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Abstract

Recent advances in single-cell RNA sequencing (ScRNA-seq), enriched the knowledge of the
heterogeneity of the tumor-infiltrating lymphocytes (TIL) for understanding the mechanisms of
cancer initiation and progression. However, aternative splicing (AS), as one of the important
regulatory factors of heterogeneity, has been poorly invettigated. Here, we proposed a
computational tool, DESJ-detection, which could fast and accurately detect the differentialy
expressed splicing junction (DESJ) between cell groups at single-cell level. We analyzed 5,063 T
cells of hepatocellular carcinoma (HCC) and identified 1,176 DESJs across 11 T cell subtypes.
Cdl subtypes with a similar function clustered closer rather than the lineage at the AS level.
Meanwhile, we identified two novel cell states, pre-exhaustion and pre-activation with the marker
isoform CD103-201 and ARHGAP15-205. In summary, we presented a comprehensive
investigation of aternative splicing differences, which provided novel insights for heterogeneity

of T cellsand can be applied in other full-length sScRNA-seq datasets.
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1. Introduction

T cell heterogeneity in the tumor microenvironment (TME) is tightly linked to tumor progress,
prognosis, and therapies. The systematic interrogation of tumor-infiltrating lymphocytes has been
fulfilled in liver[1], lung[2], colon[3] and breast cancerd4] using scRNA-seq. Effector and
cytotoxic T cells can exert an anti-tumor effect by targeting tumor cells, and levels of effector
CD8" T cells are predictive of good survival in several cancers[5-7]. However, the
tumor-infiltrating Tregs suppress the activity of T cell, myeloid cell, and stromal cellg[8] by
secreting immunosuppressive cytokines, such as FOXP3. Immunosuppressive cytokines then
activate co-inhibitory receptorson T cells, such as PD1 and CTLAA4, thusdrives T cell dysfunction
and exhaugtion[9]. Meanwhile, the performance of these immunosuppressive cytokines and
co-inhibitory receptors is influenced by alternative splicing. For example, one of the isoforms of
FOXP3 lacking exon 2 and exon 7 cannot perform the immunosuppressive function[10] and
soluble CTLA4 isoform shows the different effects on T cell state with full-length CTLA4
isoform[11]. Therefore, Investigating the influence of alternative splicing on T cell state in TME
will promote the understanding of T cell heterogeneity and the development of cancer therapy.

Alternative splicing analysis based on scRNA-seq is revolutionizing our understanding about
the effect of alternative splicing on immune cells. Recently, ScRNA-seq revealed the bimodality in
splicing in immune cells while bulk RNA-seq might cover up the splicing difference between
single cellg12]. However, the current computation framework in RNA-seq splicing analysis could
not effectively detect the differential splicing between groups at the single-cell level. DEX Seq[13],
rMATS14], and MISO[15] were developed for bulk RNA-seq data. So, they might lead to
incorrect results for their improper agorithms in single-cell transcriptome due to the low
sequencing depth and high dropout rate. There were two programs were specialy developed for
scRNA-seq data, BRIE[16] and Outrigger[17]. But BRIE requires doing a pairwise comparison
between every two cells to detect differential junctions, which is time-consuming and impractical .
Outrigger utilizes the distribution mode of percent-spliced-in (Psi/J) to detect the differential
splicing between cell groups. However, the distribution modes were just limited within five types
and could not reflect the reality accurately. Thus, there is an urgent requirement to develop a
convenient and effective computation tool to detect the differential splicing between groups.

To explore the T cell splicing heterogeneity in high resolution, we have developed a novel
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computation framework, DESJ-detection, to detect differential splicing between groups at the
single-cell level. We applied it to a published scRNA-seq dataset from HCC patients. We
identified 1,176 DESJs across the 11 cell clusters and found the functional similar T cell subsets
shared a similar splicing pattern. We reveded the relationship between aternative splicing and T
cell functional subpopulations, especially pre-exhausted and pre-activation subpopulations. Thus,
the systematic evauation of differential splicing across T cells in TME of HCC provides
comprehensive knowledge of the alternative splicing characteristics of TILs and will facilitate the

progress of cancer diagnosis and treatment.

2. Material and methods
2.1 Data Sets

We downloaded the scRNA-seq raw reads of Human T cells in Fastg from EGD database
(EGAS00001002072). The corresponding gene expression matrix was downloaded from GEO
database (GSE98638). This dataset contained 5,063 T cells assigned into 12 clugsterg[1]. These T
cells were sampled from peripheral blood, tumor, and adjacent normal liver tissue. The detailed
clinical information of patients and cell clusters information was listed in Table 1. The human
genome with the version of GRCH38 was taken as the aignment reference using by STAR[18].
2.1 Pipelinefor creation of junction count matrix

we used the developed pipeline to create the junction count matrix. Firstly, we merged al the
SJ.out.tab files output by the STAR aligner. Secondly, we retained junctions that were detected
more than Ry, reads in at least Cell,, cells (Cell,, = 10, Ry = 4, by default). Thirdly, we only
retained the junctions that unique annotated by one gene. At last, we obtained the count matrix
containing the read number of junctionsin each cell (FigureS1 A).

2.2 Description of software to detect differential junction usage

The software required four inputs: junction count matrix (matrix A), junction annotation file (from

the pipeline we developed), the uniquely mapped read number of each cell, and cell clustering

information. For a schematic illustration of differential splicing analysis process, refer to Figurel
A. Firstly, we extracted junctions of a single gene (Genel) from matrix A and normalized it with

the number of uniquely mapped reads to obtain matrix C. Then, we performed iteration k-means
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for cells in matrix C to outlier the cells (SD < 0.2 and Mean < 1 by default) (precise steps are
shown Algorithm 1). Third, we normalized the remained cells with all the junction reads count of
Genel (matrix D). Finally, we used limmatrend to detect the DESJs between groups. The
software output a res.xls file including dtatistically significant DESJs (adj.p.value< 0.01 and

log2(FC)> 1 or < -1) and junction expression heatmaps of each gene with DESJs.

Algorithm 1: Filter outlier

Input: Matrix C, maxsd, maxmean
Output: Outlier cellslist
two_clusters < kmeans(Matrix C)
cell_list < Find the cell list with minimum mean and standard deviation comparing to the other
cluster
Matrixtmp €< Matrix C[,cell_list]
Meantmp € rowMeans(Matrixtmp)
Sdtmp < rowSd(Matrixtmp)
while Meantmp < maxmean & Sdtmp < maxsd do
two_cluster € kmeans(Matrixtmp)
cell_list € Find the cells with minimum mean and sd comparing to the other clusters
Matrixtmp < Matrix C[,cell_ligt]
Meantmp < rowM eans(M atrixtmp)
Sdtmp < rowSd(Matrixtmp)

return cell_list

2.3 Smulate scRNA-seq data

We adopted a smulating strategy to evaluate the performance of our method. Firstly, we selected
200 genes from human GTF files among which 100 genes would be simulated as containing
differential alternative splicing events. Then we further selected two transcripts for each gene to
get atotal of 400 transcripts. Next, we simulated RPK (reads per kilobase) value of 400 transcripts
by aPerl script. RPK ratio of two transcripts belongs to the same gene was reciprocal between two

cells while the RPK value of gene was a constant, such as 25, 50, 100, and 200. Two simulated
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cells were labeled as group A and group B, respectively. The cells with the same label were
simulated a similar RPK ratio of two transcripts belong to the same gene. In addition, we set four
levels of log2(RPK ratio) as 0,1,2,3 to simulate the degree of junction differential expressed.
Besides, we stimulated the dropout ratio as four levels: 0, 0.1, 0.2, 0.4 by applying the smulator
strategy of BRIE. Finaly, fastq files were generated by Spanki[19] with errorfree mode and
splicing junction information was acquired. We obtained 200 cells for each condition. The
description of simulation was displayed as follows. Visit GitHub for more detailed information.

(https://github.com/lucky-M endel/D SJ-detection-simul ator)

(1) Obtain sm_rpk filesfor each pair of cells using a Perl script.

(2) (necessary if dropout >0) generate adice format file asinput in step3.

(3) (necessary if dropout >0) simulate dropout event with a modified script coming from the
BRIE smulator.

(4) Output fastq files by Spanki.

2.4 Differential gene expression analysis and gene set enrichment analysis

We performed the Limmar R package to analyze differential expressed genes between two target

clusters. The significant genes were identified as those met these criteria: 1) FDR adjusted p-value

of Ftest <0.01; 2) the absolute value of log2 fold change was larger than 2. After differential gene

expression anaysis, we obtained the genes which were highly expressed in one group. We

performed gene set enrichment analysig[20, 21] by the web-based tool provided by broad

institute(http://software.broadinstitute.org/).

2.5 Survival analysis
The TCGA LIHC data were applied to assess the relationship between patient survival and
individual genes, individua isoforms, and gene sets from specific cell clusters. We downloaded

the data of gene expression and isoform count from UCSC Xeng[22] (http://xena.ucsc.edu/) and

retrieved  clinical data from the Genomic Data Commons Data Portal

(https.//gdc-portal.nci.nih.gov/). Three hundred and seventy-seven patients without

immunotherapy treatment were included in the survival analysis. Firstly, the isoform read count
data were normalized by the isoform’s length and uniquely mapped read number of each patient.
Then. to rectify the influence of T cell compositions within each sample, the expression of

selected genes and isoforms in the tumor were divided by the geometric mean expression of CD3
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genes. CD3 gene expression was assigned as the arithmetic mean of the corresponding isoforms
(CD3D, CD3E and CD3G). Thirdly, for each selected genes and isoforms, we set the relative
expression lower and upper threshold as the median minus or plus 10% MAD (median absolute
deviation) respectively. Fourthly, we retained the samples whose relative expression is beyond
these thresholds then divided patients into high and low expression groups. To explore whether
CD103-201 isoform was correlated with prognosis, we calculated two scores for each patient by a
weighted sum of fold change value of signature genes between CD103-201" population and
CD103-201" (Supplementary Table 1) and gene expression in TCGA data. Then, the patients were
split into two groups by the median value of the expression score of patients. The satistical
analysis was performed using the R package ‘*“ survival” .

2.6 Developmental trajectory inference

We used the Monocle (version 2)[23] to order CD8/CD4 T cellsin pseudo time respectively. TPM
value was converted into normalized mRNA counts by the “relative2abs’ function in monocle
then we created an object with the parameter “expressonFamily = negbinomial.size”. Finally, the
CD8'/CD4" T cell differentiation trajectory was determined by the default parameters of Monocle.
2.7 Definition of exhaugtion and naiveness scores.

Similar to Guo et.a[2], we firgtly identified the most significant genes between exhausted T
cluster (CO4_CD8.LAYN) and other T clusters using moderated t-test implemented by the R
package limma (Iog2(FC) >= 4 & FDR < 0.01). Then, we defined the exhaustion score for CD8" T
cells as the average expression of these markers after z-score transformation (original value is
log2(TPM+1)). A similar method was used to define naiveness scores for CD4" T cells using the
common naive markers. Finally, we calculated the significant level of the exhaustion and

naiveness scores of cells from different clusters by t-test.

3 Results
3.1 The overview of DESJ-detection

Revealing splicing differences at the single-cell level would deepen our understanding of cell
heterogeneity, function, and phenotype. The major challenges in differential splicing analysis are
scRNA-seq data has much dropout events and low sequencing depth compared to bulk RNA-Seq,

which hinders reflection of the real splicing structure of genes. Besides, splicing analysis in
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RNA-Seq data mainly is limited in SE (exon skip events) and MXE (mutually exclusive exon
events). To address these two challenges, we proposed DESJ-detection, an algorithm that uses
junction-spanning reads to detect DESJs. Firstly, we input all the junctions read count of each cell
and output junction-cell count matrix of each gene. Secondly, we applied iterative K-means to
cluster cells and removed the clusters with low expression (SD < 0.2 and Mean < 1) of all
junctions resulting from low coverage and high dropout rate. Then, we utilized a new
normalization method to eliminate the influence of differential expression at the gene level on
differential junction expression detection. Specificaly, it normalized the junction read count with
the read count of each gene rather than uniquely mapped reads of each cell. Finally, we identified
DESJs based Limma-tread algorithm with the value of fold change (FD) and adjusted p-value.
Meanwhile, DESJ-detection can detect the DESJs at any region of a gene, so it can discover any
patterns of alternative splicing, rather limited in SE and MXE events (Fig. 1A). We a so developed
a convenient pipeline (https.//github.com/liushangl7/DESJdetection), which starts from the
generation of junctions, filtering and annotation of junctions, preparation of junction count table
and detection of DESJs (Fig. S1A).

To assess the performance of the software in differential alternative splicing detection, we
simulated scRNA-seq data with a pipeline based Spanki considering different factors, including
reads coverage, dropout rate, and degree of junction differential expressed. Our method was
proved to be effective. For example, the smulated cells were divided into five clusters by the
expression of two isoforms of PPT1. As we can see, four cell clusters showed junction differential
expression and another cluster with low gene expression was removed by the iterative K-means
clustering, because it failed to reveal the rea junction usage (Fig. S1B). In the meantime, we
observed the sensitivity level reached up to about 70% even at the lowest coverage level (RPK =
25) when the junction differential expression is more than control and without dropout events.
And the sendtivity was essentially maintained at 85% at the general coverage level (RPK>=50).
In addition, the sensitivity also reached a high percentage (>=70%) when dropout rate is more
than 0 (Fig. S1 C). Besides, more than 95% of identified genes was DESJ related genes. Taken
together, DESJ-detection proved its robustness in dropout events, low coverage requirement for
detection, and high sensitivity to DESJs.

3.2 Differential usage of junctionsin UTR regionsacross T cell clusters
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we performed DESJ-detection in a published scRNA-seq data set. It includes 5,063 T cells
from tumor tissues, normal tissues, and peripheral blood of six HCC patients and had been
assigned into 11 T cell subsets, including naive T cells (CO1_CD8.LEF1, C06_CD4.CCRY7),
effector T cells (CO2_CD8.CX3CR1, C11 CD4.GNLY), exhausted T cells (CO4 CD8.LAYN,
C10_CDA4.CXCL13), Tregs (C07_CD4.FOXP3, C08_CD4.CTLA4), mucosal-associated invariant
T cells (C03_CD8.SLC4A10), and intermediate T cells (CO5_CD8.GZMK, C09_CD4.GZMA).
We obtained a set of 134,414 junctions that satisfied read count more than 4 in at least 10 cells,
covering 12,587 genes (Fig. S2 A& Fig. S2 B). We further filtered the junctions that not located at
any annotated genes or located at fusion genes. In the end, we retained 119,311 junctions from
10,556 genes. By DESJs analysis, we finally identified 1,176 DESJs across 11 clusters (log2(FC)
> 1, adjust p-value < 0.01) (Supplementary Table 2).

To characterize the distribution of DESJs in genomics, we investigated the frequency of
DESIJs between different genome regions. We found significant higher frequency of DESJs in
UTR regions than coding regions between clusters (p-value = 0.004 for CD8" T cells and p-value
= 6.456e-13 for CD4" T cells, Student’s t-test. Fig. 2 A & Fig. S2 C & Fig. S2 D). This may result
from longer junction length (end site - start site + 1) in UTR region. We additionally observed that
DESIJs are significantly longer than nonDESJ both in UTR and Coding regions. Besides, the
DESJsin UTR regions were also longer than the these in Coding regions (Fig. 2B). Because UTR
regions are longer than coding regions, these two phenomena may be explained that the longer
junctions would provide more possible splice sites and potential regulation functions. Previous
studies have revealed that the ratio of genes whose UTR region happened alternative splicing
made up to 10%-18% [24, 25]. Besides, alternative splicing in UTR also made a great contribution
to regulate gene expression[26]. Therefore, our results revealed that alternative splicing in UTR
region has been underestimated because of its higher frequency of differential alternative splicing
between cell clusters. Specificaly, we supposed alternative splicing in UTR regions may
contribute alot to not only gene expression regulation but also cell heterogeneity.

At the meantime, we noticed that the considerable differential expression genes between
clusters were also DESJ related genes in T cells (Fig.2 C). In addition, there were about 60%
differential expression genes possessing DESJs in the UTR region (Fig. S2 G). For example,

ARHGAP9, a member of RhoGAP family and associated with good survival, was a differential
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expressed gene (highly expressed in C04_CD8.LAY, C10_CD4.CXCL13, and CO8_CD4. CTLAA4).
And it also showed differential splicing in UTR region between CD8" T cell clusters
(C01_CD8.LEF1, C02_CD8.CX3CR1, C04 CD8.LAYN, C05_CD8.GZMK) (Fig. 2D & Fig. &2
F). Specifically, ARHGAP9-203 was upregulated in exhausted T cells and Tumor-infiltrated Tregs,
while ARHGAP9-204 was mainly expressed in naive T cells and peripheral blood Tregs (Fig. 2
D).

KEGG pathway analysis of genes possessng DESJs in UTR was mainly involved in the
VEGF signaling pathway, T cell receptor signaling pathway, spliceosome, P53 signaling pathway,
and cell apoptosis. Meanwhile, the genes with DESJs in the Coding region were associated with
innate immune pathways and spliceosomes. Hence, these emphasized the alternative splicing in
UTR regions may relate with the specific function of cells. Taken together, our results indicated
that alternative splicing in UTR regions may play a regulated role in gene expression between cell
clugters.

3.3 T cell heterogeneity at splicing level

To explore the association between alternative splicing and the heterogeneity of T cell
function, we further utilized the identified DESJs across T cell clugtersto obtain cell-type-specific
splicing junctions. In this study, we detected 335 DESJs from 165 genes among CD8" sub-clusters
and 484 junctions from 239 genes among CD4" sub-clusters (Supplementary Table 2). We used
two distinct datasets to hierarchically clustered T cells, the number of DESJs and the expression of
DESIJs across all cell clusters. Both of them indicated that cells with a similar function rather than
the lineage, exhibited a smilar alternative splicing pattern. (Fig. 3 A). For example,
tumor-infiltrating Treg and exhaused T cell (CO4 CD8.LAYN, CO08 CD4.CTLAA4,
C10_CD4.CXCL13) clustered together, demonstrating a huge difference between them and others.
What's more, naive T cell (CO1 CD8.LEF1, CO06 CD4.CCR7), effector T cell
(C02_CD8.CX3CR1, Cl1 CD4.GNLY), and intermediate state (CO5 CD8.GZMK,
C09_CD4.GZMA) clustered together respectively. In the meantime, we mentioned that exhausted
T cells showed the mogt significant difference in the DESJ number with other T cells, indicating
exhausted T cells would emerge the greatest changes in aternative splicing. These results
indicated junction usage difference between cell clusters mainly depends on the functional state of

the clugters.
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We next focused on the DESJs related genes between four functional states, including naive T
cells, effector T cells, exhausted T cells, and mediate T cells. Naive and exhausted T cells mainly
showed differential splicing in genes of splicing and immune, such as CD45, HSPB1, CLK1,
SRSF2, SNRNP70. Effector T cells were characterized by the differential splicing in ZEB2, FYB1,
and SYNE1 (Fig. 3 B). Among al the DESJs related gene, WARS that highly expressed in
exhausted T cell and being a maker of exhaustion, showed differential splicing between exhausted
T cell and other T cells (Fig 3 C, D & Fig. S3 A). The junction (chr14_ 100369259 100376259 2),
representing WARS-202 showed the widespread expression in al T cells while the junction
(chrl4 100369259 100375282 2), representing WARS-204, only widely expressed in Tregs
(C08_CDA4.CTLA4) and exhausted T cells (CO4 CD8.LAYN, C10 CD4.CXCL13). Prognostic
analysis with TCGA LIHC datarevealed that the upregulated expression of WARS was associated
with worse prognosis (Fig. 3 E). Thus, we proposed the upregulation expresson of isoform
WARS-204 actually represented worse prognosis (Fig. 3 F). Furthermore, the prognostic analysis
with TCGA LIHC data at the isoform level confirmed our hypothesis (Fig. S3 B).

This case ingpirited us whether some immunity therapy-related target genes also displayed such
a phenomenon. We found two T cell immunity checkpoint genes whose upregulation expression
related to worse prognosis, TNFRSF4, and HAVCR2. However, only one of its isoforms is in
accordance with its gene performance, implying that this isoform may be as an actua therapy
target (Fig. S3 C). In summary, these results demonstrated alternative splicing would have a huge
effect on the function and phenotype of T cells and would be potential markers for cancer
prognosis and treatment.

3.4 Two novel functional subpopulationsidentified by CD103-201 and ARHGAP15-205

To further show the inner heterogeneity in T cell clusters, we utilized DESJs to identify the
functional subpopulations. After that, we inferred the potentia function of isoforms. ITGAE, also
known as CD103, is atissue-resident T cell marker and highly expressed in exhausted T cells. One
of its isoforms, CD103-201, was upregulated in CD8" exhausted T cells (CD4_CD8.LAYN),
while another isoform CD103-202 universally expressed in all CD8" T cells. The differential
splicing of CD103 was not any common aternative splicing patterns (SE, MXE, IR, A5SS, and
A3SS), resulting from CD103-201 expressed nine more exons than CD103-202 (Fig. 4 A). In

addition, we observed CD103-202 showed widespread expression in C04_CD8.LAYN, while
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CD103-201 exhibited a bimodal pattern in C04_CD8.LAY N, implying that different isoforms of
ITGAE would play different roles in exhausted T cells function (Fig. 4 B). Meanwhile, the two
populations (CD103-201" and CD103-201" populations) displayed obviously different expression
patterns. Specifically, CD103-201" population highly expressed exhausted marker ENTPD1, while
CD103-201" population showed high expression of ribosome proteins, including RPL27, RPL35A,
RPS29, RP21 (Fig. 4 C). GO enrichment analysis shows CD103-201" population own extremely
strong trandation vitality, indicating CD103-201" population may be in the state of transition (Fig.
S4 A). To verify this hypothesis, we performed pseudotime analysis among all the four CD8"
clusters. CD103-201 population and C05 CD8.GZMK were located more centraly in the
Monocle trajectory and had a significantly lower exhaustion score than CD103-201" population.
Thus, this result further suggested that CD103-201" population was possible in “pre-exhaustion”
state (Fig. 4 D). As expected, we also observed that CD103-201" population was associated with
better prognosis in TCGA LIHC data compared with CD103-201" population (P= 0.009, Cox
regression, Fig. $4 B). In summary, these results represented CD103-201 may be associated with
T cell exhaustion and have the potential to clinical application.

ARHGAP15, a Racl-specific GAP, was reported to be associated with the development of
diverse tumors, including colorectal cancer[27], dlioma28] and pancreatic ductal
adenocarcinoma[29]. However, it is little-known about the relationship between T cell state and
ARHGAP15 at the isoform level. Our study discovered that ARHGAP15-201 expressed
universally in all cell clusters, but ARHGAP15-205 exhibited a highly specific expression pattern
(Fig. 4E). Further, ARHGAP15-205 shows a striking bimodal expression distribution in both CD8
naive T cells (C1_CD8-LEF1) and CD4 naive T cell (C6_CD4-CCRY) (Fig. 4F & Fig. 4 E). This
implied ARHGAP15-205 may affect the functional state of naive T cell. We identified 174 genes
highly expressed in ARHGAP15-205" naive T cell (FDR < 0.01, log2(Fold change) > 1)
(Supplementary Table 1). These genes significantly overlapped with signature genes of cell cluster
in the activated state, which was identified by three previous studies (Fig. S4 C). Thus, we
supposed the ARHGAP15-205" population has a similar activation characterigtic. Signature genes
of ARHGAP15-205" include S100A4, ITGB1, S100A6, and LGALSL, supporting that
ARHGAP15-205" population trend toward activation state (Fig. 4 G). On the contrary,

ARHGAP15-205" population highly expressed the genes related to resting state, including CCRY?,
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SELL and LEF1, demonstrating it is in the relative resting state (Fig. 4 G). Meanwhile, GO
biological process enrichment analysis showed ARHGAP15-205" population signature genes
enriched in the cell differentiation (including leukocyte differentiation and Iymphocyte
differentiation) and cell activation (Fig. $4 D). What's more, the pseudotime analysis of cellsin
C06_CD4.CCR7, C09 CD4.GZMA, C10 CD4.CXCL13, and C11 CD4.GNLY showed
ARHGAP15-205" cells were closer to cells in C09_CD4.GZMA and had a lower naive score
compared with ARHGAP15-205 population (Fig. 4 H). These results suggested that
ARHGAP15-205" CD4 naive T cells, might be in the pre-activation state and possess immune
killing function. The identical performance also emerged in CD8 naive T cell (CO1L_CD8-LEF1)
(Fig. $4 E, F). Altogether, these results emphasized that alternative splicing analysis at single-cell
level would reveal cell heterogeneity and discover cell sub-clustersin higher resolution than gene

expression level.

4 Discussion

The scRNA-seq technology has developed rapidly and has been widely applied in many
frontier fields including tumor heterogeneity, cell differentiation, and neural development.
Compared to 3' enrichment methods, full-length single-cell RNA data can not only quantify gene
expression but also analyze the structure of genes in high resolution, such as single nucleotide
variants (SNV) and alternative splicing (AS) detection. Due to the lack of available software to
analyze cell heterogeneity with alternative splicing, single-cell research currently is still limited to
gene expression profiling. Here we have developed a differential alternative splicing detection
software for the full-length sScRNA-seq dataset.

DESJ-detection was proved to detect the DESJs between different cell types at the single-cell
level in a robust and effective way. To detect the DESJs between two cell groups would be
affected by the technical limitation in scRNA-Seq, which would lead to the incorrect
representation of the aternative splicing structure. The iteration k-means could effectively find
and filter these cells. It works like wringing out two sponges containing water, only when as much
as water was removed would the properties of the two sponges themselves be compared accurately.
In addition, the different read count of genes, resulting from different sequence depth and gene

expression level, would prevent the precision detection of DESJs. Taking these two factors into
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consideration, we normalized the junction matrix of each gene with reads count of the gene in
each cell. This computation framework suggested a novel srategy to detect the differential
dternative splicing between two groups of cells at the single-cell level and filled the gap in this
field. However, DESJ-detection could not accurately detect the isoforms composition of a single
cell for any given genes because some junctions may not uniquely belong to one isoform.
Additional work to develop an improved version to address the above shortcoming is ongoing and
would result in the interpretation of isoform difference in higher resolution.

We performed DESJs-detection in a T cell dataset from six patients diagnosed with HCC
provides novel insight into T cell heterogeneity. One interesting finding is cell clusters with a
similar functions displayed a minor number of DESJs related genes comparing with others and
possessed a similar DESJs expression pattern. For example, exhausted T cells and
tumor-infiltrating Tregs, which shared similar high expresson genes LAYN, HAVCR9, and
ENTPD1, also shared similar splicing patterns, such as WARS, ARHGAP9, SRSF2. These
relationships may partly be explained that cells with a smilar function would share similar
expression profiles of genes as well as isoforms. At the same time, some unique isoforms in
exhausted T cells are related to poor prognoses, such as WARS and CCND3. Therefore, altering the
isof orm preference of specific genesin T cells might be another way for cancer immunotherapy.

The association between alternative splicing and the cell clusters may be applied to infer the
function of aternative splicing and predict novel subpopulations. For example,
CD103-201 revealed a novel sub-cluster, pre-exhausted population. And then, CD103-201 may be
inferred to play arole in T cell exhaustion in liver cancer. A similar phenomenon emerged at
ARHGAP15-205, an isoform related to T cell activation. Further studies are needed to affirm these
results by experiments and interrogate the potential mechanism, as well as other isoforms related
to the cell functional state.

With the rapid development of scRNA-seq, smart-seq3[30] with longer read length and faster
sequencing has emerged, leading to researches on single-cell aternative splicing a hot topic.
However, the conditions to support single cell alternative splicing analysis, including sequencing
depth and coverage have not been explicitly disclosed. Secondly, there is ill a lack of
corresponding methods on how to construct a profile of aternative splicing at the single-cell level.

Finally, the combined analysis of single-cell alternative splicing and gene expression has not been
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explored. Our program will greatly contribute to enriching the research strategy of alternative

splicing and exploring its potential function extensively.
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Tablel

Annotation about cell clusters

Cluster Cell number  Function annotation Type

C01 _CDS8.LEF1 161 Naive T cell CD8+ T cdll
C02_CD8.CX3CR1 288 Effector T cell CD8+ T cdl
C03_CD8.SLC4A10 363 MAIT CD8+ T cdl
C04_CDS8.LAYN 300 Exhausted T cell CD8+ T cdl
C05_CD8.GZMK 467 T cell in mediate state CD8+ T cdll
C06_CDA4.CCR7 646 NaiveT cell CD4+ T cdll
C07_CDA4.FOXP3 261 Peripheral Treg CD4+ T céll
C08_CDA4.CTLA4 582 Tumor Treg CD4+ T cell
C09_CD4.GZMA 689 T cell in mediate state CD4+ T cdll
C10 CD4.CXCL13 146 Exhausted T cell CD4+ T cdll
C11_CD4.GNLY 167 Effector T cell CD4+ T céll

Unknown 993 NA NA
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Figure legend

Figure 1. | The overview of DESJ-detection.

FigureS1. | The diagrammatic sketch of the pipeline for the creation of junction count
matrix and the performance of DESJ-detection on simulated data. A, The preparation
work (see method for detailed information). B, Heatmap of five identified clusters by
iterative K-means with all junction of PPT1 from simulated data. The Violet bar represents
cells highly expressing PPT1 long isoform. The green bar represents cells highly
expressing PPT1 short isoform. The pink bar represents a cell moderately expressing
PPT1 long isoform. Blue bar represents cell moderately expressing PPT1 short isoform.
Yellowish-brown bar represent cell failing to reflect the composition of PPT1 isoforms. C,
Left shows the sensitivity of DESJ detection by DESJ-detection. Right is the schematic
diagram of isoform usage difference of simulated data.

Figure 2. | Wide differential usage of junctions in the UTR regions across T cell clusters. A,
The proportions of differential splicing junction frequency in the UTR regions and the
Coding regions across CD8+ T cells. B, The length difference between DESJ and
nonDESJ in Coding region and UTR region. C, The overlap between differential
expression genes and DESJ associated genes among T cells clusters. D, Sashimi plots
illustrating the read distribution of ARHGAP9 in CD8+ T cells from P0508. The colors
represent different isoforms. This alternative splicing of ARHGAP9 happens in the UTR
regions. Naive T cells (CO1_CD8.LEF1) show obvious differential usage of isoforms from
other clusters. E, Result of KEGG pathway analysis for genes with differential splicing in

the UTR regions.


https://doi.org/10.1101/2020.03.22.002766
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.22.002766; this version posted March 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S2. | Wide differential usage of junctions in the UTR regions across T cell clusters.
A, The read number distribution of all junction from 5,063 cells. B, The cell number
distribution of junction with at least 4 reads supporting. C, The proportions of differential
splicing junction in the UTR regions and the Coding regions across CD4+ T cells. D, The
frequency of DESJ in the UTR regions is significantly higher than the Coding regions. E,
Result of KEGG pathway analysis for genes with differential splicing in the Coding regions.
F, Sashimi plots illustrating the read distribution of ARHGAPIin CD4+ T cells from PO508
patient, similar to CD8+ T cells in Figure2D. Naive T cells (C06_CD4.CCR7) and blood
Tregs (CO07_CD4.FOXP3) show obvious differential usage of isoforms from other clusters
in CD4 T cells. G, The proportion of differential expression genes with differential splicing
junctions in the UTR regions.

Figure 3. | T cell heterogeneity at splicing level. A, Upper: Heatmap of DESJ associated
genes number between pairwise clusters across T cells. Below: z-score normalized mean
expression of all DESJ in each T cell cluster. Boxes with different colors highlight the
patterns of different functional T subtypes. B, the z-score normalized mean expression of
selected DESJ that shares in the similar function subtypes. C, Violin plots comparing the
expression of WARS in 11 T cell clusters. D, The disease-free survival curve based on
TCGA HCC data showing patients with higher expression of WARS had a poor prognosis.
E, Sashimi plots illustrating the read distribution of WARS in CD8+ T cells from P0508
patient. WARS-204 highly expresses in exhausted T clusters (CO4_CD8.LAYN). F,
Disease-free-survival (DFS) curve comparing the high and low expression of WARS-204

based on the TCGA HCC cohort shows higher expression of WARS-204 in tumor means
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bad prognosis.

Figure S3. | T cell heterogeneity at splicing level. A, Sashimi plots illustrating the read
distribution of WARS in CD4+ T cells from P0508. WARS-204 highly expresses in
exhausted T clusters (C10_CD4.CXCL13) and Tumor Tregs (C08_CD4.CTLA4). B, Result
of GO enrichment analysis for genes in Figure3B. C, Disease-free-survival (DFS) curve
comparing the high and low expression of WARS-201, WARS-202, and WARS-203 based
on the TCGA HCC cohort. D, Disease-free-survival (DFS) curve comparing the high and
low expression of HAVCRZ, HAVCR2-201, TNFRSF4 and TNFRSF4-201 based on the
TCGA HCC cohort.

Figure 4. | Two novel functional sub-population identified by CD103-201 and
ARHGAP15-205. A, Heatmap of 4 CD8* clusters with junctions from /TGAE (CD103).
Alternative junctions, representing CD103-201, highly express in exhausted T cells
(C04_CD8.LAYN), while constitute junctions universally express in all T cell clusters. B,
The bimodal distribution of alternative junctions from CD703 shows the Intrinsic
heterogeneity in exhausted T cells (CO4_CD8.LAYN). Cell density is color-coded, with red
denoting high density and yellow low density. C, Volcano plot showing differentially
expressed genes between the CD103-201* and CD103-201-populations. Each red dot
denotes an individual gene with adjusted P-value < 0.01 (two-sided moderated t-test with
limma) and abs(fold change) = 8. D, Result of GO enrichment analysis for genes highly
expressing in CD103-201- population. E, Disease-free-survival (DFS) curve comparing
the high and low expression of marker genes of CD103-201* high population and

CD103-201- population. F, Sashimi plots illustrating the read distribution of ARHGAP75in
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CD4* T cells from P0508. ARHGAP15-205 highly expresses in naive T cells

(CO06_CD4.CCR7). G, Similar to CD703, the bimodal distribution of ARHGAP15-205

shows the Intrinsic heterogeneity in naive T cells (C06_CD4.CCR7). H, The Venn graph

showing the overlap of activation associated genes identified in this study with those from

previous studies by De Simone et al. (2016) (p = 2e-85) determined by hypergeometric

test. I, Volcano plot showing differentially expressed genes between the ARHGAP15-205*

and ARHGAP15-205-populations. Each red dot denotes an individual gene with adjusted

P value < 0.01 (two-sided moderated t-test with limma) and abs(fold change) = 2. J,

Result of GO enrichment analysis for genes highly expressing in ARHGAP15-205*

population.

Figure S4. | Two novel functional subpopulations identified by CD103-201 and

ARHGAP15-205. A, Left: CD8* T cells (excluding MAIT cells) was ordered along

pseudotime in a two-dimensional state-space defined by Monocle2. Cell orders are

inferred from the expression of DEGs across CD8+T cell populations. Each point with

different colors corresponds to individual cells in different clusters. The middle plot shows

the order of CD103-201* population and CD103-201- population. Right: The exhaustion

score calculated by the mean expression of gene sets related to exhaustion status (see

Methods) correlated with Monocle components. Violin plots in the top corners show the

distribution of exhaustion scores in various cell clusters. Different colors represent

different clusters. P values were calculated by Pearson correlation, and P < 2.2 x 10-16

represents a P value approaching 0. B, Similar to FigureS4 A, the same pseudotime plot

for four clusters of CD4+ T helper cells and the similar naiveness score calculated in all
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CD4* T helper cells. C, Similar to Figure4G, the bimodal distribution of ARHGAP15-205
shows the Intrinsic heterogeneity in naive T cells (CO1_CD8.LEF1). D, Violin plots show
the expression difference in ARHAGP15-205- and ARHGAP15-205* CO1_CD8.LEF1

subpopulation about activation markers, including S700A4, ST100A11, ITGB1 and ANAXT.
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