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Abstract

Plasmodium vivax malaria is much less common in Africa than the rest of the world
because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC)
to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently,
there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a
high number of them being in Duffy negative individuals, potentially indicating P. vivax
has evolved an alternative invasion mechanism that can overcome Duffy negativity.
Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation
(CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from
symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and
Duffy negative individuals are found. A total of 236,351 SNPs were detected, of which
21.9% was nonsynonymous and 78.1% was synonymous mutations. The largest
number of SNPs were detected on chromosomes 9 (33,478 SNPs; 14% of total) and 10
(28,133 SNPs; 11.9%). There were particularly high levels of polymorphism in
erythrocyte binding gene candidates including reticulocyte binding protein 2c (RBP2c),
merozoite surface protein 1 (MSP1), and merozoite surface protein 3 (MSP3.5,
MSP3.85 and MSP3.9). Thirteen genes related to immunogenicity and erythrocyte
binding function were detected with significant signals of positive selection. Variation in
gene copy number was also concentrated in genes involved in host-parasite
interactions, including the expansion of the Duffy binding protein gene (PvDBP) on
chromosome 6 and several PIR genes. Based on the phylogeny constructed from the
whole genome sequences, the expansion of these genes was an independent process

among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P.
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vivax infections among study sites and showed various levels of gene flow at a small
geographical scale. The genomic features of P. vivax provided baseline data for future
comparison with those in Duffy-negative individuals, and allowed us to develop a panel
of informative Single Nucleotide Polymorphic markers diagnostic at a micro-

geographical scale.
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89 Introduction

90 Vivax malaria is the most geographically widespread human malaria, causing over 130

91  million clinical cases per year worldwide [1]. Plasmodium vivax can produce dormant

92 liver-stage hypnozoites within infected hosts, giving rise to relapse infections from

93  months to years. This unique feature of P. vivax contributes to an increase in

94  transmission potential and increases the challenge of elimination [2]. Understanding P.

95  vivax genome variation will advance our knowledge of parasite biology and host-

96 parasite interactions, as well as identify potential drug resistance mechanisms [3, 4].

97  Such data will also help identify molecular targets for vaccine development [5-7], and

98  provide new means to track the transmission and spread of drug resistant parasites [8-

99 9.
100 Compared to P. falciparum, P. vivax isolates from Southeast Asia (e.g., Thailand
101  and Myanmar), Pacific Oceania (Papua New Guinea), and South America (Mexico,
102  Peru, and Colombia) have significantly higher nucleotide diversity at the genome level
103 [2]. This could be the result of frequent gene flow via human movement, intense
104  transmission, and/or variation in host susceptibility [10-14]. P. vivax infections are also
105  much more likely to contain multiple parasite strains in areas where transmission is
106 intense and/or relapse is common [10, 15-18]. In Papua New Guinea, for example, P.
107  vivax infections had an approximately 3.5-fold higher rate of polyclonality and nearly
108  double the multiplicity of infection (MOI) than the P. falciparum infections [16]. Similar
109 rates of polyclonality and MOI have also been reported in P. vivax in Cambodia [6]. It is
110  possible intense transmission has sustained a large and stable parasite population in

111  these regions [17,18]. By contrast, geographical differentiation and selection pressure
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112 over generations can lead to fixation of parasite genotypes in local populations. In the
113 Asia-Pacific region, P. vivax showed a high level of genetic relatedness through

114  inbreeding among the dominant clones, in addition to strong selection imposed in a

115 number of antimalarial drug resistance genes [19]. In Ethiopia, the chloroquine

116  resistance transporter gene (Pvcrt) of P. vivax on chromosome 14 had been shown with
117  significant selection in a region upstream of the promotor, highlighting the ability of P.
118  vivax to rapidly evolve in response to control measures [20]. Apart from mutations, high
119  copy number observed in Pvcrt and multidrug resistant gene (Pvmdr1) has also been
120  shown to be associated with increased antimalaria drug resistance [21,22].

121 Recent genomic studies have indicated that some highly polymorphic genes in
122  the P. vivax genome are associated with red blood cell invasion and immune evasion
123 [10, 12, 19, 23]. They include the merozoite surface protein genes MSP1

124  (PVP01_0728900) and MSP7 (PVX_082665), Pv-fam-b (PVX_002525), Pv-fam-e

125 (PVX_089875), the reticulocyte binding protein gene RBP2c (PVP01_0534300), serine-
126  repeat antigen 3 (SERA; PVX_003840), as well as virulent genes (VIR) such as VIR22
127  (PVX_097530) and VIR12 (PVX_083590) [23-29]. Polymorphisms in genes associated
128  with immune evasion and reticulocyte invasion have important implications for the

129 invasion efficiency and severity of P. vivax infections. Members of the erythrocyte

130  binding gene family, including reticulocyte binding proteins (RBPs), Duffy-binding

131  proteins (DBPs), and merozoite surface proteins (MSP3 and MSP7) have been

132 previously shown to exhibit high sequence variation in P. vivax [20, 30]. The

133  polymorphisms in RBP1 and RBP2 genes may relate to an increased capability of

134  erythrocyte invasion by P. vivax [31-33]. It has been suggested that PvRBP2b-TfR1
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135 interaction is vital for the initial recognition and invasion of host reticulocytes [34], prior
136  to the engagement of PvDBP1 and Duffy antigen chemokine receptor (DARC) and

137  formation of a tight junction between parasite and erythrocyte [35]. Apart from PvRBP,
138  Reticulocyte Binding Surface Antigen (PvRBSA) [36], an antigenic adhesin, may also
139  play a key role in P. vivax parasites binding to target cells, possessing the capability of
140  binding to a population of reticulocytes with a different Duffy phenotype [37, 38].

141  Another erythrocyte binding protein gene (PvEBP), a paralog of PvDBP1, which harbors
142 all the hallmarks of a Plasmodium red blood cell invasion protein, including conserved
143 Duffy-binding like and C-terminal cysteine-rich domains [39], has been recently shown
144  to be variable in copy number in the Malagasy P. vivax [39]. Functional analyses

145 indicated that region Il of this gene bound to both Duffy-positive and Duffy-negative

146 reticulocytes, although at a lower frequency compared to PvDBP, suggestive of its role
147  in erythrocyte invasion [40]. Both PvEBP1 and PvEBP2 genes exhibit high genetic

148  diversity and are common antibody binding targets associated with clinical protection
149  [41, 42]. Other proteins such as tryptophan-rich antigen gene (TRAg), anchored

150  micronemal antigen (GAMA), and Rhoptry neck protein (RON) have also been

151 suggested to play a role in red cell invasion, especially in low-density infections [43-47].
152  Information of the polymorphisms in these genes will have important implications on the
153  dynamics of host-parasite interactions.

154 Compared to Southeast Asia and South America where P. vivax is highly

155 endemic, data on polymorphisms in erythrocyte binding gene candidates of P. vivax
156  from Africa is limited. Filling the gap is critical for identifying functional genes in

157  erythrocyte invasion, biomarkers for tracking the African P. vivax isolates, as well as
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158  potential gene targets for vaccine development. It was previously thought that most
159  African populations were immune to P. vivax infections due to the absence of DARC
160  gene expression required for erythrocyte invasion. However, several recent reports
161 have indicated the emergence and potential spread of P. vivax across Africa [32, 48-
162  50]. The objective of this study was to describe genomic variation of P. vivax from

163  Ethiopia. Specifically, we examined the level of genetic polymorphisms in a panel of 64
164  potential erythrocyte binding protein genes that have been suggested to play a role in
165 the parasite-host invasion process. In addition, we inferred transmission patterns of P.
166  vivax infections from different study sites based on the genetic variants. A recent study
167 by Auburn et al. [20] has compared the genetic variants of P. vivax from Ethiopia with
168  other geographical isolates. In the present study, we focus on the genomic

169  characteristics of P. vivax among different study sites in Ethiopia with the goals to

170  establish a baseline for genome comparison with the Duffy-negative P. vivax in our
171  ongoing investigation, as well as to develop a panel of informative Single Nucleotide
172 Polymorphic (SNP) markers diagnostic at a micro-geographical scale.

173

174 Materials and Methods

175 Ethics statement

176  Scientific and ethical clearance was obtained from the Institutional Scientific and Ethical
177  Review Boards of Jimma and Addis Ababa Universities in Ethiopia, and The University
178  of North Carolina, Charlotte, USA. Written informed consent/assent for study

179  participation was obtained from all consenting heads of households, parents/guardians
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180  (for minors under age of 18), and each individual who was willing to participate in the
181  study.

182

183  Study area and sample collection

184  Genomic DNA was extracted from 22 clinical samples collected in Jimma, southwestern
185  Ethiopia during peak transmission season (September — November, 2016; Figure 1).
186  Finger-pricked blood samples were collected from malaria symptomatic (who has fever
187  with axillary body temperature > 37.5°C and with confirmed asexual stages of malaria
188  parasite based on microscopy) or febrile patients visiting the health centers or hospitals
189  at each of the study sites. Thick and thin blood smears were prepared for microscopic
190 examination, and 4-6 ml of venous blood were collected from each P. vivax-confirmed
191 patientin K2 EDTA blood collection tubes. For the whole blood samples, we used the
192  Lymphoprep/Plasmodpur-based protocol to deplete the white blood cells and enrich the
193  red blood cell pellets [51]. DNA was then extracted from approximately 1 ml of the red
194  blood cell pellets using Zymo Bead Genomic DNA kit (Zymo Research) following the
195 manufacturer’s procedures. The extracted DNA were first assessed by nested and

196  quantitative PCR methods to confirm and quantify P. vivax of the infected samples [52].
197  From a larger set of samples, we then performed microsatellite analyses using seven
198 different loci [53]. Only monoclonal samples were selected and proceeded for

199  sequencing. Whole genome sequencing was conducted on the Illlumina HiSeq 3000
200 Sequencing Platform at the Wellcome Sanger Institute (European Nucleotide Archive
201  [ENA] accession number of each sample in Table 1). The generated sequence reads

202  were mapped individually to the publicly available reference genome PvP01 from Gene
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203 DB using Bowtie version 2 [54]. The original 22 samples were processed to remove

204  reads other than P. vivax. The percentage coverage of the P. vivax reads in our

205 samples were high enough to not affect the results. An additional 24 sample sequence
206 data were obtained as FASTQ files from the ENA. These samples were collected from
207  Arbaminch, Badowacho, Halaba, and Hawassa in southwestern Ethiopia (Figure 1), the
208  Duffy status of each of these 24 samples is unknown. They were then aligned to the
209 PVPO1 reference genome using BWA-MEMv.2 with default settings [55, 56]. The overall
210  quality of each resulting BAM was assessed using FASTQC. Similarly, we concluded
211 that the percentage of the P. vivax reads covered in the additional 24 samples were
212 high enough to reflect the dominant signal of the variants and negate polyclonal

213  influences. Two of our samples displayed a significant decline in average quality in read
214  mapping and were therefore removed from further SNP variant and copy number

215  variation analyses.

216

217  SNP discovery, annotation, and filtering

218 Potential SNPs were identified by SAM tools v.1.6 mpileup procedure [57] in conjunction
219  with BCF tools v.1.6 [57] across all 44 sample BAM files using the PVP01 reference
220 genome. Compared to the Salvador-I, the PVP01 reference genome consists of 14

221  major chromosomal sequences, and provides a greater level of gene annotation power
222  and improved assembly of the subtelomeres [56]. We analyzed only sequence reads
223  that were mapped to these 14 major chromosomal sequences. The hypervariable and
224  subtelomeric regions in our samples were retained during the variant calling procedure

225 and each sample BAM file had duplicates marked using SAMtools 1.6 markdup
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226  procedure. For the mpileup procedure, the maximum depth threshold, which determines
227  the number of maximum reads per file at a position, was set to 3,000 million to ensure
228 that the maximum amount of reads for each position was not reached. Samples were
229  pooled together using a multisampling variant calling approach. The SNPs were then
230  annotated with SnpEff v.4.3T [58] based on the annotated gene information in GeneDB.
231  Filtering was done using the following standard metrics, including Read Position Bias,
232 Mapping Quality vs Strand Bias, Raw read depth, Mapping Quality Bias, Base Quality
233  Bias, and Variant Distant Bias produced by SAM tools and BCF tools during the variant
234  calling procedure. In Snp Sift, data was filtered by choosing SNPs that had a Phred

235 Quality score > 40, a raw read depth (DP) > 30, and a base quality bias >0.1 [59]. We
236  then calculated the allele frequency for each SNP position for all 44 samples using the
237  frequency procedure in VCF tools v.0.1.15 [60]. The total number of SNPs across all
238 samples, as well as the number of nonsynonymous and synonymous mutations were
239  recorded. Mutations were compared among the 14 chromosomes in addition to a panel
240  of 64 erythrocyte binding genes.

241

242  Copy number variation analyses

243  Copy number variation of gene regions was assessed with CNVnator [61]. CNVnator
244  uses mean-shift theory, a partitioning procedure based on an image processing

245  technique and additional refinements including multiple bandwidth partitioning and GC
246  correction [61]. We first calculated the read depth for each bin and correct GC-bias. This
247  was followed by mean-shift based segment partition and signal merging, which

248  employed an image processing technique. We then performed CNV calling, of which
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249  segments with a mean RD signal deviating by at least a quarter from genomic average
250 read depth signal were selected and regions with a P-value less than 0.05 were called.
251 A one-sided test was then performed to call additional copy number variants. SAM tools
252 v.1.6 was utilized in our data preprocessing step to mark potential duplicates in the BAM
253 files and followed the CNV detection pipeline [62]. We extracted the read mappings

254  from each of BAM files for all chromosomes. Once the root file was constructed using
255 the extracted reads, we generated histograms of the read depths using a bin size of
256  100. The statistical significance for the windows that showed unusual read depth was
257 calculated and the chromosomes were partitioned into long regions that have similar
258  read depth.

259 To validate the results from CNVnator, we used the GATK4 copy number

260 detection pipeline to further examine gene copy number [63-65]. The read coverage
261  counts were first obtained from pre-processed genomic intervals of a 1000-bp window
262 length based on the PvP01 reference genome. The read fragment counts were then
263  standardized using the Denoise Read Counts that involved two transformations. The
264  first transformation was based on median counts, including the log, transformation, and
265 the counts were normalized to center around one. In the second transformation, the tool
266  denoises was used to standardized copy ratios using principal component analysis.

267

268 Test for positive selection

269 Regions of positive selection were examined among the 44 Ethiopian P. vivax isolates
270  using the integrated haplotype score approach, specifically the SciKit-Allel for python, a

271  package used for analysis of large scale genetic variation data [66]. Before the samples
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272 were run through Scikit-Allel, genotypes for each of the samples were phased using
273  BEAGLE [67]. Genes that were detected with signals of positive selection by SciKit-
274  Allel, as well as a panel of 64 potential erythrocyte binding genes were further evaluated
275  using the PAML package (Phylogenetic Analysis by Maximum Likelihood) [68]. Using
276  the codeml procedure in PAML, DNA sequences were analyzed with the maximum
277  likelihood approach in a phylogenetic framework. The synonymous and

278  nonsynonymous mutation rates between protein-coding DNA sequences were then
279  estimated in order to identify potential regions of positive selection. We created two
280  models, the neutral model M1 and the selection model M2. The average d\/ds values
281  were estimated across all branches in both M1 and M2 models and the average dy/ds
282  values across all sites in the M2 model. The d\/ds values were compared between the
283  two models using a likelihood ratio test for significant positive selection.

284

285 Comparison of nucleotide diversity among EBP gene regions

286  Based on the literature [23-33], we identified 64 gene regions that are potentially related
287  to erythrocyte binding in P. vivax (Supplementary Table 1). These included the DBP
288  (duffy binding protein), EBP (erythrocyte binding protein), MSP (merozoite surface

289  protein), and RBP (reticulocyte binding protein) multigene families, the tryptophan rich
290 antigen gene family (TRAg), GPIl-anchored microanemal antigen (GAMA), microneme
291 associated antigen (MA), rhoptry associated adhesin (RA), high molecular weight

292  rhoptry protein 3 (RHOP3), and rhoptry neck protein (RON) genes. Previous study has
293  shown that the transcriptome profiles of the TRAg genes were differentially transcribed

294  at the erythrocytic stages, indicating that these genes may play specific roles in blood-
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295 stage development [43]. The reticulocyte binding protein multigene family encodes
296 genes that each have a receptor on the surface that is essential for the host-invasion
297 stage of P. vivax [69]. The MSP multigene family, currently assumed to be a candidate
298  for vaccine generation, also plays a role in the invasion stage of P. vivax and is also
299  immunogenic [26]. The nucleotide diversity of 64 potential erythrocyte binding genes
300 were compared among the 44 P. vivax sample consensus sequences using DnaSP
301 [70]. The Pairwise-Deletion method where gaps were ignored in each pairwise

302 comparison was used for this calculation.

303

304 Genetic relatedness and transmission network analyses

305 Phylogenetic analyses were performed to infer the genetic relatedness among the 44
306 Ethiopian isolates. Sequence alignment was first conducted using a multiple sequence
307 alignment program in MAFFT v. 7 [71]. The alignment was then trimmed to remove
308 gaps using trimal (the gappyout option) that trimmed the alignments based on the gap
309 percentage count over the whole alignment. After sequence editing, we concatenated
310 all alignment files using FASconCAT-G [72], a perl program that allows for

311 concatenation and translation (nucleotide to amino acid states) of multiple alignment
312 files for phylogenetic analysis. We used the maximum likelihood method implemented in
313 the Randomized Accelerated Maximum Likelihood (RAXML) v8 to construct

314  phylogenetic trees [73]. The GTRGAMMA model was used for the best-scoring

315 maximum likelihood tree. The GTR model incorporates the optimization of substitution
316 rates and the GAMMA model accounts for rate heterogeneity. A total of 100 rapid

317  bootstrap runs were conducted to evaluate the confidence of genetic relationships. In
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318 addition, we performed principal component analyses using the gIPCA function in R, a
319 subset of the adegenet package [74], to determine the genetic relatedness of the

320 samples among the different study sites in Ethiopia. A transmission network was

321 created using StrainHub, a tool for generating transmission networks using phylogenetic
322 information along with isolate metadata [75]. The transmission network was generated
323  using the locations of the samples as the nodes and calculating the source hub ratio
324  between each location. The source hub ratio was calculated by the number of

325 transitions originating from a node over the total number of transitions related to that
326 node. A node with a ratio close to 1 indicates a source, a ratio close to 0.5 indicates a

327  hub, and a ratio close to 0 indicates a sink for the P. vivax infections.

328

329 Results

330 Distribution of SNPs among the chromosomes and EBP genes

331 Atotal of 252,973 SNPs were detected among the 44 Ethiopian P. vivax samples

332 (Figure 2), with 21.5% (54,336 out of 252,973) nonsynonymous and 78.5% (198,637 out
333  of 252,973) synonymous mutations (Figure 3A). The highest number of SNPs were

334  observed on chromosomes 7 (28,856 SNPs; 11.4%), 9 (28,308 SNPs; 11.2%), and 12
335 (28,190 SNPs; 11.1%); whereas the lowest number of SNPs were observed on

336 chromosomes 3 (6,803 SNPs; 2.7%), 6 (5,044 SNPs; ~2%), and 13 (8,809 SNPs; 3.5%;
337  Figure 3A; Supplementary Table 2).

338

339 The 64 erythrocyte binding genes accounted for 3,607 of the total SNPs, with 1685

340 (46.7%) identified as nonsynonymous and 1922 (53.3%) as synonymous mutations
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341  (Figure 3B). Among these genes, the highest number of SNPs were observed in

342  reticulocyte binding protein gene (RBP2c) on chromosome 5, followed by the MSP3
343  multigene family (MSP3.5, MSP3.9 and MSP3.8) on chromosome 10. Nucleotide

344  diversity also showed to be highest in the RBP and MSP3 multigene families, with an
345 average nucleotide diversity of 1.3% and 2.8%, respectively, among our samples

346  (Figure 3B). By contrast, the lowest number of SNPs were observed in the Duffy

347  binding protein gene (DBP1) on chromosome 6 with a total of 13 SNPs, of which 12
348  were identified as nonsynonymous and one as synonymous mutations (Figure 3B).

349  Likewise, another erythrocyte binding protein (EBP2), located also on chromosome 6,
350 was one of the least variable genes with only one nonsynonymous mutation. The TRAg
351 gene family also showed a low level of nucleotide diversity when compared to the other
352  EBP gene families with an average nucleotide diversity of 0.2% (Figure 3B).

353

354  Gene regions under positive selection

355 Based on the integrated haplotype scores, positive selection was detected in 13 gene
356 regions (Figure 4). These included the sub-telomeric protein 1 (STP1) on chromosome
357 5, the membrane associated erythrocyte binding-like protein (MAEBL) on chromosome
358 9, MSP3.8 on chromosome 10, as well as various plasmodium interspersed repeats
359  (PIR) protein genes on chromosomes 3, 5, 7, 10, 11, and 12 (Figure 4). Based on

360 PAML, 25 out of the 64 erythrocyte binding genes showed evidence of positive selection
361 (Table 2; Supplementary Table 3). The majority of these genes belong to the TRAg

362  multigene family. The TRAg genes had an average dy/ds ratio of 2.75 across all

363 branches and an average of 5.75 across all sites for the M2 model tested for selection
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364 (Table 2). Compared to the other TRAg genes, TRAg15 had more sites detected under
365 positive selection, with 50 of the sites showing a posterior probability greater than 50%
366 and 43 showing a posterior probability greater than 95% (Table 2). While the TRAg4
367 gene had the highest dy/ds ratio across all sites among other TRAg genes, only six sites
368  were shown under positive selection with a posterior probability greater than 50% and
369  one with a posterior probability greater than 95%.

370 All RBP genes, except for RBP2c, showed regions with significant signals of

371  positive selection (average dy/ds ratio across all sites: 5.11; Table 2). Among them,

372  RBP2p1 had the largest number of sites with posterior probabilities greater than 95%
373 (Table 2). Among all the MSP genes, only MSP5, MSP9, and MSP10 indicated regions
374  under positive selection. The MSP5 and MSP9 genes had an average dy/ds ratio of

375  3.85 across all sites and 1.11 across branches (Table 2). While MSP10 had an average
376  dn/ds ratio of 1.16 across all branches and less than 1 across all sites, only seven sites
377  were indicated with posterior probabilities greater than 50% and 95% (Table 2).

378  Although MSP3.8 showed potential positive selection based on the integrated haplotype
379  scores (Figure 4), PAML did not show significant evidence of positive selection. For the
380 DBP gene family, DBP9 showed the highest d\/ds ratio across all sites and branches
381 (10.39 and 3.88, respectively; Table 2).

382

383 Copy number variation and evolution of high-order copy variants

384  According to CNVnator, 19 gene regions showed copy number variation among our

385 samples (Figure 5; Supplementary Table 4). Among them, 11 gene regions were

386 detected with up to 2-3 copies and 8 gene regions with 4 copies or higher. We observed
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387  copy number variation in several PIR genes distributed across chromosomes 1, 2, 4, 5,
388 7,10 and 12 (Figure 5; Supplementary Table 4). Specifically, for the PIR genes located
389  on chromosome 2 (including PVP01_0220700, PVP01_0200200, PVP01_0200300, and
390 PVPO01_0200100; Figure 5), more than 20% of the samples had 2-3 copies and

391 approximately 2-4% of the samples had 4 copies or higher. Among the 64 erythrocyte
392  binding genes, duplications were observed in DBP1 on chromosome 6 and MSP3 on
393 chromosome 10. DBP1 ranged from one to as high as five copies, and MSP3 ranged
394  from one to as high as three copies among our samples (Figure 5), consistent with

395  previous findings [19, 20, 76]. The remaining erythrocyte binding genes were detected
396  with a single copy across our samples.

397 A maximum likelihood tree constructed based on the whole genome sequences
398 showed an admixture of P. vivax isolates with single and multiple PvDBP copy number
399  (Figure 6A). The Ethiopian P. vivax isolates were divided into six subclades. Subclade |
400 contained P. vivax samples mostly from Arbaminch and Badowacho with both one and
401 two PvDBP copies. Subclade Il contained samples from Jimma and Hawassa with two
402  PvDBP copies. Subclade Ill contained a mixture of P. vivax samples from Arbaminch,
403 Halaba, Hawassa, and Jimma with single and high-order PvDBP copies. This clade was
404  sister to subclade IV that contained P. vivax samples mostly from Jimma (Figure 6A). In
405 subclade IV, no distinct clusters were detected between isolates with single and multiple
406 PvDBP. Subclade V contained samples from Jimma and subclade VI contained

407 samples from Arbaminch, Badowacho, Hawassa, and Halaba. Each of the subclades
408 had samples with both one and two PvDBP copies. Similar patterns were observed in

409 the MSP3 and PIR genes where P. vivax isolates with single and multiple copies were
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410 clustered together in separate subclades (Figures 6B-D), suggesting that these gene
411 regions could have expanded multiply among samples at different locations.

412

413  Gene flow and transmission network of the Ethiopian P. vivax

414  The principal component analysis based on the SNP variants showed samples from
415  Arbaminch, Badowacho, Hawassa, and Halaba were genetically closely related but
416 differentiated from Jimma (Figure 7A). The transmission network indicated that

417  Arbaminch was the major source or hub of infections where the infections in Jimma,
418 Hawassa, Badowacho, and Halaba were originated from (Table 3; Figure 7B). On the
419  other hand, no transmission was originated from Halaba, making this location the

420 largest sink of transmissions. The greatest extent of gene flow was observed between
421  Arbaminch and Badowacho (Figure 7B). Hawassa and Jimma showed a source hub
422  ratio of 0.5, indicating that there are equally as many egress transmissions as ingress
423  transmissions (Table 3). Although Jimma and Badowacho/Halaba are in close

424  geographical proximity, no apparent gene flow was observed between these sites.

425

426 Discussion

427  Across the genome, the total number of SNPs observed among 44 P. vivax isolates in
428  Ethiopia were comparable to those previously reported in South American [77] and

429  Southeast Asian countries [19]. For instance, 303,616 high-quality SNPs were detected
430 in 228 P. vivax isolates from Southeast Asia and Oceania in a previous study, of which
431  Sal-l was used as the reference sequence and subtelomeric regions were discarded

432 [19]. Auburn et al. [20] found that the average nucleotide diversity in Ethiopia was lower
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433  than in Thailand and Indonesia, but higher than in Malaysia. Chromosomes 3, 4, and 5
434 have been previously shown to contain the lowest proportion of synonymous SNPs than
435  the other parts of the genome [12]. In the present study, chromosomes 3 and 6 were
436  found to have the lowest number of both synonymous and nonsynonymous SNPs. This
437  follows observations made in other studies done with nucleotide diversity ranging from
438 0.8 SNPs per kb in North Korea to 0.59 SNPs per kb in Peru [78]. Among the 64

439  erythrocyte binding gene candidates, the MSP and RBP multigene families showed the
440 highest level of genetic variation. This agrees with previous studies that reported a

441  remarkably high diversity in RBP2 than in RBP1 and its homolog group in P. falciparum
442  [31]. In the Greater Mekong Subregion, the MSP3 and PIR gene families also indicated
443  high levels of genetic diversity with 1.96% and 1.92% SNPs per base respectively,

444  confirming that members of multigene families are highly variable genetically [30, 79].
445  Such diversity suggested that the binding domains of these genes could be under

446  differential selection pressure. This pattern has been observed in previous studies and
447  is likely due to their critical role in reticulocyte invasion, immunogenic properties, and
448  human migration [26, 80-82].

449 Both CNVnator and GATK4 showed high order copies in several PIR gene

450 regions. In addition, the PIR and STP1 genes were also indicated with significant

451  selection based on the iHS calculations. The PIR gene family, which includes STP1, are
452  located on the subtelomere regions and is a highly variable multigene family ranging
453  from 1,200 genes in the reference strain PvP01 to 346 genes in monkey-adapted strain
454  Salvador-l [56, 83]. Our analyses included only SNP variants that had a quality score of

455 40 or higher. Also, we used the PVP01 reference genome to map and annotate the
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456  subtelomeric regions, with the goal to reflect variability and features across the entire
457  chromosome; whereas previous studies used the Sal-l reference genome with

458  hypervariable and subtelomeric regions removed to minimize mapping errors [19, 84].
459  Arecent study in P. chabaudi suggested that polymorphisms in PIR genes could affect
460  the virulence of the parasites following passage from the mosquitoes [85]. Such a

461 variation in copy number of the PIR gene family has also been reported in P. cynomolgi
462 and P. vivax [86], suggesting that gene duplication could have been occurred

463 repeatedly in the ancestral lineages [86]. The PIR multigene family is one of the largest
464  gene families identified so far in P. vivax with several different potential functions.

465 Some PIR genes encode proteins on the surface of infected red blood cells, which could
466  confer to immune evasion; others encode proteins involved in signaling, trafficking and
467  adhesion functions [83]. Positive selection detected in the PIR genes among the

468  Ethiopian P. vivax isolates may have important implications on the susceptibility of the
469  mosquito hosts [87].

470 For the P. vivax isolates in Southeast Asia, copy number variation was observed
471  in nine gene regions including DBP1, MDR1, and PVX_101445 (on chromosome 14)
472 with copy number ranging from 3 to 4 [19]. DBP1 and MSP3 showed higher order

473  copies when compared to other genomic regions. In this study, the highest and most
474  variable copy number variations were detected in the DBP1, with copy numbers ranging
475  from one to as high as five. Likewise, for the MSP3, copy numbers ranging from one to
476  as high as four. Based on the phylogeny, DBP1 and MSP3 expansion had occurred
477  multiple times as tandem copies. These findings were consistent with earlier studies

478 [19, 76] and suggested that gene expansion may play a key role in host cell invasion
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479  [88]. For all other putative erythrocyte binding genes, only a single copy was detected
480 among all samples. A larger sample in future investigations would verify this

481  observation.

482 In the present study, we identified a panel of 64 putative erythrocyte binding gene
483  candidates based on the information from the literature and analyzed their

484  polymorphisms. However, we did validate the function for each of these genes. Among
485  these 64 putative erythrocyte binding gene candidates, MAEBL was shown to be highly
486  conserved in Plasmodium [89], had the highest signal for positive selection among the
487  P. vivax samples in Ethiopia. In P. berghei, MAEBL is a sporozoite attachment protein
488  that plays a role in binding and infecting the mosquito salivary gland [89]. In P.

489  falciparum, MAEBL is located in the rhoptries and on the surface of mature merozoites,
490  and expresses at the beginning of schizogony [89]. In P. vivax, MAEBL is a conserved
491  antigen expressed in blood stages, as well as in the mosquito midgut and salivary gland
492  sporozoites [89, 90]. The MAEBL antigen contains at least 25 predicted B-cell epitopes
493  that are likely to elicit antibody-dependent immune responses [91]. Positive selection
494  observed in this gene region among the Ethiopian P. vivax isolates could be associated
495  with the immunity-mediated selection pressure against blood-stage antigens. Though
496  DBP1 had the highest and most diverse copy number variation, no significant signal of
497  positive selection was detected.

498 It is noteworthy that the calculation of integrated haplotype scores and the

499  accuracy of phasing genotypes using BEAGLE were dependent on the levels of linkage
500 disequilibrium of the whole genomes. The higher the levels of linkage disequilibrium, the

501 more accurate are the phased genotypes and thus the iHS score. Pearson et al. [19]
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502 found that P. vivax experienced drops in linkage disequilibrium after correcting for

503  population structure and other confounders. Linkage disequilibrium of P. vivax

504 genomes has been previously shown to be associated with the rate of genetic

505 recombination and transmission intensity [92-94]. In high transmission sites of Papua
506 New Guinea and the Solomon Islands, no identical haplotypes and no significant

507  multilocus LD were observed, indicating limited inbreeding and random associations
508 between alleles in the parasite populations [95, 96]. However, when transmission

509 intensity declined, similar haplotypes and significant LD were observed possibly due to
510  self-fertilization, inbreeding and/or recombination of similar parasite strains

511  [92]. Multilocus LD is significantly associated with the genetic relatedness of the

512  parasite strains [97], but inversely associated with the proportion of polyclonal infections
513  [98]. In Southwestern Ethiopia, malaria transmission ranged from low to moderate, and
514 LD levels varied markedly among the study sites [53, 99]. To address this limitation in
515 BEAGLE, all genes that were detected with positive selection in BEAGLE were further
516  analyzed with PAML for verification. Future study should include broad samples to

517  thoroughly investigate selection pressure at the population level and the function

518  significance of polymorphisms in the MAEBL and PIR genes.

519 Previous studies have shown high levels of genetic diversity among P. vivax

520 isolates in endemic countries [16, 100, 101]. Such a diversity was directly related to high
521 transmission intensity and/or frequent gene exchange between parasite populations via
522 human movement [4, 12, 13, 53]. For example, previous studies using microsatellites
523 have demonstrated a consistently high level of intra-population diversity (Hg = 0.83) but

524  low between-population differentiation (Fstranged from 0.001-0.1] in broader regions of
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525  Ethiopia [53, 99]. High heterozygosity was also observed in P. vivax populations from
526  Qatar, India, and Sudan (average Hg - 0.78; 62), with only slight differentiation from P.
527  vivax in Ethiopia (Fst= 0.19) [102]. Frequent inbreeding among dominant clones [92,
528  95] and strong selective pressures especially in relapse infections [19, 20, 102, 103]
529  may also contribute to close genetic relatedness between and within populations. Thus,
530 in this study, it is not surprising to detect a high level of parasite gene flow among the
531 study sites at a small geographical scale, despite the limited number of samples. In the
532 present study, we successfully employed a transmission network model to identify

533  transmission paths, as well as the source and sink of infections in the region, beyond
534  simply indicating genetic relationships.

535 To conclude, this study elaborated on the genomic features of P. vivax in

536  Ethiopia, particularly focusing polymorphisms in erythrocyte binding genes that

537  potentially play a key role in local parasite invasion, a critical question given the mixed
538 Duffy positive and negative populations of Ethiopia. The findings provided baseline

539 information on the genomic variability of P. vivax infections in Ethiopia and allowed us to
540 compare the genomic variants of P. vivax between Duffy-positive and Duffy-negative
541 individuals as the next step of our ongoing investigation. Further, we are in progress of
542  developing a panel of informative SNP markers to track transmission at a micro-

543  geographical scale.

544

545 Data Availability

546  Additional information is provided as supplementary data accompanies this paper.

547  Sequence data of this study are deposited in the European Nucleotide Archive (ENA)
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548  and the accession number of each sample is listed in Table 1.
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876 Tables

877 Table 1. Information of whole genome sequences of 44 Plasmodium vivax isolates from
878  Ethiopia. The European Nucleotide Archive (ENA) accession number for all files.

879

880  Table 2. A shortlist of 25 erythrocyte binding genes that showed signals of positive

881  selection based on the Likelihood Ratio Test of the M1 (neutral model) and M2 models
882  (selection model) in PAML.

883

884 Table 3. Transmission network metrics among study sites calculated by StrainHub.

885
886  Figures

887  Figure 1. An overview of the P vivax sample collection locations including Arbaminch,
888  Badowacho, Hawassa, Halaba, and Jimma in southwestern Ethiopia.

889

890  Figure 2. A summary representation of the P. vivax genome, with the outer ring as an
891  ideogram representing the 14 nuclear chromosomes and sizes of each. The second
892  track represented the average coverage for each chromosome among the 44 Ethiopian
893  samples. The third track containing the gray vertical dashes represented the

894  distribution of genes across the 14 chromosomes. The forth track that contained the
895  red vertical lines represented the 64 erythrocyte binding gene candidates. The fifth
896  inner track with the light blue background represented the dy/ds ratio calculated by
897  partitioning the chromosomes into genomic regions and dy/ds directly. The three

898  oultliers (yellow dots) represented three unknown plasmodium protein genes that were
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899  detected with significant positive selection. The sixth track indicated the overall copy
900 number variation calculated using CNVnator. Red dots represented genes with copy
901  number variation among the Ethiopian genomes.

902

903  Figure 3. (A) A distribution of the nonsynonymous and synonymous mutations of each
904 chromosome. A higher proportion of synonymous mutations was observed compared to
905 nonsynonymous mutations. Chromosomes 7, 9, and 12 have the most mutations

906  overall, with chromosomes 6 and 3 having the fewest number of mutations. (B) Number
907 of mutation sites and the nucleotide diversity of 64 erythrocyte binding genes. The

908 PvRBP and PvMSP multigene families have the highest number of polymorphic sites
909  when compared to the others, with PvRBP2c the highest number of nonsynonymous
910  and synonymous mutations, followed by PvMSP3 and PvMSP1. Approximately 40% of
911 the mutations were nonsynonymous. These genes were also indicated with the highest
912  nucleotide diversity.

913

914  Figure 4. Signal of positive selection across the 14 chromosomes among all P. vivax
915 samples. Genes that showed significant signal of positive selection included STP1,

916 MAEBL, MSP3.8, and PIR gene regions. PvMSP3.8 gene may play a role in the

917  erythrocyte invasion. MAEBL is a membrane associated erythrocyte binding like protein
918 that may have a function associated with erythrocyte invasion.

919

920 Figure 5. A total of 28 gene regions that were detected with copy number variation.

921  Annotation of these genes can be found in Supplementary Table 4. Among them,
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922  PvDBP1 (PVP01_0623800) and PvMSP3 (PVP01_1030900) were associated with

923  erythrocyte invasion. Other genes that were found to have high-order copy number
924  were PIR protein genes or unknown exported plasmodium proteins.

925

926  Figure 6. An unrooted whole genome phylogenetic tree of the 44 Ethiopian samples
927  showing the evolution of (A) PvDBP; (B) PvMSP3; (C) PIR gene on chromosome 2; and
928 (D) PIR gene on chromosome 11. The Ethiopian isolates were divided into three

929  subclades. Subclade | contained samples mostly from the Arbaminch and Badowacho.
930 Subclade Il contained a mixture of isolates from Arbaminch, Halaba, Hawassa and

931 Jimma. Subclade Ill contained samples from Jimma. No distinct clusters were observed
932  between isolates with single and multiple PvDBP, PvMSP3, and PIR genes. These

933  patterns suggest that these gene regions could have expanded multiply among samples
934  at different locations.

935

936  Figure 7. (A) Principal component analysis plot based on the SNP information from our
937  variant analysis. Samples obtained from Jimma were clustered together, whereas

938 samples from Arbaminch, Badowacho, Hawassa, and Halaba were mixed together with
939  the exception of two samples from Hawassa. This clustering pattern suggested that

940 there was considerable genetic variation among study sites even at a small

941 geographical scale. (B) The transmission network, created using the StrainHub

942  program, indicated that Arbaminch was the major source of infection in Jimma, Halaba,
943 Badowacho and Hawassa. The greatest extent of gene flow (indicated by the boldest

944  arrow) was observed between Arbaminch and Badowacho. Even though Jimma,


https://doi.org/10.1101/2020.03.23.003293
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.23.003293; this version posted March 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

945 Badowacho and Halaba are geographically in close proximity, gene flow was not

946 intense among these sites.

947

948  Supplementary files

949  Supplementary Table 1. Distribution of SNP variants in the 64 P. vivax erythrocyte
950  binding gene candidates among the 44 Ethiopian genomes.

951

952  Supplementary Table 2. Distribution of single nucleotide polymorphism (SNP) variants
953  across P. vivax chromosomes of the 44 Ethiopian genomes.

954

955 Supplementary Table 3. Likelihood Ratio Test results of the M1 (neutral model) and
956 M2 models (selection model) in PAML of all the 64 erythrocyte binding gene candidates.
957

958  Supplementary Table 4. Gene regions that were detected with copy number variation
959  among the 44 Ethiopian P. vivax isolates based on CNVnator. Among them, only two
960 erythrocyte binding gene candidates PvDBP1 and PvMSP3 were detected with high-

961  order copies.
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