographies: 137-ms –             

207-ms, 211-ms – 246-ms, 250-ms – 371-ms, 375-ms – 547-ms, 551-ms – 648-ms, and              

652ms – 707-ms (Figure 2). 
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Figure 2. Global Field Power and Global Dissimilarity in the post-target window, with the 

time-windows of interest highlighted. 

 

To minimise the number of comparisons in post-target time-windows, we only investigated            

the main effects of target type (i.e. matched versus mismatched, averaged across attention             

group) and attention (i.e. attention versus distraction, averaged across target type) when an             

interaction contrast produced no significant clusters (i.e. the difference between matched           

targets and mismatched targets between attention groups). Where a significant interaction           

cluster was observed, we tested for simple effects with paired samples t-tests of data              

averaged within the electrodes that contributed to the interaction cluster. Furthermore, within            

each significant interaction and main effect cluster, we investigated subsequent memory           

effects (hits versus misses) with paired samples t-tests of data averaged within the             

electrodes that contribute to each cluster. 

ERPs (or difference ERPs between two within-subject conditions) within each time-window           

of interest were compared with the cluster mass method of the open-source Matlab toolbox              

FieldTrip (version 20160619, Oostenveld et al., 2011). First, for each participant x condition             

we averaged the voltages at each electrode within the time-window of interest. Next, a              

two-tailed t-test (dependent samples for interaction and main effect of target type;            

independent samples for main effect of attention) between conditions was conducted at each             

electrode. Spatially adjacent t-values with p-values passing the threshold (alpha = .05) were             

then clustered based on their spatial proximity. Clusters were required to involve at least 4               

neighbouring electrodes, with an electrode’s neighbourhood defined as all electrodes within           

approximately 4-cm on a template head (median number of neighbours: 11; range: 2-16). A              

second non-parametric step corrects for multiple comparisons by conducting 1000 Monte           

Carlo randomisations of the above method (shuffling condition labels) to estimate the            
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probability of the observed cluster under the null hypothesis (Maris & Oostenveld, 2007). We              

applied a cluster alpha threshold of .025 as we were testing for both positive and negative                

effects. 

Sensor analyses: Bayesian tests 

When the above sensor analyses failed to find support for an interaction between target type               

and attention (i.e. the difference of differences) but did find evidence of a main effect, we                

used Bayesian equivalent t-tests to test the sensor data for evidence in support of the null                

hypothesis. Specifically, at each electrode we calculated a Jeffrey-Zellner-Siow Bayes factor           

(JZS-BF), implemented with an open-access script      

(​https://github.com/anne-urai/Tools/tree/master/stats/BayesFactors​). A JZS-BF > 3 is      

considered to be substantial evidence in support of the hypothesis being tested. While this              

approach does not take into account spatial clustering, as in the sensor analyses above, it               

does allow us to qualitatively inspect the spatial distribution of evidence in support of the null                

hypothesis across the head. 

Source estimation 

We performed source estimation using EEG data and individual electrode locations from 48             

participants. The analyses were completed using subject-specific T1-weighted anatomical         

MRI scans for 39 participants and template T1-weighted MRI images (provided by the             

Matlab toolbox FieldTrip) for the remaining nine participants due to issues with T1 data              

collection and image quality. 

From the subject-specific T1-weighted anatomical scans, individual boundary element head          

models (BEM; four layers) were constructed using the ‘dipoli’ method of the Matlab toolbox              

FieldTrip (Oostenveld et al., 2011). Individual electrode locations were aligned to the surface             

of the scalp layer extracted from the segmented T1-weighted anatomical scans using fiducial             

points and head shape as reference points. The alignment of electrodes and scalp surface              

were further visually inspected to detect potential deviations and, where necessary, small            

manual corrections were applied.  

As we required single-trial data to estimate the sources of the ERP effects, we used the                

pre-processed sensor-level data prior to the robust averaging step described above. We            

defined trials as time windows from -500ms to 1900ms relative to the prime, and baseline               

corrected the EEG data using the time window [-200ms – 0ms] relative to target              

presentation. Before the direct statistical comparison, we balanced the number of trials            

between conditions by randomly removing trials from the condition (discarded trials: median            
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= 2, range = 0-13) with more data until both datasets had the same number of trials (median                  

= 130, range = 74-136). 

Our source estimation followed the analysis approach described in Popov et al. (2018).             

Therefore, the data was first filtered between 1 and 40 Hz, using a firws filter as                

implemented in the ​ft_preprocessing function of Fieldtrip (using default parameters).          

Additionally, to mitigate the confounding influence of correlated activity in the auditory            

cortices (i.e. from binaural stimulation) on LCMV beamformer source analysis, we calculated            

the surface Laplacian of the data and leadfields as in Murzin et al. (2013). Thus, the scalp                 

current density of the data was calculated and the covariance matrix was estimated using a               

time window from -500ms to 1900ms. A common spatial filter (including trials of both              

conditions) was computed using an LCMV beamformer (inputting the surface Laplacian           

transformed leadfield) (Robinson, 1999; Van Drongelen et al., 1996; Van Veen et al., 1997).              

Specific beamformer parameters were chosen based on the approach used by ​Popov et al.              

(2018) including a fixed dipole orientation, a weighted normalisation (to reduce the centre of              

head bias), as well as a regularisation parameter of 5% to increase the signal to noise ratio.                 

This common spatial filter was then used for source estimation. The dipole moments of both               

conditions were extracted in the post-stimulus time windows that showed significant clusters            

at the sensor level (time window 1: 137ms – 207ms; time window 2: 211ms – 246ms; time                 

window 3: 250ms – 371ms; time window 4: 551ms – 648ms), and their absolute values were                

averaged over time points to obtain one average value per grid point (virtual electrode) and               

time window of interest. For clear visualisation of the foci of our source estimates, we               

calculated t-tests at each virtual electrode and thresholded the subsequent t-images at p<.05             

(see Supplementary Materials and Sokoliuk et al. (2019), for further validation of the             

method). 

Results 

Speech intelligibility 

Attentive participants rated the mismatched targets as noisier (Median = 4, Range 1-5) than              

the matched targets (Median = 3, Range 1-4), despite the stimuli being physically distorted              

to the same level. This difference was significant in a Wilcoxon Signed-Rank Test (W = 232,                

p​ = <.001). 

Recognition Memory: Discrimination (d’) 
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Discrimination (d’) was calculated as the z-transformed proportion of hits minus the            

z-transformed proportion of false alarms (Haatveit et al., 2010). The proportion of hits and              

false alarms were transformed using the inverse of the standard normal cumulative            

distribution. All ‘probably old’, ‘definitely old’, and ‘remember’ responses to old items were             

considered a hit, while the same responses to new items were considered false alarms. 

A two-way mixed ANOVA with factors of word type (clear prime; degraded target; both only               

heard once by each participant) and attention (attentive; distracted) revealed significant main            

effects of word type (F(1,46) = 30.243, p = ​≤ .001, partial n2 = .397) and attention (F(1,46) =                   

8.714, p = .005, partial n2 = .159), and a non-significant interaction (F(1,46) = 0.528, p =                 

.471, partial n2 = .011). A Bayesian equivalent mixed ANOVA revealed considerable            

evidence for a model containing main effects of both word type and attention (BF=69083              

relative to a null model), which itself was 2.687 times more likely given the data than a model                  

containing both main effects and an interaction term. These results reflect the participants’             

more accurate memory for clear primes than degraded targets and the higher memory             

accuracy in the attentive group than the distracted group. 

One-Sample T-Tests determined that d’ for both clear primes and degraded targets were             

significantly different from zero (i.e. above chance) for attentive participants (Clear: Mean d’             

= 0.457, SD = 0.309, t(23) = 7.245, p = ​≤ .001; Degraded: Mean d’ = 0.194, SD = 0.218,                    

t(23) = 4.368, p = ​≤ ​.001), while memory for either item type was not significantly different                 

from zero for distracted participants (Clear: Mean = 0.132, SD = 0.515, t(23)= 1.251, p =                

.223; Degraded: Mean = -0.070, SD = 0.393, (t(23) = -0.869, p = .394), suggesting that the                 

distraction task effectively suppressed processing of the auditory stimuli. Bayesian          

equivalent T-Tests indicated considerable evidence for better than chance memory for           

attentive participants (Clear: BF​10 = 71004; Degraded: BF​10 = 131), and anecdotal evidence             

for chance-level memory performance for distracted participants (Clear: BF​10 = 0.430;           

Degraded: BF​10​ = 0.302).  

Recognition Memory: Recollection & Familiarity 

To estimate the level of processing that the clear and degraded words received, we              

calculated separate measures of Recollection (i.e. explicit contextualised memory of the           

event) and Familiarity (i.e. memory without context) from the recognition memory judgments            

for each participant (Atkinson & Juola, 1974; Yonelinas et al., 1997). Specifically,            

Recollection scores were calculated by: (Rold – Rnew)/(1-Rnew), with Rold reflecting the            

proportion of old items given a Remember response by the participant, and Rnew reflecting              
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the proportion of new items given a Remember response. Familiarity was calculated by:             

(Fold/(1-Rold)) - (Fnew/(1-Fnew)), with Fold reflecting the proportion of old items given a             

‘definitely old’ or ‘probably old’ response by the participant, and Fnew reflecting the same              

responses to new items (Ritchey et al., 2015). 

Two two-way mixed ANOVAs with factors of word type (clear prime; degraded target; both              

only heard once by each participant) and attention (attentive; distracted) revealed significant            

main effects of word type on both Recollection and Familiarity estimates (F(1,46) = 13.287, p               

≤ .001, partial n2 = .224, and F(1 ,46) = 14.533, p ​≤ .001, partial n2 = .240, respectively),                   

reflecting higher scores for clear primes than for degraded targets. No other main effect or               

interaction was significant (all ps>.127). Bayesian equivalent ANOVAs similarly concluded          

that there was substantial evidence for models containing a main effect of word type for both                

Recollection (BF​10 = 43.703, BF​inclusion = 60.743) and Familiarity (BF​10 = 64.090, BF​inclusion =              

42.913). 

One-sample t-tests identified significantly different from zero measures of Recollection for           

clear primes (t(23) = 6.127, p ​≤ .001, ​BF​10 ​= 6538.041) and degraded targets (t(23) = 2.499,                 

p = .020, ​BF​10 ​= 2.720) in the attentive group, while Familiarity was not different from zero                 

(Clear: t(23) = -0.009, p = .993, ​BF​10 ​= 0.215; Degraded: t(23) = -1.899, p = .070, ​BF​10 ​=                   

0.998). In the distracted group, neither Recollection nor Familiarity were significantly different            

from zero for either word type (Recollection Clear: t(23)= 0.245, p = .809, ​BF​10 ​= 0.221;                

Recollection Degraded: t(23) = -1.003, p = .326, ​BF​10 ​= 0.337; Familiarity Clear: t(23)=              

-1.452, p = .160, ​BF​10 ​= 0.542; Familiarity Degraded: t(23) = -2.042, p = .053, ​BF​10 ​= 1.247).  

Event-related Potentials 

Interaction effects 

We observed an interaction between target type and attention in the 250-371-ms            

time-window post-target only (cluster p=.011) with estimated generators in right middle           

temporal gyrus and right fusiform gyrus (Figure 3). Follow-up simple effects tests indicated             

greater positivity within this cluster for matched targets relative to mismatched targets during             

auditory attention only (t(23)=2.755, p=.011, two-tailed, BF10=4.376; Figure 3D). While the           

mean voltages in this time-window exhibited the opposite pattern in the distracted group - i.e.               

greater positivity to mismatched targets - this difference did not pass our significance             

threshold (t(23)=-1.869, p=.074, two-tailed; Figure 3D) and a Bayesian equivalent analysis           

found only anecdotal evidence in favour of the null hypothesis in this contrast (BF10=.955).              

A subsequent memory contrast within this cluster indicated greater positivity for mismatched            
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targets that were subsequently remembered (hits) relative to mismatched targets that were            

subsequently forgotten (misses) in the attentive group, although this effect was only weakly             

significant in a t-test (t(12)=2.185, p=.049, two-tailed; Figure 3E) and a Bayesian equivalent             

indicated that the evidence was only anecdotal (BF10=1.628). No clusters were formed in             

any other time-window for the interaction contrast. We therefore examined the main effects             

below. 

 

Figure 3. Interaction between target type and attention from 250ms-371ms. [A] Scalp 

distribution of the significant difference in the effect of target across attention conditions. 

Electrodes contributing to the cluster are marked. M-MM: match minus mismatch. [B] 

Single-subject mean difference voltages (difference between match and mismatch) within 

the significant cluster. [C] Estimated sources of the attentive effect of target in right middle 

temporal gyrus and right fusiform gyrus (relative to the distracted effect of target). [D] 

Analysis of the simple effects showing qualitatively different topography across attention 

groups, and a significant effect of target type in the attentive group only. [E] Subsequent 

memory effect within the interaction cluster. 
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Main effects 

We observed a dipolar main effect of attention in the 137-207ms time-window, with greater              

frontal positivity (cluster p=.009) and greater posterior negativity (cluster p=.010) for attentive            

participants relative to distracted participants (Figure 4). Our source analyses estimated this            

effect to be generated primarily within right superior frontal lobe, overlapping with right             

premotor cortex. A subsequent memory contrast within each cluster indicated significantly           

larger ERPs for subsequent hits relative to subsequent misses in the attentive group, with              

the Bayes factor in the frontal cluster indicating substantial evidence for a subsequent             

memory effect (positive frontal cluster: t(12)=2.657, p=.021, BF10=3.195; negative posterior          

cluster: t(12)=-2.320, p=.039, BF10=1.963). 

 

Figure 4. Main effect of attention from 137ms - 207ms. [A] Scalp distribution of the significant 

effect. Electrodes contributing to the clusters are marked. [B] Single-subject mean voltages 

within each significant cluster. [C] Estimated sources of the main effect within right superior 

frontal lobe. [D] Subsequent memory effects within each cluster in the attentive group. 

 

We also observed a dipolar main effect of target type in the 211-246ms time-window with a                

larger left frontocentral positivity to mismatched targets than to matched targets (cluster            

p=.023) and a larger right temporal negativity to mismatched targets than to matched targets              

(cluster p=.013; Figure 5 A-C). Source analyses estimated this effect to be primarily             

generated within left supramarginal gyrus and right insula. Both Frequentist and Bayesian            

t-tests indicated no compelling evidence of subsequent memory effects in the attentive group             
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in either cluster (positive cluster: t(12)=-1.764, p=.103, BF10=0.939; negative cluster:          

t(12)=1.964, p=.073, BF10=1.210). 

In the same time-window (211-246ms), we also observed a main effect of attention, with              

greater frontal positivity (cluster p=.002) and greater posterior negativity (cluster p=.004) in            

the attentive group relative to the distracted group, with estimated generator in right visual              

cortex (Figure 5 D-F). As with the effect of target in this time-window, both Frequentist and                

Bayesian t-tests agreed that there is no evidence of subsequent memory effects in either              

cluster (positive cluster: t(12)=1.557, p=.145, BF10=0.734; negative cluster: t(12)=-1.443,         

p=.175, BF10=0.647).  

 

Figure 5. Main effects of target type and attention from 211ms - 246ms. [A] Scalp distribution 

of the significant effect of target type. Electrodes contributing to the clusters are marked. [B] 

Single-subject mean voltages within each significant cluster. [C] Estimated sources of the 

main effect within left supramarginal gyrus and right insula. [D] Scalp distribution of the 

significant effect of attention. Electrodes contributing to the clusters are marked. [E] 

Single-subject mean voltages within each significant cluster. [F] Estimated sources of the 

main effect within right visual cortex. 
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In the 551-648ms time-window, we observed an effect of target type, with a larger              

centroparietal negativity to mismatched targets than matched targets (cluster p=.019)          

estimated to be generated in the right posterior superior temporal gyrus (Figure 6). The              

subsequent memory contrast in this cluster failed to reach our significance threshold, and             

the Bayesian equivalent similarly concluded only anecdotal evidence in favour of the            

hypothesis (t(12)=2.158, p=0.052, BF10=1.568).  

 

Figure 6. Main effect of target type from 551ms - 648ms. [A] Scalp distribution of the 

significant effect. Electrodes contributing to the cluster are marked. [B] Single-subject mean 

voltages within the significant cluster. [C] Estimated sources of the main effect within right 

posterior superior temporal gyrus. 

 

The main effect of target in the 137-207ms and 652-707ms time-windows did not pass our               

significance threshold (p=.048 and .042 respectively; alpha=.025). The main effect of           

attention in the 375-547ms, and 652-707ms time-windows also did not pass our significance             

threshold (p=.047 and .082 respectively; alpha=.025). No clusters were formed in any other             

contrast or time-window.   
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Discussion 

Consistent with our hypothesis and previous research, repetition priming enhanced the           

perceptual intelligibility of the degraded targets (Davis et al., 2005; Hervais-Adelman et al.,             

2012; Sohoglu, 2014; Wild, Yusuf, et al., 2012). This result is, independently, evidence for              

the importance of prior knowledge (or expectation) for generating a conscious experience of             

comprehending degraded speech - i.e. a “pop-out”. Furthermore, consistent with a proposed            

two-stage ERP profile of auditory processing (Rohaut et al., 2015), we observe two             

dissociable ERP effects. 

First, and contrary to some arguments of attentional enhancement of prediction errors            

(Auksztulewicz & Friston, 2015), we observe an early predictive signal (211-246ms) - i.e.             

larger for unpredicted words than for predicted words - that does not significantly interact              

with attention. Indeed, the results of our Bayesian analysis of this effect indicate             

considerable evidence for the absence of interaction with attention (see Figure 7A).            

Specifically, 96% of electrodes provided greater evidence for the null hypothesis of no             

interaction between target type and attention in this time-window (i.e. BF<1), 48% of which              

provided substantial evidence for the null (i.e. BF<⅓). Within a two-stage model of auditory              

processing, this effect may be analogous to the mismatch negativity, which has a similar              

time-course and can be elicited by rare stimuli without attention or conscious awareness             

(Heilbron & Chait, 2018). However, we had not expected to find evidence for differential              

processing of matched and mismatched targets during inattention - a result that is seemingly              

inconsistent with prior evidence that successful comprehension of degraded speech requires           

top-down expectations (e.g. Sohoglu et al., 2012). Indeed, inattentive participants should           

have been unable to form top-down expectations that would subsequently elicit a prediction             

error. One parsimonious interpretation is that the distraction task did not sufficiently direct             

attention away from the speech stimuli, thus allowing those participants the opportunity to             

also generate expectations while completing the visual distraction task. However, a           

Bayesian analysis indicated that our data provide substantial evidence that distracted           

participants’ memory for the mismatched prime words did not differ from zero. As those              

words were heard as clear speech, we would expect that memory would be above chance               

here if the participants were not sufficiently distracted. Therefore, we conclude that the early              

differential processing of targets during inattention is not the result of insufficient inattention. 
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Figure 7. Scalp distribution of Bayes Factors (from Bayesian equivalent t-tests) in tests of the 

interaction between target type and attention in time-windows [A] 211ms-246ms and [B] 

551ms-648ms. All electrodes with Bayes Factors > 3 or < ⅓ are marked on the scalp. 

Histogram shows the distribution of Bayes Factors across the head. 

 

An alternative interpretation is that the signal reflects the error of a non-conscious             

expectation that can be generated without top-down influence. For example, previous           

studies of word-pair priming of noise-vocoded speech have used the written form of the word               

as the prime stimulus, whereas our prime stimuli were clear versions of the same speech               

stimulus. Therefore, it is possible that a low-level prediction that an auditory stimulus will              

have the same envelope as the just-heard auditory stimulus, for example, could be             

generated inattentively. Indeed, prediction error minimisation accounts posit that         

expectations are generated at multiple levels of the processing hierarchy. Consequently,           

while a conscious top-down expectation may not be generated by an inattentive participant,             

an expectation from a lower level of the hierarchy may nevertheless be instantiated and              

compared with the sensory input - for example, an expectation that the auditory environment              

will remain stable, as is one interpretation of the mismatch negativity during inattention             
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(Sussman & Winkler, 2001). Indeed, our source analyses estimate generators of this effect             

primarily within right temporal lobe and left supramarginal gyrus (see Figure 5C), while a              

similar previous study involving visual primes (rather than auditory primes as in this study)              

reported an effect with a similar time-course to be generated within the more canonically              

semantic regions of left middle and inferior frontal gyri (Sohoglu et al., 2012). We therefore               

suggest that this effect is a non-semantic error signal, while similar studies that involve visual               

primes and auditory targets may be more likely to promote semantic expectations. Indeed,             

the estimated right temporal lobe generator of our error effect is also linked to              

domain-general processing of complex auditory stimuli, rather than to specific linguistic and            

semantic processing (McGettigan & Scott, 2012).  

As hypothesised, we also observe a later component that is largest for degraded words that               

‘pop-out’ into awareness. Specifically, from approximately 250ms to 350ms post-stimulus the           

ERPs are larger for matched targets than mismatched targets in the attentive group only.              

Indeed, in that same time window, the ERPs in the distracted group exhibited a similar               

distribution to the preceding error signal (Figure 3D). The apredictive nature of this ERP              

component is seemingly at odds with prediction error accounts of evoked potentials.            

However, the concept of precision is often used to explain such patterns (Kok et al., 2012).                

Specifically, the error signal is considered to be weighted by the system’s confidence in that               

signal - its precision. Attention is one mechanism that is thought to increase precision              

(Hohwy, 2012). Therefore, one could argue that while a fulfilled prediction about an             

upcoming word elicits little prediction error, an individual’s attention to the word increases             

precision which multiplicatively leads to a larger precision-weighted prediction error signal           

(i.e. an evoked potential) than an unpredicted but unattended stimulus. Indeed, the effect of              

attention to boost the magnitude of evoked potentials is evident in the two main effects of                

attention we observe prior to this effect (137-207ms and 211-246ms; see Figures 4 and 5).               

However, it is clear that any observed data can be explained by appealing to the               

multiplication of two hidden and independently varying signals (namely, error and precision),            

thus creating issues in rigorously studying the role of precision weighting in perception (cf,              

Heilbron & Chait, 2018). Nevertheless, under a precision-weighted prediction error          

interpretation, all evoked potentials should interact with attention, which is demonstrably not            

the case for our earlier main effect of target (211-246ms; see Figure 7) unless one appeals                

to complex post hoc interactions of precision and error. 

Under a Global Neuronal Workspace interpretation, this later component could be           

considered to reflect the breakthrough of a stimulus representation into conscious           

experience (Alsufyani et al., 2019). While we did observe weak evidence of recollection of              
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mismatched targets (p=.020; BF10 = 2.720), indicating that mismatched targets were not            

entirely unintelligible perhaps due to a degree of perceptual learning across the experiment             

(Hervais-Adelman et al., 2008), attentive participants’ ratings of intelligibility (noisiness) were           

entirely consistent with the pop-out of meaning following matched primes (Davis et al.,             

2005). Furthermore, this component was larger for subsequently remembered items than for            

subsequently forgotten items, albeit weakly (p=.049; BF10=1.628). The link to subsequent           

successful recognition provides further evidence to link this ERP component with a            

conscious experience on the part of the listener. However, this effect is earlier than we               

predicted based on a typical two-stage profile and its scalp distribution is more reminiscent              

of a P3a than the P3b or other late positive components typically linked to global-workspace               

breakthrough effects. Nevertheless, P3a-like components have been observed in         

breakthrough contexts (Bowman et al., 2013) and Global Neuronal Workspace theory           

broadly posits that scalp positivities, as observed here, reflect the ignition of a representation              

into conscious access (Dehaene & Christen, 2011). Source estimates of other late            

positivities within this framework typically involve generators distributed across the cortex,           

consistent with a brain-wide ignition into conscious access (e.g. Bekinschtein et al., 2009).             

However, while the source estimate of our observed pop-out effect includes some weak             

evidence of generators distributed across lobes and hemispheres (see Figure 3C), the focus             

is estimated to be in the right middle temporal gyrus and right fusiform gyrus. Interestingly,               

the late positivity described by Rohaut et al. (2015), and linked to the stage of conscious                

access of meaning within the two-stage profile, was also estimated to be generated within              

right fusiform gyrus, as well as left dorsolateral frontal cortex. Furthermore, there is evidence              

for greater activity within the right fusiform gyrus when the meaning of speech is              

task-relevant (von Kriegstein et al., 2003). We conclude therefore that our ERP positivity             

reflects conscious access of the meaning of speech. While we cannot rule out the potential               

role of task-related post-perceptual processing rather than conscious access itself (Aru et al.,             

2012), we argue that the majority of evidence for components linked to such processes              

occur later in time than the pop-out effect observed here (i.e. after ~350ms; e.g. (Pitts et al.,                 

2014; Schelonka et al., 2017).  

In a later time-window, from approximately 550ms to 650ms, we also observed more             

extreme ERPs for mismatched targets than for matched targets that did not interact with              

attention (see Figures 6 and 7). The scalp distribution of this effect is markedly similar to that                 

reported in an overlapping time-window of 450ms to 700ms post-target by Sohoglu et al.              

(2012); see Figure 4B in that paper) who also found that magnetoencephalography (MEG)             

sensor data in the same time-window significantly predicted trial-by-trial ratings of speech            
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clarity, such that reduced neural responses to matched targets were accompanied by            

increased experiences of speech clarity. Our source estimates indicated a primarily right            

posterior superior temporal generator for this effect, while Sohoglu et al. (2012), with more              

sensitive MEG source analyses, report right temporal generators alongside bilateral inferior           

frontal and middle occipital gyri. Sohoglu et al. (2012), therefore, conclude that this effect              

reflects the neural processes that generate the experience of speech clarity. On that basis,              

we would expect this effect to interact with attention in this study. However, we find no                

evidence for this interaction. Nevertheless, while Bayes equivalent t-tests at each electrode            

in this time-window indicated substantial evidence for no interaction in the majority of             

electrodes, two electrodes did exhibit substantial evidence for an interaction (i.e. BF10>3;            

Figure 7B). As our cluster forming threshold required 4 neighbouring electrodes, it is             

possible that this effect does indeed interact with attention, but to an extent that is not                

evident with our specific analysis choices. If that were the case then, these later effects may                

indeed reflect processes associated with the conscious experience of meaning, or may            

reflect consequent processes such as those in service of task demands - i.e. providing a               

judgment of the noisiness of the stimulus (Aru et al., 2012). 

Conclusions 

Our results indicate a link between the conscious experience of semantic pop-out in             

comprehension of degraded speech and a positive-going ERP in the range of 300ms             

post-stimulus - consistent with a Global Neuronal Workspace framework. Prior to this            

positivity, ERPs appear to reflect the error of non-semantic predictions, consistent with            

prediction error minimisation accounts. To consider our observed late positivity within the            

same prediction error account requires a post hoc appeal to freely varying precision             

weighting that is not straightforwardly verified. We therefore suggest that our data are             

consistent with early negative-going ERPs as reflections of prediction error while later            

positive-going ERPs reflect conscious access and processes in support of task demands            

(e.g. Dehaene & Christen, 2011; Rohaut et al., 2015). 
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Supplementary Materials 

 

Supplementary Table 1: Mean and standard deviation (in brackets) of the word list 

characteristics: frequency (ln[BNC]), imageability, length in phonemes, and length in letters. 

 Frequency Imageability Length (ph) Length (L) 

Word List 1 1.92 (1.29) 566.6 (55.59) 3.29 (0.54) 4.14 (0.76) 

Word List 2 1.97 (1.31) 577.9 (53.3) 3.33 (0.58) 4.14 (0.76) 

Word List 3 2 (1.3) 570.3 (47.53) 3.28 (0.48) 4.14 (0.76) 

Word List 4 2.1 (1.28) 563.8 (56.24) 3.33 (0.47) 4.14 (0.76) 

 

Supplementary Table 2. ANOVAs and equivalent Bayesian ANOVAS testing for differences 

across lists at each word characteristic. 

 F p BF10 

Frequency 0.233 0.873 0.021 

Imageability 0.779 0.507 0.054 

Length (ph) 0.217 0.885 0.021 

Length (L) <.001 1 0.016 

 

Supplementary Figure 1: P1 source estimation validity check 

As a validity check of our source estimation method, we estimated the sources of the               

auditory P1 component. Specifically, we calculated the global field power of the grand             

average of all EEG trials to identify the boundaries of the first component. The figure shows                

a bilateral temporal focus of the estimated sources of this component (129-227ms), broadly             

consistent with temporal lobe generators of early auditory ERPs. 
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