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Abstract

To create new enzymes and biosensors from scratch, precise control over the structure of small
molecule binding sites is of paramount importance, but systematically designing arbitrary protein
pocket shapes and sizes remains an outstanding challenge. Using the NTF2-like structural
superfamily as a model system, we developed a generative algorithm for creating a virtually
unlimited number of de novo proteins supporting diverse pocket structures. The generative
algorithm was tested and refined through feedback from two rounds of large scale experimental
testing, involving in total, the assembly of synthetic genes encoding 7896 generated designs and
assessment of their stability on the yeast cell surface, detailed biophysical characterization of 64
designs, and crystal structures of 5 designs. The refined algorithm generates proteins that remain
folded at high temperatures and exhibit more pocket diversity than naturally occurring NTF2-like
proteins. We expect this approach to transform the design of small molecule sensors and
enzymes by enabling the creation of binding and active site geometries much more optimal for
specific design challenges than is accessible by repurposing the limited number of naturally
occurring NTF2-like proteins.

Introduction

Proteins from the NTF2-like structural superfamily consist of an elongated B-sheet that, along
with three helices, forms a cone-shaped structure with a pocket (Figure 1.A). This simple
architecture is highly adaptable, as evidenced by the low sequence homology among its
members, and the many different functions they carry out (1). Natural NTF2-like proteins have
been repurposed for new functions through design (2—4), further showing the adaptability of this
fold. General principles for designing proteins with curved beta sheets have been elucidated, and
used to design several de novo NTF2-like proteins (5).

De novo design of protein function starts with an abstract description of an ideal functional site
geometry (for example, a catalytic active site), and seeks to identify a protein backbone
conformation that can harbor the site. The extent to which the ideal site can be realized depends
on the number and diversity of backbone conformations that can be searched (6, 7). A promise of
de novo protein design is to generate a far larger and more diverse set of designable backbones
for function than is available in the largest public protein structure database, the Protein Data
Bank (PDB) (8, 9). This has been achieved for protein-protein binding due to the simplicity of
small globular proteins (10). However, protein structures with pockets are considerably more
complex, and since only a small number of de novo designed pocket-containing proteins have
been characterized, this vision has not yet been realized for small molecule binder or enzyme
design. Here we construct a generative algorithm for NTF2-like proteins that samples the
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structural space available to the fold systematically and widely, and show that the generated
protein scaffolds surpass native NTF2-like proteins in pocket diversity.

De novo protein design is a two-step process: first, a protein backbone conformation is
generated, and second, low energy amino acid sequences for this backbone are found by
combinatorial side-chain packing calculations. In Rosetta (11, 12), new backbones can be
constructed by Monte Carlo assembly of short peptide fragments based on a structure “blueprint”,
which describes the length of the secondary structure elements, strand pairings, and backbone
torsion ranges for each residue (13, 14). Because this process is stochastic, each structure
generated is distinct. We previously showed that NTF2-like proteins can be designed from
scratch using this approach (5), but the diversity and number of designs (on the order of tens) to
date is too limited to provide pockets for arbitrary function design. For a given blueprint, the
resulting set of structures is generally more homogeneous than that observed in naturally
occurring proteins within a protein family, where differences in secondary structure lengths and
tertiary structure give rise to considerable diversity. Hence while large numbers of backbones can
be generated for a particular blueprint, for example, those previously used to design NTF2-like
proteins, the overall structural diversity will be limited.

Results
The NTF2 generative algorithm

To access a much broader range of protein backbones, we sought to develop a generative
algorithm which samples a wider diversity of structures than natural NTF2-like proteins by
carrying out backbone sampling at two levels (Figure 1.B). At the top level, sampling is carried out
in the space of high-level parameters that define the overall properties of the NTF2 fold: for
example, the overall sheet length and curvature, the lengths of the helices that complement the
sheet, the placement of the pocket opening and the presence or absence of C-terminal elements
(Figure 1.C). We then convert each choice of high-level parameters into structure
blueprint/constraints pairs (hereon referred to simply as blueprints), which guide backbone
structure sampling at successive stages of fold assembly (next paragraphs; Figure 1.B). In total,
there are 18 high-level fold parameters (Table S1), and each unique combination gives rise to a
specific blueprint. At the lower level, backbone structures are generated according to these
blueprints through Monte Carlo fragment assembly; the blueprints dictate the secondary structure
and torsion angle bins of the fragments, as well as a number of key residue-residue distances
(Fig. S1-4). In a final sequence design step, for each generated backbone, low energy sequences
are identified through combinatorial sequence optimization using RosettaDesign.

We generate structure blueprints from the high level parameters using a hierarchical approach
(Figure 1.B). First, the four main strands of the sheet are constructed, then helix 3 and the frontal
hairpin, finally, the two N-terminal helices. If the backbone to be assembled has a C-terminal
helix, it is added in a fourth step.

In the first step, the length and curvature of the sheet are the primary high-level parameters
sampled (Fig 1C, top two rows). For each choice of high-level sheet length and curvature
parameters, compatible sets of low-level parameters - secondary structure strings and angle and
distance constraints - are generated to guide Rosetta fragment assembly. The translation from
sheet length to secondary structure length is straightforward as longer strands generate longer
sheets. To realize a specified sheet curvature, bulges are placed at specific positions on the edge
strands, where they promote sheet bending (5, 15, 16). Bulges are specified by a residue with a-
helical ¢/W torsion values in the blueprint, leading to a backbone protuberance with two adjacent
residues pointing in the same direction. As shown in figure 1A, there are always at least two
bulges on the NTF2 sheet, delimiting the base and arms, and marking the axis around which the
sheet curves. An additional bulge can exist on the long arm, further curving the sheet. To control
the degree of curvature centered at the bending points, angle constraints are placed on C4
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carbons on center strands, at positions adjacent to bulges (Fig. S1). Not all combinations of sheet
length and curvature values are compatible with a closed pocket-containing structure, for
example, long sheets with low curvature can not generate a cone-shaped structure. These
incompatibilities are identified by attempting to directly construct sheet structures (as described
above) across the full parameter space and then assessing the success in generating pocket
containing structures; the region not sampled at the bottom left of Figure 3A reflects the
incompatibility of long sheets and low curvature with the formation of a pocket (See Table S2 for
the complete set of rules dictating high-level parameter combinations).

The range of possibilities for helix 3 and the frontal hairpin, which are generated next, is limited by
the geometric properties of the sheet constructed in the first step. In order to determine which
parameter combinations lead to folded proteins, we generated and evaluated backbone
structures based on a wide variety of parameter combinations, and extracted the following rules,
which are implemented in the generative algorithm. Sheets where the long arm does not protrude
outwards over S6 require longer H3-S3 connections to place H3, S1 and S2 such that the correct
strand pairing is realized (Fig. S2A). Conversely, sheets where the long arm protrudes outwards
over S6 require shorter H3-S3 connections to avoid placing H3 too far from the rest of the
structure (Fig. S2A). The length of H3 (possible lengths in residues: 10, 11, 14 and 15) is coupled
with the torsional angles of the H3-S3 connection as the rigid S2-H3 connection limits the angle at
which the last amino acid of H3 faces S3: lengths 10 and 14 are only paired with H3-S3
connections starting with a “B” torsion bin, and lengths 11 and 15 only with connections starting
with a “G” torsion bin (Fig. S2B, Table S3). Independent from the H3 length and connection to the
sheet, the length of the frontal hairpin strands has two possible values: 4 or 6 residues, with only
4 residues strands possible in narrow sheets (base length = 3), as S1 needs to be fully paired
with S6 (Fig. S2C).

Stage 3, construction of the N-terminal helices, is likewise constrained by the geometric
properties of the structure built so far. If the distance between the bulge on S6 and the H3-S3
connection is more than 25A, then H1 and H2 are elongated by a full turn (4 amino acids) to close
the cone described by the sheet (Fig. S3). The constraints that control the placement of H1 and
H2 are adapted based on the shape of the current structure in order to position H1 and 2 such
that good side chain packing is favored during sequence design, and occluding backbone polar
atoms on the outward-facing edge of S3 is avoided (Fig. S3).

In cases where the backbone to be assembled has a C-terminal helix (has_cHelix = True), if the
pocket opening is, like in most native NTF2-like proteins, between the frontal hairpin and H3
(Opening = Classic), the C-terminal helix is set to 8 residues long and rests against the long arm.
If the opening is set to be between the termini of H1 and 2, and H3 (Opening = Alternative), then
the C-terminal helix length is set to 11 residues long, and closes the space between H3 and the
frontal hairpin (Figure 1B and S4).

High-throughput characterization of the known de novo NTF2 structure space

The design of large pockets in de novo NTF2-like proteins is challenging and requires strategies
to compensate for the loss of stabilizing core residues that would otherwise fill the space
occupied by the pocket. Before setting out to experimentally sample the full range of structure
space accessible to the generative algorithm, we chose to characterize the sequence and
structure determinants of stability in the region of NTF2 space explored in our previous work (5),
and its immediate vicinity. We generated 2709 new NTF2-like proteins belonging to the blueprints
previously described, plus a few variations (9 different blueprints, see Fig. S5 and Table S4). We
adapted a high throughput stability screen based on folding-induced protease resistance on the
yeast cell surface, originally developed for small (< 43 amino acid) domains (17) to the much
larger (105-120 residues) NTF2-like protein family. This required optimizing current methods (18)
for efficiently splicing long oligonucleotides (230 bs) from oligonucleotide arrays to form longer
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genes by limiting pairing promiscuity and, therefore, the number of chimeric design combinations
(see Methods).

A fifth (578, 21%) of the tested designs were stable (stability scores above 1), while only 2% of
scrambled controls (randomly selected design sequences scrambled such that the hydrophobicity
pattern is maintained) passed this stability threshold (Figure 2A). All tested blueprints had
representatives among the stable sequences (Fig. S6). Analysis of the sequences and structures
of the stable designs revealed several broad trends. There was a marked depletion of hydrophilic
residues in positions oriented towards the protein core (Fig. S7), suggesting that the stable
proteins identified in this first round experiment are likely folded as modeled, but may not be able
to accommodate a pocket with polar amino acids, limiting their potential to be designed for
general function. A logistic regression model trained to distinguish designs with stability score
above or below 1.0 identified total sequence hydrophobicity (see “hydrophobicity” feature
definition in SI methods), Rosetta energy (“score_res_betacart”) and local sequence-structure
agreement (fragment quality, see “avAll”’) as key determinants of stability (Figure 2.A and S8).

The importance of overall hydrophobicity is in agreement with the observed per-position amino
acid enrichments, and suggests the composition or size of the designed protein cores is
suboptimal. While Rosetta optimizes local sequence-structure agreement at single positions
(p_aa_pp and rama_prepro energy function terms (19)), overall secondary structure propensities
depend on stretches of several residues and cannot be decomposed in pairwise or single body
energies. The detection of local sequence-structure agreement as a feature of stable designs
suggests the first round design protocol produces sequences with suboptimal local sequence-
structure relationship. These observations provide the basis for improving design methods,
leading to more stable proteins in subsequent de novo NTF2 libraries.

We selected 17 designs with a stability score above 1 for more thorough biophysical
characterization (See S| Methods). Seven of these expressed solubly in E coli, and all seven of
them were folded, most remained folded up to 95°C, and had 2-state unfolding transitions in
guanidine hydrochloride denaturation experiments (Fig. S9, S10 and Table S5). The remaining 10
designs did not express, or formed higher-order oligomers (Table S5), indicating stability score
values above those of most scrambles are no guarantee of soluble expression and folding in E.
coli cytoplasm.

We obtained crystal structures for two of the above-mentioned hyperstable proteins, with de novo
NTF2 blueprints not characterized before (Figure 2.B and C, S11.A). The crystal structure and
model of design RA1NTF2_04 are in close agreement both in terms of C, atom positions and
most core side-chain rotamers (Figure 2.B and S11.B). In contrast, the structure of design
RA1NTF2_05 shows a two-residue register shift between strands 5 and 6 relative to the design
(Figure 2.C), which results in a flatter sheet and a smaller core, a shorter strand 5, and longer
strand 6. While the overall shape of the structure and the relative orientations of the hydrophobic
residues in strand 5 and 6 are preserved (Figure 2.C), the structure deviations would be
significant for a designed functional pocket. The identification of a design that is stable but has a
structure different from its model provides an opportunity to discover determinants of structural
specificity not captured by the design method.

We hypothesized that the disagreement between model and structure for design RA1NTF2_05
originates from a lack of core interactions favoring the modeled high sheet curvature around
residue 94, as well as from lack of consideration of negative design in the sequence choice for
the 5-6 strand hairpin, which allows the shortening of strand 5. We identified several mutations
that could favor the modeled sheet curvature and strand register. Mutations D101K and L106W
near the strand 5-6 connection make favorable interactions in the context of the designed
conformation, and replace leucine 106 by a large tryptophan side-chain, which would not fit in the
context of the observed crystal structure (Fig. S12). Mutation A80G, at the most curved position
of strand 4, favors bending by removing steric hindrance between the alanine 80 side-chain and
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the backbone at position 66, but leaves a void in the core, which modeling suggests should be
rescued by 164F (Fig. S12, (6, 20)). A phenylalanine side-chain at position 64 makes favorable
interactions in the designed conformation, and is likely to not fit in the core and be exposed in the
observed conformation. Finally, the rigidity imparted by proline in position 94 limits the
Ramachandran angles to those compatible with the designed conformation, as well as preventing
strand 5 and 6 pairing beyond residue 92.

Experimental characterization of the RA1NTF2_05 design 5-fold mutant showed a higher AG of
unfolding than the original design (Fig. S13), and its crystal structure is in close agreement with
the model (Figure 2.D). The side-chains at the five mutated positions were in the exact designed
conformation, supporting our structural hypothesis and the incorporation of negative design to
increase structural specificity (Figure 2.D, right). The 5-fold mutant also displays a large cavity,
present in the design, the first example of a de novo designed monomeric NTF2 with a large
pocket that does not require additional stabilizing features such as a disulfide bond or a dimeric
interface (Fig. S14). The rationale used to change the structure of design RA1NTF2_05 can be
widely applied to ensure subsequent designs fold as modeled.

High-throughput characterization of new regions of structure space explored by the generative
algorithm

Armed with the insights from high-throughput characterization of known de novo NTF2 structural
space, we set out to design proteins from hundreds of backbone blueprints created using the
generative algorithm that explore a much larger structure space. We incorporated the lessons
learned in the sequence design stage, with the goal of generating more stable and diverse
designs that fold as modeled. To address the low sequence hydrophobicity, we added an amino
acid composition term to the Rosetta energy function to favor sequences with 30% non-alanine
hydrophobic amino acids on average, with different hydrophobicity targets for core, interface and
surface positions. We also increased amino acid sampling to increase sequence-structure
agreement (Fig. S15). Finally, guided by the experience with design RA1NTF2_05, we
incorporated steps in the design process that detect strand curvature ranges that require glycine
placement to reduce strain. We used this improved method to generate a second round of
designs exploring a much larger set of 1503 blueprints. These designs span a wide range of
pocket volumes that are modulated by sheet length and curvature (Figure 3A x and y axes).
There are two main modes by which the specification of sheet structure by the high level
parameters modulates pocket volume. First, as sheets of similar length curve, the concave face
collapses resulting in smaller pocket volumes (Fig. S16). Second, as sheets with similar curvature
elongate, they wrap around the concave face and extend the pocket outwards (Fig. S16).

Due to gene length limitations, we were able to test designs for 323 unique parameter
combinations out of the possible 1503 -- these yield proteins of 120 amino acids or less in length.
We synthesized genes for 5188 proteins generated from these 323 blueprints, and subjected the
designed proteins and scrambled versions to the protease stability screen. The protease
resistance of the scrambled sequences was greater than in the first high-throughout experiment,
likely due to the increased sequence hydrophobicity (Fig. S17). Roughly one third (29%) of the
designs had stability values above those of most scrambled sequences (Figure 3B, 98% of all
scrambles have stability score <1.55), a larger fraction than the 21% of stable designs in the
initial screen, increasing our dataset of stable NTF2-like designs from a total of 578 to 2077.
These stable designs belong to 236 parameter combinations, a very large increase over the 9
combinations in the previous round, with most of the missing combinations having less than 10
initial samples (Fig. S18). The new parameter combinations include structural features not
sampled before, such as a secondary bulge on the long arm, new H3-S3 connections and
elongated frontal hairpins. The pocket volume distribution of stable designs is very similar to the
distribution for all tested designs (Figure 3C), suggesting that pocket volume is not a limiting
factor, and spans most of the native NTF2 range (Fig. S19). Furthermore, per-position amino acid
identities in stable designs show much lower levels of general enrichment and depletion than
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those in the first round of high-throughput screening (Fig. S20). In particular, polar amino acids
are not depleted in core positions (Fig. S20), suggesting that polar residues are likely better
tolerated in pocket positions, perhaps due to the improved core packing resulting from the
optimized sequence design protocol.

With the large increase in diversity in the second round, the stable designs created by the
generative algorithm span a very wide range of structures. To visualize the space spanned by our
generated structures compared to native NTF2 structures, we used the UMAP algorithm (21) to
project similarity in backbone structure (TM-score, (22)) into two dimensions (Figure 3D, see Fig.
S21 for map generated using different UMAP hyperparameters). The grouping of structures with
similar features in different map regions provides an indication of which generation parameters
lead to novel NTF2 structures (Fig. S22). Inspection of the map shows that our algorithm samples
most of the native space, as well as completely uncharted regions. The subset of designs tested
by high-throughput screening sample a wide range of structures within the accessible protein
length, and stable representatives from the 236 unique NTF2 parameter combinations are found
across the sampled space (Figure 3A and D). Overall, the number and diversity of de novo
designed NTF2-like structures is considerably larger than that of the NTF2 structures in the PDB.
Native structures appear in small clumps in NTF2 space, as they fall into groups with highly
similar members. In contrast, de novo NTF2-like proteins sample large areas more uniformly,
providing fine-grained sampling of the structural space, and hence more optimal starting points
for designing new functions requiring new pocket geometries. Most native proteins are close to de
novo groups, reflecting overall structural similarity, but are peripheral to them. This structural
distinction likely reflects differences in loop structure: native NTF2-like proteins often have long
loops, but our designs tend to have short loops.

A logistic regression model trained on stability of second-round designs suggests the lessons
from the first round of high-throughput screening proved effective, and provides new suggestions
for improvement (See Sl text and Fig. S23). Furthermore, features based on the high-level
parameters of the generative algorithm (e.g., H3 length, sheet curvatures, sheet length and
hairpin length) did not contribute significantly to stability prediction, suggesting stable proteins can
be designed across all the considered structural space (See Sl text).

We biochemically characterized 37 stable designs from the second round of high-throughput
screening. Less than half of them (43%, similar to the 41% in round 1) expressed solubly in E.
coli and were folded. Most of these folded designs remained folded above 95°C (Fig. S24-25 and
Table S6). The length of helix 3 in two of these second-round stable designs, RA2NTF2_06 and
RdA2NTF2_19, is the longest of the values we allowed, supporting the designability of this feature
despite it being slightly disfavored by the stability model (Sl text, S23). The remaining 20 second-
round designs did not express, and a few formed higher-order oligomers (Table S6).

More than half of the designs we attempted to express in E. coli did not express or formed soluble
aggregates, indicating high stability score does not necessarily translate to folding in E. coli
cytoplasm. While stability score has no significant correlation to AGunoiaing for these larger
proteins, it has some capacity to discriminate between designs that fold from those that do not
(Fig. S26C). Furthermore, 9 out of the 9 designs with low stability score we attempted to express
in E. coli did not fold, supporting the use of stability score as a metric to improve the design of
these pocket-containing proteins. In an attempt to improve the power of the stability score to
predict folding and stability of proteins expressed in E. coli, we trained an alternative unfolded
state protease resistance model based on the protease resistance of scrambled sequences (see
S| Methods and Fig. S26D-E). As expected, this model predicts NTF2 scrambled sequence
stability better than the published unfolded-state model, but using it to recalculate stability scores
does not lead to better prediction of AG,nuing OF folding in E. coli (Fig. S26B,C).

For two of the folded and hyperstable designs (Rd2NTF2_20 and Rd2NTF2_16), we obtained
high-resolution crystal structures, and found that they are in close agreement with the models
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(Figure 3E-H). Both designs feature structural elements designed for the first time in de novo
NTF2-like proteins by the generative algorithm. Rd2NTF2_20 has an extended connection
between H3 and S3, recapitulated in the crystal structure (Figure 3E), which enables the use of a
short helix 3. RA2NTF2_16 features two new structural elements, a bulge on the long arm (in
addition to the ones flanking the base), and an extended frontal hairpin, both recapitulated in the
crystal structure (Figure 3G). The additional bulge enables higher curvature on the long arm,
contributing significant diversity to long arm structure, which can be further increased by allowing
different bulge placements. The extended hairpin, which is only designable when the base is long
enough, extends the pocket outwards, thereby increasing its volume. In the case of
Rd2NTF2_16, the combination of these features yields a protein with a shallow groove instead of
a pocket (Figure 3H); the ability to generate proteins with shallow grooves with two open ends
should enable design of binding sites for polymers such as peptides or polysaccharides.

The accuracy of the RdA2NTF2_20 and Rd2NTF2_16 computational models indicated by their
close agreement with the experimental crystal structures follows directly from the insights gained
in the first large scale design round. Both proteins feature a glycine on strand 4, enabling high
curvature between the base and the long arm, as described for the design RdA1NTF2_05 5-fold
mutant, and consequently incorporated in the generative algorithm. In order to implement the
glycine placement on strand 4 as generally as possible, the design protocol searches for large
hydrophobic side chains to fill the void left by the glycine. In RA2NTF2_20, this is achieved by a
phenylalanine in the same conformation as the one observed in the design 0589 5-fold mutant,
while in RA2NTF2_16 a void is left in the core. Unlike design 0589, in the Rd2NTF2_20 and
Rd2NTF2_16 crystal structures the highly curved sheet conformation is in close agreement with
the model. In addition to generally supporting the models created by the generative algorithm, the
two crystal structures provide information to improve the design method (See Sl text and Fig.
S27). The ability to design and properly model the sheet in de novo NTF2-like proteins is of great
importance, as this structural element is the most involved in pocket structure.

Most of the 1503 possible high-level parameter combinations yield proteins that are too long to be
encoded by assembling two 240 base-pair oligonucleotides (the current limit in what can be
synthesized at very large scale). To explore the parameter space that generates these longer
proteins, we characterized 10 designs that are predicted to be stable by a logistic regression
model trained on the second high-throughput screening experiment data, and have large pockets
(500 to 1200A3). Two of the ten were monomeric and remained folded above 95°C, a success
rate similar to that of the biochemical characterization of designs identified in the second high-
throughput experiment, suggesting that de novo NTF2-like proteins longer than 120 amino acids
with large pockets are also designable using the generative algorithm (Fig. S28-S29, Table S7).

Suitability of designed scaffolds for harboring small molecule binding sites

To probe the capability of the designed proteins to host binding sites, we docked 50 ligands (See
Fig. S30 and Methods) from the PDB in all de novo and native NTF2 structures with pockets
larger than 30A° (862 and 64, respectively), and optimized the surrounding sequence to interact
with the ligand. We then evaluated whether the pocket with the most favorable interactions was
based on a de novo or native protein, for each ligand. This test provides a conservative estimate
of the relative ability of the designs to scaffold binding sites, as they were not constructed to bind
any specific molecule, we only used the subset of stable de novo proteins that already had a
pocket, and limited design to positions within that pocket. Despite these disadvantages, de novo
proteins provide a better (lower ligand interaction energy) pocket for 80% of all tested ligands (40
out of 50), without obvious biases in ligand molecular weight, charge, chemical groups, or
hydrophobicity (Figure 4 and S31). The de novo scaffold with the largest number of top ranking
docks is RA2NTF2_03, one of the designs found to be folded and highly stable (Fig. S32). As
controls for this docking test, we included two small molecules in the ligand set that are bound by
the native scaffolds (PDB ligand codes EQU and AKV, bound by 10HO0 and 2F99 respectively)
and found that native-like poses are recovered when the bound ligand conformer found in the
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crystal structure is used (Fig. S33). The observed advantage in binding site scaffolding should
increase with the number of de novo designed structures generated, while the rate of growth of
the native set is limited to what has been sampled by evolution.

As the overarching goal of this work is to expand the set of available protein structures with
pockets, we generated a final set of scaffolds that incorporates all the lessons from previous
experiments. Improvements in the generative algorithm, both in sequence design and backbone
generation resulted in increased diversity (1619 unique parameter combinations) and improved
stability-related metrics (see Fig. S34 and S| methods). We have made this set of 32380 scaffolds
(20 models with different sequences per parameter combination) available for general use as
starting points for ligand binding and enzyme design.

Discussion

Our generative algorithm may be viewed as encoding the “platonic ideal” of the NTF2-like
structural superfamily along with a method for essentially unlimited sampling structures belonging
to it, in a fashion directly tied to pocket structure. In terms of SCOPe categories, each
combination of top-level parameters can be thought of as a protein family, and the set of all
combinations, the de novo NTF2-like structural superfamily. Whereas in our previous work 4
NTF2 structure blueprints were manually constructed, the new generative algorithm samples
through over 1600 unique blueprints that result in well-formed backbones. This represents a
qualitative jump in the structural diversity that can be achieved for complex folds by de novo
protein design. The generative approaches to de novo protein structure design so far described in
the literature, rule- or model-based, either focus exclusively on helical structures (23-25), are not
geared towards atomic-detail modeling and design (26), or sacrifice fine-grained structural control
for structural diversity (27). Machine-learning based generative models show considerable
promise (27, 28), but have not yet been applied to the direct generation of full atomic structures
with specific features of interest, as we do here for scaffolds containing a varied geometry of
binding pockets.

Up to now, protein design for a specific function has relied either on searching through the
scaffolds in the PDB, or generating small variations of a limited set of de novo scaffolds. Our
approach now enables going far beyond both approaches by searching through an essentially
unlimited set of generated scaffolds. The experimental characterization of the designs shows that
the generative algorithm samples a wide range of feasible structural space, and that designs
usually fold as modeled. The insights we gained in order to produce these diverse proteins can
be harnessed to improve the success rate in future protein design efforts. Furthermore, our
approach could be implemented for other protein folds to expand structural diversity even further.
In combination with existing docking and design methods, the generative algorithm here
presented should open the door to design of novel functions by eliminating the limitations
imposed by current protein structural databases, and enabling scaffold generation custom-
tailored to function.

Materials and Methods
Generative algorithm for proteins from the NTF2-like superfamily
All code can be downloaded from GitHub at: https://github.com/basantab/NTF2Gen

The NTF2Gen repository contains all the tools for de novo design of NTF2-like proteins. The main
script is CreateBeNTF2_backbone.py, which manages the construction of NTF2 backbones,
followed by DesignBeNTF2.py, which designs sequence on a given backbone generated by the
previous script. To generate backbones from a specific set of parameters, use
CreateBeNTF2PDBFromDict.py. The fundamental building blocks of the backbone generation
protocol are Rosetta XML protocols (included in the repository) that are specialized instances of
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the BlueprintBDRMover Rosetta fragment assembly mover. All checks and filters mentioned in
the result section previous to design are implemented either in the XML files or the python scripts.
Additional backbone quality controls are ran after each step (See S| methods). The design script
is also based on a set of XML protocols, one for each of the described stages. The glycine
placement in highly curved strand positions and the selection of pocket positions are managed by
DesignBeNTF2.py (BeNTF2seq/Nonbinding). Pocket positions are selected by placing a virtual
atom in the midpoint between the H3-S3 connection and the S6 bulge, and choosing all positions
whose C,-Cg vector is pointing towards the virtual atom (the Vaom-Co-Cg angle is smaller than
90°), and their C, is closer than 8A.

De novo NTF2 backbone generation and sequence design for the first round of high-throughput
screening

Backbones were constructed as described in (5). For families not described in said paper (i.e.,
BBM2nHm* designs), the same backbone construction algorithms were used, but parameters
were changed accordingly. Scripts for producing all these backbones can be found at
https://github.com/basantab/NTF2Analysis, NewSubfamiliesGeneration. The sequence design
protocol for the first round of designs can be found in the above-mentioned GitHub repository.
Briefly: The design protocol begins by generating 4 different possible sequences using the
Rosetta FastDesign mover in core, interface and surface layers separately. Then random
mutations are tested, accepting only those that improve secondary structure prediction without
worsening score, introducing Ramachandran outliers or worsening the shape complementarity
between helices and the rest of the protein.

Design of gene fragments for multiplex gene assembly

In order to obtain full-length genes from fragments synthetized in DNA microarrays, they must be
assembled from halves, as described in (18). To generate highly orthogonal overlaps, we
generated DNA sequences using DNAWorks (29), then split the gene in half and altered the
composition of the around 20 overlapping nucleotides to have as low homology as possible with
other halves in the pool, while maintaining an adequate melting temperature and GC content, and
staying below the maximum oligonucleotide length (230 nucleotides). An optimized version of the
algorithm described in (18) can be found at https://github.com/basantab/OligoOverlapOpt.

Protease-based high-throughput stability screening

The protease-based high-throughput stability screening was carried out as described in (17).
Briefly: genes encoding for thousands of different de novo NTF2 sequences cloned in the
pETCONZ2 vector, which has the protein of interest expressed as a chimera of the extracellular
wall yeast protein Agall, on its C-terminus, connected by a “GS” linker of alternating glycine and
serine. The protein of interest is followed by a myc-tag (EQKLISEEDL). This library is transformed
in yeast for surface display in a one-pot fashion using electroporation. Different aliquots of the
yeast culture are then subject to increasing concentrations of trypsin and chymotrypsin, and
labeled with an anti-myc tag antibody conjugated to fluorescein. Cells still displaying full proteins
(myc-tag-labeled) after this treatment are then isolated by Fluorescence-Activated Cell Sorting
(FACS). Deep-sequencing of the sorted populations reveals which sequences are protease
resistant and to what degree, providing an estimate for folding free energy. The metric reported
by this assay is the stability score, an estimate of how much protease is necessary to degrade a
protein over that expected if the protein was completely unfolded. A stability score of 0 indicates
that the protein is degraded by the same amount of protease as expected if it was unfolded, i.e., it
is likely completely unfolded. A stability score of 1 indicates that 10 times more protease is
required to degrade the protein, than expected if it was completely unfolded.

LASSO logistic regression model training on stability data
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To identify features that predict stability, we trained LASSO logistic regression models (30) using
the features described in the previous section, after normalization. A logistic regression model
predicts the probability of a binary outcome using a logistic function that depends on a weighted
summation of features. By sampling a series of L1 regularization values, we obtain models with
varying degrees of parsimony, and for each of those L1 values we also generate different random
partitions of our dataset. This way, for each L1 value we obtain models with a spread on
accuracy, which we use for selecting an L1 regularization value that maximizes accuracy and
minimizes complexity - i.e., the number of features with weight different from 0. The simplest
measure of the importance of each feature is its assigned coefficient.

The data and code for analysis of data derived from the first high-throughput experiment can be
found at:

https://github.com/basantab/NTF2analysis,
ProteaseAnalysisExp1/LassolLogisticRegression.ipynb

Analysis of data from the second high-throughput experiment can be found at:

https://github.com/basantab/NTF2analysis,
ProteaseAnalysisExp2/LassolLogisticRegression_new_version.ipynb

Crystallography data collection and analysis metrics

To prepare protein samples for X-ray crystallography, the buffer of choice was 25 mM Tris, 50
mM NaCl, pH 8.0. Proteins were expressed from pET29b+ constructs to cleave the 6xHis tag with
TeV. Proteins were incubated with TeV (1:100 dilution) overnight at room temperature and
cleaved samples were loaded to a Ni-NTA column pre-equilibrated in PBS+30mM Imidazole.
Flow-through was collected and washed with 1-2 column volumes. Proteins were further purified
by FPLC as described above and specific cleavage of the 6xHis tag was verified by SDS-PAGE.

Purified proteins were concentrated to approximately 10-20 mg/ml for screening crystallization
conditions. Commercially available crystallization screens were tested in 96-well sitting or
hanging drops with different protein:precipitant ratios (1:1, 1:2 and 2:1) using a mosquito robot.
When possible, initial crystal hits were grown in larger 24-well hanging drops. Obtained crystals
were flash-frozen in liquid nitrogen. X-ray diffraction data sets were collected at the Advanced
Light Source (ALS). Crystal structures were solved by molecular replacement with Phaser (31)
using the design models as the initial search models. The structures were built and refined using
Phenix (32, 33) and Coot (34). Crystallization conditions and data collection and refinement
statistics can be found in the SI methods and Table S16.

UMAP embedding of NTF2 designs

Uniform Manifold Approximation and Projection (UMAP) (21) is a dimension reduction technique
widely used for visualization of high-dimensional data. We obtained the code for running UMAP
by following instructions in https://umap-learn.readthedocs.io/en/latest/. For generating the
embedding, UMAP requires a distance measure between points, for which we provided 1-
TMscore between all samples. We ran UMAP in a Jupyter notebook with different metaparameter
combinations and verified that the general cluster structure was conserved among all of them,
and that structural features were reflected in the groupings. The code and files necessary for
generating the UMAP-related figures can be found in the GitHub repository
https://github.com/basantab/NTF2analysis, UMAP_embedding.

Ligand in silico docking test

The goal of the ligand in silico docking test is to provide an estimate of how de novo NTF2-like
proteins compare to native ones in terms of their ability to harbor arbitrary binding sites. We used
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RIFDOCK (6) for simultaneous docking and design based on a set de novo and native protein
backbones. As RIFDOCK only uses backbone coordinates and a list of pocket positions to dock
the ligand and design a binding site around it, it can be used in a sequence-agnostic way. We
selected and prepared (see ligand preparation methods above) a subset of 50 ligands from all
non-polymeric PDB ligands (Ligand Expo - http://ligand-expo.rcsb.org) using k-means clustering
on physical and chemical features (See S30, and the 50_ligand_table.html file at
https://github.com/basantab/NTF2analysis/tree/master/ligandinSilicoDockingTest). The number of
ligands tested was limited to 50 for computational tractability, as RIFDOCK uses a significant
amount of resources per ligand and scaffold: >3hs in 32 cores and 64GB of RAM on average per
ligand, to generate the initial rotamer interaction field (RIF), and ~2hs in 32 cores using >20GB of
RAM, per ligand for docking in a subset of 12 scaffolds. As NTF2-like native representatives, we
selected 64 structures with pockets (pockets detected and defined as described above) from the
SCOPe2.05 database (described above). In order to provide a conservative estimate of pocket
diversity and aid computational tractability, we limited the set of de novo designs used for docking
to those stable (stability score > 1.55) and with detectable pockets in the concave side of the
sheet (>25% overlap between CLIPPERS-detected pocket and backbone-based pocket sets, and
>30A° volume), resulting in 862 different de novo sequences (See
https://github.com/basantab/NTF2analysis “ligandInSilicoDockingTest” for relevant files). Pocket
residues were detected using CLIPPERS, as described above, and only positions originally lining
the pocket of the scaffolds were considered for binding site design by RIFDOCK. We designed
five designs per scaffold, per ligand, and sorted them by “packscore”, a measure of favorable Van
der Waals interactions and hydrogen bonds, with bonuses for bidentate (one side chain
contacting two hydrogen-bonding ligand atoms) interactions. We measured the capacity of de
novo scaffolds to accommodate binding sites batter by natives by subtracting the best native
packscore Z-score from the best de novo packscore Z-score.

Data and code availability

In order to facilitate reproducibility, improvement, further analysis and use of the models and
information in this work, we have made all relevant data and code publicly available on
basantab/NTF2Analysis and basantab/NTF2Gen GitHub repositories. All sequences, PDB
models, analysis scripts and data tables for the first high-throughput experiments can be found in
the ProteaseAnalysisExp1 folder of NTF2Analysis, and ProteaseAnalysisExp2 for the second
high-throughput experiment. The set of 32380 scaffolds, available for general use as starting
points for ligand binding and enzyme design, is available in the

BeNTF2seq/design_with_ PSSM/final_set folder in the basantab/NTF2Gen GitHub repository.
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Figure 1. High-level description of the NTF2 generative algorithm. A: Canonical NTF2-like
structural elements, labeled on the structure of scytalone dehydratase from Magnaporthe grisea
(PDB 1IDP). B: Generative algorithm diagram, depicting hierarchical backbone assembly, and
sampling of high-level parameters and local structure variation at each step. C: Examples of fold
parameters sampled at the higher levels, and structures representing two extreme values for
each.
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Figure 2. High-throughput screening and structural characterization of de novo NTF2-like
proteins. A: (top left) Round 1 stability score distribution. Designs are more likely than scrambled
sequences to have stability scores above 1.0. Remaining panels compare the distributions of
sequence hydrophobicity, Rosetta energy, and local sequence-structure compatibility of stable
and unstable (stability score < 1.0) designs. B: Crystal structure and computational model of
design RA1INTF2_04 (PDB ID 6W3G); the protein backbone is in very close agreement. C:
Crystal structure and model of design Rd1NTF2_05 (PDB ID 6W3D), showing significant
differences between model and structure. Strands 5 and 6 are shifted 2 residues relative to each
other (bold numbers, left), resulting in a smaller space in the concave side of the flattened sheet
(magenta sphere and dashed line, right). D: Crystal structure and model of design RA1NTF2_05
5-fold mutant (PDB ID 6W3F), showing agreement between model and structure for backbone
and mutated side-chains. As in C, a magenta circle and lines show how the concave side and
sheet curvature fold as designed.
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represented by a single structure randomly selected from that combination. Structurally similar
proteins are closer together. E: Crystal structure of stable design Rd2NTF2_20 (PDB ID 6W3W),
which features a new, elongated helix 3-strand 3 connection. Despite significant differences
between the model and structure in the N-terminal helices, the new loop and the sheet are well
recapitulated. F: Core rotamers of RA2NTF2_20. TYR101 (red, sticks) shows a significant
deviation from the model, and enables the change in location of helix 1. In contrast, PHE61 and
GLY77 interact as modeled, showing the glycine rescue feature can be designed from scratch. G:
Crystal structure of stable design Rd2NTF2_16 (PDB ID 6W40), which features a secondary
bulge and an elongated frontal hairpin, features not designed before. Both of these features are
recapitulated in the crystal structure. As in RA2NTF2_20, but not as dramatic, the Rd2NTF2_16
crystal structure presents significant deviations from the model in the N-terminal helices. H:
Surface rendering of the model and crystal structure of RA2NTF2_16, showing the shallow pocket
formed by the long arm and the frontal hairpin is recapitulated by the crystal structure.
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Figure 4: Comparison of de novo designs to native structures for ligand docking and design.
Ligands are ranked by how well de novo scaffolds accommodate each of them in comparison to
native structures (higher AZ-score values mean higher advantage of best de novo scaffold over
best native). To calculate AZ-score for each ligand, we obtain the protein-ligand interaction
energy for all docked conformations of that ligand, and calculate the Z-scores, then subtract the
Z-score of the lowest (most favorable) de novo designed protein dock, from the lowest native
protein dock. In each panel the same ranking is colored by different ligand properties: from top to
bottom: Molecular weight (Da), charge at pH 7.5, and hydrophobicity (LogP).
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Supplementary Information Text
Logistic regression model of stability trained on the second round of high-throughput experiments

As the proteins designed by the generative algorithm sample uncharted structural space, we
investigated whether there were substantial differences in stability in different regions of the
space. We included the high-level parameters used in the generative algorithm in a logistic
regression model of stability (designs with stability score >1.55 are labeled as stable), and found
that most have zero weight, suggesting that proteins can be equally well designed throughout
structural space. The only high-level parameter feature with a non-zero weight is the length of
helix 3; the negative weight indicates that designs with shorter helices tend to be more stable (the
relatively small weight of this feature suggests that this is only a small bias; Fig. S23). The logistic
regression model also detects a signal (positive weight) from core hydrophobic packing, but not
raw sequence hydrophobicity (Fig. S23), suggesting that the contribution of overall sequence
hydrophobicity was fully saturated going from the first round to second round of designs, and that
the increase in the proportion of stable designs is not solely due to increased hydrophobicity. The
model also shows a shift in importance from local sequence-structure compatibility to tertiary
structure-sequence compatibility (Fig. S23), likely due to the extensive secondary structure
propensity optimization in the second round of designs.

Lessons from design Rd2NTF2_20 and Rd2NTF2_16 crystal structures

The N-terminal helices of both designs display significant deviations from the model. While this
could be attributed to the extensive crystal contacts in both structures (Fig. S27), the alternative
conformations of the side chains near the N-terminal helices suggest that better core packing
could have prevented the backbone rearrangements. In the case of RA2NTF2_20, four core side
chains, N11, T75, T92, Y101 form a hydrogen bond network with an alternative conformation
from the design, following the displacement of the helix. In particular, T92 is completely buried in
the model, with a single polar interaction towards the backbone of residue 73, and it is possible
that this interaction is not as favorable as the one with a water molecule observed in the crystal
structure (Fig. S27). This highlights the importance of ensuring all polar interactions among buried
side chains are highly favorable. A similar displacement of the N-terminal helix is observed in
Rd2NTF2_16. In this case, the helix is again involved in crystal contacts, with significant
deviations in core packing, but most side chains involved are hydrophobic. Both RA2NTF2_20
and Rd2NTF2_16 feature glycines at the points of highest sheet curvature, but unlike
Rd2NTF2_20, Rd2NTF2_16 has a cavity above it, as Rosetta was unable to find a favorable
side-chain placement to fill it (Fig. S27). It is possible the destabilizing effect of this large void
leads to the displacement of the N-terminal helix, which further illustrates the need of
compensating the packing interactions lost by placing glycine on inward-facing strand positions.

Supplementary methods
De novo NTF2 backbone quality control

The generative algorithm includes quality control steps throughout the backbone construction
process and sequence assignment to reduce deviation from ideal atomic geometry. At every
stage, output that has Ramachandran outliers or unlikely bond angle and length values are
discarded. Furthermore, sheets and helices where deformation leads to backbone hydrogen
bonds with higher energy than average are discarded. The backbone assembly process is guided
by constraints that impart the unique structural features for a given parameter combination, and
structures falling beyond tolerable limits of some of those constraints are discarded. Finally, since
the sequence assignment process can change the backbone slightly, filters are also applied at
the end of this step, especially those that ensure a compact structure. All the previously
mentioned filters are implemented as Rosetta filters within each Rosetta script (*.xml files).

Quantification of de novo NTF2-like proteins families
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As previously described, we define de novo NTF2-like families as all different combinations of
high-level parameters that lead to well-formed backbones (See above, “De novo NTF2 backbone
quality control”). To quantify the number of possible parameter combinations, we ran the
backbone generation algorithm without requesting any specific combination, i.e., randomly
choosing parameters at each stage, and obtaining only backbones passing all quality controls
(See https://github.com/basantab/NTF2Gen, CreateBeNTF2_backbone.py). We then assign a
sequence to the backbones. We quantify the number of different parameter combinations by
reading the dictionary stored in each output, marked with the keyword “NTF2DICT” at the
beginning of the line, which stores the parameters used to generate it (See
https://github.com/basantab/NTF2Gen, PrintUniqueBeNTF2_file_input.py). The process of
generating backbones from random parameter combinations leads to an uneven combination
distribution — not all combinations are equally sampled, and some backbones are harder to
assemble than others. To compensate for this, we take all combinations with a number of
representatives lower than required, and generate more backbones with the same parameters
(See https://github.com/basantab/NTF2Gen, CreateNewBeNTF2PDBFromDict.py), until the
required number is met. For the final set of backbones, this number is 20.

Pocket structure analysis using CLIPPERS

We created pocket inventories for each protein of interest using CLIPPERS (Coleman and Sharp,
2010) with default options. We then scanned through these inventories searching for the largest
pockets using travel depth to define their boundaries: We trimmed the pocket tree (done by
starting with the deepest, group=1, and walking back with through parents, capping it at group #
120) using a mean_TD cutoff defined as: pocket mean_TD ~ max_TD - (max_TD -
lowest_mean_TD) * X, with X = 0.75. The python code for this
(pocketDetect_lines_TD_CLIPPERS.py) can be found at
https://github.com/basantab/NTF2analysis. After detecting pockets, structures where the pocket
was not in the canonical location (sheet concave side) or spanned micro-pockets on the surface,
were discarded.

Analysis of pocket volume in proteins designed by the generative algorithm

To produce the table in figure 3A, we measured the pocket volumes of all models generated in
preparation for the second high-throughput experiment (including those finally tested) using
CLIPPERS, as described above. Only proteins whose pockets could be detected by CLIPPERS
were included in the analysis (13126 of 22853). See https://github.com/basantab/NTF2Analysis,
ProteaseAnalysisExp2/Figure3_pocket volume/Create_heatmap.ipynb. Figure 3C histograms
were produced using the same data.

Protein-protein alignment by TM-align

For each alignment, TM-align optimizes and reports TM-score, a measure of the distance
between C, carbons of aligned residues in target and template, normalized by protein length. The
optimization algorithm used by TM-align results in alignments where superposition of segments
with similar local structure is optimized over superposition of segments with disparate local
structure. Because TM-score is normalized by target length, and we align proteins with similar,
but not equal, lengths, for any given alignment, the TM-score we report is the average between
two values.

Generation of patterned scrambled sequences for control

In order to produce control sequences that retain the overall amino-acid composition, but are not
optimized for folding, we took a subset of the design sequences, and scrambled all amino-acid
identities, except for P and G, while keeping the hydrophobicity pattern. The code for this can be
found in the GitHub repository https://github.com/basantab/NTF2analysis,
create_patterned_scramble.py
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Features calculated for de novo NTF2 design stability prediction

Scripts for extracting design features used in logistic regression model training can be found in
the public GitHub repository: https://github.com/basantab/NTF2analysis in the feature_extraction
folder. For features described in (1) extracted with specialized code, refer to the supplementary
material of that publication.

The features calculated using Rosetta filters and score function ref2015 (when dependent on
score function) can be found on table S8. Features calculated using Rosetta filters and
beta_nov16 score function (when dependent on score function) can be found in Table S9.
Features calculated using Rosetta filters related to burial of unsatisfied polar atoms can be found
in Table S10. Features calculated using CLIPPERS (Coleman and Sharp, 2010) pocket detection
and inventory software can be found in Table S11.

Overall protein fragment metrics calculated for protein fragments with similar sequence and
secondary structures to 9-mer sequence stretches (protein length-9) in the target protein in Table
S12. For each 9-mer, 200 structure fragments are derived, as described in (2, 3).

Overall protein TERM metrics are calculated based on the output of the scripts provided with (4).
TERM-based metrics were calculated based on the per-positions abundance_50,
design_score_50 and structural score. These metrics can be found in Table S13. To obtain
insight regarding specific parts of the proteins, we divided the protein in continuous sequence
stretches that form local structures (sometimes with overlapping positions, Table S15), and
calculated different fragment and TERM features in each of them, these can found in table S15.
For each of the above stretches, TERM and fragment metrics were calculated, and the final name
of the features calculated this way are <stretch name>_<metric>.

Features Tminus1_netq, Tend_netq, T1_absq, Tminus1_absq, Tend_absq, abego_res_profile,
abego_res_profile_penalty, largest_hphob_cluster, n_hphob_clusters, hphob_sc_contacts,
hphob_sc_degree, n_charged, hydrophobicity, contig_not_hp_internal_max, contig_not_hp_avg,
contig_not_hp_avg_norm, tryp_cut_sites, chymo_cut_sites, chymo_with_LM_cut_sites,
nearest_chymo_cut_to_Nterm, nearest_chymo_cut_to_Cterm, nearest_tryp_cut_to_Nterm,
nearest_tryp_cut _to_Cterm, nearest_tryp_cut_to_term and nearest_chymo_cut_to_term, were
calculated using the enchance_score_file.py script provided with (1), and are thoroughly
explained in their supplementary materials.

Hydrophobicity enrichment sequence profile

Designs were split between stable and unstable depending on the threshold selected for each
experiment (see Results), and the enrichment was calculated based on the whole population
frequencies vs. the frequencies in the stable population. Code for these calculations, figures and
derivation of sequence data from designs on the first high-throughput experiment can be found at
https://github.com/basantab/NTF2analysis, Exp1_SeqProfile

For designs tested on the second experiment: https://github.com/basantab/NTF2analysis,
Exp2_SeqProfile.

Experimental characterization of designs

Protein expression and purification in E. coli: Genes encoding the designed protein sequences
were obtained from IDT already cloned in pET29b+ or pET21b+ (with N-terminal 6xHis tag
followed by a TeV cut-site) expression vectors. Plasmids were transformed into chemically
competent Escherichia coli Lemo21 cells from Invitrogen. Starter cultures were grown at 37°C in
Luria-Bertani (LB) medium overnight with antibiotic (50 pg/ml carbenicillin for pET21b+
expression or 30 ug/ml kanamycin for pET-28b+ expression). For expression, overnight 5mL LB
cultures were used to inoculate 500 mL of Auto-induction medium supplemented with antibiotic,
at 25°C, for 18 hours (5). After overnight expression, cells were collected by centrifugation (at 4
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°C and 4400 r.p.m for 10 minutes) and resuspended in 25 ml of lysis buffer (30 mM imidazole and
phosphate buffered saline, PBS - 137 mM NaCl, 12 mM Phosphate, 2.7 mM KCI, pH 7.4).
Resuspended cells were lysed by sonication or microfluidizer in the presence of lysozyme,
DNAse and protease inhibitors. Lysates were centrifuged at 4 °C and 20,000 r.c.f. for 30 minutes;
and the supernatant was filtered and loaded to a nickel affinity gravity column pre-equilibrated in
lysis buffer for purification. The column was washed with three column volumes of PBS+30 mM
imidazole and the purified protein was eluted with three column volumes of PBS+300 mM
imidazole. The eluted protein solution was dialyzed against PBS buffer overnight. The expression
of purified proteins was assessed by SDS-polyacrylamide gel electrophoresis; and protein
concentrations were determined from the absorbance at 280 nm measured on a NanoDrop
spectrophotometer (ThermoScientific) with extinction coefficients predicted from the amino acid
sequences. Proteins were further purified by FPLC size-exclusion chromatography using a
Superdex 75 10/300 GL (GE Healthcare) column.

Circular dichroism (CD): Far-ultraviolet CD measurements were carried out with an AVIV
spectrometer, model 420. Wavelength scans were measured from 260 to 200 nm at temperatures
between 25 and 95 °C. For wavelength scans and temperature melts a protein solution in PBS
buffer (pH 7.4) of concentration 0.2-0.4 mg/ml was used in a 1 mm path-length cuvette, or 10
times more dilute for 1cm path-length cells.

Chemical denaturation experiments with guanidine hychloride were done with an automatic
titrator using a protein concentration of 0.02-0.04 mg/ml and a 1 cm path-length cuvette with stir
bar. PBS buffer (pH 7.4) was used for the cuvette solution and PBS+GdmCl for the titrant solution
at the same protein concentration. GdmCI concentration was determined by refractive index. The
denaturation process monitored absorption signal at 222 nm in steps of 0.1 or 0.2 M GdmCI with
1 min mixing time for each step and at 25 °C. The denaturation curves were fitted by non-linear
regression to a two-state unfolding model to extract six parameters: slope and intercept for pre-
and post-transition baselines, m value and the folding free energy (AGu20) (6, 7).

Size exclusion chromatography combined with multiple angle light scattering (SEC-MALS): To
evaluate protein quaternary structure, SEC-MALS experiments were performed using a Superdex
75 10/300 GL (GE Healthcare) column, except for samples Rd2NTF2_10, Rd2NTF2_12 and
Rd2NTF2_11, for which an Superdex 200 10/300 GL (GE Healthcare) column was used. Then
combined with a miniDAWN TREOS multi-angle static light scattering detector and an Optilab T-
rEX refractometer (Wyatt Technology). One hundred microliter protein samples of 1-3 mg/ml| were
injected to the column equilibrated with PBS (pH 7.4) or TBS (pH 8.0) buffer at a flow rate of 0.5
ml/min. The collected data was analyzed with ASTRA software (Wyatt Technology) to estimate
the molecular weight of the eluted species.

Crystallization conditions for solved crystal structures
RA1NTF2_05 (PDB ID 6W3D): (His-tag not cleaved): Protein solution concentration: 56mg/L

1:1 dilution in 0.09M Sodium fluoride; 0.09M Sodium bromide; 0.09M Sodium iodide, 0.1M
Tris/BICINE pH 8.5, 50% v/v of 40% v/v PEG 500 MME; 20 % w/v PEG 20000. (Morpheus-HT96
B9 (Gorrec, 2009))

RA1NTF2_05_164F_A80G_T94P_D101K_L106W (PDB ID 6W3F): (His-tag cleaved): Protein
solution concentration: 7.7mg/mL

1:1 dilution in 0.09M Sodium nitrate, 0.09 Sodium phosphate dibasic, 0.09M Ammonium sulfate,
pH 6.5 0.1M Imidazole/MES monohydrate (acid), %50v/v of 40% v/v PEG 500 MME; 20 % w/v
PEG 20000 (Morpheus-HT96 C1 (8))

RA1NTF2_04 (PDB ID 6W3G): (His-tag cleaved): Protein solution concentration: 48.7mg/mL
1:1 dilution in 0.12M 1,6-Hexanediol; 0.12M 1-Butanol; 0.12M 1,2-Propanediol; 0.12M 2-
Propanol; 0.12M 1,4-Butanediol; 0.12M 1,3-Propanediol, 0.1M Imidazole/MES monohydrate
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(acid), pH 6.5, and 50% v/v of 40% v/v PEG 500 MME; 20 % w/v PEG 20000 (Morpheus-HT96
D1 (8)).

Rd2NTF2_16 (PDB ID 6W40): (His-tag cleaved): Protein solution concentration: 24.6mg/mL

1:1 dilution in 0.1 M Sodium Acetate pH 4.5 and 1.0 M di-Ammonium phosphate. Crystals flush
freeze with 20% glycerol as cryo protector (JCSG4 H5 -(9)).

Rd2NTF2_20 (PDB ID 6W3W): (His-tag cleaved): Protein solution concentration: 22.5mg/mL

1:1 dilution in 0.09 M Sodium nitrate, 0.09 Sodium phosphate dibasic, 0.09 M Ammonium sulfate;
0.1 M Tris (base) & BICINE pH 8.5; 12.5 % v/v MPD; 12.5% PEG 1000; 12.5% w/v PEG 3350
(Morpheus-HT96 C12 (8)).

Selection of designs for second high-throughput experiment

Using the logistic regression model trained on data derived from the first high-throughput
experiment, we predicted the probability of being stable of 11548 models designed by the new
generative algorithm, and selected a subset of 10073 with chance > 0.75. A mistake in the
calculation of these values resulted in the selection of designs not being strictly above 0.75, but
biased towards higher values. In parallel, we clustered all designs by their fold features, and for
each cluster we searched for a representative in the 10073 “stable” designs subset. All code and
values can be found in the GitHub repository https://github.com/basantab/NTF2analysis, in the
Exp2_selection folder.

Non-redundant set of native NTF2-like domain structures

A non-redundant (<95% sequence identity) set of domain crystal structures was downloaded from
the SCOPe database from http://scop.berkeley.edu/astral/pdbstyle/ver=2.05 on September 2015.
From this set, NTF2-like domains (d.17.4 SCOPe v2.05 superfamily) were extracted by selecting
only *.ent files where the domain record line matched d.17.4 at least partially. For docking, the
energy of these structures was minimized using the Rosetta FastRelax protocol with constraints
to avoid large structural changes.

Ligand model preparation in silico docking test

In order to perform ligand docking and binding site design in Rosetta, ligand atomic models need
to be processed. For this, we generated ligand conformers using RDKirt (“RDKit: Open-source
cheminformatics; http://www.rdkit.org”) and *.mol2 obtained by converting SDF files from the PDB
Ligand Expo database using Open Babel using pH 7 for protonation states. Partial charged were
assigned using ANTECHAMBER ((10), $AMBERHOME /bin/antechamber -i [input.mol2] -fi mol2 -
o [output.mol2] -fo mol2 -c bce -nc [netcharge]), and net charge calculated from the *.mol2 file.
Rosetta *.param files were obtained using the latest *.mol2 files, by running the scripts provided
by RosettaCommons to that end (11). Finally, RDKit conformers were minimized in Rosetta.

Misfolded-state model for predicting baseline protease stability of de novo NTF2-like protein
sequences

As in previous work (1), we calculated the stability score as the difference between observed
protease stability and predicted protease stability the design would obtain if misfolded.

S = EC50_observed — EC50_predicted

In previous work, the misfolded-state model was trained on stability measurements of sequences
expected to be misfolded due to scrambling of the amino acid sequence or introduction of buried
charges. The structure of the misfolded-state model enabled it to learn the protease specificities
by fitting a 9-residue-length position-specific scoring matrix (PSSM) for each protein, which when
applied across the length of the protein, would sum up the cut-rate, assuming the protein was
entirely unfolded. With that model and for small proteins, protease stability of misfolded
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sequences could be predicted with high accuracy (R°=0.60 for trypsin, R°=0.48 for chymotrypsin).
However, for NTF2-like proteins, the same misfolded-state model did not capture protease
stability of scrambled sequences (R2=0.0), and underestimated the actual protease stability, in
some cases, by approximately 10 fold, suggesting that cut-sites are being obscured by partial
folding. Expecting that a globular collapse of misfolded sequences would be largely driven by the
amino acid composition and length, we fitted a new misfolded-state model by minimizing the
squared logarithmic error between observed and predicted ECs; over the set of 2694 scrambled
sequences. The model predicted EC50 values as a weighted sum of amino acid counts and
weights were fitted using linear regression and L1 and L2 regularization (ElasticNet regression)
and 5-fold cross validation as implemented in python via scipy (12). The fitted weights largely
reflect amino acid hydrophobicity for both trypsin and chymotrypsin (Fig. S26D-E), further
supporting that the misfolded-state for NTF2-like proteins is partially collapsed. Across both
design rounds, when trained using 5-fold cross validation, the model predicted R®=45% (25%) of
the trypsin (chymotrypsin) stability variation of pattern-scrambled sequences on an independent
holdout dataset (Fig. S26D-E). Including the EC5, predictions from the former misfolded-state (9-
residues length PSSM) model as a feature in the new model did not improve the performance of
the model. Model code, training and testing sets can be found in the GitHub repository
https://github.com/basantab/NTF2Gen (BeNTF2seq/molten_globule_model).

A global PSSM to explain the stability variation of the de novo NTF2 superfamily

To understand position-specific design rules of NTF2-like protein stability, we trained a position-
specific scoring matrix (PSSM) model using 6882 designs from both rounds of protease stability
screening with EC50 values determined with the updated misfolded-state model described above.
The PSSM-model relies on a custom sequence-alignment method associated with the
generative-algorithm, which, by stratifying the sequences into 183 independent positions,
guarantees structural equivalence between all amino acids in one column of the sequence
alignment. Across all positions, weights were then fitted using the same linear regression with L1
and L2 regularization as described above. While the resulting model only explained a fraction of
the observed stability variation (R2=0.13), upon visual inspection, the PSSM appeared to reflect
amino acid preferences correlated with the naturally occurring NTF2-like protein sequence
tolerability. Model code, training and testing sets can be found in the GitHub repository
https://github.com/basantab/NTF2Gen (BeNTF2seq/fit PSSM_model).

Generative algorithm improvement for last round of designs

Stability improvements from the first round to the second round came mainly from biasing the
sequence towards higher number of hydrophobic amino acids. A LASSO logistic regression
model of stability trained on the second round of designs indicates raw hydrophobicity is not as
predictive as in the first round, instead, hydrophobic interactions and sequence-structure
agreement (Design score as described in TERMS (4)) are most predictive. To improve these
features, we applied the fitted PSSM weights described above as an independent score-term of
the energy function. We also incorporated updates in the sequence design Rosetta mover
“FastDesign” and Rosetta scoring, that improve designs' final score and reduce buried unsatisfied
polar atoms. This design protocol takes ~1hr to run in an Intel E5 2680 processor, much faster
than previous versions, which took >3hrs due to the extensive optimization trajectory based on
point mutations. All files containing the full description of this sequence design protocol and
necessary to run the calculations can be found in the GitHub repository
https://github.com/basantab/NTF2Gen (BeNTF2seq/design_with_PSSM), along with the final set
of 32380 protein models designed with this method and the input backbones.

The increase in parameter combination (backbone) diversity in the last round of designs comes
from small changes in the backbone construction code that make fragment assembly more
efficient, mainly by tweaking constraint strength and distance values. A history of code changes
and their rationale is saved in the GitHub repository https://github.com/basantab/NTF2Gen.

Design naming
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In order to aid clarity, we gave short names to specific designs referenced in this work. Table S17
maps the short names to those used in gene orders. Designs longer than 120 amino acids were
not part of the high-throughput experiments; therefore their names (BBLPX) were given at the
time of specific gene order. Other short names sometimes used during analysis are written
between parentheses.
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o s Bmm 6 | s | $3 length = Base Width + Long arm length + (Short arm length — 2) + Secondary bulge + 2 2 A EB R a
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Main bulge curve S5 length = Base Width + Long arm length + Short arm length + 1 0 A EB R S
1550 | 145° BRED $6 length = Base width + Short arm length + 2 * Extended S6 + 2 0 A EB R S
S3 Main bulge position = 1 + Long arm length + 2 o AEBR £
Sec. bulge placement S6 bulge position = 1+ S3length + 2 + S4 length + 2 + S5 length + 2 + Short arm length + 2 A =]
Forward |IERCEE 0 0 A EBR £
B 0 A EB R o
— o AE R 2
—
= Constraints: oA E8 R g
econda e )
e + Distance constraints between Calpha carbons at paired strand positions 0 A LCR e
+ Angle constraints on $4 and S5: - 3
|___Sec.bugecuve | + S4 curvature center =1+ S3length +2+5+1 e
FERYE 1350 none | + S5 curvature center = S4 curvature center + 2 * Long arm length + 1 g
. ;
T
Curved long arm v 2
——— ‘ Rosetta constraints file format: g
- Angle CA $4 curvat ter-2 CA 4 curvat ter CA S4 curvat ter+2 HARMONIC Main bul 50 @
ngle curvature center-; curvature center curvature centel lain bulge curve
el Angle CA S5 curvature center-2 CA S5 curvature center CA S5 curvature center+2 HARMONIC Main bulge curve 5¢ &

Fig. S1. Example of translation of high-level parameters to Rosetta-readable file formats
(blueprint and constraint files) for sheet (S3-6) fragment assembly (Stage 1). High-level
parameters values selected are in red boxes (left). Examples of some of the conversions from
high-level parameters to low-level descriptions are shown in the middle, with the resulting file
formats. Fragment assembly produces local structure variations (right).
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Fig. S2. Dependence of stage 2 parameters on the strands built in stage 1. A: The protrusion
value, calculated from vectors radiating from the S6 end, to the long arm tip and S3 bulge,
determines what types of connections can be used between H3 and S3. Low protrusion values
(A) eliminate short connections that would place the C-terminus of H3 too near the center of the
sheet, leading to low pocket depth. High protrusion values eliminate long H3-S3 connections that
would place the C-terminus of H3 too far from the sheet and limit packing interactions that lead to
folding and structured pockets. Intermediate protrusion values allow all types of connections. B:
The length of H3 is dictated by the H3-S3 connection first positions’ torsion bin. The rigidity of the
S2-H3 connection places the C-terminus of H3 in a specific angle to S3, to properly connect H3 to
S3, the connection must have a suitable torsion that leads to favorable hydrogen-bond
interactions (bottom cartoon examples). C: The selection of hairping length (4- or 6-residue S1
and S2) is independent of H3 length and H3-S3 connection, but depends on the length of S6, as
it has to fully pair with it.
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Fig. S3. Dependence of stage 3 parameters on the strands built in stage 2. A: The distance “e
(A) between the tip of the long arm and the frontal hairpin dictates wether the pocket opening can
be placed between H3 and the H1-H2 loop (Alternative placement), or not. B: Once the opening
placement is selected, this and the ditance between the S6 bulge and the H3-S3 connection
dictate the lengths of helices 1 and 2. For alternative openings, H2 and H1 are as short as
possible, to leave a space between the H1-H2 loop and H3. If the opening placement is Classic,
then the distance between the S6 bulge and the H3-S3 loop distates the lengths of H1 and H2: if
distance “d” is longer than 25A, then H1 and H2 are both extended by a full turn (4 residues), to
span the surface between the N-terminus of S3 and the short arm. C: In order to steer the
placement of H1 and H2 such that energetically favorable side-chain packing can be achieved,
constraints (dashed lines) are used to tie the N and C termini of H1 to the sheet. The N-terminus
of H1 is tied to the N-terminus of S6 such that the Cg (red spheres) of this position points at the
splace left by side-chains on the side of H1 (C, right). The same is done between the C-terminus
of H1 and the N-terminus of S3 (C, left).
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Fig. S4. Dependence of stage 4 parameters on the strands built in stage 2. In case a C-terminal
helix is constructed, the type of pocket opening (black arrows) determines its length and
placement. A shorter H4 interacts with the long arm and extends the pocket outwards in pockets
with Classic openning. In pockets with Alternative opening, H4 takes the space between the
frontal hairpin and the long arm. In both cases, constrinats are placed between the C-terminus of
H4 and the rest of the structure to steer fragment assembly and achive the described H4
placement.
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Mk1.TP Mk1.PeCH Mk1.PaCH

Mk2

Fig. S5. De novo NTF2-like designs tested in the first high-throughput experiment. A: Diagrams
of the different blueprints tested, and how they map to previously published blueprints (solid
circles), or not (dotted circles). Arrows indicate single changes that convert one blueprint to the
other. B: Alternative visualization of models in figure A.
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Fig. S6. Population of stable designs, separated by family.
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Fig. S7. Enrichment pattern for first-round designs. A: Structural legend of analyzed postions,
presented in the bottom of B as a continuous stretch, each color represents a separate sequence
stretch. B: Enrichment heatmap. Each column is a structuraly homologous position in all tested
designs. Grey cells indicate that either the amino-acid was not sampled at that postion, or the

enrichment was not statistically significant.
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Fig. S8. Logistic regression model on first-round designs. A. Boxplot of model accuracy on test
set for different values of L1 penalty. Each box represents 40 different random partitions of the
dataset (with replacement), with one third of it as test set in each case. B. Absolute weights of the
16 features with the highest average weights in the 40 dataset partitions. C. Correlation matrix for
the top 12 features.
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Fig. S9. Experimental characterization of first-round designs. Column 1: Guanidinium chloride
titrations following circular dichroism at 222nm, circular dichroism spectra, and size-exclussion
chromatography followed by multi-angle light scattering.
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Fig. S10: Experimental characterization of first-round designs. Circular dichroism spectra at 25°C
and 95°C and temperature curves following circular dichroism at 222nm.
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Fig. S11. RA1NTF2_04 crystal structure. A: Comparison between the RA1NTF2_04 structure
(orange) and the most similar structure from Marcos et al. (Fold C, green), highlighting with a box
the structural elements that extend the concave sheet space outwards in RA1NTF2_04. B: Core
side-chain conformations in the RA1NTF2_04model (gray) and structure (rainbow).
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RA1NTF2_05
5X mutant

Fig. S12. Rd1NTF2_05 mutations to correct structure. Left pannel: Muatations D101K and
L106W on strand 5 and 6, respectively. Right pannel: Mutations 164F, A80G and T94P on strands
3, 4 and 5 respectively. Note how after changing A 80 to G the backbone structure relaxes into a
deeper arch, and F64 takes the space left by the alanine side chain.
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Fig. $13: Guanidinium titration of RA1NTF2_05 mutants.
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Fig. S14. Rd1NTF2_05 5-fold mutant structure. A: Pocket in the RA1NTF2_05 5-fold mutant
structure. B: Comparison of side-chain rotamers between crystal structure (rainbow) and model

(gray).
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Fig. S15: Feature distributions for the first (blue) and second (orange) high-throughput
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trained using data from the first high-throughput experiment.
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Fig. S16: Modes of pocket modulation by sheet structure. A: Sheet parameter table, with y axis
mapping to sheet length and x axis mapping to curvature. Colored cells are sampled parameter
combinations, and the tone indicates average pocket volume after sequence design. Two
traversals, one through the y axis (red), and one through the x axis (orange), show how sheet
curvature and length modulate pocket volume. B: Exemplar structures with pocket volumes close
to average, through each of the two above traversals.
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Fig. S17. Top: Stability scores of designs tested in both rounds as controls. The linear fit
suggests the stability score values are the same between assays. Middle and bottom: Sequence
features that best predict stability in second-round scrambled controls: Hydrophobicity and the
number of non-alanine hydrophobic residues. These features have the highest weights in the

most parsimonious logistic models of stability.
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Fig. S18. The number stable representatives for each tested family is similar to the population
average. The black line is a linear fit, and has a slope of approximately 1/3. Most tested families
without stable representatives had less than 10 tested members.
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Fig. $19. Stable second-round design cover most of the pocket volume range of native NTF2-like
proteins, and for most of that range, there are more de novo designs.
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Fig. $20. Enrichment pattern for second-round designs. A: Structural legend of analyzed
positions, presented in the bottom of B as a continuous stretch, each color represents a separate
sequence stretch. B: Enrichment heat map. Each column is a structurally homologous position in
all tested designs. Grey cells indicate that either the amino acid was not sampled at that position,
or the enrichment was not statistically significant. C: Fraction of polar pocket residues in all and
stable second-round designs. These proteins have on average 24 pocket residues.
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Fig. S24. Experimental characterization of second-round designs. Column 1: Guanidine
hydrochloride titrations following circular dichroism at 222nm. Column 2: Size-exclusion
chromatography followed by multi-angle light scattering.
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Fig. $25. Experimental characterization of second-round designs. Circular dichroism spectra at
25°C and 95°C and temperature curves following circular dichroism at 222nm.
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Fig. $26. Molten globule model. A: AG of unfolding vs. stability score calculated usign the
unfolded-state model, with data points colored by design round. The black line is a linear fit, with
Pearson R 0.3 and p-value 0.182. B: AG of unfolding vs. stability score calculated usign the
“molten globule” model, with data points colored by design round. The black line is a linear fit,
with Pearson R 0.07 and p-value 0.753. C: Receiver operating characteristic curve of stability
score as classifier for folded designs (True) and designs that do not express or not fold (False).
D: Per-amino acid type weigths in the elastic network model for trypsin (left), and scrambled-
sequence precited vs measured EC50 for a validation sequence set, blue dots are sequences
from the first round, orange ones are from the second (right). E: Per-amino acid type weigths in
the elastic network model for chymotrypsin (left), and scrambled-secquence precited vs
measured EC50 for a validation sequence set, blue dots are sequences from the first round,
orange ones are from the second (right).
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A

in RA2NTF2_20
involving H1 and H2. B: Rd2NTF2_16 asymmetric unit, with two copies of the RdA2NTF2_16
monomer interacting through H1, which is displaced from its modeled location. C: RA2NTF2_20
core packing in the crystal structure (left) and model (right). D: Core packing of the Rd2NTF2_16
model, showing the cavity near G85.
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Fig. S28. Experimental characterization of NTF2 designs longer than 120 amino-acids. Column 1:
Guanidine hychloride titrations following circular dichroism at 222nm. Column 2: Size-exclusion
chromatography followed by multi-angle light scattering.
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Fig. $29. Experimental characterization of NTF2 designs longer than 120 amino-acids. Circular
dichroism spectra at 25°C and 95°C and temperature curves following circular dichroism at
222nm.
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Top de novo dock Top Rd2NTF2_03 dock
Ligand AKV Ligand DQX

Fig. $32. Ligand-scaffold complexes for the two top de novo docks (ligands AKV and DQX).
Hydrogen bonds are shown as yellow dotted lines.
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Ligand AKV in PDB 2F99 Ligand EQU in PDB 10HO

Fig. $33. Ligand-scaffold complexes for the two control ligands (AKV and EQU), on their native
scaffolds. Purple: RIF docked complex. Orange: original PDB structure. While an orientation
similar to the original was recovered for EQU on the 10HO backbone, differences between the
docked AKYV conformer and the PDB conformer likely caused docks in the 2F99 backbone to be
substantially different from the PDB structure. These controls suggest the proposed docking test
can recover native-like pockets when the same ligand congener is used.
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Fig. S34. Top stability-predicting features improved in the last version of the generative algorithm.
Orange: Final-round designs, blue: second-round designs.

41


https://doi.org/10.1101/2020.03.23.003913
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.23.003913; this version posted March 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Parameter
(short name)

Units (Allowed
values)

Explanation

Stage 1

Base width
(base_width)

Long arm length
(long_arm_1)

Short arm length
(short_arm_1I)

Additional bulge on the

long arm
(Second_bulge E3)

Placement of second
bulge on strand 3
(Second_b_place)

Degree of curvature
angle between long
arm and base
(E3_MainBulgeCurve)

Degree of curvature
angle centered at the
E3 second bulge
(E3_SecBulgeCurve)

Extension of strand 6
(ExtendedEB)

Extension of strand 4
(ExtendedE4)

Small degree of
curvature on the long
arm

(CurvedLongArm)

Residues (3,5)

Pairs of residues
(2,3,4)

Pairs of residues (1,2)

Boolean (True,False)

Pairs of residues
(1,2,null)

(160-10*X)°, where X
is one of the allowed
values (1,2,3)

Null or (160-10*X)°,
where X is one of the
allowed values
(1,2,3,null)

Boolean (True,False)

Boolean (True,False)

Boolean (True,False)

Number of residues between relative
positions of main bulges on strand 3 and 6,
including the B ABEGO bulge residue.

Number of residue pairs between the main
bulge in strand 3 and the N-terminus of
strand 3, does not take into account
additional bulge residues when strand 3 has
additional bulges.

Number of residue pairs between the main
bulge in strand 6 and the C-terminus of
strand 6.

Presence or not of a second bulge on strand
3.

Position of the second bulge on strand 3,
relative to the main bulge, towards the N-
terminus of strand 3. If Second_bulge_E3 is
False, then Second_b_place is null.

Average value for harmonic angle constraint
centered in the strand 4 residue that is paired
to the main strand 3 bulge.

Average value for harmonic angle constraint
centered in the strand 4 residue that is paired
to the second strand 3 bulge. If
Second_bulge_E3 is False, then
E3_SecBulgeCurve is null.

If True, strand 6 is extended by 2 residues on
its C-terminus. This is only compatible with a
low degree of strand curvature on the main
bulge.

If True, strand 4 is extended by 2 residues on
its N-terminus. This is only compatible with a
short arm of length 2.

If True, impose a 150° angle constraint on
the central residues of the long arm on
strands 3 and 4 to impart a small curvature in
the absence of a second bulge on strand 3.

Stage 2
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Residue number

H3 length (h_len) (10.11,14,15)

Length, in residues, of H3

Categorical - Loops
with defined ABEGO  See table 3
strings (See table 3)

H3-S3 loop connection
type (connection_type)

Frontal hairpin length Strand residue pair Length, in residue pairs, of the hairpin
(hairpin_len) number (4,6) formed by S1 and S2 (See Fig. S2C)

Stage 3

The pocket opening on NTF2s can be placed
Opening placement Categorical either between the frontal hairpin and H3
(Opening) (Classic,Alternative) (Classic), or between H3 and the H1-H2
connection (Alternative).

Residue number

H1 length (h1_len) (23,19,14)

Length, in residues, of H1

Residue number

H2 length (h2_len) (11.7)

Length, in residues, of H2

C-terminal helix
(has_cHelix)

Stage 4 (optional)

Residue number
(11,8)

Table S1. Generative algorithm parameters

Boolean (True,False) Presence or not of a C-terminal helix

C-helix length (h_len) Length, in residues, of the C-terminal helix.
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Stage 1 logic check Explanation

All variables must have allowed values Unexpected values outside of those described in
Table 1 (Stage 1) are not allowed.

If E3_MainBulgeCurve = 1, then As explained in Chapter 3, sheets with high

ExtendedE6 must be False degree of curvature require bulges to alleviate the
clashes caused by bending. Therefore, it is only
possible to extend strand 6 past the curvature
center on strand 5 if the degree of curvature is

low.
If Second_bulge E3 = True, then If a second bulge is placed on strand 3, a position
Second_b_place and E3_SecBulgeCurve and curvature for it must be selected
must be integers
If long_arm_I = 2, then Second_bulge_E3 An additional bulge on strand 3 cannot be placed
must be False is the long arm is not long enough.

If Second_bulge E3 = True and long_arm_|  An additional bulge on strand 3 cannot be placed
= 3, then Second_b_place must be 1 on a position beyond the N-terminus of strand 3

If base_width = 5, and long_arm_I| = 4, then A sheet with base width 5 and long arm length 4

Second_bulge_E3 must be True (the highest lengths for both sheet components)
would be impossible to connect by helix 3, even at
the highest degree of main bulge curvature. It is
therefore required for sheets these length to have
an additional bulge on strand 3 to curve the N-
terminus of strand 3 back towards the center of
the sheet where it can be connected by helix 3.

If base_width = 3, then ExtendedE4 must be The extension of strand 4 is only compatible with

True, else, ExtendedE4 must be False base width 3, and base width 5 is only compatible
with non-extended strand 4. This is a rule derived
from manual inspection of native NTF2-like
domains.

If base_width = 3, then short_arm_| must be  When the base width is the shortest, the short arm

2 must provide additional interactions with H1.

If long_arm_| > 3 (same as = 4), and If the length of the long arm is 4, and there is no
Second_bulge E3 = False, then second bulge on strand 3, then, in order to avoid
E3_MainBulgeCurve must be 3 making a sheet that is too elongated, the

curvature degree at the main bulge must be 3.

If long_arm_| > 2, then E3_MainBulgeCurve Regardless of the presence of a second bulge on

must be higher than 1 strand 3, if the long arm has length 3 or 4, its
degree of curvature must be 2 or 3 in order to
avoid an excessively elongated sheet

If long_arm_| = 4, Second_bulge E3 = True, In the case that we have the longest possible long

and Second_b_place = 1, then arm with second bulge on strand 3, and this bulge

E3_SecBulgeCurve must be exactly 2. is close to the main strand 3 bulge, then the
degree of curvature at the second bulge must be 2
to avoid the sheet extending too far
(E3_SecBulgeCurve = 1), or folding back onto
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itself (E3_SecBulgeCurve = 3).

If CurvedLongArm = True, then long_arm_| Imparting a small degree of curvature on a long

must be 3 or 4 arm without a second bulge requires it to be a
minimal length of 6 residues, otherwise constraint
vertices will target atoms outside the logical range.

If Second_bulge_E3 = True, then When a second bulge is present on the long arm,
CurvedLongArm must be False curvature is dictated solely by E3_
SecBulgeCurve.

Table S2. Logic check for sheet construction.
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Short name Length (# residues) ABEGO string Compatible H3 lengths
BA 2 BA 10,14
GBA 3 GBA 11,15
GB 2 GB 11,15
ClassicDirect 0 - 10,14
BulgeAndB 4 GBAB 11,15
BBGB 4 BBGB 10,14

Table S3: H3-S3 connection types and features.
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: Base Long arm Short arm . .
Subfamily width length length C-helix Opening
Mk1 5 4 2 No Classic
Mk1.PaCH 5 4 2 Yes - pa;fr']'ne' tolong  cassic
Mk1.PeCH 5 4 2 VOB ~BEmRETERUEr D G
long arm
Mk1.TP 5 4 2 Yes — Occludes classic 50 ative
pocket entrance

Mk2 3 6 4 No Classic
4B.5 7 4 2 No Classic
4B.5.CH 7 4 2 e = pa;f&e' tolong  (yaesic
4B.7 5 6 2 No Classic
4B.7.CH 5 6 2 e = pa;f&e' tolong  (yaesic

Table S4. Description of previously published blueprints and variants, in terms of parameters of
the generative algorithm described in this work.
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Within Quaternary . Gnd HCI
Design Name exs;)(::auszliin expected structure Fg I!)d:se':::ﬁ'nr; Denaturation

SEC EV (MALS) curve
RA1NTF2_01 Yes Yes Tetramer - -
RA1NTF2_02 Yes No - - -
RdA1NTF2_03 Yes Yes Monomer Yes Two-state
RA1NTF2_04 Yes Yes Monomer Yes Two-state
Rd1NTF2_05 Yes Yes Monomer Yes Two-state
RA1NTF2_06 Yes Yes Monomer Yes Two-state
RA1NTF2_07 Yes Yes Monomer Yes Two-state
RA1NTF2_08 No - - - -
RA1NTF2_09 No - - = =
RA1NTF2_10 Yes Yes Monomer Yes Two-state
RA1NTF2_11 Yes No - - -
RA1NTF2_12 Yes No - - -
RA1NTF2_13 Yes No - - -
RA1NTF2_14 No - - - -
RdA1NTF2_15 Yes Yes Monomer Yes Two-state
RA1NTF2_16 Yes No - - -
RA1NTF2_17 Yes Yes Monomer Yes Gradual

Table S5. Experimental characterization of first-round designs.
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Within

. Soluble Quaternary Folded Denaturation
Design Name expression expected structure protein curve
SEC EV

Rd2NTF2_01 No - - = =
Rd2NTF2_02 No - - - -
Rd2NTF2_03 Yes Yes Monomer Yes Two-state
Rd2NTF2_04 No - - - -
Rd2NTF2_05 No - - = =
Rd2NTF2_06 Yes Yes Monomer Yes Two-state
Rd2NTF2_07 Yes Yes Monomer Yes Two-state
Rd2NTF2_08 Yes No - - -
Rd2NTF2_09 No - - = =
Rd2NTF2_10 Yes Yes Monomer Yes Two-state
Rd2NTF2_11 Yes Yes Monomer Yes Two-state
Rd2NTF2_12 Yes Yes Monomer Yes Two-state
Rd2NTF2_13 Yes Yes Monomer Yes Two-state
Rd2NTF2_14 No - - - -
Rd2NTF2_15 Yes Yes Dimer - -
Rd2NTF2_16 Yes Yes Monomer Yes Two-state
Rd2NTF2_17 No - - - -
Rd2NTF2_18 No - - - -
Rd2NTF2_19 Yes Yes Monomer Yes Two-state
Rd2NTF2_20 Yes Yes Monomer Yes Two-state
Rd2NTF2_21 Yes No - - -
Rd2NTF2_22 Yes No - - -
Rd2NTF2_23 Yes Yes Dimer - -
RA2NTF2_24 Yes No - - -
Rd2NTF2_25 Yes Yes Monomer Yes Two-state
Rd2NTF2_26 Yes No - - -
Rd2NTF2_27 Yes No - - -
Rd2NTF2_28 Yes Yes Monomer Yes Two-state
Rd2NTF2_29 Yes No - - -
Rd2NTF2_30 Yes No - - -
Rd2NTF2_31 Yes No - - -
Rd2NTF2_32 No No - - -
Rd2NTF2_33 Yes No - - -
Rd2NTF2_34 Yes No - - -
Rd2NTF2_35 Yes No - - -
Rd2NTF2_36 Yes Yes Monomer Yes Two-state
Rd2NTF2_37 Yes No - - -

Table S6. Biochemical characterization second-round designs.
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Within .
Dosignhame  SOUle  oxpectea  Quplermary  Foed  Denaturtion

SEC EV
BBLP1 Yes Yes Monomer Yes Two-state
BBLP2 Yes Yes Dimer - -
BBLP3 Yes Yes Monomer Yes Two-state
BBLP4 No - - - -
BBLP5 No - - - -
BBLP6 No - - - -
BBLP7 Yes No - - -
BBLP8 Yes No - - -
BBLP9 Yes No - - -
BBLP10 No - - - -

Table S7. Biochemical characterization of de novo NTF2 designs longer than 120 amino acids.
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Feature name

Explanation

Holes
HolesCorSCN

HolesCorSCNnBB

HolesCorSAS

HolesCorSASnBB

nres
cavity_vol
BuriedHyphobSA

BuriedHyphobSA_H

BuriedHyphobSA_E

BuriedHyphobSA_L

BuriedHyphobSA2_H
BuriedHyphobSA2_E
BuriedHyphobSA2_L

nres_aro
nres_aro_E
nres_aro_H
nres_aro_L
nres_H

nres_E

nres_L
nres_aro_per_res
nres_charge
nres_hydrophob
nres_hydrophob_noA

nAla

nres_H_per

nres_E_per

nres_L_per
nres_charge_per
nres_hydrophob_per
nres_hydrophob_noA_per

nAla_per

Rosetta filter “Holes”, described in (22), using default values.
Rosetta filter “Holes”, but only for core atoms, with core defined
by the number of side-chain neighbors.

Rosetta filter “Holes”, but only for core atoms, with core defined
by the number of side-chain neighbors, and not taking into
account backbone atoms

Rosetta filter “Holes”, but only for core atoms, with core defined
by the solvent accessible surface area of side-chains.

Rosetta filter “Holes”, but only for core atoms, with core defined
by the solvent accessible surface area of side-chains, not
including backbone atoms.

Length of the protein in amino-acids

Rosetta “CavityVolume” filter with default values

Buried surface area of all atoms in hydrophobic residues
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta
filter.

Buried surface area of all atoms in hydrophobic residues
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta
filter. In helices only.

Buried surface area of all atoms in hydrophobic residues
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta
filter. In strands only.

Buried surface area of all atoms in hydrophobic residues
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta
filter. In loops only.

Buried surface area of all atoms as calculated by the
“BuriedSurfaceArea” Rosetta filter. In helices only.

Buried surface area of all atoms as calculated by the
“BuriedSurfaceArea” Rosetta filter. In strands only.

Buried surface area of all atoms as calculated by the
“BuriedSurfaceArea” Rosetta filter. In loops only.

Number of aromatic residues in the protein

Number of aromatic residues in the protein strands

Number of aromatic residues in the protein helices

Number of aromatic residues in the protein loops

Number of residues in the protein helices

Number of residues in the protein strands

Number of residues in the protein loops

Number of aromatic residues in the protein, divided by its length
Number of charged residues in the protein

Number of hydrophobic residues in the protein

Number of hydrophobic residues in the protein, not counting
alanine

Number of alanine residues in the protein

Fraction of residues in helices

Fraction of residues in strands

Fraction of residues in loops

Number of charged residues in the protein divided by its length
*100

Number of hydrophobic residues in the protein divided by its
length*100

Number of non-alanine hydrophobic residues in the protein
divided by its length*100

Number of alanine residues in the protein divided by its
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BuriedHyphobSAperRes
total_score

scoreRes

ramaRes

fa_atr
fa_atrRes

fa_repRes
charge
hx_sc

longestPS
longestPS_H

longestPS_E
longestPS_L
exposedHyphob

SSmismatch

hb_Ir_bb_per_res
hb_Ir_bb_per_sheet

hb_sr_bb_per_helix
av_loop_rama_prepro
av_loop_p_aa_pp

av_rama_pp_loop
geom_res

AvDeg

arom_in_core_SS_SCN

arom_in_core_SS_SASA

hyphob_in_core_SS_SCN

hyphob_in_core_SS_SASA

length*100

Buried surface area of all atoms in hydrophobic residues
(FAMILYVW) as calculated by the “BuriedSurfaceArea” Rosetta
filter, divided by protein length

Total Rosetta score (calculated by ref2015)

Total Rosetta score (calculated by ref2015) divided by protein
length

Total rama Rosetta score term (calculated by ref2015) divided by
protein length

Total fa_atr Rosetta score term (calculated by ref2015)

Total fa_atr Rosetta score term (calculated by ref2015) divided
by protein length

Total fa_rep Rosetta score term (calculated by ref2015) divided
by protein length

Absolute protein charge (Assuming typical amino-acid behavior
at pH7)

Shape complementarity between helice and the rest of the
protein (See SSShapeComplementarityFilter filter in Rosetta)
Length of the longest continuous stretch of polar amino-acids
Length of the longest continuous stretch of polar amino-acids in
helices

Length of the longest continuous stretch of polar amino-acids in
strands

Length of the longest continuous stretch of polar amino-acids in
loops

Number of solvent-exposed hydrophobic residues (See
ExposedHydrophobics filter in Rosetta)

Nth root of the productory of all residue probabilities of NOT
being in the modeled secondary structure state, as calculated by
PSIPRED (23), where N is the length of the protein. See the
SSPrediction filter in Rosetta.

hb_Ir_bb Rosetta score term, divided by protein length

hb_Ir_bb Rosetta score term, divided by the number of residues
in sheets

hb_sr_bb Rosetta score term, divided by the number of residues
in helices

rama_prepro Rosetta score term in loops, divided by the number
of residues in loops

p_aa_pp Rosetta score term in loops, divided by the number of
residues in loops

av_loop_rama_prepro+ av_rama_pp_loop

Number of residues with large deviations of Omega angle from
planarity

Average number of residues in contact with each position in the
protein (See AverageDegree filter in Rosetta)

Number of aromatic amino-acids in core positions of non-loop
secondary structure elements, with core defined by the number
of side-chain neighbors

Number of aromatic amino-acids in core positions of non-loop
secondary structure elements, with core defined by solvent
accessible surface area

Number of hydrophobic amino-acids in core positions of non-loop
secondary structure elements, with core defined by the number
of side-chain neighbors

Number of hydrophobic amino-acids in core positions of non-loop
secondary structure elements, with core defined by solvent
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accessible surface area

Number of core residues, with core defined by the number of
side-chain neighbors

Number of core residues, with core defined by solvent accessible
surface area

Table S8: Design features based on Rosetta filters with score function ref2015

core_SCN

core_SASA
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Feature name Explanation
score_res Total Rosetta score divided by protein length.
score_res_betacart Total Rosetta score divided by protein length, with score

calculated taking into account deviations from ideal covalent
bonds angles and lengths.

hyphob_contact Number of carbon-carbon atomic contacts between hydrophobic
residues.

hphob_sc_contacts_rta Number of carbon-carbon atomic contacts between hydrophobic
residues, not counting alanine.

hyphob_Aro_contact Number of carbon-carbon atomic contacts between aromatic
residues.

hyphob_contact_norm Number of carbon-carbon atomic contacts between hydrophobic

residues divided by protein length
hyphob_Aro_contact_norm Number of carbon-carbon atomic contacts between aromatic
residues divided by protein length
Table S9: Design features based on Rosetta filters with score function beta_nov16.
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Feature name Explanation

buns_all Total number of residues with at least one buried polar
unsatisfied atom

buns_nosurf_all Total number of residues with at least one buried polar
unsatisfied atom, except in exposed residues

buns_nosurf_sc Total number of residues with at least one buried polar
unsatisfied side-chain atom, except in exposed residues

buns_nosurf_bb Total number of residues with at least one buried polar

unsatisfied backbone atom, except in exposed residues
Table S10: Design features based on Rosetta filters related to burial of unsatisfied polar atoms.
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Feature name Explanation

pckt_vol Volume of main detected pocket in A°

mouth_n Number or mouths or openings of the main detected pocket
mouth_area Area of the largest mouth of the main detected pocket
pckt_maxTD Shortest distance (A) between a point in the outer hull and the

deepest part of the main detected pocket.
Table S11: Design features based on CLIPPERS pocket detection and inventory software.
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Feature name

Explanation

low_rms_worst
avBest

avAll
av_all_loop
av_best_loop

max_av_loop

max_av_best_loop
point_loop_av_all

point_loop_av_worst

av_all_strand
av_best_strand

max_av_strand
max_av_best_strand
av_all_helix
av_best_helix

max_av_helix

max_av_best_helix

Maximum RMSD among the subset of fragments with the lowest
RMSD for all positions

Average RMSD of all fragments with the lowest RMSD for all
positions

Average RMSD of all collected fragments

Average RMSD of all collected fragments for loop positions
Average RMSD of all fragments in all positions, in the loop with
the lowest average RMSD

Average RMSD of all fragments in all positions, in the loop with
the highest average RMSD

Maximum average RMSD of all loop positions

Average of all fragments RMSD starting at the first position of all
loops

Average of maximum RMSD of fragments starting at the first
position of all loops

Average RMSD of all collected fragments for strand positions
Average RMSD of all fragments in all positions, in the strand
with the lowest average RMSD

Average RMSD of all fragments in all positions, in the strand
with the highest average RMSD

Maximum average RMSD of all strand positions

Average RMSD of all collected fragments for helix positions
Average RMSD of all fragments in all positions, in the helix with
the lowest average RMSD

Average RMSD of all fragments in all positions, in the helix with
the highest average RMSD

Maximum average RMSD of all helix positions

Table S12: Protein-wide fragment-related features.
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Feature name Explanation

abd_w Worst abaundance_50 value among all protein positions
abd_b Best abaundance_50 value among all protein positions
abd_av Average of all abaundance_50 values for all protein positions
dsc_w Worst design_score_50 value among all protein positions
dsc_b Best design_score_5value among all protein positions
dsc_av Average of all design_score_5values for all protein positions
ssc_b Worst structural score value among all protein positions
sSsC_w Best structural score value among all protein positions
ssC_av Average of all structural score values for all protein positions

Table S13: Protein-wide TERM-related features.
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Structure stretch name  Explanation

N-term_helix Residues from the N-terminus up to the second to last helix 1 turn
H1H2_link Last H1 turn, loop connection to H2 and first 4 residues of H2
loop3_flank Loop 3 and flanking residues

hairpin S1 and 2, and connections

H3_n 4 residues of N-terminus of H3 and 3 previous residues

H3 All of H3

H3C_str3 Last 4 residues of H3, connection to S3 and 5 first residues of S3
str3_4 5 last residues of S3 and 5 first residues of S4

strd_5 5 last residues of S4 and 5 first residues of S5

str5_6 5 last residues of S5 and 5 first residues of S6

str6¢c_ch C-terminus of S6 to the C-terminus of the protein, when a C-terminal

helix is present.
Table S14: Different local structural domains for TERM and fragment local feature calculation.
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Metric name Explanation

av_allfr Average of all fragments at all positions

av_bestfr Average of only the fragments with the lowest RMSD at all positions

av_worstfr Average of only the fragments with the highest RMSD at all
positions

best_at_worstfr Highest RMSD among the lowest RMSD fragments of all positions

abd50_av Average of all abundance_50 values

dsc50_av Average of all design_score_50 values

ssc50_av Average of all structure score values

abd50_worst Worst abundance_50 value among all positions

dsc50_ worst Worst design_score_50 value among all positions

ssc50_ worst Worst structural score value among all positions

Table S15: Different ways of calculating TERM and fragment local features.
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Wavelength
Resolution
range

Space group
Unit cell

Total
reflections
Unique
reflections
Multiplicity
Completeness
(%)

Mean
I/sigma(l)
Wilson B-
factor
R-merge

R-meas
R-pim

CC1/2

CcC*
Reflections
used in
refinement
Reflections
used for R-
free
R-work

R-free

CC(work)
CC(free)
Number of
non-hydrogen
atoms

RA1NTF2_05

1
28.27 -1.38
(1.429 - 1.38)
C121

60.076 30.498
61.099 90
97.837 90
100427 (9900)

22794 (2258)

4.4 (4.4)
99.65 (99.78)

19.06 (0.87)
20.24

0.0366 (1.774)
0.04167 (2.02)

0.01965
(0.9543)
1(0.319)
1 (0.695)
22779 (2254)

1997 (196)

0.1825
(0.3084)
0.2158
(0.3547)
0.952 (0.690)
0.932 (0.612)
1008

RA1NTF2_04

1
44.33 -1.62
(1.678 - 1.62)
P 2121 21
32.578 36.814
177.303 90 90
90

132857
(13262)
28087 (2762)

4.7 (4.8)
93.63 (79.12)

19.37 (0.96)
25.13

0.03966
(1.586)
0.04474
(1.779)
0.02027
(0.7912)
1(0.322)

1 (0.698)
26376 (2187)

1897 (156)

0.2109
(0.3592)
0.2403
(0.3462)
0.958 (0.647)
0.947 (0.681)
1879

RA1NTF2_05_I
64F_A80G_T9
4P_D101K_L1
06W

0.9786

4472 -1.83
(1.896 - 1.83)
P 31

38.51 38.51
134.148 90 90
120

81860 (8151)

19589 (1956)

4.2 (4.2)
88.44 (66.92)

11.07 (0.68)
29.86
0.06516 (2.12)

0.07492
(2.439)
0.03643
(1.194)

0.999 (0.432)
1(0.777)
17345 (1309)

1702 (122)

0.2163
(0.3734)
0.2546
(0.42086)
0.951 (0.722)
0.955 (0.650)
1770

RA2NTF2_16

0.97741
43.03 - 2.49
(2.59 — 2.49)
P 2121 21
37.5373.74
86.06

90 90 90
61433 (7080)

8867 (964)

6.9 (7.3)
100 (100)

9.2 (1.8)
46.1

0.133 (1.005)
0.155 (1.167)
0.058 (0.427)
0.996 (0.722)

0.999 (0.898)
8801 (1283)

879 (142)

0.2371
(0.2712)
0.2910
(0.3240)
0.905 (0.802)
0.854 (0.684)
2004

RdA2NTF2_20

0.97741
42.31-155
(1.58 - 1.55)
P 41212
48.86 48.86
84.58

90 90 90
213398
(10368)
15581 (781)

13.7 (13.3)
100 (99.9)

13.7 (0.8)
22.1

0.112 (4.34)
0.121 (4.68)
0.044 (1.74)
0.999 (0.423)

1(0.788)
15519 (1234)

1553 (137)

0.1951
(0.3692)
0.2279 (4240)

0.936 (0.666)
0.925 (0.543)
984

macromolecul 951 1776 1715 1969 899
es

solvent 57 103 55 35 77
Protein 116 217 229 231 107
residues

RMS(bonds) 0.019 0.005 0.007 0.002 0.004
RMS(angles) 1.78 0.63 0.84 0.425 0.633
Ramachandra 100.00 99.04 100.00 94.37 98.10
n favored (%)

Ramachandra 0.00 0.96 0.00 4.76 1.90
n allowed (%)

Ramachandra 0.00 0.00 0.00 0.87 0.00
n outliers (%)

Rotamer 0.00 0.00 0.00 3.24 0.00
outliers (%)

Clashscore 8.59 3.21 5.76 6.32 4.45
Average B- 29.64 41.31 48.40 52.50 29.83
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factor

macromolecul 29.12 41.11 48.55 52.50 28.96

es

solvent 38.31 44.71 43.69 52.30 36.84

Number of 13 12 0 0

TLS groups
Table S16: Data collection and refinement statistics. Statistics for the highest-resolution shell are shown in
parentheses.
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Long name Short name
BB45nHmM0313 RA1NTF2_01
BBM1TPm0012 RA1NTF2_02
BBM2nHmO0111 RA1NTF2_03
BBM2nHmO0481 RA1NTF2_04
BBM2nHmO0589 RA1NTF2_05
BBMHCYmO0000 RA1NTF2_06
BBMHCYmO0098 RA1NTF2_07
BBMHCYmO0099 RA1NTF2_08
BBMHCYmO0118 RA1NTF2_09
BBMHCYmO0142 RA1NTF2_10
BBMHCYm0257 RA1NTF2_11
BB45nHmM0217 RA1NTF2_12
BB45nHmM0313 RA1NTF2_13
BB45nHmM0520 RA1NTF2_14
BB47nHm0104 RA1NTF2_15
BB47nHm0234 RA1NTF2_16
BB47nHmM0512 RA1NTF2_17

APXUALRM (MC1) Rd2NTF2_01
CNOCZZYN (MC3) Rd2NTF2_02
IPQZYEHY (MC6) Rd2NTF2_03
MQGQLKLY (MC7) Rd2NTF2_04
NPHNECCY (MC8) Rd2NTF2_05
PVNDHOOV (MC9) Rd2NTF2_06
QLNTLIPS (MC10) RdA2NTF2_07
QPAJWNJL (MC11) Rd2NTF2_08
RWBLOJXV (MC12) Rd2NTF2_09
BMZQQOSL (MC2_1) Rd2NTF2_10
CFRZAXWD (MC2_2) RA2NTF2_11
CGBTHRRH (MC2_3) Rd2NTF2_12
CQXWMZNN (MC2_4) RdA2NTF2_13
DEZFDZKN (MC2_5) Rd2NTF2_14
DFEBCGLM (MC2_6) RdA2NTF2_15
JZXIQIRH (MC2_7) Rd2NTF2_16
ODCAZTIO (MC2_9) RA2NTF2_17
UTEWRJFN (MC2_11) Rd2NTF2_18
WMNMRJMU (MC2_12) Rd2NTF2_19
KVGAMRYX (CAV1) Rd2NTF2_20
MTNNCMGU (CAV2) RdA2NTF2_21
OBJWKGFB (CAV3) RA2NTF2_22
QZFIQMXG (CAV4) RdA2NTF2_23
VJZGDPLE (CAV5) RA2NTF2_24
VMXPYKBP (CAV6) RdA2NTF2_25
AFUBUPIX (POK1) RA2NTF2_26
BBJJQJEH (POK2) RA2NTF2_27
CLYISCOE (POK3) Rd2NTF2_28
ERSKGIDY (POK4) RdA2NTF2_29
GHJPMEUD (POKS5) Rd2NTF2_30
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KVTSDNGQ (POK6) Rd2NTF2_31
LQDGTTOJ (POK?7) Rd2NTF2_32
MYWJWGMP (POKS) Rd2NTF2_33
UBQRFAXL (POK9) RA2NTF2_34
UZNDBWRV (POK10) RA2NTF2_35
XXUZVSNH (POK11) Rd2NTF2_36
ZSETTDDT (POK12) RA2NTF2_37

Table S17: Design name mapping.
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