

1 **Virus infection is controlled by cell type-specific sensing of murine cytomegalovirus**
2 **through MyD88 and STING.**

3
4 **Running title:**

5 Cell type-specific sensing of cytomegalovirus

6
7 *Sytse J. Piersma¹, Jennifer Poursine-Laurent¹, Liping Yang¹, Glen N. Barber², Bijal A.*
8 *Parikh³, and Wayne M. Yokoyama¹*

9
10 ¹Division of Rheumatology, Department of Medicine, Washington University School of
11 Medicine, St. Louis, MO 63110, USA;

12
13 ²Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of
14 Miami School of Medicine, Miami, Florida 33136, USA;

15
16 ³Department of Pathology and Immunology, Washington University School of Medicine,
17 St. Louis, MO 63110, USA.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 This work was supported by NIH grant R01-AI131680 to W.M.Y. and S.J.P. was
37 supported by the Netherlands Organisation for Scientific Research (Rubicon grant
38 825.11.004).

39

40 **Abstract**

41 Recognition of DNA viruses, such as cytomegaloviruses (CMVs), through pattern-
42 recognition receptor (PRR) pathways involving MyD88 or STING constitute a first-line
43 defense against infections mainly through production of type I interferon (IFN-I).
44 However, the role of these pathways in different tissues is incompletely understood, an
45 issue particularly relevant to the CMVs which have broad tissue tropisms. Herein, we
46 investigated anti-viral effects of MyD88 and STING in distinct cell types that are infected
47 with murine CMV (MCMV). Bone marrow chimeras revealed STING-mediated MCMV
48 control in hematological cells, similar to MyD88. However, unlike MyD88, STING also
49 contributed to viral control in non-hematological, stromal cells. Infected splenic stromal
50 cells produced IFN-I in a cGAS-STING-dependent and MyD88-independent manner,
51 while plasmacytoid dendritic cell IFN-I had inverse requirements. MCMV-induced
52 natural killer (NK) cytotoxicity was dependent on MyD88 and STING. Thus, MyD88 and
53 STING contribute to MCMV control in distinct cell types that initiate downstream
54 immune responses.

55

56 **Introduction**

57

58 Viral infections can be detected by specialized pattern recognition receptors, which
59 recognize viral structures that are unique or otherwise absent in the subcellular location
60 where they are detected. Nucleic acids from DNA-viruses can be detected in various
61 organelles during infection. Some DNA viruses pass through endolysosomes where viral
62 DNA can be recognized by toll-like receptors (TLRs), in particular TLR9, which signals
63 through MyD88 and induces a type I interferon (IFN-I) response (Motwani, Pesiridis, &
64 Fitzgerald, 2019). In the cytosol, infection results in exposure of viral DNA that can be
65 recognized by cytosolic DNA sensors including cyclic GMP-AMP synthase (cGAS) and
66 absent in melanoma 2 (AIM2) inflammasome (Tan, Sun, Chen, & Chen, 2018). cGAS
67 signals through STING and initiates an IFN-I response, whereas AIM2 activates caspase
68 I and instigates an IL-1 β and IL-18 response. The TLRs and AIM2 pathways are
69 primarily active in specific immune cell types. In contrast, the STING-cGAS pathway
70 appear to be active in a broader range but not all cell types (Motwani et al., 2019). Yet, it
71 is unclear how activation of these pathways in different cell types contributes to viral
72 control.

73

74 Upon recognition of viral structures, IFN-I plays a central role in protection against acute
75 infection. IFN-I mediates its anti-viral effects through stimulation of the interferon
76 receptor, comprising of IFNAR1 and IFNAR2, and downstream STAT molecules. The
77 resulting IFN-stimulated genes (ISGs) induce an anti-viral state, affecting cell survival
78 and viral replication (Gonzalez-Navajas, Lee, David, & Raz, 2012; McNab, Mayer-
79 Barber, Sher, Wack, & O'Garra, 2015). In addition, IFN-I is critical for orchestrating the
80 subsequent innate and adaptive immune responses, through modulation of cell attraction,
81 activation, and priming. Although human deficiencies in the IFN-I pathway are very rare,
82 evidence suggest that IFN-I could protect against viral infections in humans. Individuals
83 with mutations in *IFNAR2* and *STAT2* have relatively mild symptoms after infection,
84 even though they can develop severe illness in response to live vaccines (Duncan et al.,
85 2015; Hambleton et al., 2013). However, these deficiencies likely do not completely
86 nullify IFN-I effects because IFN β can signal through IFNAR1 without requiring
87 IFNAR2 and IFN-I can signal through STAT2-independent pathways (de Weerd et al.,
88 2013; Gonzalez-Navajas et al., 2012). Thus, it remains unclear how these different IFN-I
89 pathways contribute to control of viral infections.

90

91 In this regard, studies of infections with the beta-herpesvirus cytomegalovirus (CMV),
92 have been informative. Infection with human CMV (HCMV) is nearly ubiquitous
93 worldwide (Cannon, Schmid, & Hyde, 2010). HCMV is controlled and establishes
94 latency in healthy individuals, but HCMV can cause life-threatening disease in
95 immunocompromised patients (Griffiths, Baraniak, & Reeves, 2015). Despite a broad
96 tropism that allows CMV to infect a wide range of cell types, CMV is highly species-
97 specific (Krmotic, Bubic, Polic, Lucin, & Jonjic, 2003; Sinzger, Digel, & Jahn, 2008).
98 Murine CMV (MCMV) in particular shares key features with HCMV and has been
99 instructive for dissecting cytomegalovirus pathogenesis (Krmotic et al., 2003; Picarda &
100 Benedict, 2018). Indeed, a recent case study described a patient with deficiencies in both
101 *IFNAR1* and *IFNGR2* who presented with bacteremia and CMV viremia (Hoyos-

102 Bachiloglu et al., 2017). Consistent with these findings, mice deficient in *Ifnar1* and
103 *Ifngr1* are highly susceptible to MCMV (Gil et al., 2001). *Ifnar1* deficiency in isolation
104 resulted in a 100-fold increased MCMV susceptibility whereas *Ifngr1* deficiency did not,
105 indicating that IFN-I plays a dominant role in controlling acute CMV infections. IFN-I
106 production during acute MCMV infection is biphasic; initial IFN-I production peaks at 8
107 hours post infection (p.i.) with a second peak at 36-48 hours p.i. (Delale et al., 2005;
108 Schneider et al., 2008). STING has been implicated in the initial IFN-I response. STING-
109 deficient mice have decreased systemic IFN β at 12 hours p.i. and 5-fold increased viral
110 load at 36 hours p.i. (Lio et al., 2016). A recent study implicated Kupffer cells to be the
111 main source for IFN β in the liver 4 hours p.i. (Tegtmeyer et al., 2019). Besides the
112 aforementioned immune cells, stromal cells are thought to be a major source for IFN-I in
113 the spleen at 8 hours p.i. (Schneider et al., 2008). By contrast, MyD88-dependent
114 pathways have been implicated in IFN-I production during the second wave (Delale et
115 al., 2005; Krug et al., 2004). IFN-I production by plasmacytoid dendritic cells (pDCs) is
116 dependent on TLR7 and TLR9 (Krug et al., 2004); (Hokeness-Antonelli, Crane, Dragoi,
117 Chu, & Salazar-Mather, 2007; Zucchini et al., 2008). Consistent with the role of pDCs in
118 IFN-I production, MyD88 is required in the hematological compartment in bone marrow
119 chimeras (Puttur et al., 2016). However, it has been unknown which sensing pathway is
120 responsible for IFN-I induction in the stroma and what the contribution is of the distinct
121 sensing pathways to control MCMV infection in different tissues.
122

123 Besides its direct anti-viral effects, IFN-I is crucial for optimal NK cell function during
124 viral infection (Orange & Biron, 1996). NK cells play a critical role in controlling
125 MCMV infection in C57BL/6 mice, which is dependent on interactions between the
126 Ly49H NK cell activation receptor and its MCMV-encoded ligand m157 (Arase,
127 Mocarski, Campbell, Hill, & Lanier, 2002; Brown et al., 2001; Smith et al., 2002).
128 However, this interaction is not sufficient to allow NK cell control of MCMV infection.
129 IL-12 and IFN-I produced early during MCMV infection induce granzyme B and perforin
130 protein expression in NK cells (Fehniger et al., 2007; Nguyen et al., 2002; Parikh et al.,
131 2015), which allows them to efficiently kill virus-infected cells upon recognition of m157
132 through Ly49H (Parikh et al., 2015). IL-12 and IFN-I also induce IFN γ transcription,
133 which is required for activation receptor-dependent IFN γ production (Piersma, Pak-
134 Wittel, Lin, Plougastel-Douglas, & Yokoyama, 2019). In the absence of MyD88, Ly49H $^{+}$
135 NK cells can compensate for suboptimal IFN-I production (Cocita et al., 2015),
136 suggesting that low levels of IFN-I can still enhance NK-mediated control of MCMV.
137 Which MCMV-sensing pathway contributes to the NK cell response is still unclear.
138

139 In the current study, we analyzed survival, viral titers, IFN-I production and NK cell
140 responses in mice deficient in MyD88, STING or both. We also determined the
141 contribution of both signaling pathways in different tissues to their anti-viral effects, and
142 elucidated a role for cGAS in these responses.
143

144

145 **Results:**

146

147 **MyD88 and STING-dependent pathways control MCMV infection *in vivo***

148

149 We set out to investigate the contribution of STING- and MyD88-dependent pathways in
150 controlling MCMV infection by analyzing the morbidity and mortality in wildtype
151 C57BL/6 (WT), MyD88-deficient (MyD88 KO), and STING-deficient (STING GT) mice
152 as well as mice deficient in both MyD88 and STING (DKO) that were infected with
153 50,000 PFU MCMV (Figure 1). Consistent with previously published data (Lio et al.,
154 2016), WT mice lost approximately 10% of weight by 3 days p.i. after which they
155 recovered (Figure 1A). Here we observed that STING GT mice showed more pronounced
156 weight loss compared to WT mice, but were also able to recover. MyD88 KO mice
157 showed delayed weight loss as compared to WT mice, indicating that the initial weight
158 loss in WT mice was caused by immunopathology mediated by MyD88. The weight
159 curves of DKO mice overlapped with MyD88 KO mice, suggesting that the extra weight
160 loss in the STING deficient mice as compared to WT mice is likely MyD88-dependent.
161 Both WT and STING GT mice were able to control and survive viral infection upon
162 challenge with MCMV (Figure 1B). MyD88 KO mice were moderately resistant to the
163 infection as 37% of the mice died between days 6 and 7. In contrast, the majority (70%)
164 of DKO mice succumbed to the infection. These data show that both STING and MyD88
165 significantly contribute to control of MCMV infection *in vivo*.

166

167 **STING contributes in both the hematological and radio-resistant compartments in 168 controlling viral load**

169

170 To investigate the contribution of STING and MyD88 in different organs we analyzed
171 viral loads in the spleen and liver, the initial organs of replication after infection (Hsu,
172 Pratt, Akers, Achilefu, & Yokoyama, 2009; Sacher et al., 2008). In the spleen we
173 observed a modest but significant increase (6.9-fold) in viral load in MyD88 KO mice
174 two days p.i., whereas the spleens of DKO mice contained 84-fold higher viral copies
175 compared to WT controls (Figure 2A). By 5 days p.i. we observed an 85-fold increase in
176 viral load in the spleens of MyD88-deficient and 1901-fold increase in viral load in DKO,
177 both as compared to WT controls (Figure 2B). We did not observe significant differences
178 in STING-deficient animals, but we observed a 23-fold increase in viral load in DKO
179 spleens compared to MyD88 KO, indicating that STING contributes to viral control in
180 the absence of MyD88. In the liver, we were unable to detect significant differences in
181 viral load at 2 days p.i. (Figure 2A). By day 5, we observed a 221-fold increase in DKO
182 and 51-fold increase in MyD88 KO viral load compared to WT controls (Figure 2B).
183 Taken together, these data indicate that the STING and MyD88 pathways contribute to
184 viral control at early timepoints, particularly in the spleen and to a lesser extent in the
185 liver.

186

187 MyD88 has been reported to be required in the hematological compartment, but not in the
188 radio-resistant compartment (Puttur et al., 2016), yet it is unclear which compartment(s)
189 requires STING-dependent pathways. To investigate the contributions of STING and
190 MyD88 dependent pathways in these compartments, we generated bone marrow (BM)

191 chimeras of either or both knockout BM into irradiated WT or STING GT hosts and
192 analyzed viral load day 5 p.i. (Figure 2C). While WT hosts reconstituted with WT BM
193 controlled viral load similar to WT control mice (Figure 2C vs Figure 2 - Figure
194 supplement 1A), reconstitution of WT hosts with MyD88-deficient BM resulted in
195 elevated viral loads compared to reconstitution with WT BM (Figure 2C), consistent with
196 previous published results (Puttur et al., 2016). We also observed that the contribution of
197 MyD88 in the hematological compartment was particularly overt in the absence of
198 STING, revealed by comparison of DKO BM into STING GT host versus STING GT
199 BM into STING GT host, which resulted in a 3882-fold difference in the spleen and 344-
200 fold in the liver, respectively. STING also had anti-viral effects in the hematological
201 compartment, evident by comparing DKO BM into STING GT host versus MyD88 KO
202 BM into STING GT host, which revealed a 59-fold difference in the spleen. STING
203 played also a role in the radio-resistant compartment in both spleen and liver, revealed by
204 comparison of DKO BM into WT host versus DKO BM into STING GT host, for which
205 we observed a 49-fold and 24-fold differences in the spleen and liver, respectively.
206 Jointly, the BM chimeras reveal an evident role for MyD88 in the hematological
207 compartment, while STING contributes to viral control in both the hematological and
208 radio-resistant compartments, most explicitly in the spleen.
209

210 **Multiple cell populations produce IFN-I in response upon MCMV infection**

211 Type I IFNs are induced in response to triggering of pathogen recognition receptors that
212 signal through MyD88 and STING and are key players in the initial anti-viral response.
213 To investigate the IFN-I response in virus-infected cells we made use of a reporter virus
214 that expresses GFP under the IE1 promoter (Henry et al., 2000). We analyzed initial
215 times (8- and 36-hours p.i.) and focused on stromal cell and dendritic cell (DC)
216 populations, which are the major cell types infected at these timepoints (Hsu et al., 2009).
217 Consistent with previous published data, we detected infection of the stromal cell but not
218 DC compartment at 8-hours p.i. (Figure 3A). At 36-hours p.i., the percentage of infected
219 stromal cells increased substantially and infected DCs were detected as well. Infected
220 DCs included conventional DC (cDC; CD11c high in Figure 3A) and plasmacytoid DC
221 (pDC; CD11c low in Figure 3A) populations. Based on these data, we sorted and
222 analyzed infected and uninfected populations at 36-hours p.i. for IFN α and IFN β
223 transcripts by quantitative PCR (Figure 3 – Figure supplement 1). The infected stromal
224 cells (GFP $^+$) specifically expressed *Ifna* and *Ifnb1* transcripts, which were not detected in
225 the uninfected (GFP $^-$) cells (Figure 3B). Infected DCs also expressed transcripts for *Ifna*
226 and *Ifnb1* but *Ifna* transcripts were also detected in GFP $^-$ DCs isolated from MCMV-
227 infected animals (Figure 3C). These data suggest that *Ifna* transcripts in uninfected DCs
228 are produced (in part) as a feedforward loop (McNab et al., 2015), whereas *Ifnb1*
229 transcripts are specifically produced in response to viral detection in infected DCs as well
230 as stromal cells. Based on these data we chose to investigate the role of STING and
231 MyD88 on IFN β production by different cell types.
232
233

234 **IFN β is produced by pDCs in a MyD88-dependent but STING-independent manner 235 during infection**

236 To evaluate the role of STING and MyD88 on IFN- β production by individual cells upon
237 infection, we backcrossed MyD88 KO, STING GT, and DKO mice to the IFN β -YFP
238 reporter mouse (Scheu, Dresing, & Locksley, 2008). Approximately 20% of the pDCs
239 were YFP $^+$, indicating at least this percentage of infected pDCs produced IFN β in
240 response to MCMV infection, whereas much fewer cDCs produced IFN β because less
241 than 1% of cDCs were YFP $^+$ (Figure 4B). Consistent with previous studies of primary
242 pDC *in vitro* (Krug et al., 2004), we observed that the production of IFN β by pDCs was
243 solely dependent on MyD88 because MyD88 KO mice were unable to induce detectable
244 YFP (IFN β) in pDCs. By contrast, here we found that STING GT mice did not
245 significantly affect pDC IFN β production, indicating that MyD88 functions in these cells
246 without requiring STING-dependent pathways. On the other hand, both STING and
247 MyD88 seemed to affect IFN β reporter levels in the few YFP $^+$ cDCs, although the
248 differences were not significant (Figure 4B). Nonetheless, these results indicate that
249 MyD88-dependent sensing of MCMV dictated the IFN β response in pDCs, but it
250 remained unclear how MyD88- and STING-dependent pathways contribute to IFN β
251 production in stromal cells.

252

253 **IFN β is produced by stromal cells in a STING-dependent but MyD88 independent 254 manner during infection**

255 Since we were unable to find YFP $^+$ infected stromal cells, which might be due to a
256 detection level issue in these cells *in vivo* (Figure 4), we turned to *in vitro* infection of
257 primary stromal cells. To this end, we isolated primary splenic fibroblast and challenged
258 them with MCMV at MOI 5 (Figure 5A). Indeed, splenic fibroblasts readily expressed
259 8000-fold increase in *Ifnb1* transcripts by qPCR at 8 hours p.i. To determine the role of
260 key innate sensing components, we turned to mouse embryonic fibroblasts (MEFs) that
261 were genetically deficient in these components. Consistent with primary splenic
262 fibroblasts, MEF expressed *Ifnb1* transcripts upon MCMV infection (Figure 5B),
263 reaching levels to those detected in primary splenic fibroblasts. We further observed that
264 *Ifnb1* expression was independent of MyD88 and TRIF, indicating that TLRs do not
265 contribute to IFN β production in fibroblasts even though *Ifnb1* expression was dependent
266 on IRF3/7 and TBK1, which is consistent with cytosolic sensing of MCMV. Using MEF
267 lines with 2 different mutations in STING (Ishikawa & Barber, 2008; Sauer et al., 2011),
268 we found that the IFNB1 response was instead dependent on STING. However, IFNB1
269 production was independent of MAVS (also known as CARDIF and IPS-1), suggesting
270 that the IFN-response is independent of the cytosolic RNA sensors (Tan et al., 2018).
271 Finally, we investigated the role of cytosolic DNA sensors and found that fibroblast
272 sensing of MCMV was dependent on cGAS, but independent of ZBP1 and DNA-PK. To
273 confirm that the cGAS pathway also is involved in adult splenic stromal cells, we
274 analyzed *Ifnb1* expression in cGAS-deficient primary splenic fibroblasts (Figure 5C).
275 Indeed, cGAS-deficient splenic fibroblasts were unable to express *Ifnb1* in response to
276 MCMV challenge, indicating that the STING-cGAS-dependent pathway is responsible
277 for the IFN β response in the stromal cell compartment. To validate that these pathways
278 are also involved in IFN β protein production and secretion, we analyzed cell culture
279 supernatants at 48 hours p.i. with MCMV MOI 0.5 (Figure 5E). WT MEF secreted IFN β
280 in response to MCMV infection, but neither STING nor cGAS-deficient MEFs produced

281 IFN β . Collectively, these results strongly suggest that the stromal cell compartment
282 produces IFN β in a STING-cGAS dependent but MyD88-independent manner.
283

284 **MyD88 and STING contribute to NK cell cytolytic potential**

285 We previously reported that both IFN-I and IL-12 act directly on NK cells to induce
286 perforin (Prf) and granzyme B (GzB) protein levels, thereby increasing NK cell cytolytic
287 potential, which was required for Ly49H-dependent control of MCMV infection (Parikh
288 et al., 2015). Moreover, IL-12 production in response to MCMV has been reported to be
289 dependent on MyD88 (Krug et al., 2004), and thus contributed to the phenotypes
290 observed in MyD88 KO mice independent of IFN-I. Here we investigated the role of
291 MyD88 and STING in increasing NK cell reactivity during MCMV infection. Consistent
292 with previous reports (Fehniger et al., 2007; Orange, Wang, Terhorst, & Biron, 1995;
293 Parikh et al., 2015), we observed increased levels of NK cell GzB, Prf and IFN γ at 48
294 hours p.i. (Figure 6A). At this time point, NK cell production of IFN γ is dependent on IL-
295 18, which signals through MyD88 (Adachi et al., 1998; Pien, Satoskar, Takeda, Akira, &
296 Biron, 2000). Indeed, NK cell IFN γ production was dependent on MyD88, whereas
297 STING did not impair IFN γ production, and rather increased the IFN γ response (Figure
298 6B). This potentially could be due to a relatively small increase in viral load at these
299 timepoints. Expression of both GzB and Prf followed a similar pattern, as the vast
300 majority of increased expression was dependent on MyD88, whereas STING did not
301 overtly contribute to the production of these lytic proteins (Figure 6B). Finally, we
302 analyzed NK cell cytolytic capacity using a 3-hour *in vivo* target cell rejection assay. We
303 previously reported that MCMV increased m157-target cell rejection in an IL-12- and
304 IFN-I-dependent manner (Parikh et al., 2015). Consistent with our previous data, m157-
305 specific target cell rejection increased 3 days post-MCMV infection from 50% to 80%
306 (Figure 6C). MHC-I-deficient cell (“missing self”) rejection was higher and increased
307 from 30% to 90%. MyD88 KO or STING GT mice did not display substantial differences
308 in target cell rejection, but DKO mice substantially decreased NK cell cytolytic capacity
309 with m157-specific rejection showing levels of uninfected mice. Similarly, MHC-I
310 specific rejection was decreased in double versus single deficient mice. Together, these
311 data indicate that both MyD88 and STING-dependent pathways contribute to NK cell
312 cytolytic potential, albeit that MyD88 predominantly affects production of Prf and GzB.
313

314

315 **Discussion**

316

317 Herein we describe that MCMV infection can be sensed by both STING and MyD88-
318 dependent pathways which contribute to viral control in response to lethal challenge.
319 While we confirmed the strong role of MyD88 in the hematological compartment,
320 especially in splenic pDCs, we found that STING contributes in both the hematological
321 and the previously unappreciated stromal cell compartment. Using primary splenic
322 stromal cell cultures, we identified a role for cGAS-STING-dependent, but MyD88-
323 independent IFN-I production in response to MCMV infection. Finally, we found that
324 both MyD88 and STING-dependent pathways contribute to increased NK cell cytolytic
325 function during infection. Thus, our findings indicate that cytomegalovirus infection is
326 sensed by distinct sensing pathway depending on the infected cell type and that these
327 pathways constitute a multi-layer antiviral defense.

328

329 Cytomegaloviruses have a broad tropism and a broad range of infected cell types have the
330 capacity to produce IFN-I in response to infection. However, IFN-I production has been
331 most well characterized in myeloid cells, including pDCs and Kupffer cells. IFN-I
332 production by pDCs upon MCMV infection *in vitro* is dependent on TLR9 and MyD88
333 (Krug et al., 2004). Using IFN β reporter mice, we were able to confirm that pDCs were
334 the major source of IFN β in the spleen and that this was dependent on MyD88.
335 Furthermore, we observed that this IFN-I production was independent of STING. Early
336 after infection, Kupffer cells in the liver produce IFN-I in a STING-dependent, but TLR-
337 independent manner (Tegtmeyer et al., 2019). Hepatocytes are a major target for
338 infection by MCMV (Sacher et al., 2008), yet they do not induce detectable levels of
339 IFN β (Tegtmeyer et al., 2019). However, hepatocytes do not express STING (Thomsen et
340 al., 2016), likely explaining the lack of IFN β production in hepatocytes in response to
341 MCMV infection. In our bone marrow chimeras, we observed a role for STING in the
342 radioresistant compartment in the liver. Hepatic stromal cells, including endothelial cells,
343 are infected with MCMV (Sacher et al., 2008), providing likely contributors, apart from
344 hepatocytes per se, to control MCMV in a STING-dependent manner in the liver.

345

346 We observed a stronger effect of STING in the splenic stromal cell compartment
347 compared to the liver stromal cell compartment. IFN-I produced by splenic stromal cells
348 have previously been reported to be dependent on lymphotoxin (LT) β expression by B
349 cells, independent of TLR signaling (Sacher et al., 2008). Consistent with these findings,
350 our findings revealed that stromal cell IFN-I is cGAS-STING-dependent. Besides the
351 anti-viral role for STING in the stromal cell compartment, we observed that IFN-I
352 production by infected primary splenic stromal cells was cGAS-STING-dependent. The
353 primary stromal cells did not require interactions with B cells to produce IFN-I *in vitro*.
354 However, it remains to be determined how LT intersects with the STING pathway *in*
355 *vivo*, particularly since LT has been reported to be required for cell survival during
356 MCMV infection (Banks et al., 2005), potentially providing a window where infected
357 stromal cells survive long enough to produce IFN-I. Additional studies are required to
358 further define these experimentally complex interactions.

359

360 Herpesviruses dedicate a large part of their genome to immune evasion strategies,
361 including strategies that act on cellular immunity and intrinsic cellular defenses (Powers,
362 DeFilippis, Malouli, & Fruh, 2008). MCMV has been reported to interfere with the DNA
363 sensing pathway at different steps, m152 binds to STING and interferes with its
364 trafficking (Powers et al., 2008), whereas m35 targets NF κ B-mediated transcription
365 (Chan et al., 2017). Deletion of these ORFs individually in MCMV results in stronger
366 IFN-I responses upon infection *in vivo*. Infection with MCMV deleted in both ORFs
367 potentially facilitates visualization of the IFN-I production by the cell types under study.
368 Despite these immune evasion strategies, WT MCMV induces an IFN-I response that is
369 potent enough to control virus infection, therefore we chose to use WT MCMV in the
370 current study.

371
372 Infection with lethal dose of MCMV resulted in about a third of the MyD88-deficient
373 mice succumbing to infection, which is consistent with previously published results
374 (Delale et al., 2005). However, a recent study did not observe a lethality phenotype in
375 mice deficient in MyD88 and TRIF, unless mice also lacked MAVS (Tegtmeyer et al.,
376 2019). The latter study utilized tissue culture-derived MCMV in contrast to salivary
377 gland extracted MCMV in the former and our study. Additionally, Tegtmeyer et al. used
378 a mutant MCMV that lacked m157, whereas we used m157-sufficient virus for infections
379 monitoring survival. Since IFN-I impacts NK cell-dependent MCMV-control via m157
380 recognition (Parikh et al., 2015), the use of WT MCMV allowed us to evaluate the effect
381 of the virus-sensing pathways on NK cell function.

382
383 IFN-I and IL-12 produced in response to MCMV infection are required for full NK cell
384 cytolytic capacity, through induction of GzB and Prf (Parikh et al., 2015). Consistent
385 with previous reports (Krug et al., 2004; Puttur et al., 2016), we found that MyD88-
386 deficient mice expressed low levels of NK cell GzB, Prf and IFN γ in response to MCMV
387 infection but NK cytolytic potential *in vivo* was not substantially affected. However,
388 MCMV-infected mice deficient in both STING and MyD88 displayed reduced NK cell
389 cytolytic activity against m157-expressing and MHC-I-deficient target splenocytes
390 (Cocita et al., 2015). Thus, MyD88- and STING-dependent sensing of MCMV both
391 contribute to signal to NK cells to enhance their cytolytic function in order to efficiently
392 clear MCMV-infected target cells.

393

394 **Materials and Methods**

395 *Mice*

396 C57BL/6 (stock number 665) and BALB/c (028) mice were purchased from Charles
397 River Laboratories. The following mouse strains were purchased from Jackson
398 Laboratories: STING golden ticket (017537), IFN β -YFP reporter mice (010818), DNA-
399 PK SCID (001913), and β 2m KO (002087). m157-Tg mice were generated and
400 maintained in-house. H-2K b KO x H-2D b KO (4215) mice were purchased from Taconic
401 Farms. MyD88 KO, TBK1 KO (nBio156), and ZBP1 KO (nBio155) mice were kindly
402 provided by S. Akira (Osaka University, Osaka, Japan) through the JCRB Laboratory
403 Animal Resource Bank of the National Institute of Biomedical Innovation (Adachi et al.,
404 1998; Hemmi et al., 2004; Ishii et al., 2008) and were maintained on a C57BL/6
405 background. IPS1 KO mice on the C57BL/6 background were kindly provided by
406 Michael Gale (University of Washington, Seattle, WA, USA). Mice deficient for cGAS
407 were kindly provided by Herbert Virgin (Vir Biotechnology, San Francisco, CA,
408 USA) (Schoggins et al., 2014). Triple MHC Class I KO mice (TKO) were generated by
409 crossing β 2m KO mice to H-2K b KO x H-2D b KO mice. STING GT mice were crossed to
410 MyD88 KO to generate DKO mice. Subsequently DKO and single KO mice were
411 crossed with IFN β -YFP reporter to generate IFN β -YFP on the various KO backgrounds.
412 All mice were maintained in-house in accordance with institutional ethical guidelines.
413 Age- and sex-matched mice were used in all experiments.

414

415 *Cell lines*

416 3T12 cells (ATCC CCL-164) were maintained in DMEM supplemented with newborn
417 calf serum, L-glutamine, penicillin, and streptomycin and were used for production of
418 tissue culture derived MCMV and titering of virus stocks. All MEF were maintained in
419 RPMI supplemented with fetal bovine serum, L-glutamine, penicillin, and streptomycin.
420 IRF3/7 KO MEF were kindly provided by Michael S Diamond (Washington University
421 in St Louis, MO, USA). STING KO MEF have been described before (Ishikawa, Ma, &
422 Barber, 2009). All other MEF lines were generated from day 11.5-13.5 embryos, at least
423 2 independent lines were generated per genotype. To generate splenic fibroblasts, spleens
424 were minced and digested with Liberase TL, adherent cells were cultured for 3-6 weeks
425 to obtain pure fibroblast populations.

426

427 *In vivo virus infections*

428 For *in vivo* studies salivary gland MCMV (sg-MCMV) of the WT-1 strain, a subcloned
429 Smith strain (Cheng, Valentine, Gao, Pingel, & Yokoyama, 2010), was used for
430 infections unless otherwise indicated. Where indicated, MCMV that expressed GFP
431 under the IE1 promotor was used to visualize infected cells (Henry et al., 2000). This
432 reporter virus contained a mutation in m157. All viral strains for *in vivo* infections were
433 propagated in BALB/c mice; virus was isolated from salivary glands and titers were
434 determined as previously described (Brune, Hengel, & Koszinowski, 2001; Jonjic, 2001).
435 Mice were infected with indicated dose of MCMV intraperitoneally in 200 μ l PBS. For
436 survival studies weight was monitored daily and mice were sacrificed when more than
437 30% of initial weight was lost, in accordance to animal protocol. Viral load analysis was
438 performed as previously described (Parikh et al., 2015). Briefly, RNA-free organ DNA
439 was isolated using Puregene extraction kit (Qiagen). 160 ng DNA was quantified for

440 MCMV IE1 (Forward: 5'-CCCTCTCCTAACTCTCCCTTT-3'; Reverse: 5'-
441 TGGTGCTCTTTCCCGTG -3'; Probe: 5'-TCTCTTGCCCCGTCCTGAAAACC-3';
442 IDT DNA) and host *Actb* (Forward: 5' - AGCTCATTGTAGAAGGTGTGG-3'; Reverse:
443 5' - GGTGGGAATGGGTCAAGAAG-3'; Probe: 5'-
444 TTCAGGGTCAGGATAACCTCTTGCT-3'; IDT DNA) against plasmid standard
445 curves using TAQman universal master mix II on a StepOnePlus real time PCR system
446 (Thermo Fisher Scientific).

447

448 *Bone marrow chimeras*

449 C57BL/6 and STING GT mice were irradiated with 950 rad by an x-ray irradiator and
450 were intravenously with 5 million of the indicated genotype donor bone marrow cells.
451 Chimeric mice were given antibiotic water (sulfamethoxazole/trimethoprim) for 4 weeks.
452 6 weeks post-irradiation mice were infected with MCMV and analyzed for viral load at 5
453 days p.i. We observed greater sensitivity of reconstituted BM chimeric mice to infections
454 than mice not subjected to the BM transplant procedure in our facility so we infected
455 reconstituted mice with a lower dose of MCMV (20,000 PFU) as compared to non-
456 chimeric mice.

457

458 *In vitro virus infections*

459 For *in vitro* studies, pelleted tissue culture-derived MCMV was prepared and viral titers
460 were determined as previously described (Brune et al., 2001). 200,000 cells were plated
461 in a 6-well plate overnight and were infected with 200 μ l of MCMV at MOI 5 for RNA
462 analysis and MOI 0.5 for supernatant analysis for 1 hour, after which wells were washed
463 with PBS to remove free virus and 2 ml fresh culture media was added. Cells were lysed
464 in the wells with 1 ml trizol after an additional 5 hours culture for RNA analysis. Samples
465 were stored at -80°C until analysis. Supernatants were harvested 48 hours after culture
466 and analyzed for IFN β by ELISA (Biolegend) according to manufacturer protocol.

467

468 *Flow Cytometry*

469 Fluorescent-labeled antibodies used were anti-NK1.1 (clone PK136), anti-NKp46
470 (29A1.4), anti-CD3 (145-2C11), anti-CD19 (eBio1D3), anti-CD31 (390), anti-PDCA1
471 (eBio129c), anti-gp38 (eBio8.1.1), anti-CD45 (30-F11), anti CD11c (N418), anti-Ly49H
472 (3D10), anti-Perforin (eBioOMAK-D), anti-Granzyme B (GB12), and anti-IFN γ
473 (XMG1.2), all from Thermo Fisher Scientific. For analysis of splenic dendritic and
474 stromal cells, spleens were digested with 1 mg/ml Liberase TL and DNase -I (Millipore
475 Sigma) for 45 minutes with mechanical dissociation with a pipette every 15 minutes to
476 obtain a single cell suspension. For analysis of NK cells, spleens were crushed through a
477 70 μ m cell strainer to obtain a single cell suspension. Red blood cells (RBC) in all
478 samples were lysed with RBC lysis buffer. Cells for analysis were first stained with
479 fixable viability dye (Thermo Fisher Scientific). Subsequently, cell surface molecules
480 were stained in 2.4G2 hybridoma supernatant to block Fc receptors. For intracellular
481 staining, cells were fixed and stained intracellularly using the Cytofix/Cytoperm kit (BD
482 Biosciences) according to manufacturer's instructions. Samples were acquired using
483 FACSCanto (BD Biosciences) and analyzed using FlowJo software (Treestar). NK cells
484 were defined as Viability-NK1.1 $^+$ CD3 $^-$ CD19 $^-$. Where indicated, cells were sorted on a

485 FACSaria (BD Biosciences) into media and subsequently lysed in Trizol for RNA
486 analysis.

487

488 *RNA analysis*

489 RNA was isolated from cultured or sorted cells using Trizol according to manufacturer
490 instruction (Thermo Fisher Scientific). Contaminating DNA was removed using Turbo
491 DNase, and cDNA was synthesized using Superscript III using oligo(dT) (Thermo Fisher
492 Scientific). Quantification was performed for *Ifnb1* (Mm00439546_s1; Thermo Fisher
493 Scientific), (pan)*Ifna* (Forward: 5'-CTTCCACAGGATCACTGTGTACCT-3'; Reverse:
494 5'-TTCTGCTC TGACCACCTCCC-3'; Probe: 5'-AGAGAGAAGAAACACAGCCC
495 CTGTGCC-3'; IDT DNA)(Samuel & Diamond, 2005) and *Gapdh* (Mm99999915_g1;
496 Thermo Fisher Scientific) against plasmid or pooled standard curves using TAQman
497 universal master mix II on a StepOnePlus real time PCR system (Thermo Fisher
498 Scientific).

499

500 *In vivo cytotoxicity assay*

501 Target splenocytes were isolated from C57BL/6, m157-Tg, and MHC-I deficient (TKO)
502 mice and differentially labelled with CFSE, CellTrace violet, and CellTrace far red
503 (Thermo Fisher Scientific). Target cells were mixed at a 1:1:1 ratio and 3×10^6 target cells
504 were injected i.v. into naïve or day 3 MCMV-infected mice. 3 hours after challenge
505 splenocytes were harvested and stained. The ratio of target (m157-tg or TKO) to control
506 (C57BL/6) viable CD19⁺ cells was determined by flow cytometry. Target cell rejection
507 was calculated using the formula $[(1 - (\text{Ratio(target:control)}_{\text{sample}} / \text{Ratio(target:control)}_{\text{NK}})) \times 100]$. Average of two NK1.1-depleted mice served as control.

508

509 *Statistical analysis*

510 Statistical analysis was performed using Prism (GraphPad software). Survival curves
511 were compared using Log-Rank (Mantel-Cox) tests, other comparisons were performed
512 using one-way ANOVA with Bonferroni's multiple comparisons tests to calculate P
513 values. Error bars in figures represent the SEM. Statistical significance was indicated as
514 follows: ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, not significant.

515

516 **Acknowledgements**

517 We thank Beatrice Plougastel-Douglas for critically reading the manuscript.

518 This work was supported by NIH grant R01-AI131680 to W.M.Y. and S.J.P. was
519 supported by the Netherlands Organisation for Scientific Research (Rubicon grant
520 825.11.004).

521 The authors declare no competing financial interests. S.J.P., B.A.P., G.N.B., and W.M.Y.
522 designed the research. S.J.P., J.L., L.Y. performed experiments. S.J.P. and W.M.Y. wrote
523 the manuscript.

524

526 **Figure legends**

527

528 **Figure 1: MyD88 and STING control morbidity and mortality during MCMV**
529 **infection.** Mice were infected with 50,000 PFU MCMV WT-1, weight loss and survival
530 was monitored over time. **(A)** Weight loss over time in wildtype (n=12), STING-deficient
531 (STING GT, n=21), MyD88-deficient (MyD88 KO, n=9) and mice deficient in both
532 STING and MyD88 (DKO; n=14). **(B)** Survival curves of wildtype (n=17), STING GT
533 (n=18), MyD88 KO (n=17) and DKO mice (n=20). Cumulative data of 3 independent
534 experiments. Error bars indicate SEM; *p<0.05, **p<0.01, ****p<0.0001.

535

536 **Figure 2: STING contributes to control of MCMV in the hematological and stromal**
537 **compartment, whereas MyD88 in the hematological compartment potently controls**
538 **infection.** Mice were infected with 50,000 PFU **(A)** and **(B)** or 20,000 PFU **(C)** MCMV.
539 Viral load was quantified 2 days **(A)** or 5 days **(B)** and **(C)** p.i. **(C)** Indicated bone
540 marrow was adoptively transferred into irradiated wildtype (WT) or STING-deficient
541 (STING GT) hosts. Bone marrow chimeras were infected 6 weeks post transfer and viral
542 load was analyzed 5 days p.i. Each panel shows cumulative data of 2 independent
543 experiments. Error bars indicate SEM; ns, not significant, *p<0.05, **p<0.01,
544 ***p<0.001, ****p<0.0001.

545

546 **Figure 3: MCMV-infected cells specifically produce IFN β upon infection.** WT mice
547 were infected with 100,000 PFU MCMV IE1-GFP reporter virus. **(A)** Analysis of GFP
548 expression in CD45 $^{-}$ stromal cells and CD45 $^{+}$ CD11c $^{+}$ DC at 8 hours and 36 hours p.i. **(B)**
549 GFP $^{+}$ and GFP $^{-}$ stromal cells and DC were FACS-sorted 36 hours p.i. and *Ifnb1* and pan-
550 *Ifna* transcript levels were quantified by real-time PCR. Both panels show representative
551 experiments from 2 independent experiments. Error bars indicate SD; ns, not significant,
552 *p<0.05, **p<0.01, ***p<0.001.

553

554 **Figure 4: pDCs produce IFN β in a MyD88-dependent but STING-independent**
555 **manner in IFN β -YFP reporter mice.** IFN β -YFP reporter mice were backcrossed to
556 MyD88- (MyD88 KO), STING- (STING GT) and double-deficient (DKO) mice.
557 Animals were infected with 200,000 PFU WT1 MCMV and analyzed 48 hours post
558 infection. Spleens were digested to a single cell suspension, stained and analyzed by flow
559 cytometry. Error bars indicate SD; **p<0.01.

560

561 **Figure 5: MCMV-induced fibroblast IFN β is triggered by cGAS-STING-dependent**
562 **but MyD88-Trif-MAVS-independent mechanisms.** **(A)** IFNB1 mRNA levels of
563 primary splenic fibroblasts infected with WT1 MCMV (MOI=5) 8 hours post-infection.
564 **(B)** IFNB1 mRNA levels of murine embryonic fibroblasts (MEF) from wildtype (WT) or
565 indicated deficient mice were infected and analyzed as in **(A)**. **(C)** IFNB1 mRNA levels
566 in infected WT or cGAS-deficient primary splenic fibroblasts, analyzed as in **(A)**. **(D)**
567 Secreted IFN β by WT or indicated gene deficient MEF, infected with MCMV
568 (MOI=0.5); supernatant was analyzed 48 hours p.i. by ELISA. Panels show
569 representative experiments from 2 independent experiments performed in duplicate. WT,
570 STING GT, and TBK1-, MAVS-, ZBP1-, DNA-PK-, and cGAS-deficient MEF represent

571 data from 2 independent MEF preparations. Error bars indicate SEM; ns, not significant,
572 *p<0.05, **p<0.01, ***p<0.001.
573

574 **Figure 6: MyD88 and STING are required for NK cell cytolytic capacity during**
575 **MCMV infection.** (A and B) Mice deficient in MyD88 and/or STING were infected with
576 MCMV and 2 days later splenocytes were harvested and analyzed for GzmB, Prf1, and
577 IFN γ expression by FACS. Representative contour plots of individual mice are shown in
578 (A) and quantification for multiple mice is shown in (B). (C) Differentially labelled WT,
579 m157-Tg and MHC-I deficient splenocytes were adoptively transferred into indicated day
580 3-infected mice. Specific rejection was analyzed 3 hours post-transfer in the spleen.
581 Representative experiments from 2 independent experiments per panel are shown. Error
582 bars indicate SEM; ns, not significant, *p<0.05, **p<0.01, ***p<0.001.
583

584 **Figure 2 – Figure supplement 1: Viral load for 20,000 PFU infection 5 days p.i. and**
585 **extended statistical analysis for bone marrow chimeras.** (A) Mice were infected with
586 20,000 PFU and viral load was quantified 5 p.i. (B) Extended statistical analysis for bone
587 marrow chimeras presented in Figure 2C. Each panel shows cumulative data of 2
588 independent experiments. Error bars indicate SEM; ns, not significant, *p<0.05,
589 **p<0.01, ***p<0.001, ****p<0.0001.
590

591 **Figure 3 – Figure supplement 1: Gating strategy and purity of sorted cell**
592 **populations.** WT mice were infected with 100,000 PFU MCMV IE1-GFP reporter virus.
593 GFP $^+$ and GFP $^-$ stromal cells and DC were FACS-sorted 36 hours p.i. Representative
594 gating strategy and purity of sorted cells that were used in Figure 3BC are shown.
595

596 **Figure 4 – Figure supplement 1: Gating strategy for analysis of IFN β -YFP reporter**
597 **mice.** IFN β -YFP reporter mice were backcrossed to MyD88- (MyD88 KO), STING-
598 (STING GT) and double-deficient (DKO) mice. Animals were infected with 200,000
599 PFU WT1 MCMV and analyzed 48 hours post infection. Gating strategy for samples
600 presented in Figure 4 are shown.
601
602
603
604

605 **References**

606 Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., . . . Akira,
607 S. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-
608 mediated function. *Immunity*, 9(1), 143-150. doi:10.1016/s1074-7613(00)80596-8
609

610 Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B., & Lanier, L. L. (2002). Direct
611 recognition of cytomegalovirus by activating and inhibitory NK cell receptors. *Science*,
612 296(5571), 1323-1326. doi:10.1126/science.1070884
613

614 Banks, T. A., Rickert, S., Benedict, C. A., Ma, L., Ko, M., Meier, J., . . . Ware, C. F.
615 (2005). A lymphotoxin-IFN-beta axis essential for lymphocyte survival revealed during
616 cytomegalovirus infection. *J Immunol*, 174(11), 7217-7225.
617 doi:10.4049/jimmunol.174.11.7217
618

619 Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Beckman, D. L., Blattenberger,
620 E. A., . . . Yokoyama, W. M. (2001). Vital involvement of a natural killer cell activation
621 receptor in resistance to viral infection. *Science*, 292(5518), 934-937.
622 doi:10.1126/science.1060042
623

624 Brune, W., Hengel, H., & Koszinowski, U. H. (2001). A mouse model for
625 cytomegalovirus infection. *Curr Protoc Immunol, Chapter 19, Unit 19 17*.
626 doi:10.1002/0471142735.im1907s43
627

628 Cannon, M. J., Schmid, D. S., & Hyde, T. B. (2010). Review of cytomegalovirus
629 seroprevalence and demographic characteristics associated with infection. *Rev Med Virol*,
630 20(4), 202-213. doi:10.1002/rmv.655
631

632 Chan, B., Goncalves Magalhaes, V., Lemmermann, N. A. W., Juranic Lisnic, V.,
633 Stempel, M., Bussey, K. A., . . . Brinkmann, M. M. (2017). The murine cytomegalovirus
634 M35 protein antagonizes type I IFN induction downstream of pattern recognition
635 receptors by targeting NF-kappaB mediated transcription. *PLoS Pathog*, 13(5),
636 e1006382. doi:10.1371/journal.ppat.1006382
637

638 Cheng, T. P., Valentine, M. C., Gao, J., Pingel, J. T., & Yokoyama, W. M. (2010).
639 Stability of murine cytomegalovirus genome after in vitro and in vivo passage. *J Virol*,
640 84(5), 2623-2628. doi:10.1128/JVI.02142-09
641

642 Cocita, C., Guiton, R., Bessou, G., Chasson, L., Boyron, M., Crozat, K., & Dalod, M.
643 (2015). Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency
644 but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus. *PLoS Pathog*, 11(5),
645 e1004897. doi:10.1371/journal.ppat.1004897
646

647 de Weerd, N. A., Vivian, J. P., Nguyen, T. K., Mangan, N. E., Gould, J. A., Braniff, S. J.,
648 . . . Hertzog, P. J. (2013). Structural basis of a unique interferon-beta signaling axis
649 mediated via the receptor IFNAR1. *Nat Immunol*, 14(9), 901-907. doi:10.1038/ni.2667
650

651 Delale, T., Paquin, A., Asselin-Paturel, C., Dalod, M., Brizard, G., Bates, E. E., . . .
652 Briere, F. (2005). MyD88-dependent and -independent murine cytomegalovirus sensing
653 for IFN-alpha release and initiation of immune responses in vivo. *J Immunol*, 175(10),
654 6723-6732. doi:10.4049/jimmunol.175.10.6723
655
656 Duncan, C. J., Mohamad, S. M., Young, D. F., Skelton, A. J., Leahy, T. R., Munday, D.
657 C., . . . Hambleton, S. (2015). Human IFNAR2 deficiency: Lessons for antiviral
658 immunity. *Sci Transl Med*, 7(307), 307ra154. doi:10.1126/scitranslmed.aac4227
659
660 Fehniger, T. A., Cai, S. F., Cao, X., Bredemeyer, A. J., Presti, R. M., French, A. R., &
661 Ley, T. J. (2007). Acquisition of murine NK cell cytotoxicity requires the translation of a
662 pre-existing pool of granzyme B and perforin mRNAs. *Immunity*, 26(6), 798-811.
663 doi:10.1016/j.jimmuni.2007.04.010
664
665 Gil, M. P., Bohn, E., O'Guin, A. K., Ramana, C. V., Levine, B., Stark, G. R., . . .
666 Schreiber, R. D. (2001). Biologic consequences of Stat1-independent IFN signaling. *Proc
667 Natl Acad Sci U S A*, 98(12), 6680-6685. doi:10.1073/pnas.111163898
668
669 Gonzalez-Navajas, J. M., Lee, J., David, M., & Raz, E. (2012). Immunomodulatory
670 functions of type I interferons. *Nat Rev Immunol*, 12(2), 125-135. doi:10.1038/nri3133
671
672 Griffiths, P., Baraniak, I., & Reeves, M. (2015). The pathogenesis of human
673 cytomegalovirus. *J Pathol*, 235(2), 288-297. doi:10.1002/path.4437
674
675 Hambleton, S., Goodbourn, S., Young, D. F., Dickinson, P., Mohamad, S. M., Valappil,
676 M., . . . Randall, R. E. (2013). STAT2 deficiency and susceptibility to viral illness in
677 humans. *Proc Natl Acad Sci U S A*, 110(8), 3053-3058. doi:10.1073/pnas.1220098110
678
679 Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., . . . Akira, S.
680 (2004). The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double
681 stranded RNA signaling and viral infection. *J Exp Med*, 199(12), 1641-1650.
682 doi:10.1084/jem.20040520
683
684 Henry, S. C., Schmader, K., Brown, T. T., Miller, S. E., Howell, D. N., Daley, G. G., &
685 Hamilton, J. D. (2000). Enhanced green fluorescent protein as a marker for localizing
686 murine cytomegalovirus in acute and latent infection. *J Virol Methods*, 89(1-2), 61-73.
687 doi:10.1016/s0166-0934(00)00202-0
688
689 Hokeness-Antonelli, K. L., Crane, M. J., Dragoi, A. M., Chu, W. M., & Salazar-Mather,
690 T. P. (2007). IFN-alphabeta-mediated inflammatory responses and antiviral defense in
691 liver is TLR9-independent but MyD88-dependent during murine cytomegalovirus
692 infection. *J Immunol*, 179(9), 6176-6183. doi:10.4049/jimmunol.179.9.6176
693
694 Hoyos-Bachiloglu, R., Chou, J., Sodroski, C. N., Beano, A., Bainter, W., Angelova, M., .
695 . . Geha, R. S. (2017). A digenic human immunodeficiency characterized by IFNAR1 and
696 IFNGR2 mutations. *J Clin Invest*, 127(12), 4415-4420. doi:10.1172/JCI93486

697
698 Hsu, K. M., Pratt, J. R., Akers, W. J., Achilefu, S. I., & Yokoyama, W. M. (2009).
699 Murine cytomegalovirus displays selective infection of cells within hours after systemic
700 administration. *J Gen Virol*, 90(Pt 1), 33-43. doi:10.1099/vir.0.006668-0
701
702 Ishii, K. J., Kawagoe, T., Koyama, S., Matsui, K., Kumar, H., Kawai, T., . . . Akira, S.
703 (2008). TANK-binding kinase-1 delineates innate and adaptive immune responses to
704 DNA vaccines. *Nature*, 451(7179), 725-729. doi:10.1038/nature06537
705
706 Ishikawa, H., & Barber, G. N. (2008). STING is an endoplasmic reticulum adaptor that
707 facilitates innate immune signalling. *Nature*, 455(7213), 674-678.
708 doi:10.1038/nature07317
709
710 Ishikawa, H., Ma, Z., & Barber, G. N. (2009). STING regulates intracellular DNA-
711 mediated, type I interferon-dependent innate immunity. *Nature*, 461(7265), 788-792.
712 doi:10.1038/nature08476
713
714 Jonjic, S. (2001). Surgical removal of mouse salivary glands. *Curr Protoc Immunol*,
715 Chapter 1, Unit 1 11. doi:10.1002/0471142735.im0111s43
716
717 Krmpotic, A., Bubic, I., Polic, B., Lucin, P., & Jonjic, S. (2003). Pathogenesis of murine
718 cytomegalovirus infection. *Microbes Infect*, 5(13), 1263-1277. Retrieved from
719 <https://www.ncbi.nlm.nih.gov/pubmed/14623023>
720
721 Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzionek, A., Pingel, J. T., . . .
722 Colonna, M. (2004). TLR9-dependent recognition of MCMV by IPC and DC generates
723 coordinated cytokine responses that activate antiviral NK cell function. *Immunity*, 21(1),
724 107-119. doi:10.1016/j.jimmuni.2004.06.007
725
726 Lio, C. W., McDonald, B., Takahashi, M., Dhanwani, R., Sharma, N., Huang, J., . . .
727 Sharma, S. (2016). cGAS-STING Signaling Regulates Initial Innate Control of
728 Cytomegalovirus Infection. *J Virol*, 90(17), 7789-7797. doi:10.1128/JVI.01040-16
729
730 McNab, F., Mayer-Barber, K., Sher, A., Wack, A., & O'Garra, A. (2015). Type I
731 interferons in infectious disease. *Nat Rev Immunol*, 15(2), 87-103. doi:10.1038/nri3787
732
733 Motwani, M., Pesiridis, S., & Fitzgerald, K. A. (2019). DNA sensing by the cGAS-
734 STING pathway in health and disease. *Nat Rev Genet*, 20(11), 657-674.
735 doi:10.1038/s41576-019-0151-1
736
737 Nguyen, K. B., Salazar-Mather, T. P., Dalod, M. Y., Van Deusen, J. B., Wei, X. Q.,
738 Liew, F. Y., . . . Biron, C. A. (2002). Coordinated and distinct roles for IFN-alpha beta,
739 IL-12, and IL-15 regulation of NK cell responses to viral infection. *J Immunol*, 169(8),
740 4279-4287. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/12370359>
741

742 Orange, J. S., & Biron, C. A. (1996). Characterization of early IL-12, IFN-alphabeta, and
743 TNF effects on antiviral state and NK cell responses during murine cytomegalovirus
744 infection. *J Immunol*, 156(12), 4746-4756. Retrieved from
745 <https://www.ncbi.nlm.nih.gov/pubmed/8648121>

746

747 Orange, J. S., Wang, B., Terhorst, C., & Biron, C. A. (1995). Requirement for natural
748 killer cell-produced interferon gamma in defense against murine cytomegalovirus
749 infection and enhancement of this defense pathway by interleukin 12 administration. *J
750 Exp Med*, 182(4), 1045-1056. doi:10.1084/jem.182.4.1045

751

752 Parikh, B. A., Piersma, S. J., Pak-Wittel, M. A., Yang, L., Schreiber, R. D., &
753 Yokoyama, W. M. (2015). Dual Requirement of Cytokine and Activation Receptor
754 Triggering for Cytotoxic Control of Murine Cytomegalovirus by NK Cells. *PLoS Pathog*,
755 11(12), e1005323. doi:10.1371/journal.ppat.1005323

756

757 Picarda, G., & Benedict, C. A. (2018). Cytomegalovirus: Shape-Shifting the Immune
758 System. *J Immunol*, 200(12), 3881-3889. doi:10.4049/jimmunol.1800171

759

760 Pien, G. C., Satoskar, A. R., Takeda, K., Akira, S., & Biron, C. A. (2000). Cutting edge:
761 selective IL-18 requirements for induction of compartmental IFN-gamma responses
762 during viral infection. *J Immunol*, 165(9), 4787-4791. doi:10.4049/jimmunol.165.9.4787

763

764 Piersma, S. J., Pak-Wittel, M. A., Lin, A., Plougastel-Douglas, B., & Yokoyama, W. M.
765 (2019). Activation Receptor-Dependent IFN-gamma Production by NK Cells Is
766 Controlled by Transcription, Translation, and the Proteasome. *J Immunol*, 203(7), 1981-
767 1988. doi:10.4049/jimmunol.1900718

768

769 Powers, C., DeFilippis, V., Malouli, D., & Fruh, K. (2008). Cytomegalovirus immune
770 evasion. *Curr Top Microbiol Immunol*, 325, 333-359. doi:10.1007/978-3-540-77349-
771 8_19

772

773 Puttur, F., Francozo, M., Solmaz, G., Bueno, C., Lindenberg, M., Gohmert, M., . . .
774 Sparwasser, T. (2016). Conventional Dendritic Cells Confer Protection against Mouse
775 Cytomegalovirus Infection via TLR9 and MyD88 Signaling. *Cell Rep*, 17(4), 1113-1127.
776 doi:10.1016/j.celrep.2016.09.055

777

778 Sacher, T., Podlech, J., Mohr, C. A., Jordan, S., Ruzsics, Z., Reddehase, M. J., &
779 Koszinowski, U. H. (2008). The major virus-producing cell type during murine
780 cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the
781 host. *Cell Host Microbe*, 3(4), 263-272. doi:10.1016/j.chom.2008.02.014

782

783 Samuel, M. A., & Diamond, M. S. (2005). Alpha/beta interferon protects against lethal
784 West Nile virus infection by restricting cellular tropism and enhancing neuronal survival.
785 *J Virol*, 79(21), 13350-13361. doi:10.1128/JVI.79.21.13350-13361.2005

786

787 Sauer, J. D., Sotelo-Troha, K., von Moltke, J., Monroe, K. M., Rae, C. S., Brubaker, S.
788 W., . . . Vance, R. E. (2011). The N-ethyl-N-nitrosourea-induced Goldenticket mouse
789 mutant reveals an essential function of Sting in the in vivo interferon response to Listeria
790 monocytogenes and cyclic dinucleotides. *Infect Immun*, 79(2), 688-694.
791 doi:10.1128/IAI.00999-10
792

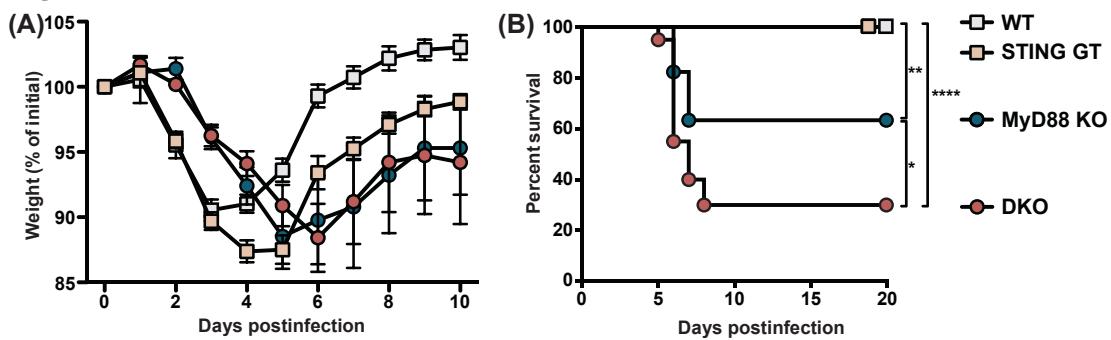
793 Scheu, S., Dresing, P., & Locksley, R. M. (2008). Visualization of IFNbeta production by
794 plasmacytoid versus conventional dendritic cells under specific stimulation conditions in
795 vivo. *Proc Natl Acad Sci U S A*, 105(51), 20416-20421. doi:10.1073/pnas.0808537105
796

797 Schneider, K., Loewendorf, A., De Trez, C., Fulton, J., Rhode, A., Shumway, H., . . .
798 Benedict, C. A. (2008). Lymphotoxin-mediated crosstalk between B cells and splenic
799 stroma promotes the initial type I interferon response to cytomegalovirus. *Cell Host
800 Microbe*, 3(2), 67-76. doi:10.1016/j.chom.2007.12.008
801

802 Schoggins, J. W., MacDuff, D. A., Imanaka, N., Gainey, M. D., Shrestha, B., Eitson, J.
803 L., . . . Rice, C. M. (2014). Pan-viral specificity of IFN-induced genes reveals new roles
804 for cGAS in innate immunity. *Nature*, 505(7485), 691-695. doi:10.1038/nature12862
805

806 Sinzger, C., Digel, M., & Jahn, G. (2008). Cytomegalovirus cell tropism. *Curr Top
807 Microbiol Immunol*, 325, 63-83. doi:10.1007/978-3-540-77349-8_4
808

809 Smith, H. R., Heusel, J. W., Mehta, I. K., Kim, S., Dorner, B. G., Naidenko, O. V., . . .
810 Yokoyama, W. M. (2002). Recognition of a virus-encoded ligand by a natural killer cell
811 activation receptor. *Proc Natl Acad Sci U S A*, 99(13), 8826-8831.
812 doi:10.1073/pnas.092258599
813


814 Tan, X., Sun, L., Chen, J., & Chen, Z. J. (2018). Detection of Microbial Infections
815 Through Innate Immune Sensing of Nucleic Acids. *Annu Rev Microbiol*, 72, 447-478.
816 doi:10.1146/annurev-micro-102215-095605
817

818 Tegtmeier, P. K., Spanier, J., Borst, K., Becker, J., Riedl, A., Hirche, C., . . . Kalinke, U.
819 (2019). STING induces early IFN-beta in the liver and constrains myeloid cell-mediated
820 dissemination of murine cytomegalovirus. *Nat Commun*, 10(1), 2830.
821 doi:10.1038/s41467-019-10863-0
822

823 Thomsen, M. K., Nandakumar, R., Stadler, D., Malo, A., Valls, R. M., Wang, F., . . .
824 Paludan, S. R. (2016). Lack of immunological DNA sensing in hepatocytes facilitates
825 hepatitis B virus infection. *Hepatology*, 64(3), 746-759. doi:10.1002/hep.28685
826

827 Zucchini, N., Bessou, G., Traub, S., Robbins, S. H., Uematsu, S., Akira, S., . . . Dalod, M.
828 (2008). Cutting edge: Overlapping functions of TLR7 and TLR9 for innate defense
829 against a herpesvirus infection. *J Immunol*, 180(9), 5799-5803.
830 doi:10.4049/jimmunol.180.9.5799

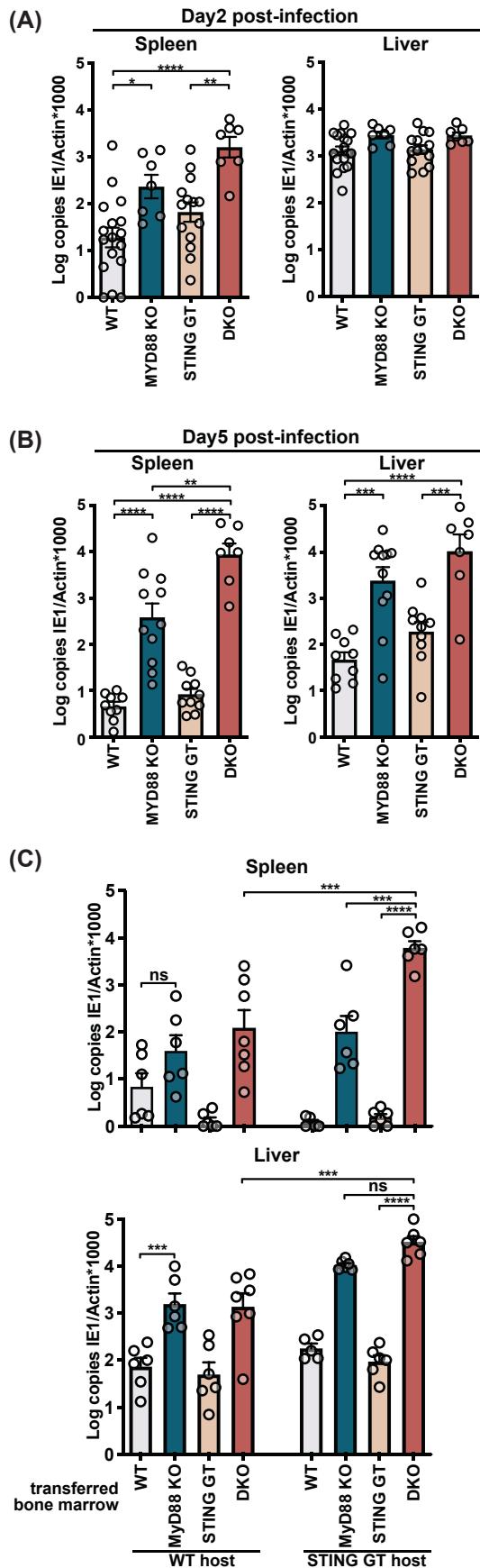

Figure 1 - Piersma et al. 2020

Figure 1: MyD88 and STING control morbidity and mortality during MCMV infection.

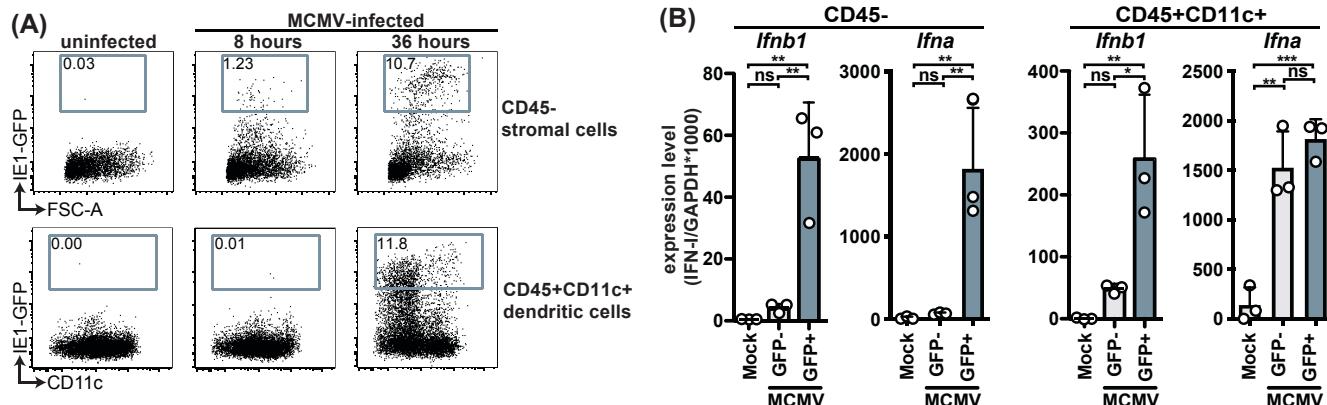

Mice were infected with 50,000 PFU MCMV WT-1, weight loss and survival was monitored over time. (A) Weight loss over time in wildtype (n=12), STING-deficient (STING GT, n=21), MyD88-deficient (MyD88 KO, n=9) and mice deficient in both STING and MyD88 (DKO; n=14). (B) Survival curves of wildtype (n=17), STING GT (n=18), MyD88 KO (n=17) and DKO mice (n=20). Cumulative data of 3 independent experiments. Error bars indicate SEM; *p<0.05, **p<0.01, ****p<0.0001.

Figure 2 - Piersma et al. 2020

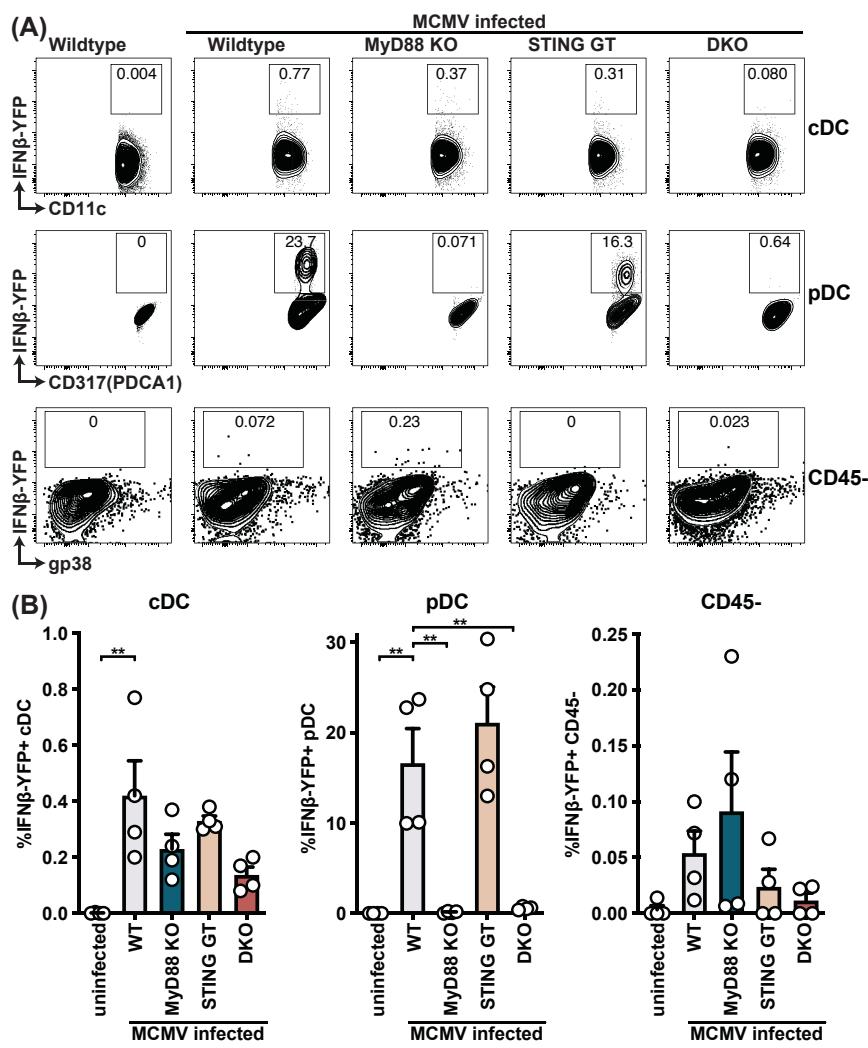

Figure 2: STING contributes to control of MCMV in the hematological and stromal compartment, whereas MyD88 in the hematological compartment potently controls infection. Mice were infected with 50,000 PFU (A) and (B) or 20,000 PFU (C) MCMV. Viral load was quantified 2 days (A) or 5 days (B) and (C) p.i. (C) Indicated bone marrow was adoptively transferred into irradiated wildtype (WT) or STING-deficient (STING GT) hosts. Bone marrow chimeras were infected 6 weeks post transfer and viral load was analyzed 5 days p.i. Each panel shows cumulative data of 2 independent experiments. Error bars indicate SEM; ns, not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 3 - Piersma et al. 2020

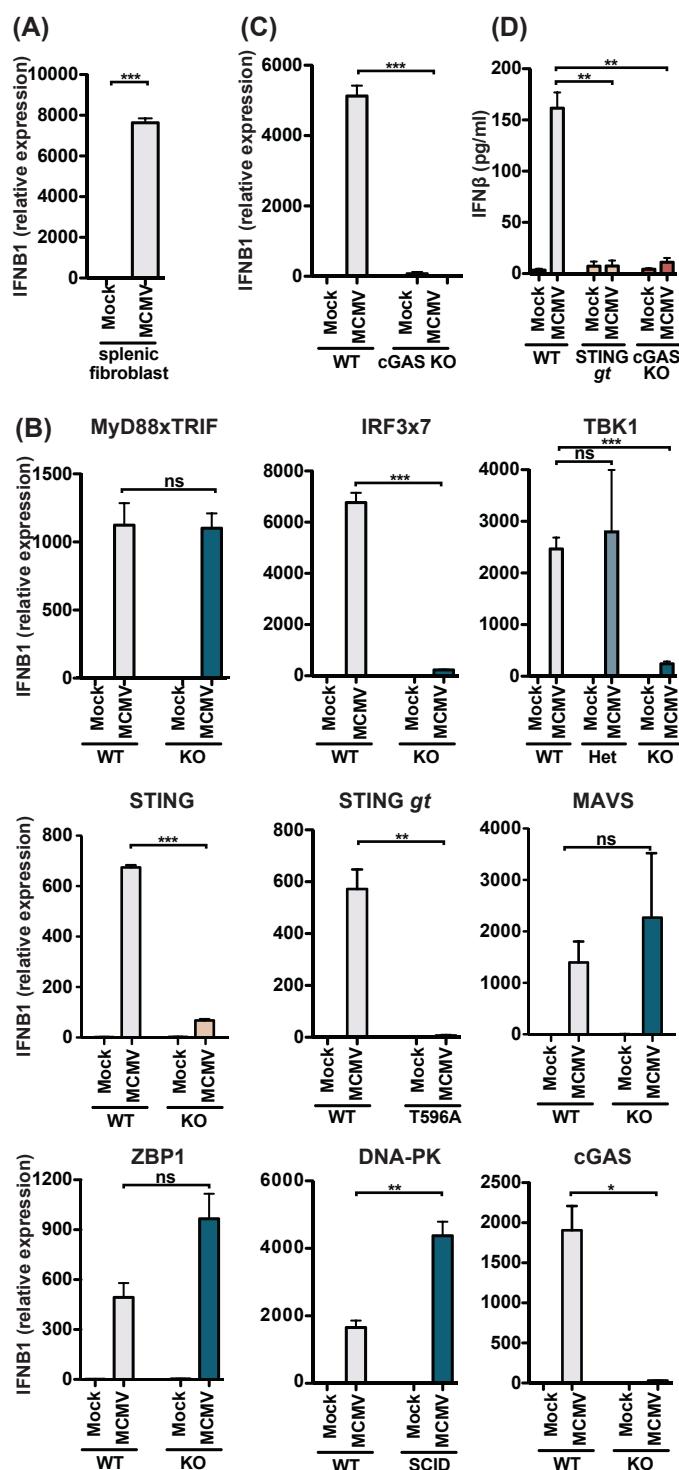

Figure 3: MCMV-infected cells specifically produce IFN β upon infection. WT mice were infected with 100,000 PFU MCMV IE1-GFP reporter virus. (A) Analysis of GFP expression in CD45- stromal cells and CD45+CD11c+ DC at 8 hours and 36 hours p.i. (B) GFP+ and GFP- stromal cells and DC were FACS-sorted 36 hours p.i. and *Ifnb1* and pan-*Ifna* transcript levels were quantified by real-time PCR. Both panels show representative experiments from 2 independent experiments. Error bars indicate SD; ns, not significant, *p<0.05, **p<0.01, ***p<0.001.

Figure 4 - Piersma et al. 2020

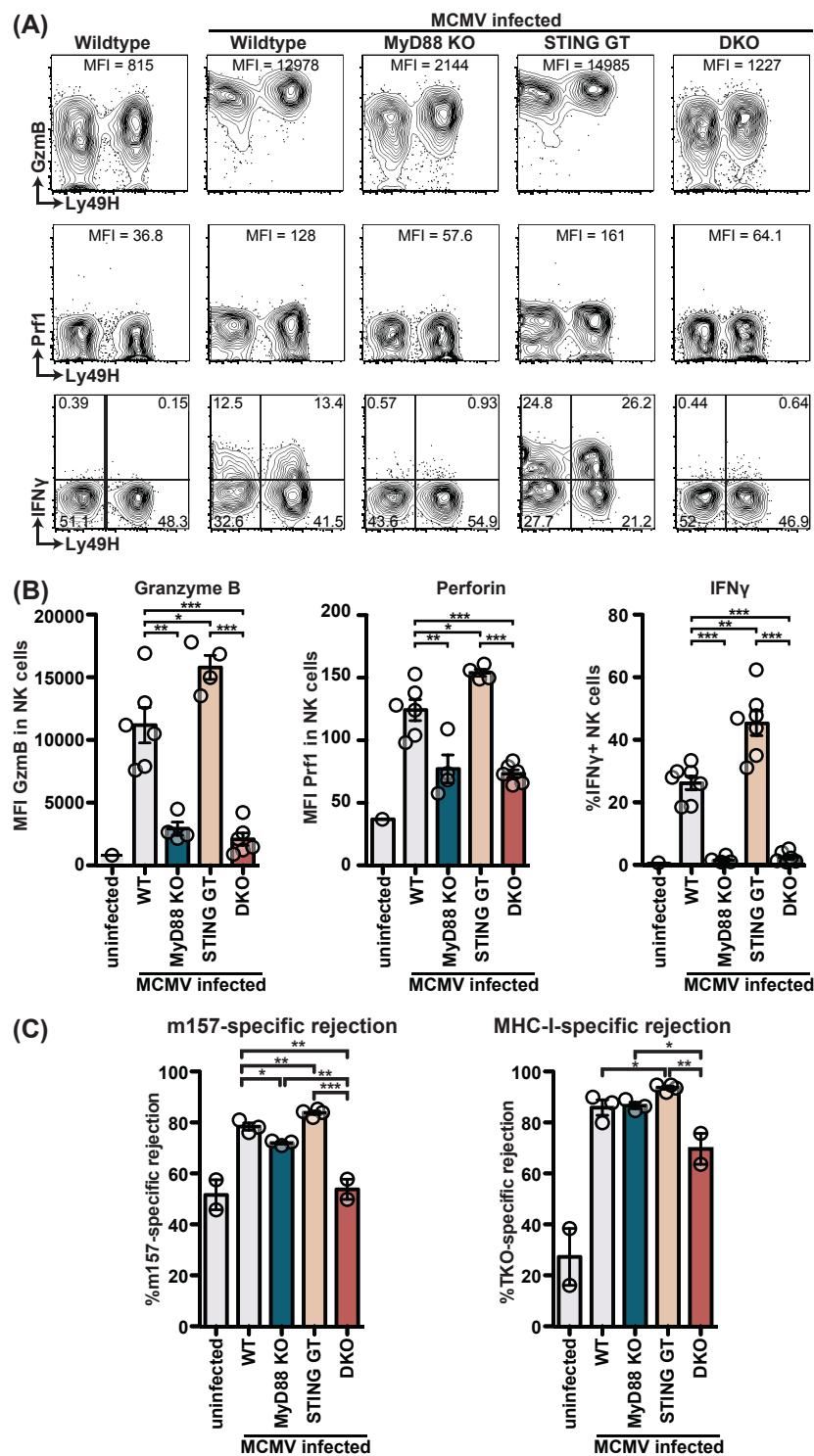

Figure 4: pDCs produce IFN β in a MyD88-dependent but STING-independent manner in IFN β -YFP reporter mice. IFN β -YFP reporter mice were backcrossed to MyD88- (MyD88 KO), STING- (STING GT) and double-deficient (DKO) mice. Animals were infected with 200,000 PFU WT1 MCMV and analyzed 48 hours post infection. Spleens were digested to a single cell suspension, stained and analyzed by flow cytometry. Error bars indicate SD; **p<0.01.

Figure 5 - Piersma et al. 2020

Figure 5: MCMV-induced fibroblast IFNβ is triggered by cGAS-STING-dependent but MyD88-Trif-MAVS-independent mechanisms. (A) IFNB1 mRNA levels of primary splenic fibroblasts infected with WT1 MCMV (MOI=5) 8 hours post-infection. (B) IFNB1 mRNA levels of murine embryonic fibroblasts (MEF) from wildtype (WT) or indicated deficient mice were infected and analyzed as in (A). (C) IFNB1 mRNA levels in infected WT or cGAS-deficient primary splenic fibroblasts, analyzed as in (A). (D) Secreted IFNβ by WT or indicated gene deficient MEF, infected with MCMV (MOI=0.5); supernatant was analyzed 48 hours p.i. by ELISA. Panels show representative experiments from 2 independent experiments performed in duplicate. WT, STING GT, and TBK1-, MAVS-, ZBP1-, DNA-PK-, and cGAS-deficient MEF represent data from 2 independent MEF preparations. Error bars indicate SEM; ns, not significant, *p<0.05, **p<0.01, ***p<0.001.

Figure 6 - Piersma et al. 2020

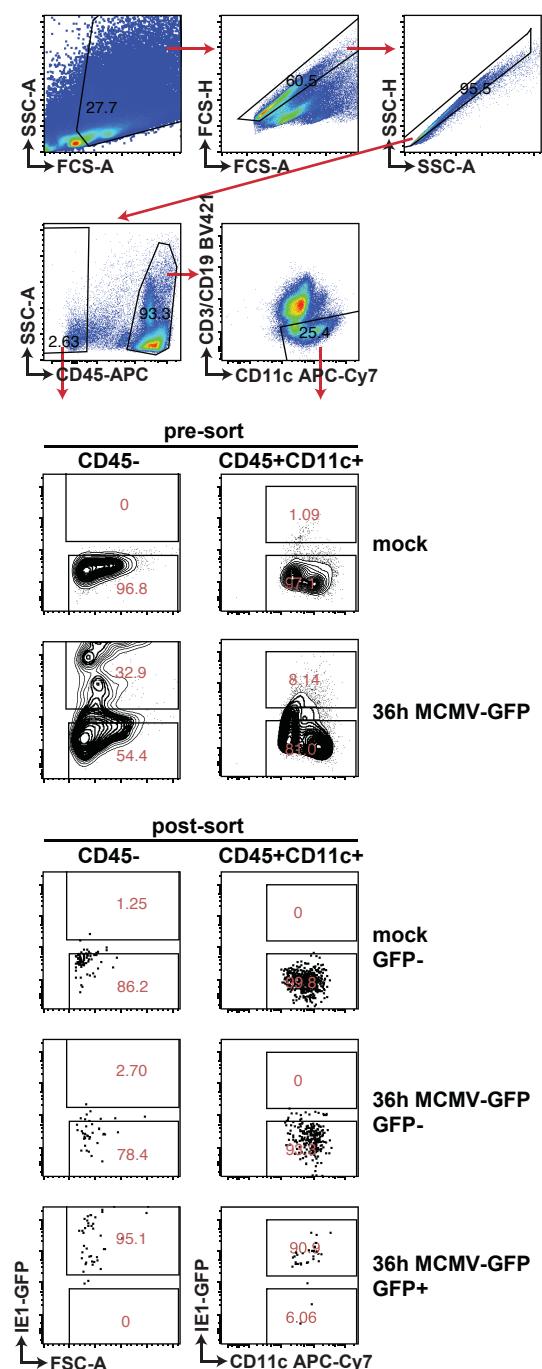

Figure 6: MyD88 and STING are required for NK cell cytolytic capacity during MCMV infection. (A and B) Mice deficient in MyD88 and/or STING were infected with MCMV and 2 days later splenocytes were harvested and analyzed for GzmB, Prf1, and IFN γ expression by FACS. Representative contour plots of individual mice are shown in (A) and quantification for multiple mice is shown in (B). (C) Differentially labelled WT, m157-Tg and MHC-I deficient splenocytes were adoptively transferred into indicated day 3-infected mice. Specific rejection was analyzed 3 hours post-transfer in the spleen. Representative experiments from 2 independent experiments per panel are shown. Error bars indicate SEM; ns, not significant, *p<0.05, **p<0.01, ***p<0.001.

Figure 2 - Figure supplement 1 - Piersma et al. 2020

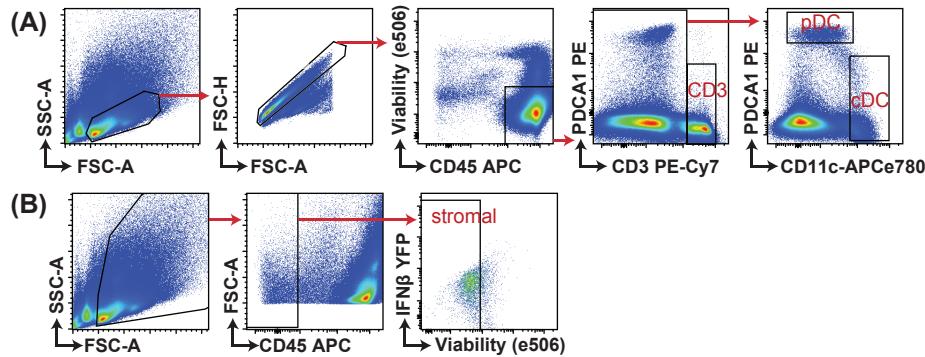

Figure 2 – Figure supplement 1: Viral load for 20,000 PFU infection 5 days p.i. and extended statistical analysis for bone marrow chimeras. (A) Mice were infected with 20,000 PFU and viral load was quantified 5 p.i. (B) Extended statistical analysis for bone marrow chimeras presented in Figure 2C. Each panel shows cumulative data of 2 independent experiments. Error bars indicate SEM; ns, not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 3 - Figure supplement 1 - Piersma et al. 2020

Figure 3 – Figure supplement 1: Gating strategy and purity of sorted cell populations. WT mice were infected with 100,000 PFU MCMV IE1-GFP reporter virus. GFP+ and GFP- stromal cells and DC were FACS-sorted 36 hours p.i. Representative gating strategy and purity of sorted cells that were used in Figure 3BC are shown.

Figure 4 - Figure supplement 1 - Piersma et al. 2020

Figure 4 – Figure supplement 1: Gating strategy for analysis of IFN β -YFP reporter mice. IFN β -YFP reporter mice were backcrossed to MyD88- (MyD88 KO), STING- (STING GT) and double-deficient (DKO) mice. Animals were infected with 200,000 PFU WT1 MCMV and analyzed 48 hours post infection. Gating strategy for samples presented in Figure 4 are shown.