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In this paper we describe a method of aggregating species occurrence data into what we coined
“occurrence cubes”. The aggregated data can be perceived as a cube with three dimensions -
taxonomic, temporal and geographic - and takes into account the spatial uncertainty of each
occurrence. The aggregation level of each of the three dimensions can be adapted to the scope.
Built on Open Science principles, the method is easily automated and reproducible, and can be
used for species trend indicators, maps and distribution models. We are using the method to
aggregate species occurrence data for Europe per taxon, year and 1km?* European reference grid,
to feed indicators and risk mapping/modelling for the Tracking Invasive Alien Species (TrIAS)
project.

Introduction

To address the ongoing biodiversity crisis policymakers demand rapid, reliable and regular
information on the status of biodiversity. The Group on Earth Observations Biodiversity
Observation Network (GeoBON) have proposed a suite of Essential Biodiversity Variables
(EBV) that are intended to be a minimal set of variables required to report biodiversity change
(Pereira et al., 2013). To create such EBVs for species distribution and abundance it has been
proposed to create aggregated “data cubes” with taxonomic, spatial and temporal dimensions
(Kissling et al., 2018). The concept is that such cubes can be generated automatically and
repeatedly from raw observation data as often as needed. Nevertheless, although pilot projects
have created workflows to EBVs on a small scale, no one has actually shown how such a cube
can be generated in a manner that does not require considerable manual intervention (Hardisty et
al., 2018, 2019).
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In the recent decades the volume of published occurrence data has increased enormously, partly
thanks to research infrastructures such as the Global Biodiversity Information Facility (GBIF)
(www.gbif.org), but also the digitization of legacy data and the use of mobile applications for
recording (Blagoderov et al., 2012; Chandler et al., 2017; Pocock et al., 2019). These
occurrences are extensively used in ecology for many purposes such as species distribution
modelling, risk mapping and calculating biodiversity indicators of extent and spread. However,
an unavoidable problem with the use of such massive volumes of data is their heterogeneity.
Occurrences have an intrinsic spatial uncertainty, which is not always negligible. This
heterogeneity is the result of the numerous methods used to collect data and the wide range of
people doing the observing. They can be collected in many ways, such as ecological surveys of
single sites, gridded data created for national atlases, or casual observations from citizen
scientists.

Typical techniques to deal with spatial uncertainty is either removing insufficiently precise
occurrences or gridding occurrences in cells that encompass the highest expected uncertainty,
effectively not using the spatial uncertainty associated with each occurrence. The method we
describe in this paper does take into account this spatial uncertainty.

Occurrences can be defined as objects in a three-dimensional space where the dimensions are:

1. Taxonomic: what
2. Temporal: when
3. Spatial: where

Occurrences can be aggregated along all three dimensions.

The taxonomic dimension is categorical, so in principle aggregation is optional. However, the
presence of synonyms makes the aggregation process relevant. Research infrastructures such as
GBIF and OBIS use a taxonomic backbone so that occurrences of synonyms are automatically
associated with the corresponding accepted taxon, thus making aggregation at species level or
higher ranks relatively easy. The same holds true for occurrences of infraspecific taxa: they are
automatically returned when searching for occurrences of species or higher rank.

The temporal dimension is a continuum. Several Darwin Core standard (DwC) terms are
available to provide standardized temporal information. The most important field is
eventDate (http://rs.tdwg.org/dwc/terms/eventDate), defined as the “date-time or interval

during which an Event occurred”. Occurrences are generally easy to aggregate as temporal
uncertainty is typically considerably lower than the aggregation span used in the vast majority of
the applications, typically year.
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Figure 1. Left: occurrences from GPS are circles. The stronger the GPS signal, the smaller the circle. Right:
occurrences from atlas data are squares.

The spatial dimension is also continuous and aggregation is theoretically possible by using
reference grids, such as the European reference grid of the European Environment Agency
(EEA) or the United States National Grid of the Federal Geographic Data Committee (FGDC).
However, spatial constraints are needed as all reference grids are local to avoid distortions due to
projecting the curved Earth on a flat surface. Moreover, conceiving occurrences as points with
infinite precision is not only unrealistic but also incorrect and misleading. Some atlas datasets,
for example, are already aggregated using a different grid and/or scale, which means that all
occurrences are assigned to the centroids of the grid cells. Neglecting this aspect could result in
an underestimation of the area of occupancy as severe as the overestimation of the abundance in
the cell grids the centroids belong to. In this paper we state that an occurrence is spatially
representable as a closed plane figure such as a circle or a polygon, never as the geometric center
(centroid) of it. The most used way to express spatial uncertainty is by using a radius which
defines, together with geographical coordinates (e.g. latitude/longitude), a circle, although atlas
data could be better described as squares (Figure 1).

Darwin Core Standard (DwC) provides different terms to express spatial uncertainty of an
occurrence in a consistent way: coordinatePrecision
(http://rs.tdwg.org/dwc/terms/coordinatePrecision), coordinateUncertaintyInMeters
(http://rs.tdwg.org/dwc/terms/coordinateUncertaintyInMeters) and

pointRadiusSpatialFit (http://rs.tdwg.org/dwc/terms/pointRadiusSpatialFit). The

coordinatePrecision defines the decimal precision of the coordinates given in the fields
decimalLatitude and decimalLongitude. The
coordinateUncertaintyInMeters defines the radius describing the smallest circle
containing the whole of the location. This way of expressing uncertainty became popular with
the advent of GPS receivers as these instruments define a location as a circle, with a radius
depending on the sensibility of the signal. Uncertainty of occurrences in atlas data are squares.
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For this reason Darwin Core standard has a pointRadiusSpatialFit term, defined as
“The ratio of the area of the point-radius (decimalLatitude, decimalLongitude,
coordinateUncertaintyInMeters) to the area of the true (original, or most specific) spatial
representation of the Location.”

In case of occurrences collected at a scale of Ix/ m? the
coordinateUncertaintyInMeters is typically defined as the radius of the
circumscribed circle with radius \2 m, while the pointRadiusSpatialFit is the ratio of
this circle's area, I* - /2 m? , to the grid square area, > m?,i.e. n/2. As for GBIF occurrence
data, the coordinateUncertaintyInMeters is the most used term for storing spatial
uncertainty, even for gridded data. In this paper we will explain how the spatial uncertainty
expressed by the coordinateUncertaintyInMeters can be used to produce aggregated
occurrence data. For the remainder of this document we will refer to occurrences as circles, even
if the method described belows general and can be applied to any plane figure used to represent
the occurrences.

Methodology

The production of what we call “occurrence cubes” can be divided in four steps:

Specify taxonomic, temporal and geographical constraints and granularity
Harvest occurrences and quality assessment
Assign occurrences spatially by taking into account their coordinate uncertainty

el

Aggregate occurrences along taxonomic, temporal and spatial dimension into an
occurrence cube

We illustrate the methodology below with a minimal, reproducible example: an occurrence cube
for GBIF occurrences of the genus Reynoutria in Belgium from 2000 to 2018, aggregated by
species, year and 1km EEA reference grid cell

Step 1. Specify constraints and granularity

We have first to delimitate the “space” along the taxonomic, temporal and spatial dimensions, by
applying some constraints. Such constraints are typically defined by the scope of the research.
Are you interested in the occurrences of taxa within kingdom Animalia or within class Aves?
Are you interested in occurrences related to a specific time window? Is your research limited to a
specific country or a specific area? Example: genus Reynoutria from 2000 to 2018 in Belgium.

However, defining constraints is not enough. Aggregation requires a discretization of the
delimited space. The level of granularity resulting from such discretization depends on the scope
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of the research as well. Example: by species, year and reference grid at 1km scale provided by
the European Environment Agency (EEA).

The taxonomic dimension is by definition not continuous and occurrences can be identified at
different taxonomic ranks. The granularity of the taxonomic dimension is therefore the rank at
which we want to aggregate. The taxonomic backbone of research infrastructures such as GBIF
and Ocean Biogeographic Information System (OBIS) automatically returns all the occurrences
of taxa with lower ranks and link them to the higher ranks. The same holds true for synonyms as
well: a taxonomic backbone helps to solve synonymy as all the occurrences of synonyms point to
the corresponding accepted taxon. In our example, we want to aggregate by species. For e.g.
Reynoutria japonica, GBIF will automatically include occurrences associated with that accepted
name, as well as two synonyms and the infraspecific variety Fallopia japonica var. japonica
These four scientific names all share Reynoutria japonica in the species field (as shown in
Table 1) making aggregation easier.

Table 1. Taxon of occurrences of species Reynoutria japonica as returned by GBIF. Occurrences of synonyms and
infraspecific taxa are returned as well and all share the accepted species in the field species.

scientificName taxonRank species taxonomicStatus
Reynoutria japonica SPECIES Reynoutria japonica ACCEPTED
Houtt.

Fallopia japonica (Houtt.) | SPECIES Reynoutria japonica SYNONYM

Ronse Decraene

Fallopia compacta SPECIES Reynoutria japonica SYNONYM
(Hook.fil.) G.H.Loos &

P.Keil

Fallopia japonica var. VARIETY Reynoutria japonica DOUBTFUL
japonica

The time of an occurrence is typically defined with a precision way higher than the granularity
used for aggregation. For being statistically significant, EBVs are built using a temporal
resolution of at least one year.

As regards the spatial granularity, we encourage, where possible, the use of standard reference
grids provided and maintained by governmental institutions. For Europe we can use the EEA
reference grid system, a set of grids at 1km, 10km and 100km scale for each European country.
Aside from the scope of the research, the spatial granularity depends at a certain extent on the
area defined by the spatial constraint. As shown in Figure 2, the occurrence cube of Luxemburg
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at the scale of 100km is not so useful while the same cannot be said about the occurrence cube of
a vast country as France.
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Figure 2. European Environment Agency (EEA) reference grids at 100km scale of Luxemburg (left) and France
(right). Source: EEA.

Step 2. Harvest occurrences and quality assessment

The sources for harvesting occurrences are typically world-wide research infrastructures, like
GBIF and OBIS. Data from such infrastructures are open and standardized. The more sources
you choose, the more preprocessing is needed, especially if some data sources are not
standardized. To make FAIR occurrence cubes, it is also important to make harvested occurrence
data findable. For example, in case of GBIF data this is possible as a triggered download gets an
unique Digital Object Identifier (DOI). Example: the DOI of our download is
https://doi.org/10.15468/dl.aobecp and contains 36,851 occurrences.

Some basic data quality assessment is needed to remove invalid occurrences, e.g. occurrences
with invalid or suspicious coordinates, occurrences related to fossil or living specimens or
occurrences representing absences. Depending on the infrastructure of the data source, it is
possible to add the data-quality checks defined above directly in the download query, thus
reducing data volume. Additional data screening can be applied, e.g. removing data coming from
a particular dataset considered not reliable enough or data with suspicious event dates.

However, occurrences without spatial uncertainty should be screened. Often the spatial
uncertainty can be inferred from the metadata, although it can be impractical as the occurrences
can be harvested from many different datasets. One could discard these data, but then potentially
loses useful and quite precise casual observations as well. We opt for assigning a default spatial
uncertainty of 1000 meter to these occurrences, thus creating circles with a radius of 1000 m. In
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our example, the field coordinateUncertaintyInMeters is missing for 450
occurrences. These occurrences come from two citizen science projects and a sampling event
dataset of a public research institution. Not discarding them, but assigning instead a default
spatial uncertainty of 1000 m seems the most reasonable option. The result of this process is
shown in Figure 3.
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Figure 3. Spatial uncertainty is set to 1000 meters for the 450 occurrences of genus Reynoutria where the value of
field coordinateUncertaintyInMeters is missing.

Step 3. Assign occurrences to a reference grid

Once all occurrences have a valid spatial uncertainty, we can now assign them to the cells of the
reference grid. Geometrically this operation sounds like: how to assign a circle to squares? The
answer is trivial only if the circle representing the occurrence is completely contained in one cell.
Since that is often not the case, we propose to randomly choose a point within the circle and
assign the occurrence to the cell this point belongs to. In Figure 4 we show some cases found in
our example.
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Figure 4. A random point (red point) is chosen within the circle (gray) defining the occurrence. The occurrence is
then assigned to the cell the point belongs to (red square). Left: an occurrence
(https://www.gbif.org/occurrence/2235280677) is totally contained in one of the cells of the reference grid. Center:

An occurrence (https://www.gbif.org/occurrence/1569856810) spreads over multiple cells. Right: an occurrence

(https://www.gbif.org/occurrence/2235279067) with small uncertainty spreads over two cells.

The probability distribution is by definition uniform all over the circle so the probability that the
random point falls in a specific cell is equal to the proportion of the circle’s area covered by the
cell. Geometrically it can be demonstrated that no cell has a higher probability to get the
occurrence assigned than that one containing the center. However, this doesn’t exclude the
possibility that the occurrence would be assigned to another cell as shown in Figure. 4.

Step 4. Aggregate occurrences

Aggregating occurrences means counting how many occurrences of a specific taxon are in a
specific cell and in a specific time interval. Using our example with occurrences of Reynoutria,
where we decided to produce an occurrence cube at species and year level using a reference grid
at 1km resolution, we have to count how many occurrences of Reynoutria are there within each
year, cell and species. As the occurrence cubes can be used as input for modelling and risk
assessment, we store the smallest geographic coordinate uncertainty of the occurrences assigned
to a certain cell as value as well. Using a tabular structure (typical of R data.frames or pandas
DataFrames), an occurrence cube would look like a table with as many columns as the sum of
the number of dimensions (three) and the number of values (two). In Table 2 we show an excerpt
from the example occurrence cube.

As mentioned in Step 1, defining the taxonomic granularity of the occurrence cube implies that
occurrences linked to a taxon can come from multiple taxa such as synonyms or taxa with lower
rank. For this reason, it can be informative to provide a taxonomic compendium of the
occurrence cube as shown in Table. 3. The full occurrence cube and the taxonomic compendium
are available on GitHub:
https://github.com/trias-project/occurrence-cube-paper/tree/9426a29dc61080920509aa295bd49da
dOeal0d26/data/processed.
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Table 2. Tabular representation of the occurrence cube of Reynoutria in Belgium from 2000 to 2018. The first three
columns represent the temporal, spatial and taxonomic dimensions respectively. Column year contains the year the
occurrences took place, eea _cell code the cell code from the EEA reference grid at 1km scale, speciesKey
the GBIF identifier of the species (2889173: Reynoutria japonica, 4038485: Reynoutria bohemica, 2889088:
Reynoutria sachalinensis). Taxonomic-spatial-temporal triplets with no occurrences are omitted.

year eea_cell_code speciesKey n min_coord_uncertainty
2000 1kmE3809N3113 2889173 1 700

2000 1kmE3809N3135 2889173 1 700

2006 1kmE3936N3071 2889173 1 49

2006 1kmE3947N3132 2889088 1 700

2010 1kmE3883N3121 4038485 1 700

2010 1kmE3884N3121 2889173 1 10

2014 1kmE3886N3121 2889173 51 10

2014 1kmE3886N3122 2889173 109 10

2018 1kmE4047N3067 2889173 1 2828

Table 3. Taxonomic compendium of the occurrence cube from GBIF occurrences of genus Reynoutria, in Belgium
from 2000 to 2018. As shown in column includes, occurrences of a species can come from synonyms or
infraspecific taxa, described by their GBIF taxon keys and scientific names.

speciesKey species includes

2889088 Reynoutria sachalinensis 5334293: Fallopia sachalinensis (Friedrich Schmidt Petrop.) Rq
Decraene
2889088: Reynoutria sachalinensis Nakai

2889173 Reynoutria japonica 5334357: Fallopia japonica (Houtt.) Ronse Decraene
2889173: Reynoutria japonica Houtt.

8361333: Fallopia compacta (Hook.fil.) G.H.Loos & P.Keil
7128523: Fallopia japonica var. japonica

4038485 Reynoutria bohemica 5652296: Fallopia bohemica (Chrtek & Chrtkova) J.P.Bailey
4038485: Reynoutria bohemica Chrtek & Chrtkova
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The occurrence cube

The resulting occurrence cube can be projected on an orthogonal plane by aggregating along one
of the three dimensions, as shown in Figure Sa.

Figure 5. (A) The occurrence cube and its
projections on the temporal/taxonomic

space

plane (B), the taxonomic/spatial plane (C) )
and the temporal/spatial plane (D). (B)

Number of occurrences (left) and number

of 1x1km cells or area of occupancy

(right) of Reynoutria bohemica, R.

Jjaponica and R. sachalinensis per year.
Both indicators can be seen as ways of
projecting the occurrence cube on the

taxonomy

temporal/taxonomic dimensions. (C)
Projecting the occurrence cube along the
taxonomic/spatial plane, thus getting a
heatmap of the number of occurrences for
each of the Reynoutria sp. in Belgium. (B)
The maps are zoomed for better ' B R bohemica
readability. (D) Projecting the occurrence R ssehalenss
cube along the temporal/spatial plane,

thus getting a heatmap of the number of

cccurrences

occurrences of genus Reynoutria in
Belgium for each year. The maps are
zoomed for better readability.

area of occupancy (km2)

R. bohemica R. japonica R. sachalinensis

Aggregating along the spatial P “TRT
dimensions means projecting the |

Latitude

cube on the taxonomic and
temporal dimensions. Counting the
number of occurrences we get the
abundance, counting the number of
occupied cells we get the area of
occupancy as shown in Figure 5b.
Aggregating along the temporal

Latitude

dimension means projecting the
cube on the spatial and taxonomic

dimensions. Based on our

Longitude

example, it means counting how
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many occurrences of each species of Reynoutria are in each cell during the entire period 2000 -
2018, as shown in Figure 5c. Similarly, aggregating along the taxonomic dimension, we project
the cube on the spatial and temporal dimensions. We are then counting the number of
occurrences of genus Reynoutria per cell and year as shown in Figure 5d.

We applied this methodology to larger taxonomic, spatial and temporal constraints as well. We
created and published occurrence cubes at species level for Belgium and Italy (Oldoni et al.,
2020a) and the occurrence cubes for non-native taxa in Belgium and Europe (Oldoni et al.,
2020b). All these occurrence cubes are at year level and are based on EEA reference grids at
1km scale.

Notes

Data, scripts and figures are open and available on GitHub:
https://github.com/trias-project/occurrence-cube-paper
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