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Abstract 

To create new enzymes and biosensors from scratch, precise control over the structure of small 
molecule binding sites is of paramount importance, but systematically designing arbitrary protein 
pocket shapes and sizes remains an outstanding challenge. Using the NTF2-like structural 
superfamily as a model system, we developed a generative algorithm for creating a virtually 
unlimited number of de novo proteins supporting diverse pocket structures. The generative 
algorithm was tested and refined through feedback from two rounds of large scale experimental 
testing, involving in total, the assembly of synthetic genes encoding 7896 generated designs and 
assessment of their stability on the yeast cell surface, detailed biophysical characterization of 64 
designs, and crystal structures of 5 designs. The refined algorithm generates proteins that remain 
folded at high temperatures and exhibit more pocket diversity than naturally occurring NTF2-like 
proteins. We expect this approach to transform the design of small molecule sensors and 
enzymes by enabling the creation of binding and active site geometries much more optimal for 
specific design challenges than is accessible by repurposing the limited number of naturally 
occurring NTF2-like proteins. 

Introduction 

Proteins from the NTF2-like structural superfamily consist of an elongated β-sheet that, along 
with three helices, forms a cone-shaped structure with a pocket (Figure 1.A). This simple 
architecture is highly adaptable, as evidenced by the low sequence homology among its 
members, and the many different functions they carry out (1). Natural NTF2-like proteins have 
been repurposed for new functions through design (2–4), further showing the adaptability of this 
fold. General principles for designing proteins with curved beta sheets have been elucidated, and 
used to design several de novo NTF2-like proteins (5). 

De novo design of protein function starts with an abstract description of an ideal functional site 
geometry (for example, a catalytic active site), and seeks to identify a protein backbone 
conformation that can harbor the site. The extent to which the ideal site can be realized depends 
on the number and diversity of backbone conformations that can be searched (6, 7). A promise of 
de novo protein design is to generate a far larger and more diverse set of designable backbones 
for function than is available in the largest public protein structure database, the Protein Data 
Bank (PDB) (8, 9). This has been achieved for protein-protein binding due to the simplicity of 
small globular proteins (10). However, protein structures with pockets are considerably more 
complex, and since only a small number of de novo designed pocket-containing proteins have 
been characterized, this vision has not yet been realized for small molecule binder or enzyme 
design. Here we construct a generative algorithm for NTF2-like proteins that samples the 
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structural space available to the fold systematically and widely, and show that the generated 
protein scaffolds surpass native NTF2-like proteins in pocket diversity. 

De novo protein design is a two-step process: first, a protein backbone conformation is 
generated, and second, low energy amino acid sequences for this backbone are found by 
combinatorial side-chain packing calculations. In Rosetta (11, 12), new backbones can be 
constructed by Monte Carlo assembly of short peptide fragments based on a structure “blueprint”, 
which describes the length of the secondary structure elements, strand pairings, and backbone 
torsion ranges for each residue (13, 14). Because this process is stochastic, each structure 
generated is distinct. We previously showed that NTF2-like proteins can be designed from 
scratch using this approach (5), but the diversity and number of designs (on the order of tens) to 
date is too limited to provide pockets for arbitrary function design. For a given blueprint, the 
resulting set of structures is generally more homogeneous than that observed in naturally 
occurring proteins within a protein family, where differences in secondary structure lengths and 
tertiary structure give rise to considerable diversity. Hence while large numbers of backbones can 
be generated for a particular blueprint, for example, those previously used to design NTF2-like 
proteins, the overall structural diversity will be limited. 

Results 

The NTF2 generative algorithm 

To access a much broader range of protein backbones, we sought to develop a generative 
algorithm which samples a wider diversity of structures than natural NTF2-like proteins by 
carrying out backbone sampling at two levels (Figure 1.B). At the top level, sampling is carried out 
in the space of high-level parameters that define the overall properties of the NTF2 fold: for 
example, the overall sheet length and curvature, the lengths of the helices that complement the 
sheet, the placement of the pocket opening and the presence or absence of C-terminal elements 
(Figure 1.C). We then convert each choice of high-level parameters into structure 
blueprint/constraints pairs (hereon referred to simply as blueprints), which guide backbone 
structure sampling at successive stages of fold assembly (next paragraphs; Figure 1.B). In total, 
there are 18 high-level fold parameters (Table S1), and each unique combination gives rise to a 
specific blueprint. At the lower level, backbone structures are generated according to these 
blueprints through Monte Carlo fragment assembly; the blueprints dictate the secondary structure 
and torsion angle bins of the fragments, as well as a number of key residue-residue distances 
(Fig. S1-4). In a final sequence design step, for each generated backbone, low energy sequences 
are identified through combinatorial sequence optimization using RosettaDesign. 

We generate structure blueprints from the high level parameters using a hierarchical approach 
(Figure 1.B). First, the four main strands of the sheet are constructed, then helix 3 and the frontal 
hairpin, finally, the two N-terminal helices. If the backbone to be assembled has a C-terminal 
helix, it is added in a fourth step. 

In the first step, the length and curvature of the sheet are the primary high-level parameters 
sampled (Fig 1C, top two rows). For each choice of high-level sheet length and curvature 
parameters, compatible sets of low-level parameters - secondary structure strings and angle and 
distance constraints - are generated to guide Rosetta fragment assembly. The translation from 
sheet length to secondary structure length is straightforward as longer strands generate longer 
sheets. To realize a specified sheet curvature, bulges are placed at specific positions on the edge 
strands, where they promote sheet bending (5, 15, 16). Bulges are specified by a residue with α-
helical ɸ/Ѱ torsion values in the blueprint, leading to a backbone protuberance with two adjacent 
residues pointing in the same direction. As shown in figure 1A, there are always at least two 
bulges on the NTF2 sheet, delimiting the base and arms, and marking the axis around which the 
sheet curves. An additional bulge can exist on the long arm, further curving the sheet. To control 
the degree of curvature centered at the bending points, angle constraints are placed on Cα 
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carbons on center strands, at positions adjacent to bulges (Fig. S1). Not all combinations of sheet 
length and curvature values are compatible with a closed pocket-containing structure, for 
example, long sheets with low curvature can not generate a cone-shaped structure. These 
incompatibilities are identified by attempting to directly construct sheet structures (as described 
above) across the full parameter space and then assessing the success in generating pocket 
containing structures; the region not sampled at the bottom left of Figure 3A reflects the 
incompatibility of long sheets and low curvature with the formation of a pocket (See Table S2 for 
the complete set of rules dictating high-level parameter combinations). 

The range of possibilities for helix 3 and the frontal hairpin, which are generated next, is limited by 
the geometric properties of the sheet constructed in the first step. In order to determine which 
parameter combinations lead to folded proteins, we generated and evaluated backbone 
structures based on a wide variety of parameter combinations, and extracted the following rules, 
which are implemented in the generative algorithm. Sheets where the long arm does not protrude 
outwards over S6 require longer H3-S3 connections to place H3, S1 and S2 such that the correct 
strand pairing is realized (Fig. S2A). Conversely, sheets where the long arm protrudes outwards 
over S6 require shorter H3-S3 connections to avoid placing H3 too far from the rest of the 
structure (Fig. S2A). The length of H3 (possible lengths in residues: 10, 11, 14 and 15) is coupled 
with the torsional angles of the H3-S3 connection as the rigid S2-H3 connection limits the angle at 
which the last amino acid of H3 faces S3: lengths 10 and 14 are only paired with H3-S3 
connections starting with a “B” torsion bin, and lengths 11 and 15 only with connections starting 
with a “G” torsion bin (Fig. S2B, Table S3). Independent from the H3 length and connection to the 
sheet, the length of the frontal hairpin strands has two possible values: 4 or 6 residues, with only 
4 residues strands possible in narrow sheets (base length = 3), as S1 needs to be fully paired 
with S6 (Fig. S2C). 

Stage 3, construction of the N-terminal helices, is likewise constrained by the geometric 
properties of the structure built so far. If the distance between the bulge on S6 and the H3-S3 
connection is more than 25Å, then H1 and H2 are elongated by a full turn (4 amino acids) to close 
the cone described by the sheet (Fig. S3). The constraints that control the placement of H1 and 
H2 are adapted based on the shape of the current structure in order to position H1 and 2 such 
that good side chain packing is favored during sequence design, and occluding backbone polar 
atoms on the outward-facing edge of S3 is avoided (Fig. S3).  

In cases where the backbone to be assembled has a C-terminal helix (has_cHelix = True), if the 
pocket opening is, like in most native NTF2-like proteins, between the frontal hairpin and H3 
(Opening = Classic), the C-terminal helix is set to 8 residues long and rests against the long arm. 
If the opening is set to be between the termini of H1 and 2, and H3 (Opening = Alternative), then 
the C-terminal helix length is set to 11 residues long, and closes the space between H3 and the 
frontal hairpin (Figure 1B and S4). 

High-throughput characterization of the known de novo NTF2 structure space 

The design of large pockets in de novo NTF2-like proteins is challenging and requires strategies 
to compensate for the loss of stabilizing core residues that would otherwise fill the space 
occupied by the pocket. Before setting out to experimentally sample the full range of structure 
space accessible to the generative algorithm, we chose to characterize the sequence and 
structure determinants of stability in the region of NTF2 space explored in our previous work (5), 
and its immediate vicinity. We generated 2709 new NTF2-like proteins belonging to the blueprints 
previously described, plus a few variations (9 different blueprints, see Fig. S5 and Table S4). We 
adapted a high throughput stability screen based on folding-induced protease resistance on the 
yeast cell surface, originally developed for small (< 43 amino acid) domains (17) to the much 
larger (105-120 residues) NTF2-like protein family. This required optimizing current methods (18) 
for efficiently splicing long oligonucleotides (230 bs) from oligonucleotide arrays to form longer 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.03.23.003913doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003913
http://creativecommons.org/licenses/by/4.0/


 

 

4 

 

genes by limiting pairing promiscuity and, therefore, the number of chimeric design combinations 
(see Methods). 

A fifth (578, 21%) of the tested designs were stable (stability scores above 1), while only 2% of 
scrambled controls (randomly selected design sequences scrambled such that the hydrophobicity 
pattern is maintained) passed this stability threshold (Figure 2A). All tested blueprints had 
representatives among the stable sequences (Fig. S6). Analysis of the sequences and structures 
of the stable designs revealed several broad trends. There was a marked depletion of hydrophilic 
residues in positions oriented towards the protein core (Fig. S7), suggesting that the stable 
proteins identified in this first round experiment are likely folded as modeled, but may not be able 
to accommodate a pocket with polar amino acids, limiting their potential to be designed for 
general function. A logistic regression model trained to distinguish designs with stability score 
above or below 1.0 identified total sequence hydrophobicity (see “hydrophobicity” feature 
definition in SI methods), Rosetta energy (“score_res_betacart”) and local sequence-structure 
agreement (fragment quality, see “avAll”) as key determinants of stability (Figure 2.A and S8). 

The importance of overall hydrophobicity is in agreement with the observed per-position amino 
acid enrichments, and suggests the composition or size of the designed protein cores is 
suboptimal. While Rosetta optimizes local sequence-structure agreement at single positions 
(p_aa_pp and rama_prepro energy function terms (19)), overall secondary structure propensities 
depend on stretches of several residues and cannot be decomposed in pairwise or single body 
energies. The detection of local sequence-structure agreement as a feature of stable designs 
suggests the first round design protocol produces sequences with suboptimal local sequence-
structure relationship. These observations provide the basis for improving design methods, 
leading to more stable proteins in subsequent de novo NTF2 libraries. 

We selected 17 designs with a stability score above 1 for more thorough biophysical 
characterization (See SI Methods). Seven of these expressed solubly in E coli, and all seven of 
them were folded, most remained folded up to 95ºC, and had 2-state unfolding transitions in 
guanidine hydrochloride denaturation experiments (Fig. S9, S10 and Table S5). The remaining 10 
designs did not express, or formed higher-order oligomers (Table S5), indicating stability score 
values above those of most scrambles are no guarantee of soluble expression and folding in E. 
coli cytoplasm. 

We obtained crystal structures for two of the above-mentioned hyperstable proteins, with de novo 
NTF2 blueprints not characterized before (Figure 2.B and C, S11.A). The crystal structure and 
model of design Rd1NTF2_04 are in close agreement both in terms of Cα atom positions and 
most core side-chain rotamers (Figure 2.B and S11.B). In contrast, the structure of design 
Rd1NTF2_05 shows a two-residue register shift between strands 5 and 6 relative to the design 
(Figure 2.C), which results in a flatter sheet and a smaller core, a shorter strand 5, and longer 
strand 6. While the overall shape of the structure and the relative orientations of the hydrophobic 
residues in strand 5 and 6 are preserved (Figure 2.C), the structure deviations would be 
significant for a designed functional pocket. The identification of a design that is stable but has a 
structure different from its model provides an opportunity to discover determinants of structural 
specificity not captured by the design method. 

We hypothesized that the disagreement between model and structure for design Rd1NTF2_05 
originates from a lack of core interactions favoring the modeled high sheet curvature around 
residue 94, as well as from lack of consideration of negative design in the sequence choice for 
the 5-6 strand hairpin, which allows the shortening of strand 5. We identified several mutations 
that could favor the modeled sheet curvature and strand register. Mutations D101K and L106W 
near the strand 5-6 connection make favorable interactions in the context of the designed 
conformation, and replace leucine 106 by a large tryptophan side-chain, which would not fit in the 
context of the observed crystal structure (Fig. S12). Mutation A80G, at the most curved position 
of strand 4, favors bending by removing steric hindrance between the alanine 80 side-chain and 
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the backbone at position 66, but leaves a void in the core, which modeling suggests should be 
rescued by I64F (Fig. S12, (6, 20)). A phenylalanine side-chain at position 64 makes favorable 
interactions in the designed conformation, and is likely to not fit in the core and be exposed in the 
observed conformation. Finally, the rigidity imparted by proline in position 94 limits the 
Ramachandran angles to those compatible with the designed conformation, as well as preventing 
strand 5 and 6 pairing beyond residue 92. 

Experimental characterization of the Rd1NTF2_05 design 5-fold mutant showed a higher ΔG of 
unfolding than the original design (Fig. S13), and its crystal structure is in close agreement with 
the model (Figure 2.D). The side-chains at the five mutated positions were in the exact designed 
conformation, supporting our structural hypothesis and the incorporation of negative design to 
increase structural specificity (Figure 2.D, right). The 5-fold mutant also displays a large cavity, 
present in the design, the first example of a de novo designed monomeric NTF2 with a large 
pocket that does not require additional stabilizing features such as a disulfide bond or a dimeric 
interface (Fig. S14). The rationale used to change the structure of design Rd1NTF2_05 can be 
widely applied to ensure subsequent designs fold as modeled. 

High-throughput characterization of new regions of structure space explored by the generative 
algorithm 

Armed with the insights from high-throughput characterization of known de novo NTF2 structural 
space, we set out to design proteins from hundreds of backbone blueprints created using the 
generative algorithm that explore a much larger structure space. We incorporated the lessons 
learned in the sequence design stage, with the goal of generating more stable and diverse 
designs that fold as modeled. To address the low sequence hydrophobicity, we added an amino 
acid composition term to the Rosetta energy function to favor sequences with 30% non-alanine 
hydrophobic amino acids on average, with different hydrophobicity targets for core, interface and 
surface positions. We also increased amino acid sampling to increase sequence-structure 
agreement (Fig. S15). Finally, guided by the experience with design Rd1NTF2_05, we 
incorporated steps in the design process that detect strand curvature ranges that require glycine 
placement to reduce strain. We used this improved method to generate a second round of 
designs exploring a much larger set of 1503 blueprints. These designs span a wide range of 
pocket volumes that are modulated by sheet length and curvature (Figure 3A x and y axes). 
There are two main modes by which the specification of sheet structure by the high level 
parameters modulates pocket volume. First, as sheets of similar length curve, the concave face 
collapses resulting in smaller pocket volumes (Fig. S16). Second, as sheets with similar curvature 
elongate, they wrap around the concave face and extend the pocket outwards (Fig. S16). 

Due to gene length limitations, we were able to test designs for 323 unique parameter 
combinations out of the possible 1503 -- these yield proteins of 120 amino acids or less in length. 
We synthesized genes for 5188 proteins generated from these 323 blueprints, and subjected the 
designed proteins and scrambled versions to the protease stability screen. The protease 
resistance of the scrambled sequences was greater than in the first high-throughout experiment, 
likely due to the increased sequence hydrophobicity (Fig. S17). Roughly one third (29%) of the 
designs had stability values above those of most scrambled sequences (Figure 3B, 98% of all 
scrambles have stability score <1.55), a larger fraction than the 21% of stable designs in the 
initial screen, increasing our dataset of stable NTF2-like designs from a total of 578 to 2077. 
These stable designs belong to 236 parameter combinations, a very large increase over the 9 
combinations in the previous round, with most of the missing combinations having less than 10 
initial samples (Fig. S18). The new parameter combinations include structural features not 
sampled before, such as a secondary bulge on the long arm, new H3-S3 connections and 
elongated frontal hairpins. The pocket volume distribution of stable designs is very similar to the 
distribution for all tested designs (Figure 3C), suggesting that pocket volume is not a limiting 
factor, and spans most of the native NTF2 range (Fig. S19). Furthermore, per-position amino acid 
identities in stable designs show much lower levels of general enrichment and depletion than 
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those in the first round of high-throughput screening (Fig. S20). In particular, polar amino acids 
are not depleted in core positions (Fig. S20), suggesting that polar residues are likely better 
tolerated in pocket positions, perhaps due to the improved core packing resulting from the 
optimized sequence design protocol. 

With the large increase in diversity in the second round, the stable designs created by the 
generative algorithm span a very wide range of structures. To visualize the space spanned by our 
generated structures compared to native NTF2 structures, we used the UMAP algorithm (21) to 
project similarity in backbone structure (TM-score, (22)) into two dimensions (Figure 3D, see Fig. 
S21 for map generated using different UMAP hyperparameters). The grouping of structures with 
similar features in different map regions provides an indication of which generation parameters 
lead to novel NTF2 structures (Fig. S22). Inspection of the map shows that our algorithm samples 
most of the native space, as well as completely uncharted regions. The subset of designs tested 
by high-throughput screening sample a wide range of structures within the accessible protein 
length, and stable representatives from the 236 unique NTF2 parameter combinations are found 
across the sampled space (Figure 3A and D). Overall, the number and diversity of de novo 
designed NTF2-like structures is considerably larger than that of the NTF2 structures in the PDB. 
Native structures appear in small clumps in NTF2 space, as they fall into groups with highly 
similar members. In contrast, de novo NTF2-like proteins sample large areas more uniformly, 
providing fine-grained sampling of the structural space, and hence more optimal starting points 
for designing new functions requiring new pocket geometries. Most native proteins are close to de 
novo groups, reflecting overall structural similarity, but are peripheral to them. This structural 
distinction likely reflects differences in loop structure: native NTF2-like proteins often have long 
loops, but our designs tend to have short loops. 

A logistic regression model trained on stability of second-round designs suggests the lessons 
from the first round of high-throughput screening proved effective, and provides new suggestions 
for improvement (See SI text and Fig. S23). Furthermore, features based on the high-level 
parameters of the generative algorithm (e.g., H3 length, sheet curvatures, sheet length and 
hairpin length) did not contribute significantly to stability prediction, suggesting stable proteins can 
be designed across all the considered structural space (See SI text). 

We biochemically characterized 37 stable designs from the second round of high-throughput 
screening. Less than half of them (43%, similar to the 41% in round 1) expressed solubly in E. 
coli and were folded. Most of these folded designs remained folded above 95ºC (Fig. S24-25 and 
Table S6). The length of helix 3 in two of these second-round stable designs, Rd2NTF2_06 and 
Rd2NTF2_19, is the longest of the values we allowed, supporting the designability of this feature 
despite it being slightly disfavored by the stability model (SI text, S23). The remaining 20 second-
round designs did not express, and a few formed higher-order oligomers (Table S6). 

More than half of the designs we attempted to express in E. coli did not express or formed soluble 
aggregates, indicating high stability score does not necessarily translate to folding in E. coli 
cytoplasm. While stability score has no significant correlation to ΔGunfolding for these larger 
proteins, it has some capacity to discriminate between designs that fold from those that do not 
(Fig. S26C). Furthermore, 9 out of the 9 designs with low stability score we attempted to express 
in E. coli did not fold, supporting the use of stability score as a metric to improve the design of 
these pocket-containing proteins. In an attempt to improve the power of the stability score to 
predict folding and stability of proteins expressed in E. coli, we trained an alternative unfolded 
state protease resistance model based on the protease resistance of scrambled sequences (see 
SI Methods and Fig. S26D-E). As expected, this model predicts NTF2 scrambled sequence 
stability better than the published unfolded-state model, but using it to recalculate stability scores 
does not lead to better prediction of ΔGunfolding or folding in E. coli (Fig. S26B,C). 

For two of the folded and hyperstable designs (Rd2NTF2_20 and Rd2NTF2_16), we obtained 
high-resolution crystal structures, and found that they are in close agreement with the models 
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(Figure 3E-H). Both designs feature structural elements designed for the first time in de novo 
NTF2-like proteins by the generative algorithm. Rd2NTF2_20 has an extended connection 
between H3 and S3, recapitulated in the crystal structure (Figure 3E), which enables the use of a 
short helix 3. Rd2NTF2_16 features two new structural elements, a bulge on the long arm (in 
addition to the ones flanking the base), and an extended frontal hairpin, both recapitulated in the 
crystal structure (Figure 3G). The additional bulge enables higher curvature on the long arm, 
contributing significant diversity to long arm structure, which can be further increased by allowing 
different bulge placements. The extended hairpin, which is only designable when the base is long 
enough, extends the pocket outwards, thereby increasing its volume. In the case of 
Rd2NTF2_16, the combination of these features yields a protein with a shallow groove instead of 
a pocket (Figure 3H); the ability to generate proteins with shallow grooves with two open ends 
should enable design of binding sites for polymers such as peptides or polysaccharides. 

The accuracy of the Rd2NTF2_20 and Rd2NTF2_16 computational models indicated by their 
close agreement with the experimental crystal structures follows directly from the insights gained 
in the first large scale design round. Both proteins feature a glycine on strand 4, enabling high 
curvature between the base and the long arm, as described for the design Rd1NTF2_05 5-fold 
mutant, and consequently incorporated in the generative algorithm. In order to implement the 
glycine placement on strand 4 as generally as possible, the design protocol searches for large 
hydrophobic side chains to fill the void left by the glycine. In Rd2NTF2_20, this is achieved by a 
phenylalanine in the same conformation as the one observed in the design 0589 5-fold mutant, 
while in Rd2NTF2_16 a void is left in the core. Unlike design 0589, in the Rd2NTF2_20 and 
Rd2NTF2_16 crystal structures the highly curved sheet conformation is in close agreement with 
the model. In addition to generally supporting the models created by the generative algorithm, the 
two crystal structures provide information to improve the design method (See SI text and Fig. 
S27). The ability to design and properly model the sheet in de novo NTF2-like proteins is of great 
importance, as this structural element is the most involved in pocket structure. 

Most of the 1503 possible high-level parameter combinations yield proteins that are too long to be 
encoded by assembling two 240 base-pair oligonucleotides (the current limit in what can be 
synthesized at very large scale). To explore the parameter space that generates these longer 
proteins, we characterized 10 designs that are predicted to be stable by a logistic regression 
model trained on the second high-throughput screening experiment data, and have large pockets 
(500 to 1200Å3). Two of the ten were monomeric and remained folded above 95ºC, a success 
rate similar to that of the biochemical characterization of designs identified in the second high-
throughput experiment, suggesting that de novo NTF2-like proteins longer than 120 amino acids 
with large pockets are also designable using the generative algorithm (Fig. S28-S29, Table S7). 

Suitability of designed scaffolds for harboring small molecule binding sites 

To probe the capability of the designed proteins to host binding sites, we docked 50 ligands (See 
Fig. S30 and Methods) from the PDB in all de novo and native NTF2 structures with pockets 
larger than 30Å3 (862 and 64, respectively), and optimized the surrounding sequence to interact 
with the ligand. We then evaluated whether the pocket with the most favorable interactions was 
based on a de novo or native protein, for each ligand. This test provides a conservative estimate 
of the relative ability of the designs to scaffold binding sites, as they were not constructed to bind 
any specific molecule, we only used the subset of stable de novo proteins that already had a 
pocket, and limited design to positions within that pocket. Despite these disadvantages, de novo 
proteins provide a better (lower ligand interaction energy) pocket for 80% of all tested ligands (40 
out of 50), without obvious biases in ligand molecular weight, charge, chemical groups, or 
hydrophobicity (Figure 4 and S31). The de novo scaffold with the largest number of top ranking 
docks is Rd2NTF2_03, one of the designs found to be folded and highly stable (Fig. S32). As 
controls for this docking test, we included two small molecules in the ligand set that are bound by 
the native scaffolds (PDB ligand codes EQU and AKV, bound by 1OH0 and 2F99 respectively) 
and found that native-like poses are recovered when the bound ligand conformer found in the 
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crystal structure is used (Fig. S33). The observed advantage in binding site scaffolding should 
increase with the number of de novo designed structures generated, while the rate of growth of 
the native set is limited to what has been sampled by evolution. 
 
As the overarching goal of this work is to expand the set of available protein structures with 
pockets, we generated a final set of scaffolds that incorporates all the lessons from previous 
experiments. Improvements in the generative algorithm, both in sequence design and backbone 
generation resulted in increased diversity (1619 unique parameter combinations) and improved 
stability-related metrics (see Fig. S34 and SI methods). We have made this set of 32380 scaffolds 
(20 models with different sequences per parameter combination) available for general use as 
starting points for ligand binding and enzyme design. 
 
Discussion  

Our generative algorithm may be viewed as encoding the “platonic ideal” of the NTF2-like 
structural superfamily along with a method for essentially unlimited sampling structures belonging 
to it, in a fashion directly tied to pocket structure. In terms of SCOPe categories, each 
combination of top-level parameters can be thought of as a protein family, and the set of all 
combinations, the de novo NTF2-like structural superfamily. Whereas in our previous work 4 
NTF2 structure blueprints were manually constructed, the new generative algorithm samples 
through over 1600 unique blueprints that result in well-formed backbones. This represents a 
qualitative jump in the structural diversity that can be achieved for complex folds by de novo 
protein design. The generative approaches to de novo protein structure design so far described in 
the literature, rule- or model-based, either focus exclusively on helical structures (23–25), are not 
geared towards atomic-detail modeling and design (26), or sacrifice fine-grained structural control 
for structural diversity (27). Machine-learning based generative models show considerable 
promise (27, 28), but have not yet been applied to the direct generation of full atomic structures 
with specific features of interest, as we do here for scaffolds containing a varied geometry of 
binding pockets. 

Up to now, protein design for a specific function has relied either on searching through the 
scaffolds in the PDB, or generating small variations of a limited set of de novo scaffolds. Our 
approach now enables going far beyond both approaches by searching through an essentially 
unlimited set of generated scaffolds. The experimental characterization of the designs shows that 
the generative algorithm samples a wide range of feasible structural space, and that designs 
usually fold as modeled. The insights we gained in order to produce these diverse proteins can 
be harnessed to improve the success rate in future protein design efforts. Furthermore, our 
approach could be implemented for other protein folds to expand structural diversity even further. 
In combination with existing docking and design methods, the generative algorithm here 
presented should open the door to design of novel functions by eliminating the limitations 
imposed by current protein structural databases, and enabling scaffold generation custom-
tailored to function. 
 
Materials and Methods 

Generative algorithm for proteins from the NTF2-like superfamily 

All code can be downloaded from GitHub at: https://github.com/basantab/NTF2Gen 

The NTF2Gen repository contains all the tools for de novo design of NTF2-like proteins. The main 
script is CreateBeNTF2_backbone.py, which manages the construction of NTF2 backbones, 
followed by DesignBeNTF2.py, which designs sequence on a given backbone generated by the 
previous script. To generate backbones from a specific set of parameters, use 
CreateBeNTF2PDBFromDict.py. The fundamental building blocks of the backbone generation 
protocol are Rosetta XML protocols (included in the repository) that are specialized instances of 
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the BlueprintBDRMover Rosetta fragment assembly mover. All checks and filters mentioned in 
the result section previous to design are implemented either in the XML files or the python scripts. 
Additional backbone quality controls are ran after each step (See SI methods). The design script 
is also based on a set of XML protocols, one for each of the described stages. The glycine 
placement in highly curved strand positions and the selection of pocket positions are managed by 
DesignBeNTF2.py (BeNTF2seq/Nonbinding). Pocket positions are selected by placing a virtual 
atom in the midpoint between the H3-S3 connection and the S6 bulge, and choosing all positions 
whose Cα-Cβ vector is pointing towards the virtual atom (the Vatom-Cα-Cβ angle is smaller than 
90º), and their Cα is closer than 8Å. 

De novo NTF2 backbone generation and sequence design for the first round of high-throughput 
screening 

Backbones were constructed as described in (5). For families not described in said paper (i.e., 
BBM2nHm* designs), the same backbone construction algorithms were used, but parameters 
were changed accordingly. Scripts for producing all these backbones can be found at 
https://github.com/basantab/NTF2Analysis, NewSubfamiliesGeneration. The sequence design 
protocol for the first round of designs can be found in the above-mentioned GitHub repository. 
Briefly: The design protocol begins by generating 4 different possible sequences using the 
Rosetta FastDesign mover in core, interface and surface layers separately. Then random 
mutations are tested, accepting only those that improve secondary structure prediction without 
worsening score, introducing Ramachandran outliers or worsening the shape complementarity 
between helices and the rest of the protein. 

Design of gene fragments for multiplex gene assembly 

In order to obtain full-length genes from fragments synthetized in DNA microarrays, they must be 
assembled from halves, as described in (18). To generate highly orthogonal overlaps, we 
generated DNA sequences using DNAWorks (29), then split the gene in half and altered the 
composition of the around 20 overlapping nucleotides to have as low homology as possible with 
other halves in the pool, while maintaining an adequate melting temperature and GC content, and 
staying below the maximum oligonucleotide length (230 nucleotides). An optimized version of the 
algorithm described in (18) can be found at https://github.com/basantab/OligoOverlapOpt. 

Protease-based high-throughput stability screening 

The protease-based high-throughput stability screening was carried out as described in (17). 
Briefly: genes encoding for thousands of different de novo NTF2 sequences cloned in the 
pETCON2 vector, which has the protein of interest expressed as a chimera of the extracellular 
wall yeast protein AgaII, on its C-terminus, connected by a “GS” linker of alternating glycine and 
serine. The protein of interest is followed by a myc-tag (EQKLISEEDL). This library is transformed 
in yeast for surface display in a one-pot fashion using electroporation. Different aliquots of the 
yeast culture are then subject to increasing concentrations of trypsin and chymotrypsin, and 
labeled with an anti-myc tag antibody conjugated to fluorescein. Cells still displaying full proteins 
(myc-tag-labeled) after this treatment are then isolated by Fluorescence-Activated Cell Sorting 
(FACS). Deep-sequencing of the sorted populations reveals which sequences are protease 
resistant and to what degree, providing an estimate for folding free energy. The metric reported 
by this assay is the stability score, an estimate of how much protease is necessary to degrade a 
protein over that expected if the protein was completely unfolded. A stability score of 0 indicates 
that the protein is degraded by the same amount of protease as expected if it was unfolded, i.e., it 
is likely completely unfolded. A stability score of 1 indicates that 10 times more protease is 
required to degrade the protein, than expected if it was completely unfolded. 

LASSO logistic regression model training on stability data 
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To identify features that predict stability, we trained LASSO logistic regression models (30) using 
the features described in the previous section, after normalization. A logistic regression model 
predicts the probability of a binary outcome using a logistic function that depends on a weighted 
summation of features. By sampling a series of L1 regularization values, we obtain models with 
varying degrees of parsimony, and for each of those L1 values we also generate different random 
partitions of our dataset. This way, for each L1 value we obtain models with a spread on 
accuracy, which we use for selecting an L1 regularization value that maximizes accuracy and 
minimizes complexity - i.e., the number of features with weight different from 0. The simplest 
measure of the importance of each feature is its assigned coefficient. 

The data and code for analysis of data derived from the first high-throughput experiment can be 
found at: 

https://github.com/basantab/NTF2analysis, 
ProteaseAnalysisExp1/LassoLogisticRegression.ipynb 

Analysis of data from the second high-throughput experiment can be found at: 

https://github.com/basantab/NTF2analysis, 
ProteaseAnalysisExp2/LassoLogisticRegression_new_version.ipynb 

Crystallography data collection and analysis metrics 

To prepare protein samples for X-ray crystallography, the buffer of choice was 25 mM Tris, 50 
mM NaCl, pH 8.0. Proteins were expressed from pET29b+ constructs to cleave the 6xHis tag with 
TeV. Proteins were incubated with TeV (1:100 dilution) overnight at room temperature and 
cleaved samples were loaded to a Ni-NTA column pre-equilibrated in PBS+30mM Imidazole. 
Flow-through was collected and washed with 1-2 column volumes. Proteins were further purified 
by FPLC as described above and specific cleavage of the 6xHis tag was verified by SDS-PAGE. 

Purified proteins were concentrated to approximately 10-20 mg/ml for screening crystallization 
conditions. Commercially available crystallization screens were tested in 96-well sitting or 
hanging drops with different protein:precipitant ratios (1:1, 1:2 and 2:1) using a mosquito robot. 
When possible, initial crystal hits were grown in larger 24-well hanging drops. Obtained crystals 
were flash-frozen in liquid nitrogen. X-ray diffraction data sets were collected at the Advanced 
Light Source (ALS). Crystal structures were solved by molecular replacement with Phaser (31) 
using the design models as the initial search models. The structures were built and refined using 
Phenix (32, 33) and Coot (34). Crystallization conditions and data collection and refinement 
statistics can be found in the SI methods and Table S16.  

UMAP embedding of NTF2 designs 

Uniform Manifold Approximation and Projection (UMAP) (21) is a dimension reduction technique 
widely used for visualization of high-dimensional data. We obtained the code for running UMAP 
by following instructions in https://umap-learn.readthedocs.io/en/latest/. For generating the 
embedding, UMAP requires a distance measure between points, for which we provided 1-
TMscore between all samples. We ran UMAP in a Jupyter notebook with different metaparameter 
combinations and verified that the general cluster structure was conserved among all of them, 
and that structural features were reflected in the groupings. The code and files necessary for 
generating the UMAP-related figures can be found in the GitHub repository 
https://github.com/basantab/NTF2analysis, UMAP_embedding. 

Ligand in silico docking test 

The goal of the ligand in silico docking test is to provide an estimate of how de novo NTF2-like 
proteins compare to native ones in terms of their ability to harbor arbitrary binding sites. We used 
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RIFDOCK (6) for simultaneous docking and design based on a set de novo and native protein 
backbones. As RIFDOCK only uses backbone coordinates and a list of pocket positions to dock 
the ligand and design a binding site around it, it can be used in a sequence-agnostic way. We 
selected and prepared (see ligand preparation methods above) a subset of 50 ligands from all 
non-polymeric PDB ligands (Ligand Expo - http://ligand-expo.rcsb.org) using k-means clustering 
on physical and chemical features (See S30, and the 50_ligand_table.html file at 
https://github.com/basantab/NTF2analysis/tree/master/ligandInSilicoDockingTest). The number of 
ligands tested was limited to 50 for computational tractability, as RIFDOCK uses a significant 
amount of resources per ligand and scaffold: >3hs in 32 cores and 64GB of RAM on average per 
ligand, to generate the initial rotamer interaction field (RIF), and ~2hs in 32 cores using >20GB of 
RAM, per ligand for docking in a subset of 12 scaffolds. As NTF2-like native representatives, we 
selected 64 structures with pockets (pockets detected and defined as described above) from the 
SCOPe2.05 database (described above). In order to provide a conservative estimate of pocket 
diversity and aid computational tractability, we limited the set of de novo designs used for docking 
to those stable (stability score > 1.55) and with detectable pockets in the concave side of the 
sheet (>25% overlap between CLIPPERS-detected pocket and backbone-based pocket sets, and 
>30Å3 volume), resulting in 862 different de novo sequences (See 
https://github.com/basantab/NTF2analysis “ligandInSilicoDockingTest” for relevant files). Pocket 
residues were detected using CLIPPERS, as described above, and only positions originally lining 
the pocket of the scaffolds were considered for binding site design by RIFDOCK. We designed 
five designs per scaffold, per ligand, and sorted them by “packscore”, a measure of favorable Van 
der Waals interactions and hydrogen bonds, with bonuses for bidentate (one side chain 
contacting two hydrogen-bonding ligand atoms) interactions. We measured the capacity of de 
novo scaffolds to accommodate binding sites batter by natives by subtracting the best native 
packscore Z-score from the best de novo packscore Z-score. 

Data and code availability 

In order to facilitate reproducibility, improvement, further analysis and use of the models and 
information in this work, we have made all relevant data and code publicly available on 
basantab/NTF2Analysis and basantab/NTF2Gen GitHub repositories. All sequences, PDB 
models, analysis scripts and data tables for the first high-throughput experiments can be found in 
the ProteaseAnalysisExp1 folder of NTF2Analysis, and ProteaseAnalysisExp2 for the second 
high-throughput experiment. The set of 32380 scaffolds, available for general use as starting 
points for ligand binding and enzyme design, is available in the 
BeNTF2seq/design_with_PSSM/final_set folder in the basantab/NTF2Gen GitHub repository. 
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Figures and Tables 
 

 
Figure 1. High-level description of the NTF2 generative algorithm. A: Canonical NTF2-like 
structural elements, labeled on the structure of scytalone dehydratase from Magnaporthe grisea 
(PDB 1IDP). B: Generative algorithm diagram, depicting hierarchical backbone assembly, and 
sampling of high-level parameters and local structure variation at each step. C: Examples of fold 
parameters sampled at the higher levels, and structures representing two extreme values for 
each. 
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Figure 2. High-throughput screening and structural characterization of de novo NTF2-like 
proteins. A: (top left) Round 1 stability score distribution.  Designs are more likely than scrambled 
sequences to have stability scores above 1.0.  Remaining panels compare the distributions of 
sequence hydrophobicity, Rosetta energy, and local sequence-structure compatibility of stable 
and unstable (stability score < 1.0) designs. B: Crystal structure and computational model of 
design Rd1NTF2_04 (PDB ID 6W3G); the protein backbone is in very close agreement. C: 
Crystal structure and model of design Rd1NTF2_05 (PDB ID 6W3D), showing significant 
differences between model and structure. Strands 5 and 6 are shifted 2 residues relative to each 
other (bold numbers, left), resulting in a smaller space in the concave side of the flattened sheet 
(magenta sphere and dashed line, right). D: Crystal structure and model of design Rd1NTF2_05 
5-fold mutant (PDB ID 6W3F), showing agreement between model and structure for backbone 
and mutated side-chains. As in C, a magenta circle and lines show how the concave side and 
sheet curvature fold as designed. 
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Figure 3: Biochemical characterization of round2 designs. A: De novo NTF2 designs sorted by 
sheet structure and ordered by sheet curvature and length. Each quadrant is colored by the 
average pocket volume of designs belonging to it. Orange frames denote quadrants for which 
stable designs were identified. Black frames denote designs were tested, but no stable design 
was identified. B: Stability score of algorithm designs (orange), compared to controls (grey) and 
designs from the initial screening (blue). C: Volume distribution of stable and unstable designs. D: 
UMAP embedding of NTF2 structural space, using 1-TMscore as pairwise distances. Each dot is 
a single structure. In the case of de novo designs, each unique parameter combination is 
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represented by a single structure randomly selected from that combination. Structurally similar 
proteins are closer together. E: Crystal structure of stable design Rd2NTF2_20 (PDB ID 6W3W), 
which features a new, elongated helix 3-strand 3 connection. Despite significant differences 
between the model and structure in the N-terminal helices, the new loop and the sheet are well 
recapitulated. F: Core rotamers of Rd2NTF2_20. TYR101 (red, sticks) shows a significant 
deviation from the model, and enables the change in location of helix 1. In contrast, PHE61 and 
GLY77 interact as modeled, showing the glycine rescue feature can be designed from scratch. G: 
Crystal structure of stable design Rd2NTF2_16 (PDB ID 6W40), which features a secondary 
bulge and an elongated frontal hairpin, features not designed before. Both of these features are 
recapitulated in the crystal structure. As in Rd2NTF2_20, but not as dramatic, the Rd2NTF2_16 
crystal structure presents significant deviations from the model in the N-terminal helices. H: 
Surface rendering of the model and crystal structure of Rd2NTF2_16, showing the shallow pocket 
formed by the long arm and the frontal hairpin is recapitulated by the crystal structure. 
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Figure 4: Comparison of de novo designs to native structures for ligand docking and design. 
Ligands are ranked by how well de novo scaffolds accommodate each of them in comparison to 
native structures (higher ΔZ-score values mean higher advantage of best de novo scaffold over 
best native). To calculate ΔZ-score for each ligand, we obtain the protein-ligand interaction 
energy for all docked conformations of that ligand, and calculate the Z-scores, then subtract the 
Z-score of the lowest (most favorable) de novo designed protein dock, from the lowest native 
protein dock. In each panel the same ranking is colored by different ligand properties: from top to 
bottom: Molecular weight (Da), charge at pH 7.5, and hydrophobicity (LogP). 
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Supplementary Information Text 

Logistic regression model of stability trained on the second round of high-throughput experiments  

As the proteins designed by the generative algorithm sample uncharted structural space, we 
investigated whether there were substantial differences in stability in different regions of the 
space. We included the high-level parameters used in the generative algorithm in a logistic 
regression model of stability (designs with stability score >1.55 are labeled as stable), and found 
that most have zero weight, suggesting that proteins can be equally well designed throughout 
structural space. The only high-level parameter feature with a non-zero weight is the length of 
helix 3; the negative weight indicates that designs with shorter helices tend to be more stable (the 
relatively small weight of this feature suggests that this is only a small bias; Fig. S23). The logistic 
regression model also detects a signal (positive weight) from core hydrophobic packing, but not 
raw sequence hydrophobicity (Fig. S23), suggesting that the contribution of overall sequence 
hydrophobicity was fully saturated going from the first round to second round of designs, and that 
the increase in the proportion of stable designs is not solely due to increased hydrophobicity. The 
model also shows a shift in importance from local sequence-structure compatibility to tertiary 
structure-sequence compatibility (Fig. S23), likely due to the extensive secondary structure 
propensity optimization in the second round of designs. 

Lessons from design Rd2NTF2_20 and Rd2NTF2_16 crystal structures 

The N-terminal helices of both designs display significant deviations from the model. While this 
could be attributed to the extensive crystal contacts in both structures (Fig. S27), the alternative 
conformations of the side chains near the N-terminal helices suggest that better core packing 
could have prevented the backbone rearrangements. In the case of Rd2NTF2_20, four core side 
chains, N11, T75, T92, Y101 form a hydrogen bond network with an alternative conformation 
from the design, following the displacement of the helix. In particular, T92 is completely buried in 
the model, with a single polar interaction towards the backbone of residue 73, and it is possible 
that this interaction is not as favorable as the one with a water molecule observed in the crystal 
structure (Fig. S27). This highlights the importance of ensuring all polar interactions among buried 
side chains are highly favorable. A similar displacement of the N-terminal helix is observed in 
Rd2NTF2_16. In this case, the helix is again involved in crystal contacts, with significant 
deviations in core packing, but most side chains involved are hydrophobic. Both Rd2NTF2_20 
and Rd2NTF2_16 feature glycines at the points of highest sheet curvature, but unlike 
Rd2NTF2_20, Rd2NTF2_16 has a cavity above it, as Rosetta was unable to find a favorable 
side-chain placement to fill it (Fig. S27). It is possible the destabilizing effect of this large void 
leads to the displacement of the N-terminal helix, which further illustrates the need of 
compensating the packing interactions lost by placing glycine on inward-facing strand positions. 

Supplementary methods 

De novo NTF2 backbone quality control 

The generative algorithm includes quality control steps throughout the backbone construction 
process and sequence assignment to reduce deviation from ideal atomic geometry. At every 
stage, output that has Ramachandran outliers or unlikely bond angle and length values are 
discarded. Furthermore, sheets and helices where deformation leads to backbone hydrogen 
bonds with higher energy than average are discarded. The backbone assembly process is guided 
by constraints that impart the unique structural features for a given parameter combination, and 
structures falling beyond tolerable limits of some of those constraints are discarded. Finally, since 
the sequence assignment process can change the backbone slightly, filters are also applied at 
the end of this step, especially those that ensure a compact structure. All the previously 
mentioned filters are implemented as Rosetta filters within each Rosetta script (*.xml files).  

Quantification of de novo NTF2-like proteins families 
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As previously described, we define de novo NTF2-like families as all different combinations of 
high-level parameters that lead to well-formed backbones (See above, “De novo NTF2 backbone 
quality control”). To quantify the number of possible parameter combinations, we ran the 
backbone generation algorithm without requesting any specific combination, i.e., randomly 
choosing parameters at each stage, and obtaining only backbones passing all quality controls 
(See https://github.com/basantab/NTF2Gen, CreateBeNTF2_backbone.py). We then assign a 
sequence to the backbones. We quantify the number of different parameter combinations by 
reading the dictionary stored in each output, marked with the keyword “NTF2DICT” at the 
beginning of the line, which stores the parameters used to generate it (See 
https://github.com/basantab/NTF2Gen, PrintUniqueBeNTF2_file_input.py). The process of 
generating backbones from random parameter combinations leads to an uneven combination 
distribution – not all combinations are equally sampled, and some backbones are harder to 
assemble than others. To compensate for this, we take all combinations with a number of 
representatives lower than required, and generate more backbones with the same parameters 
(See https://github.com/basantab/NTF2Gen, CreateNewBeNTF2PDBFromDict.py), until the 
required number is met. For the final set of backbones, this number is 20. 

Pocket structure analysis using CLIPPERS 

We created pocket inventories for each protein of interest using CLIPPERS (Coleman and Sharp, 
2010) with default options. We then scanned through these inventories searching for the largest 
pockets using travel depth to define their boundaries: We trimmed the pocket tree (done by 
starting with the deepest, group=1, and walking back with through parents, capping it at group # 
120) using a mean_TD cutoff defined as: pocket mean_TD ~ max_TD - (max_TD - 
lowest_mean_TD) * X, with X = 0.75. The python code for this 
(pocketDetect_lines_TD_CLIPPERS.py) can be found at 
https://github.com/basantab/NTF2analysis. After detecting pockets, structures where the pocket 
was not in the canonical location (sheet concave side) or spanned micro-pockets on the surface, 
were discarded. 

Analysis of pocket volume in proteins designed by the generative algorithm 

To produce the table in figure 3A, we measured the pocket volumes of all models generated in 
preparation for the second high-throughput experiment (including those finally tested) using 
CLIPPERS, as described above. Only proteins whose pockets could be detected by CLIPPERS 
were included in the analysis (13126 of 22853). See https://github.com/basantab/NTF2Analysis, 
ProteaseAnalysisExp2/Figure3_pocket_volume/Create_heatmap.ipynb. Figure 3C histograms 
were produced using the same data. 

Protein-protein alignment by TM-align 

For each alignment, TM-align optimizes and reports TM-score, a measure of the distance 
between Cα carbons of aligned residues in target and template, normalized by protein length. The 
optimization algorithm used by TM-align results in alignments where superposition of segments 
with similar local structure is optimized over superposition of segments with disparate local 
structure. Because TM-score is normalized by target length, and we align proteins with similar, 
but not equal, lengths, for any given alignment, the TM-score we report is the average between 
two values. 

Generation of patterned scrambled sequences for control 

In order to produce control sequences that retain the overall amino-acid composition, but are not 
optimized for folding, we took a subset of the design sequences, and scrambled all amino-acid 
identities, except for P and G, while keeping the hydrophobicity pattern. The code for this can be 
found in the GitHub repository https://github.com/basantab/NTF2analysis, 
create_patterned_scramble.py 
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Features calculated for de novo NTF2 design stability prediction 

Scripts for extracting design features used in logistic regression model training can be found in 
the public GitHub repository: https://github.com/basantab/NTF2analysis in the feature_extraction 
folder. For features described in (1) extracted with specialized code, refer to the supplementary 
material of that publication. 

The features calculated using Rosetta filters and score function ref2015 (when dependent on 
score function) can be found on table S8. Features calculated using Rosetta filters and 
beta_nov16 score function (when dependent on score function) can be found in Table S9. 
Features calculated using Rosetta filters related to burial of unsatisfied polar atoms can be found 
in Table S10. Features calculated using CLIPPERS (Coleman and Sharp, 2010) pocket detection 
and inventory software can be found in Table S11. 

Overall protein fragment metrics calculated for protein fragments with similar sequence and 
secondary structures to 9-mer sequence stretches (protein length-9) in the target protein in Table 
S12. For each 9-mer, 200 structure fragments are derived, as described in (2, 3). 

Overall protein TERM metrics are calculated based on the output of the scripts provided with (4). 
TERM-based metrics were calculated based on the per-positions abundance_50, 
design_score_50 and structural score. These metrics can be found in Table S13. To obtain 
insight regarding specific parts of the proteins, we divided the protein in continuous sequence 
stretches that form local structures (sometimes with overlapping positions, Table S15), and 
calculated different fragment and TERM features in each of them, these can found in table S15. 
For each of the above stretches, TERM and fragment metrics were calculated, and the final name 
of the features calculated this way are <stretch name>_<metric>. 

Features Tminus1_netq, Tend_netq, T1_absq, Tminus1_absq, Tend_absq, abego_res_profile, 
abego_res_profile_penalty, largest_hphob_cluster, n_hphob_clusters, hphob_sc_contacts, 
hphob_sc_degree, n_charged, hydrophobicity, contig_not_hp_internal_max, contig_not_hp_avg, 
contig_not_hp_avg_norm, tryp_cut_sites, chymo_cut_sites, chymo_with_LM_cut_sites, 
nearest_chymo_cut_to_Nterm, nearest_chymo_cut_to_Cterm, nearest_tryp_cut_to_Nterm, 
nearest_tryp_cut_to_Cterm, nearest_tryp_cut_to_term and nearest_chymo_cut_to_term, were 
calculated using the enchance_score_file.py script provided with (1), and are thoroughly 
explained in their supplementary materials. 

Hydrophobicity enrichment sequence profile 

Designs were split between stable and unstable depending on the threshold selected for each 
experiment (see Results), and the enrichment was calculated based on the whole population 
frequencies vs. the frequencies in the stable population. Code for these calculations, figures and 
derivation of sequence data from designs on the first high-throughput experiment can be found at 
https://github.com/basantab/NTF2analysis, Exp1_SeqProfile  

For designs tested on the second experiment: https://github.com/basantab/NTF2analysis, 
Exp2_SeqProfile. 

Experimental characterization of designs 

Protein expression and purification in E. coli: Genes encoding the designed protein sequences 
were obtained from IDT already cloned in pET29b+ or pET21b+ (with N-terminal 6xHis tag 
followed by a TeV cut-site) expression vectors. Plasmids were transformed into chemically 
competent Escherichia coli Lemo21 cells from Invitrogen. Starter cultures were grown at 37°C in 
Luria-Bertani (LB) medium overnight with antibiotic (50 µg/ml carbenicillin for pET21b+ 
expression or 30 µg/ml kanamycin for pET-28b+ expression). For expression, overnight 5mL LB 
cultures were used to inoculate 500 mL of Auto-induction medium supplemented with antibiotic, 
at 25ºC, for 18 hours (5). After overnight expression, cells were collected by centrifugation (at 4 
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°C and 4400 r.p.m for 10 minutes) and resuspended in 25 ml of lysis buffer (30 mM imidazole and 
phosphate buffered saline, PBS - 137 mM NaCl, 12 mM Phosphate, 2.7 mM KCl, pH 7.4). 
Resuspended cells were lysed by sonication or microfluidizer in the presence of lysozyme, 
DNAse and protease inhibitors. Lysates were centrifuged at 4 °C and 20,000 r.c.f. for 30 minutes; 
and the supernatant was filtered and loaded to a nickel affinity gravity column pre-equilibrated in 
lysis buffer for purification. The column was washed with three column volumes of PBS+30 mM 
imidazole and the purified protein was eluted with three column volumes of PBS+300 mM 
imidazole. The eluted protein solution was dialyzed against PBS buffer overnight. The expression 
of purified proteins was assessed by SDS-polyacrylamide gel electrophoresis; and protein 
concentrations were determined from the absorbance at 280 nm measured on a NanoDrop 
spectrophotometer (ThermoScientific) with extinction coefficients predicted from the amino acid 
sequences. Proteins were further purified by FPLC size-exclusion chromatography using a 
Superdex 75 10/300 GL (GE Healthcare) column.  

Circular dichroism (CD): Far-ultraviolet CD measurements were carried out with an AVIV 
spectrometer, model 420. Wavelength scans were measured from 260 to 200 nm at temperatures 
between 25 and 95 °C. For wavelength scans and temperature melts a protein solution in PBS 
buffer (pH 7.4) of concentration 0.2-0.4 mg/ml was used in a 1 mm path-length cuvette, or 10 
times more dilute for 1cm path-length cells. 

Chemical denaturation experiments with guanidine hychloride were done with an automatic 
titrator using a protein concentration of 0.02-0.04 mg/ml and a 1 cm path-length cuvette with stir 
bar. PBS buffer (pH 7.4) was used for the cuvette solution and PBS+GdmCl for the titrant solution 
at the same protein concentration. GdmCl concentration was determined by refractive index. The 
denaturation process monitored absorption signal at 222 nm in steps of 0.1 or 0.2 M GdmCl with 
1 min mixing time for each step and at 25 °C. The denaturation curves were fitted by non-linear 
regression to a two-state unfolding model to extract six parameters: slope and intercept for pre- 
and post-transition baselines, m value and the folding free energy (ΔGH2O) (6, 7). 

Size exclusion chromatography combined with multiple angle light scattering (SEC-MALS): To 
evaluate protein quaternary structure, SEC-MALS experiments were performed using a Superdex 
75 10/300 GL (GE Healthcare) column, except for samples Rd2NTF2_10, Rd2NTF2_12 and 
Rd2NTF2_11, for which an Superdex 200 10/300 GL (GE Healthcare) column was used. Then 
combined with a miniDAWN TREOS multi-angle static light scattering detector and an Optilab T-
rEX refractometer (Wyatt Technology). One hundred microliter protein samples of 1-3 mg/ml were 
injected to the column equilibrated with PBS (pH 7.4) or TBS (pH 8.0) buffer at a flow rate of 0.5 
ml/min. The collected data was analyzed with ASTRA software (Wyatt Technology) to estimate 
the molecular weight of the eluted species. 

Crystallization conditions for solved crystal structures 

Rd1NTF2_05 (PDB ID 6W3D): (His-tag not cleaved): Protein solution concentration: 56mg/L 

1:1 dilution in 0.09M Sodium fluoride; 0.09M Sodium bromide; 0.09M Sodium iodide, 0.1M 
Tris/BICINE pH 8.5, 50% v/v of 40% v/v PEG 500 MME; 20 % w/v PEG 20000. (Morpheus-HT96 
B9 (Gorrec, 2009)) 

Rd1NTF2_05_I64F_A80G_T94P_D101K_L106W (PDB ID 6W3F): (His-tag cleaved): Protein 
solution concentration: 7.7mg/mL 

1:1 dilution in 0.09M Sodium nitrate, 0.09 Sodium phosphate dibasic, 0.09M Ammonium sulfate, 
pH 6.5 0.1M Imidazole/MES monohydrate (acid), %50v/v of 40% v/v PEG 500 MME; 20 % w/v 
PEG 20000 (Morpheus-HT96 C1 (8)) 

Rd1NTF2_04 (PDB ID 6W3G): (His-tag cleaved): Protein solution concentration: 48.7mg/mL 
1:1 dilution in 0.12M 1,6-Hexanediol; 0.12M 1-Butanol; 0.12M 1,2-Propanediol; 0.12M 2- 
Propanol; 0.12M 1,4-Butanediol; 0.12M 1,3-Propanediol, 0.1M Imidazole/MES monohydrate 
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(acid), pH 6.5, and 50% v/v of 40% v/v PEG 500 MME; 20 % w/v PEG 20000 (Morpheus-HT96 
D1 (8)). 

Rd2NTF2_16 (PDB ID 6W40): (His-tag cleaved): Protein solution concentration: 24.6mg/mL 

1:1 dilution in 0.1 M Sodium Acetate pH 4.5 and 1.0 M di-Ammonium phosphate. Crystals flush 
freeze with 20% glycerol as cryo protector (JCSG4 H5 -(9)). 

Rd2NTF2_20 (PDB ID 6W3W): (His-tag cleaved): Protein solution concentration: 22.5mg/mL 
1:1 dilution in 0.09 M Sodium nitrate, 0.09 Sodium phosphate dibasic, 0.09 M Ammonium sulfate; 
0.1 M Tris (base) & BICINE pH 8.5; 12.5 % v/v MPD; 12.5% PEG 1000; 12.5% w/v PEG 3350 
(Morpheus-HT96 C12 (8)). 

Selection of designs for second high-throughput experiment 

Using the logistic regression model trained on data derived from the first high-throughput 
experiment, we predicted the probability of being stable of 11548 models designed by the new 
generative algorithm, and selected a subset of 10073 with chance > 0.75. A mistake in the 
calculation of these values resulted in the selection of designs not being strictly above 0.75, but 
biased towards higher values. In parallel, we clustered all designs by their fold features, and for 
each cluster we searched for a representative in the 10073 “stable” designs subset. All code and 
values can be found in the GitHub repository https://github.com/basantab/NTF2analysis, in the 
Exp2_selection folder. 

Non-redundant set of native NTF2-like domain structures 

A non-redundant (<95% sequence identity) set of domain crystal structures was downloaded from 
the SCOPe database from http://scop.berkeley.edu/astral/pdbstyle/ver=2.05 on September 2015. 
From this set, NTF2-like domains (d.17.4 SCOPe v2.05 superfamily) were extracted by selecting 
only *.ent files where the domain record line matched d.17.4 at least partially. For docking, the 
energy of these structures was minimized using the Rosetta FastRelax protocol with constraints 
to avoid large structural changes. 

Ligand model preparation in silico docking test 

In order to perform ligand docking and binding site design in Rosetta, ligand atomic models need 
to be processed. For this, we generated ligand conformers using RDKirt (“RDKit: Open-source 
cheminformatics; http://www.rdkit.org”) and *.mol2 obtained by converting SDF files from the PDB 
Ligand Expo database using Open Babel using pH 7 for protonation states. Partial charged were 
assigned using ANTECHAMBER ((10), $AMBERHOME/bin/antechamber -i [input.mol2] -fi mol2 -
o [output.mol2] -fo mol2 -c bcc -nc [netcharge]), and net charge calculated from the *.mol2 file. 
Rosetta *.param files were obtained using the latest *.mol2 files, by running the scripts provided 
by RosettaCommons to that end (11). Finally, RDKit conformers were minimized in Rosetta. 

Misfolded-state model for predicting baseline protease stability of de novo NTF2-like protein 
sequences 

As in previous work (1), we calculated the stability score as the difference between observed 
protease stability and predicted protease stability the design would obtain if misfolded. 

 S = EC50_observed – EC50_predicted 

In previous work, the misfolded-state model was trained on stability measurements of sequences 
expected to be misfolded due to scrambling of the amino acid sequence or introduction of buried 
charges. The structure of the misfolded-state model enabled it to learn the protease specificities 
by fitting a 9-residue-length position-specific scoring matrix (PSSM) for each protein, which when 
applied across the length of the protein, would sum up the cut-rate, assuming the protein was 
entirely unfolded. With that model and for small proteins, protease stability of misfolded 
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sequences could be predicted with high accuracy (R2=0.60 for trypsin, R2=0.48 for chymotrypsin). 
However, for NTF2-like proteins, the same misfolded-state model did not capture protease 
stability of scrambled sequences (R2=0.0), and underestimated the actual protease stability, in 
some cases, by approximately 10 fold, suggesting that cut-sites are being obscured by partial 
folding. Expecting that a globular collapse of misfolded sequences would be largely driven by the 
amino acid composition and length, we fitted a new misfolded-state model by minimizing the 
squared logarithmic error between observed and predicted EC50 over the set of 2694 scrambled 
sequences. The model predicted EC50 values as a weighted sum of amino acid counts and 
weights were fitted using linear regression and L1 and L2 regularization (ElasticNet regression) 
and 5-fold cross validation as implemented in python via scipy (12). The fitted weights largely 
reflect amino acid hydrophobicity for both trypsin and chymotrypsin (Fig. S26D-E), further 
supporting that the misfolded-state for NTF2-like proteins is partially collapsed. Across both 
design rounds, when trained using 5-fold cross validation, the model predicted R2=45% (25%) of 
the trypsin (chymotrypsin) stability variation of pattern-scrambled sequences on an independent 
holdout dataset (Fig. S26D-E). Including the EC50 predictions from the former misfolded-state (9-
residues length PSSM) model as a feature in the new model did not improve the performance of 
the model. Model code, training and testing sets can be found in the GitHub repository 
https://github.com/basantab/NTF2Gen (BeNTF2seq/molten_globule_model). 

A global PSSM to explain the stability variation of the de novo NTF2 superfamily 

To understand position-specific design rules of NTF2-like protein stability, we trained a position-
specific scoring matrix (PSSM) model using 6882 designs from both rounds of protease stability 
screening with EC50 values determined with the updated misfolded-state model described above. 
The PSSM-model relies on a custom sequence-alignment method associated with the 
generative-algorithm, which, by stratifying the sequences into 183 independent positions, 
guarantees structural equivalence between all amino acids in one column of the sequence 
alignment. Across all positions, weights were then fitted using the same linear regression with L1 
and L2 regularization as described above. While the resulting model only explained a fraction of 
the observed stability variation (R2=0.13), upon visual inspection, the PSSM appeared to reflect 
amino acid preferences correlated with the naturally occurring NTF2-like protein sequence 
tolerability. Model code, training and testing sets can be found in the GitHub repository 
https://github.com/basantab/NTF2Gen (BeNTF2seq/fit_PSSM_model). 

Generative algorithm improvement for last round of designs  

Stability improvements from the first round to the second round came mainly from biasing the 
sequence towards higher number of hydrophobic amino acids. A LASSO logistic regression 
model of stability trained on the second round of designs indicates raw hydrophobicity is not as 
predictive as in the first round, instead, hydrophobic interactions and sequence-structure 
agreement (Design score as described in TERMS (4)) are most predictive. To improve these 
features, we applied the fitted PSSM weights described above as an independent score-term of 
the energy function. We also incorporated updates in the sequence design Rosetta mover 
“FastDesign” and Rosetta scoring, that improve designs' final score and reduce buried unsatisfied 
polar atoms. This design protocol takes ~1hr to run in an Intel E5 2680 processor, much faster 
than previous versions, which took >3hrs due to the extensive optimization trajectory based on 
point mutations. All files containing the full description of this sequence design protocol and 
necessary to run the calculations can be found in the GitHub repository 
https://github.com/basantab/NTF2Gen (BeNTF2seq/design_with_PSSM), along with the final set 
of 32380 protein models designed with this method and the input backbones. 

The increase in parameter combination (backbone) diversity in the last round of designs comes 
from small changes in the backbone construction code that make fragment assembly more 
efficient, mainly by tweaking constraint strength and distance values. A history of code changes 
and their rationale is saved in the GitHub repository https://github.com/basantab/NTF2Gen. 

Design naming 
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In order to aid clarity, we gave short names to specific designs referenced in this work. Table S17 
maps the short names to those used in gene orders. Designs longer than 120 amino acids were 
not part of the high-throughput experiments; therefore their names (BBLPX) were given at the 
time of specific gene order. Other short names sometimes used during analysis are written 
between parentheses. 
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Fig. S1. Example of translation of high-level parameters to Rosetta-readable file formats 
(blueprint and constraint files) for sheet (S3-6) fragment assembly (Stage 1). High-level 
parameters values selected are in red boxes (left). Examples of some of the conversions from 
high-level parameters to low-level descriptions are shown in the middle, with the resulting file 
formats. Fragment assembly produces local structure variations (right). 
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Fig. S2. Dependence of stage 2 parameters on the strands built in stage 1. A: The protrusion 
value, calculated from vectors radiating from the S6 end, to the long arm tip and S3 bulge, 
determines what types of connections can be used between H3 and S3. Low protrusion values 
(Å) eliminate short connections that would place the C-terminus of H3 too near the center of the 
sheet, leading to low pocket depth. High protrusion values eliminate long H3-S3 connections that 
would place the C-terminus of H3 too far from the sheet and limit packing interactions that lead to 
folding and structured pockets. Intermediate protrusion values allow all types of connections. B: 
The length of H3 is dictated by the H3-S3 connection first positions’ torsion bin. The rigidity of the 
S2-H3 connection places the C-terminus of H3 in a specific angle to S3, to properly connect H3 to 
S3, the connection must have a suitable torsion that leads to favorable hydrogen-bond 
interactions (bottom cartoon examples). C: The selection of hairping length (4- or 6-residue S1 
and S2) is independent of H3 length and H3-S3 connection, but depends on the length of S6, as 
it has to fully pair with it. 
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Fig. S3. Dependence of stage 3 parameters on the strands built in stage 2. A: The distance “e” 
(Å) between the tip of the long arm and the frontal hairpin dictates wether the pocket opening can 
be placed between H3 and the H1-H2 loop (Alternative placement), or not. B: Once the opening 
placement is selected, this and the ditance between the S6 bulge and the H3-S3 connection 
dictate the lengths of helices 1 and 2. For alternative openings, H2 and H1 are as short as 
possible, to leave a space between the H1-H2 loop and H3. If the opening  placement is Classic, 
then the distance between the S6 bulge and the H3-S3 loop distates the lengths of H1 and H2: if 
distance “d” is longer than 25Å, then H1 and H2 are both extended by a full turn (4 residues), to 
span the surface between the N-terminus of S3 and the short arm. C: In order to steer the 
placement of H1 and H2 such that energetically favorable side-chain packing can be achieved, 
constraints (dashed lines) are used to tie the N and C termini of H1 to the sheet. The N-terminus 
of H1 is tied to the N-terminus of S6 such that the Cβ (red spheres) of this position points at the 
splace left by side-chains on the side of H1 (C, right). The same is done between the C-terminus 
of H1 and the N-terminus of S3 (C, left). 
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Fig. S4. Dependence of stage 4 parameters on the strands built in stage 2. In case a C-terminal 
helix is constructed, the type of pocket opening (black arrows) determines its length and 
placement. A shorter H4 interacts with the long arm and extends the pocket outwards in pockets 
with Classic openning. In pockets with Alternative opening, H4 takes the space between the 
frontal hairpin and the long arm. In both cases, constrinats are placed between the C-terminus of 
H4 and the rest of the structure to steer fragment assembly and achive the described H4 
placement. 
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Fig. S5. De novo NTF2-like designs tested in the first high-throughput experiment. A: Diagrams 
of the different blueprints tested, and how they map to previously published blueprints (solid 
circles), or not (dotted circles). Arrows indicate single changes that convert one blueprint to the 
other. B: Alternative visualization of models in figure A. 
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Fig. S6. Population of stable designs, separated by family. 
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Fig. S7. Enrichment pattern for first-round designs. A: Structural legend of analyzed postions, 
presented in the bottom of B as a continuous stretch, each color represents a separate sequence 
stretch. B: Enrichment heatmap. Each column is a structuraly homologous position in all tested 
designs. Grey cells indicate that either the amino-acid was not sampled at that postion, or the 
enrichment was not statistically significant. 
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Fig. S8. Logistic regression model on first-round designs. A. Boxplot of model accuracy on test 
set for different values of L1 penalty. Each box represents 40 different random partitions of the 
dataset (with replacement), with one third of it as test set in each case. B. Absolute weights of the 
16 features with the highest average weights in the 40 dataset partitions. C. Correlation matrix for 
the top 12 features. 
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Fig. S9. Experimental characterization of first-round designs. Column 1: Guanidinium chloride 
titrations following circular dichroism at 222nm, circular dichroism spectra, and size-exclussion 
chromatography followed by multi-angle light scattering. 
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Fig. S10: Experimental characterization of first-round designs. Circular dichroism spectra at 25ºC 
and 95ºC and temperature curves following circular dichroism at 222nm. 
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Fig. S11. Rd1NTF2_04 crystal structure. A: Comparison between the Rd1NTF2_04 structure 
(orange) and the most similar structure from Marcos et al. (Fold C, green), highlighting with a box 
the structural elements that extend the concave sheet space outwards in Rd1NTF2_04. B: Core 
side-chain conformations in the Rd1NTF2_04model (gray) and structure (rainbow). 
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Fig. S12. Rd1NTF2_05 mutations to correct structure. Left pannel: Muatations D101K and 
L106W on strand 5 and 6, respectively. Right pannel: Mutations I64F, A80G and T94P on strands 
3, 4 and 5 respectively. Note how after changing A 80 to G the backbone structure relaxes into a 
deeper arch, and F64 takes the space left by the alanine side chain. 
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Fig. S13: Guanidinium titration of Rd1NTF2_05 mutants. 
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Fig. S14. Rd1NTF2_05 5-fold mutant structure. A: Pocket in the Rd1NTF2_05 5-fold mutant 
structure. B: Comparison of side-chain rotamers between crystal structure (rainbow) and model 
(gray). 
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Fig. S15: Feature distributions for the first (blue) and second (orange) high-throughput 
experiments. Here we present only the top features by importance according the the linear model 
trained using data from the first high-throughput experiment. 
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Fig. S16: Modes of pocket modulation by sheet structure. A: Sheet parameter table, with y axis 
mapping to sheet length and x axis mapping to curvature. Colored cells are sampled parameter 
combinations, and the tone indicates average pocket volume after sequence design. Two 
traversals, one through the y axis (red), and one through the x axis (orange), show how sheet 
curvature and length modulate pocket volume. B: Exemplar structures with pocket volumes close 
to average, through each of the two above traversals. 
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Fig. S17. Top: Stability scores of designs tested in both rounds as controls. The linear fit 
suggests the stability score values are the same between assays. Middle and bottom: Sequence 
features that best predict stability in second-round scrambled controls: Hydrophobicity and the 
number of non-alanine hydrophobic residues. These features have the highest weights in the 
most parsimonious logistic models of stability. 
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Fig. S18. The number stable representatives for each tested family is similar to the population 
average. The black line is a linear fit, and has a slope of approximately 1/3. Most tested families 
without stable representatives had less than 10 tested members. 
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Fig. S19. Stable second-round design cover most of the pocket volume range of native NTF2-like 
proteins, and for most of that range, there are more de novo designs. 
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Fig. S20. Enrichment pattern for second-round designs. A: Structural legend of analyzed 
positions, presented in the bottom of B as a continuous stretch, each color represents a separate 
sequence stretch. B: Enrichment heat map. Each column is a structurally homologous position in 
all tested designs. Grey cells indicate that either the amino acid was not sampled at that position, 
or the enrichment was not statistically significant. C: Fraction of polar pocket residues in all and 
stable second-round designs. These proteins have on average 24 pocket residues. 
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Fig. S21. UMAP hyperparameter exploration. Color legends are the same as in Figure 3D. 
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Fig. S22. UMAP embedding colored by different generative algorithm parameters used to 
construct each structure. Red dots are native structures. 
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Fig. S23. Logistic regression model from second-round designs. A. Boxplot of model accuracy on 
test set for different values of L1 penalty. Each box represents 40 different random partitions of 
the dataset (with replacement), with one third of it as test set in each case. B. Absolute weights of 
the 10 features with the highest average weights in the 40 dataset partitions. C. Correlation matrix 
for top 10 features. 
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Fig. S24. Experimental characterization of second-round designs. Column 1: Guanidine 
hydrochloride titrations following circular dichroism at 222nm. Column 2: Size-exclusion 
chromatography followed by multi-angle light scattering. 
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Fig. S25. Experimental characterization of second-round designs. Circular dichroism spectra at 
25ºC and 95ºC and temperature curves following circular dichroism at 222nm. 
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Fig. S26. Molten globule model. A: ΔG of unfolding vs. stability score calculated usign the 
unfolded-state model, with data points colored by design round. The black line is a linear fit, with 
Pearson R 0.3 and p-value 0.182. B: ΔG of unfolding vs. stability score calculated usign the 
“molten globule” model, with data points colored by design round. The black line is a linear fit, 
with Pearson R 0.07 and p-value 0.753. C: Receiver operating characteristic curve of stability 
score as classifier for folded designs (True) and designs that do not express or not fold (False). 
D: Per-amino acid type weigths in the elastic network model for trypsin (left), and scrambled-
sequence precited vs measured EC50 for a validation sequence set, blue dots are sequences 
from the first round, orange ones are from the second (right). E: Per-amino acid type weigths in 
the elastic network model for chymotrypsin (left), and scrambled-secquence precited vs 
measured EC50 for a validation sequence set, blue dots are sequences from the first round, 
orange ones are from the second (right). 
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Fig. S27. Rd2NTF2_20 and Rd2NTF2_16 crystal structures. A: Crystal contacts in Rd2NTF2_20 
involving H1 and H2. B: Rd2NTF2_16 asymmetric unit, with two copies of the Rd2NTF2_16 
monomer interacting through H1, which is displaced from its modeled location. C: Rd2NTF2_20 
core packing in the crystal structure (left) and model (right). D: Core packing of the Rd2NTF2_16 
model, showing the cavity near G85. 
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Fig. S28. Experimental characterization of NTF2 designs longer than 120 amino-acids. Column 1: 
Guanidine hychloride titrations following circular dichroism at 222nm. Column 2: Size-exclusion 
chromatography followed by multi-angle light scattering. 
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Fig. S29. Experimental characterization of NTF2 designs longer than 120 amino-acids. Circular 
dichroism spectra at 25ºC and 95ºC and temperature curves following circular dichroism at 
222nm. 
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Fig. S30. Ligand structures used in the docking benchmark, long with PDB name and advantage 
value (ΔZ-score). 
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Fig. S31. Advantage ranking, colored by presence (red) of a particular chemical moiety (plot title 
on top). 
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Fig. S32. Ligand-scaffold complexes for the two top de novo docks (ligands AKV and DQX). 
Hydrogen bonds are shown as yellow dotted lines. 
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Fig. S33. Ligand-scaffold complexes for the two control ligands (AKV and EQU), on their native 
scaffolds. Purple: RIF docked complex. Orange: original PDB structure. While an orientation 
similar to the original was recovered for EQU on the 1OH0 backbone, differences between the 
docked AKV conformer and the PDB conformer likely caused docks in the 2F99 backbone to be 
substantially different from the PDB structure. These controls suggest the proposed docking test 
can recover native-like pockets when the same ligand congener is used. 
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Fig. S34. Top stability-predicting features improved in the last version of the generative algorithm. 
Orange: Final-round designs, blue: second-round designs. 
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Parameter 

(short name) 
Units (Allowed 

values) Explanation 

Stage 1 

Base width 
(base_width) Residues (3,5) 

Number of residues between relative 
positions of main bulges on strand 3 and 6, 
including the B ABEGO bulge residue. 

Long arm length 
(long_arm_l) 

Pairs of residues 
(2,3,4) 

Number of residue pairs between the main 
bulge in strand 3 and the N-terminus of 
strand 3, does not take into account 
additional bulge residues when strand 3 has 
additional bulges. 

Short arm length 
(short_arm_l) Pairs of residues (1,2) 

Number of residue pairs between the main 
bulge in strand 6 and the C-terminus of 
strand 6. 

Additional bulge on the 
long arm 
(Second_bulge_E3) 

Boolean (True,False) Presence or not of a second bulge on strand 
3. 

Placement of second 
bulge on strand 3 
(Second_b_place) 

Pairs of residues 
(1,2,null) 

Position of the second bulge on strand 3, 
relative to the main bulge, towards the N-
terminus of strand 3. If Second_bulge_E3 is 
False, then Second_b_place is null. 

Degree of curvature 
angle between long 
arm and base 
(E3_MainBulgeCurve) 

(160-10*X)º, where X 
is one of the allowed 
values (1,2,3) 

Average value for harmonic angle constraint 
centered in the strand 4 residue that is paired 
to the main strand 3 bulge. 

Degree of curvature 
angle centered at the 
E3 second bulge 
(E3_SecBulgeCurve) 

Null or (160-10*X)º, 
where X is one of the 
allowed values 
(1,2,3,null) 

Average value for harmonic angle constraint 
centered in the strand 4 residue that is paired 
to the second strand 3 bulge. If 
Second_bulge_E3 is False, then 
E3_SecBulgeCurve is null. 

Extension of strand 6 
(ExtendedE6) Boolean (True,False) 

If True, strand 6 is extended by 2 residues on 
its C-terminus. This is only compatible with a 
low degree of strand curvature on the main 
bulge. 

Extension of strand 4 
(ExtendedE4) Boolean (True,False) 

If True, strand 4 is extended by 2 residues on 
its N-terminus. This is only compatible with a 
short arm of length 2. 

Small degree of 
curvature on the long 
arm 
(CurvedLongArm) 

Boolean (True,False) 

If True, impose a 150º angle constraint on 
the central residues of the long arm on 
strands 3 and 4 to impart a small curvature in 
the absence of a second bulge on strand 3. 

Stage 2 
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H3 length (h_len) Residue number 
(10,11,14,15) Length, in residues, of H3 

H3-S3 loop connection 
type (connection_type) 

Categorical - Loops 
with defined ABEGO 
strings (See table 3) 

See table 3 

Frontal hairpin length 
(hairpin_len) 

Strand residue pair 
number (4,6) 

Length, in residue pairs, of the hairpin 
formed by S1 and S2 (See Fig. S2C) 

Stage 3 

Opening placement 
(Opening) 

Categorical 
(Classic,Alternative) 

The pocket opening on NTF2s can be placed 
either between the frontal hairpin and H3 
(Classic), or between H3 and the H1-H2 
connection (Alternative). 

H1 length (h1_len) Residue number 
(23,19,14) Length, in residues, of H1 

H2 length (h2_len) Residue number 
(11,7) Length, in residues, of H2 

C-terminal helix 
(has_cHelix) Boolean (True,False) Presence or not of a C-terminal helix 

Stage 4 (optional) 

C-helix length (h_len) Residue number 
(11,8) Length, in residues, of the C-terminal helix. 

Table S1. Generative algorithm parameters 
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Stage 1 logic check Explanation 

All variables must have allowed values Unexpected values outside of those described in 
Table 1 (Stage 1) are not allowed. 

If E3_MainBulgeCurve = 1, then 
ExtendedE6 must be False 

As explained in Chapter 3, sheets with high 
degree of curvature require bulges to alleviate the 
clashes caused by bending. Therefore, it is only 
possible to extend strand 6 past the curvature 
center on strand 5 if the degree of curvature is 
low. 

If Second_bulge_E3 = True, then 
Second_b_place and E3_SecBulgeCurve 
must be integers 

If a second bulge is placed on strand 3, a position 
and curvature for it must be selected 

If long_arm_l = 2, then Second_bulge_E3 
must be False 

An additional bulge on strand 3 cannot be placed 
is the long arm is not long enough. 

If Second_bulge_E3 = True and long_arm_l 
= 3, then Second_b_place must be 1 

An additional bulge on strand 3 cannot be placed 
on a position beyond the N-terminus of strand 3 

If base_width = 5, and long_arm_l = 4, then 
Second_bulge_E3 must be True 

A sheet with base width 5 and long arm length 4 
(the highest lengths for both sheet components) 
would be impossible to connect by helix 3, even at 
the highest degree of main bulge curvature. It is 
therefore required for sheets these length to have 
an additional bulge on strand 3 to curve the N-
terminus of strand 3 back towards the center of 
the sheet where it can be connected by helix 3. 

If base_width = 3, then ExtendedE4 must be 
True, else, ExtendedE4 must be False 

The extension of strand 4 is only compatible with 
base width 3, and base width 5 is only compatible 
with non-extended strand 4. This is a rule derived 
from manual inspection of native NTF2-like 
domains. 

If base_width = 3, then short_arm_l must be 
2 

When the base width is the shortest, the short arm 
must provide additional interactions with H1. 

If long_arm_l > 3 (same as = 4), and 
Second_bulge_E3 = False, then 
E3_MainBulgeCurve must be 3 

If the length of the long arm is 4, and there is no 
second bulge on strand 3, then, in order to avoid 
making a sheet that is too elongated, the 
curvature degree at the main bulge must be 3. 

If long_arm_l > 2, then E3_MainBulgeCurve 
must be higher than 1 

Regardless of the presence of a second bulge on 
strand 3, if the long arm has length 3 or 4, its 
degree of curvature must be 2 or 3 in order to 
avoid an excessively elongated sheet 

If long_arm_l = 4, Second_bulge_E3 = True, 
and Second_b_place = 1, then 
E3_SecBulgeCurve must be exactly 2. 

In the case that we have the longest possible long 
arm with second bulge on strand 3, and this bulge 
is close to the main strand 3 bulge, then the 
degree of curvature at the second bulge must be 2 
to avoid the sheet extending too far 
(E3_SecBulgeCurve = 1), or folding back onto 
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itself (E3_SecBulgeCurve = 3). 

If CurvedLongArm = True, then long_arm_l 
must be 3 or 4 

Imparting a small degree of curvature on a long 
arm without a second bulge requires it to be a 
minimal length of 6 residues, otherwise constraint 
vertices will target atoms outside the logical range. 

If Second_bulge_E3 = True, then 
CurvedLongArm must be False 

When a second bulge is present on the long arm, 
curvature is dictated solely by E3_ 
SecBulgeCurve. 

Table S2. Logic check for sheet construction. 
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Short name Length (# residues) ABEGO string Compatible H3 lengths 

BA 2 BA 10,14 

GBA 3 GBA 11,15 

GB 2 GB 11,15 

ClassicDirect 0 - 10,14 

BulgeAndB 4 GBAB 11,15 

BBGB 4 BBGB 10,14 

Table S3: H3-S3 connection types and features. 
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Subfamily Base 
width 

Long arm 
length 

Short arm 
length C-helix Opening 

Mk1 5 4 2 No Classic 

Mk1.PaCH 5 4 2 Yes – parallel to long 
arm Classic 

Mk1.PeCH 5 4 2 Yes – perpendicular to 
long arm Classic 

Mk1.TP 5 4 2 Yes – Occludes classic 
pocket entrance Alternative 

Mk2 3 6 4 No Classic 
4B.5 7 4 2 No Classic 

4B.5.CH 7 4 2 Yes – parallel to long 
arm Classic 

4B.7 5 6 2 No Classic 

4B.7.CH 5 6 2 Yes – parallel to long 
arm Classic 

 
Table S4. Description of previously published blueprints and variants, in terms of parameters of 
the generative algorithm described in this work. 
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Design Name Soluble 
expression 

Within 
expected 
SEC EV 

Quaternary 
structure 
(MALS) 

Folded protein 
(CD spectrum)  

Gnd HCl 
Denaturation 

curve 
Rd1NTF2_01 Yes Yes Tetramer - - 
Rd1NTF2_02 Yes No - - - 
Rd1NTF2_03 Yes Yes Monomer Yes Two-state 
Rd1NTF2_04 Yes Yes Monomer Yes Two-state 
Rd1NTF2_05 Yes Yes Monomer Yes Two-state 
Rd1NTF2_06 Yes Yes Monomer Yes Two-state 
Rd1NTF2_07 Yes Yes Monomer Yes Two-state 
Rd1NTF2_08 No - - - - 
Rd1NTF2_09 No - - - - 
Rd1NTF2_10 Yes Yes Monomer Yes Two-state 
Rd1NTF2_11 Yes No - - - 
Rd1NTF2_12 Yes No - - - 
Rd1NTF2_13 Yes No - - - 
Rd1NTF2_14 No - - - - 
Rd1NTF2_15 Yes Yes Monomer Yes Two-state 
Rd1NTF2_16 Yes No - - - 
Rd1NTF2_17 Yes Yes Monomer Yes Gradual 

Table S5. Experimental characterization of first-round designs. 
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Design Name Soluble 
expression 

Within 
expected 
SEC EV 

Quaternary 
structure 

Folded 
protein  

Denaturation 
curve 

Rd2NTF2_01 No - - - - 
Rd2NTF2_02 No - - - - 
Rd2NTF2_03 Yes Yes Monomer Yes Two-state 
Rd2NTF2_04 No - - - - 
Rd2NTF2_05 No - - - - 
Rd2NTF2_06 Yes Yes Monomer Yes Two-state 
Rd2NTF2_07 Yes Yes Monomer Yes Two-state 
Rd2NTF2_08 Yes No - - - 
Rd2NTF2_09 No - - - - 
Rd2NTF2_10 Yes Yes Monomer Yes Two-state 
Rd2NTF2_11 Yes Yes Monomer Yes Two-state 
Rd2NTF2_12 Yes Yes Monomer Yes Two-state 
Rd2NTF2_13 Yes Yes Monomer Yes Two-state 
Rd2NTF2_14 No - - - - 
Rd2NTF2_15 Yes Yes Dimer - - 
Rd2NTF2_16 Yes Yes Monomer Yes Two-state 
Rd2NTF2_17 No - - - - 
Rd2NTF2_18 No - - - - 
Rd2NTF2_19 Yes Yes Monomer Yes Two-state 
Rd2NTF2_20 Yes Yes Monomer Yes Two-state 
Rd2NTF2_21 Yes No - - - 
Rd2NTF2_22 Yes No - - - 
Rd2NTF2_23 Yes Yes Dimer - - 
Rd2NTF2_24 Yes No - - - 
Rd2NTF2_25 Yes Yes Monomer Yes Two-state 
Rd2NTF2_26 Yes No - - - 
Rd2NTF2_27 Yes No - - - 
Rd2NTF2_28 Yes Yes Monomer Yes Two-state 
Rd2NTF2_29 Yes No - - - 
Rd2NTF2_30 Yes No - - - 
Rd2NTF2_31 Yes No - - - 
Rd2NTF2_32 No No - - - 
Rd2NTF2_33 Yes No - - - 
Rd2NTF2_34 Yes No - - - 
Rd2NTF2_35 Yes No - - - 
Rd2NTF2_36 Yes Yes Monomer Yes Two-state 
Rd2NTF2_37 Yes No - - - 

Table S6. Biochemical characterization second-round designs. 
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Design Name Soluble 
expression 

Within 
expected 
SEC EV 

Quaternary 
structure 

Folded 
protein  

Denaturation 
curve 

BBLP1 Yes Yes Monomer Yes Two-state 
BBLP2 Yes Yes Dimer - - 
BBLP3 Yes Yes Monomer Yes Two-state 
BBLP4 No - - - - 
BBLP5 No - - - - 
BBLP6 No - - - - 
BBLP7 Yes No - - - 
BBLP8 Yes No - - - 
BBLP9 Yes No - - - 

BBLP10 No - - - - 
Table S7. Biochemical characterization of de novo NTF2 designs longer than 120 amino acids. 
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Feature name Explanation 
Holes Rosetta filter “Holes”, described in (22), using default values. 
HolesCorSCN Rosetta filter “Holes”, but only for core atoms, with core defined 

by the number of side-chain neighbors. 
HolesCorSCNnBB Rosetta filter “Holes”, but only for core atoms, with core defined 

by the number of side-chain neighbors, and not taking into 
account backbone atoms 

HolesCorSAS Rosetta filter “Holes”, but only for core atoms, with core defined 
by the solvent accessible surface area of side-chains. 

HolesCorSASnBB Rosetta filter “Holes”, but only for core atoms, with core defined 
by the solvent accessible surface area of side-chains, not 
including backbone atoms. 

nres Length of the protein in amino-acids 
cavity_vol Rosetta “CavityVolume” filter with default values 
BuriedHyphobSA Buried surface area of all atoms in hydrophobic residues 

(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta 
filter. 

BuriedHyphobSA_H Buried surface area of all atoms in hydrophobic residues 
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta 
filter. In helices only. 

BuriedHyphobSA_E Buried surface area of all atoms in hydrophobic residues 
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta 
filter. In strands only. 

BuriedHyphobSA_L Buried surface area of all atoms in hydrophobic residues 
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta 
filter. In loops only. 

BuriedHyphobSA2_H Buried surface area of all atoms as calculated by the 
“BuriedSurfaceArea” Rosetta filter. In helices only. 

BuriedHyphobSA2_E Buried surface area of all atoms as calculated by the 
“BuriedSurfaceArea” Rosetta filter. In strands only. 

BuriedHyphobSA2_L Buried surface area of all atoms as calculated by the 
“BuriedSurfaceArea” Rosetta filter. In loops only. 

nres_aro Number of aromatic residues in the protein 
nres_aro_E Number of aromatic residues in the protein strands 
nres_aro_H Number of aromatic residues in the protein helices 
nres_aro_L Number of aromatic residues in the protein loops 
nres_H Number of residues in the protein helices 
nres_E Number of residues in the protein strands 
nres_L Number of residues in the protein loops 
nres_aro_per_res Number of aromatic residues in the protein, divided by its length 
nres_charge Number of charged residues in the protein 
nres_hydrophob Number of hydrophobic residues in the protein 
nres_hydrophob_noA Number of hydrophobic residues in the protein, not counting 

alanine 
nAla Number of alanine residues in the protein 
nres_H_per Fraction of residues in helices 
nres_E_per Fraction of residues in strands 
nres_L_per Fraction of residues in loops 
nres_charge_per Number of charged residues in the protein divided by its length 

*100 
nres_hydrophob_per Number of hydrophobic residues in the protein divided by its 

length*100 
nres_hydrophob_noA_per Number of non-alanine hydrophobic residues in the protein 

divided by its length*100 
nAla_per Number of alanine residues in the protein divided by its 
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length*100 
BuriedHyphobSAperRes Buried surface area of all atoms in hydrophobic residues 

(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta 
filter, divided by protein length 

total_score Total Rosetta score (calculated by ref2015) 
scoreRes Total Rosetta score (calculated by ref2015) divided by protein 

length 
ramaRes Total rama Rosetta score term (calculated by ref2015) divided by 

protein length 
fa_atr Total fa_atr Rosetta score term (calculated by ref2015) 
fa_atrRes Total fa_atr Rosetta score term (calculated by ref2015) divided 

by protein length 
fa_repRes Total fa_rep Rosetta score term (calculated by ref2015) divided 

by protein length 
charge Absolute protein charge (Assuming typical amino-acid behavior 

at pH7) 
hx_sc Shape complementarity between helice and the rest of the 

protein (See SSShapeComplementarityFilter filter in Rosetta) 
longestPS Length of the longest continuous stretch of polar amino-acids  
longestPS_H Length of the longest continuous stretch of polar amino-acids in 

helices 
longestPS_E Length of the longest continuous stretch of polar amino-acids in 

strands 
longestPS_L Length of the longest continuous stretch of polar amino-acids in 

loops 
exposedHyphob Number of solvent-exposed hydrophobic residues (See 

ExposedHydrophobics filter in Rosetta) 
SSmismatch Nth root of the productory of all residue probabilities of NOT 

being in the modeled secondary structure state, as calculated by 
PSIPRED (23), where N is the length of the protein. See the 
SSPrediction filter in Rosetta.  

hb_lr_bb_per_res hb_lr_bb Rosetta score term, divided by protein length 
hb_lr_bb_per_sheet hb_lr_bb Rosetta score term, divided by the number of residues 

in sheets 
hb_sr_bb_per_helix hb_sr_bb Rosetta score term, divided by the number of residues 

in helices 
av_loop_rama_prepro rama_prepro Rosetta score term in loops, divided by the number 

of residues in loops 
av_loop_p_aa_pp p_aa_pp Rosetta score term in loops, divided by the number of 

residues in loops 
av_rama_pp_loop av_loop_rama_prepro+ av_rama_pp_loop 
geom_res Number of residues with large deviations of Omega angle from 

planarity 
AvDeg Average number of residues in contact with each position in the 

protein (See AverageDegree filter in Rosetta) 
arom_in_core_SS_SCN Number of aromatic amino-acids in core positions of non-loop 

secondary structure elements, with core defined by the number 
of side-chain neighbors 

arom_in_core_SS_SASA Number of aromatic amino-acids in core positions of non-loop 
secondary structure elements, with core defined by solvent 
accessible surface area 

hyphob_in_core_SS_SCN Number of hydrophobic amino-acids in core positions of non-loop 
secondary structure elements, with core defined by the number 
of side-chain neighbors 

hyphob_in_core_SS_SASA Number of hydrophobic amino-acids in core positions of non-loop 
secondary structure elements, with core defined by solvent 
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accessible surface area 
core_SCN Number of core residues, with core defined by the number of 

side-chain neighbors 
core_SASA Number of core residues, with core defined by solvent accessible 

surface area 
Table S8: Design features based on Rosetta filters with score function ref2015 
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Feature name Explanation 
score_res Total Rosetta score divided by protein length. 
score_res_betacart Total Rosetta score divided by protein length, with score 

calculated taking into account deviations from ideal covalent 
bonds angles and lengths. 

hyphob_contact Number of carbon-carbon atomic contacts between hydrophobic 
residues. 

hphob_sc_contacts_rta Number of carbon-carbon atomic contacts between hydrophobic 
residues, not counting alanine. 

hyphob_Aro_contact Number of carbon-carbon atomic contacts between aromatic 
residues. 

hyphob_contact_norm Number of carbon-carbon atomic contacts between hydrophobic 
residues divided by protein length 

hyphob_Aro_contact_norm Number of carbon-carbon atomic contacts between aromatic 
residues divided by protein length 

Table S9: Design features based on Rosetta filters with score function beta_nov16. 
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Feature name Explanation 
buns_all Total number of residues with at least one buried polar 

unsatisfied atom 
buns_nosurf_all Total number of residues with at least one buried polar 

unsatisfied atom, except in exposed residues 
buns_nosurf_sc Total number of residues with at least one buried polar 

unsatisfied side-chain atom, except in exposed residues 
buns_nosurf_bb Total number of residues with at least one buried polar 

unsatisfied backbone atom, except in exposed residues 
Table S10: Design features based on Rosetta filters related to burial of unsatisfied polar atoms. 
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Feature name Explanation 
pckt_vol Volume of main detected pocket in Å3 
mouth_n Number or mouths or openings of the main detected pocket 
mouth_area Area of the largest mouth of the main detected pocket 
pckt_maxTD Shortest distance (Å) between a point in the outer hull and the 

deepest part of the main detected pocket. 
Table S11: Design features based on CLIPPERS pocket detection and inventory software. 
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Feature name Explanation 
low_rms_worst Maximum RMSD among the subset of fragments with the lowest 

RMSD for all positions 
avBest Average RMSD of all fragments with the lowest RMSD for all 

positions 
avAll Average RMSD of all collected fragments 
av_all_loop Average RMSD of all collected fragments for loop positions 
av_best_loop Average RMSD of all fragments in all positions, in the loop with 

the lowest average RMSD 
max_av_loop Average RMSD of all fragments in all positions, in the loop with 

the highest average RMSD 
max_av_best_loop Maximum average RMSD of all loop positions 
point_loop_av_all Average of all fragments RMSD starting at the first position of all 

loops 
point_loop_av_worst Average of maximum RMSD of fragments starting at the first 

position of all loops 
av_all_strand Average RMSD of all collected fragments for strand positions 
av_best_strand Average RMSD of all fragments in all positions, in the strand 

with the lowest average RMSD 
max_av_strand Average RMSD of all fragments in all positions, in the strand 

with the highest average RMSD 
max_av_best_strand Maximum average RMSD of all strand positions 
av_all_helix Average RMSD of all collected fragments for helix positions 
av_best_helix Average RMSD of all fragments in all positions, in the helix with 

the lowest average RMSD 
max_av_helix Average RMSD of all fragments in all positions, in the helix with 

the highest average RMSD 
max_av_best_helix Maximum average RMSD of all helix positions 

Table S12: Protein-wide fragment-related features. 
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Feature name Explanation 
abd_w Worst abaundance_50 value among all protein positions 
abd_b Best abaundance_50 value among all protein positions 
abd_av Average of all abaundance_50 values for all protein positions 
dsc_w Worst design_score_50 value among all protein positions 
dsc_b Best design_score_5value among all protein positions 
dsc_av Average of all design_score_5values for all protein positions 
ssc_b Worst structural score value among all protein positions 
ssc_w Best structural score value among all protein positions 
ssc_av Average of all structural score values for all protein positions 

Table S13: Protein-wide TERM-related features. 
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Structure stretch name Explanation 
N-term_helix Residues from the N-terminus up to the second to last helix 1 turn 
H1H2_link Last H1 turn, loop connection to H2 and first 4 residues of H2 
loop3_flank Loop 3 and flanking residues 
hairpin S1 and 2, and connections 
H3_n 4 residues of N-terminus of H3 and 3 previous residues 
H3 All of H3 
H3C_str3 Last 4 residues of H3, connection to S3 and 5 first residues of S3 
str3_4 5 last residues of S3 and 5 first residues of S4 
str4_5 5 last residues of S4 and 5 first residues of S5 
str5_6 5 last residues of S5 and 5 first residues of S6 
str6c_ch C-terminus of S6 to the C-terminus of the protein, when a C-terminal 

helix is present. 
Table S14: Different local structural domains for TERM and fragment local feature calculation. 
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Metric name Explanation 
av_allfr Average of all fragments at all positions 
av_bestfr Average of only the fragments with the lowest RMSD at all positions 
av_worstfr Average of only the fragments with the highest RMSD at all 

positions 
best_at_worstfr Highest RMSD among the lowest RMSD fragments of all positions 
abd50_av Average of all abundance_50 values 
dsc50_av Average of all design_score_50 values 
ssc50_av Average of all structure score values 
abd50_worst Worst abundance_50 value among all positions 
dsc50_ worst Worst design_score_50 value among all positions 
ssc50_ worst Worst structural score value among all positions 

Table S15: Different ways of calculating TERM and fragment local features. 
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 Rd1NTF2_05 Rd1NTF2_04 Rd1NTF2_05_I
64F_A80G_T9
4P_D101K_L1
06W 

Rd2NTF2_16 Rd2NTF2_20 

Wavelength 1 1 0.9786 0.97741 0.97741 
Resolution 
range 

28.27  - 1.38 
(1.429  - 1.38) 

44.33  - 1.62 
(1.678  - 1.62) 

44.72  - 1.83 
(1.896  - 1.83) 

43.03 – 2.49 
(2.59 – 2.49) 

42.31 – 1.55 
(1.58 - 1.55) 

Space group C 1 2 1 P 21 21 21 P 31 P 21 21 21 P 41 21 2 
Unit cell 60.076 30.498 

61.099 90 
97.837 90 

32.578 36.814 
177.303 90 90 
90 

38.51 38.51 
134.148 90 90 
120 

37.53 73.74 
86.06 
90 90 90 

48.86 48.86 
84.58 
90 90 90 

Total 
reflections 

100427 (9900) 132857 
(13262) 

81860 (8151) 61433 (7080) 213398 
(10368) 

Unique 
reflections 

22794 (2258) 28087 (2762) 19589 (1956) 8867 (964) 15581 (781) 

Multiplicity 4.4 (4.4) 4.7 (4.8) 4.2 (4.2) 6.9 (7.3) 13.7 (13.3) 
Completeness 
(%) 

99.65 (99.78) 93.63 (79.12) 88.44 (66.92) 100 (100) 100 (99.9) 

Mean 
I/sigma(I) 

19.06 (0.87) 19.37 (0.96) 11.07 (0.68) 9.2 (1.8) 13.7 (0.8) 

Wilson B-
factor 

20.24 25.13 29.86 46.1 22.1 

R-merge 0.0366 (1.774) 0.03966 
(1.586) 

0.06516 (2.12) 0.133 (1.005) 0.112 (4.34) 

R-meas 0.04167 (2.02) 0.04474 
(1.779) 

0.07492 
(2.439) 

0.155 (1.167) 0.121 (4.68) 

R-pim 0.01965 
(0.9543) 

0.02027 
(0.7912) 

0.03643 
(1.194) 

0.058 (0.427) 0.044 (1.74) 

CC1/2 1 (0.319) 1 (0.322) 0.999 (0.432) 0.996 (0.722) 0.999 (0.423) 
CC* 1 (0.695) 1 (0.698) 1 (0.777) 0.999 (0.898) 1 (0.788) 
Reflections 
used in 
refinement 

22779 (2254) 26376 (2187) 17345 (1309) 8801 (1283) 15519 (1234) 

Reflections 
used for R-
free 

1997 (196) 1897 (156) 1702 (122) 879 (142) 1553 (137) 

R-work 0.1825 
(0.3084) 

0.2109 
(0.3592) 

0.2163 
(0.3734) 

0.2371 
(0.2712) 

0.1951 
(0.3692) 

R-free 0.2158 
(0.3547) 

0.2403 
(0.3462) 

0.2546 
(0.4206) 

0.2910 
(0.3240) 

0.2279 (4240) 

CC(work) 0.952 (0.690) 0.958 (0.647) 0.951 (0.722) 0.905 (0.802) 0.936 (0.666) 
CC(free) 0.932 (0.612) 0.947 (0.681) 0.955 (0.650) 0.854 (0.684) 0.925 (0.543) 
Number of 
non-hydrogen 
atoms 

1008 1879 1770 2004 984 

macromolecul
es 

951 1776 1715 1969 899 

solvent 57 103 55 35 77 
Protein 
residues 

116 217 229 231 107 

RMS(bonds) 0.019 0.005 0.007 0.002 0.004 
RMS(angles) 1.78 0.63 0.84 0.425 0.633 
Ramachandra
n favored (%) 

100.00 99.04 100.00 94.37 98.10 

Ramachandra
n allowed (%) 

0.00 0.96 0.00 4.76 1.90 

Ramachandra
n outliers (%) 

0.00 0.00 0.00 0.87 0.00 

Rotamer 
outliers (%) 

0.00 0.00 0.00 3.24 0.00 

Clashscore 8.59 3.21 5.76 6.32 4.45 
Average B- 29.64 41.31 48.40 52.50 29.83 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.03.23.003913doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.23.003913
http://creativecommons.org/licenses/by/4.0/


 
 

62 
 

factor 
macromolecul
es 

29.12 41.11 48.55 52.50 28.96 

solvent 38.31 44.71 43.69 52.30 36.84 
Number of 
TLS groups 

 13 12 0 0 

Table S16:  Data collection and refinement statistics. Statistics for the highest-resolution shell are shown in 
parentheses. 
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Long name Short name 
BB45nHm0313 Rd1NTF2_01 
BBM1TPm0012 Rd1NTF2_02 
BBM2nHm0111 Rd1NTF2_03 
BBM2nHm0481 Rd1NTF2_04 
BBM2nHm0589 Rd1NTF2_05 
BBMHCYm0000 Rd1NTF2_06 
BBMHCYm0098 Rd1NTF2_07 
BBMHCYm0099 Rd1NTF2_08 
BBMHCYm0118 Rd1NTF2_09 
BBMHCYm0142 Rd1NTF2_10 
BBMHCYm0257 Rd1NTF2_11 
BB45nHm0217 Rd1NTF2_12 
BB45nHm0313 Rd1NTF2_13 
BB45nHm0520 Rd1NTF2_14 
BB47nHm0104 Rd1NTF2_15 
BB47nHm0234 Rd1NTF2_16 
BB47nHm0512 Rd1NTF2_17 

APXUALRM (MC1) Rd2NTF2_01 
CNOCZZYN (MC3) Rd2NTF2_02 
IPQZYEHY (MC6) Rd2NTF2_03 

MQGQLKLY (MC7) Rd2NTF2_04 
NPHNECCY (MC8) Rd2NTF2_05 
PVNDHOOV (MC9) Rd2NTF2_06 
QLNTLIPS (MC10) Rd2NTF2_07 

QPAJWNJL (MC11) Rd2NTF2_08 
RWBLOJXV (MC12) Rd2NTF2_09 

BMZQQOSL (MC2_1) Rd2NTF2_10 
CFRZAXWD (MC2_2) Rd2NTF2_11 
CGBTHRRH (MC2_3) Rd2NTF2_12 
CQXWMZNN (MC2_4) Rd2NTF2_13 
DEZFDZKN (MC2_5) Rd2NTF2_14 
DFEBCGLM (MC2_6) Rd2NTF2_15 
JZXIQIRH (MC2_7) Rd2NTF2_16 

ODCAZTIO (MC2_9) Rd2NTF2_17 
UTEWRJFN (MC2_11) Rd2NTF2_18 

WMNMRJMU (MC2_12) Rd2NTF2_19 
KVGAMRYX (CAV1) Rd2NTF2_20 
MTNNCMGU (CAV2) Rd2NTF2_21 
OBJWKGFB (CAV3) Rd2NTF2_22 
QZFIQMXG (CAV4) Rd2NTF2_23 
VJZGDPLE (CAV5) Rd2NTF2_24 
VMXPYKBP (CAV6) Rd2NTF2_25 
AFUBUPIX (POK1) Rd2NTF2_26 
BBJJQJEH  (POK2) Rd2NTF2_27 
CLYISCOE  (POK3) Rd2NTF2_28 
ERSKGIDY  (POK4) Rd2NTF2_29 
GHJPMEUD  (POK5) Rd2NTF2_30 
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KVTSDNGQ (POK6) Rd2NTF2_31 
LQDGTTOJ  (POK7) Rd2NTF2_32 
MYWJWGMP (POK8) Rd2NTF2_33 
UBQRFAXL  (POK9) Rd2NTF2_34 

UZNDBWRV  (POK10) Rd2NTF2_35 
XXUZVSNH  (POK11) Rd2NTF2_36 
ZSETTDDT (POK12) Rd2NTF2_37 

Table S17: Design name mapping. 
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