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Abstract 

Recent advances in single-cell RNA sequencing (scRNA-seq), enriched the knowledge of the 

heterogeneity of the tumor-infiltrating lymphocytes (TIL) for understanding the mechanisms of 

cancer initiation and progression. However, alternative splicing (AS), as one of the important 

regulatory factors of heterogeneity, has been poorly investigated. Here, we proposed a 

computational tool, DESJ-detection, which could fast and accurately detect the differentially 

expressed splicing junction (DESJ) between cell groups at single-cell level. We analyzed 5,063 T 

cells of hepatocellular carcinoma (HCC) and identified 1,176 DESJs across 11 T cell subtypes. 

Cell subtypes with a similar function clustered closer rather than the lineage at the AS level. 

Meanwhile, we identified two novel cell states, pre-exhaustion and pre-activation with the marker 

isoform CD103-201 and ARHGAP15-205. In summary, we presented a comprehensive 

investigation of alternative splicing differences, which provided novel insights for heterogeneity 

of T cells and can be applied in other full-length scRNA-seq datasets. 

 

Keywords: 

alternative splicing, heterogeneity, single cell RNA-seq, T lymphocytes, hepatocellular carcinoma 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002766
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction 

T cell heterogeneity in the tumor microenvironment (TME) is tightly linked to tumor progress, 

prognosis, and therapies. The systematic interrogation of tumor-infiltrating lymphocytes has been 

fulfilled in liver[1], lung[2], colon[3] and breast cancers[4] using scRNA-seq. Effector and 

cytotoxic T cells can exert an anti-tumor effect by targeting tumor cells, and levels of effector 

CD8+ T cells are predictive of good survival in several cancers[5-7]. However, the 

tumor-infiltrating Tregs suppress the activity of T cell, myeloid cell, and stromal cells[8] by 

secreting immunosuppressive cytokines, such as FOXP3. Immunosuppressive cytokines then 

activate co-inhibitory receptors on T cells, such as PD1 and CTLA4, thus drives T cell dysfunction 

and exhaustion[9]. Meanwhile, the performance of these immunosuppressive cytokines and 

co-inhibitory receptors is influenced by alternative splicing. For example, one of the isoforms of 

FOXP3 lacking exon 2 and exon 7 cannot perform the immunosuppressive function[10] and 

soluble CTLA4 isoform shows the different effects on T cell state with full-length CTLA4 

isoform[11]. Therefore, Investigating the influence of alternative splicing on T cell state in TME 

will promote the understanding of T cell heterogeneity and the development of cancer therapy. 

Alternative splicing analysis based on scRNA-seq is revolutionizing our understanding about 

the effect of alternative splicing on immune cells. Recently, scRNA-seq revealed the bimodality in 

splicing in immune cells while bulk RNA-seq might cover up the splicing difference between 

single cells[12]. However, the current computation framework in RNA-seq splicing analysis could 

not effectively detect the differential splicing between groups at the single-cell level. DEXSeq[13], 

rMATS[14], and MISO[15] were developed for bulk RNA-seq data. So, they might lead to 

incorrect results for their improper algorithms in single-cell transcriptome due to the low 

sequencing depth and high dropout rate. There were two programs were specially developed for 

scRNA-seq data, BRIE[16] and Outrigger[17]. But BRIE requires doing a pairwise comparison 

between every two cells to detect differential junctions, which is time-consuming and impractical. 

Outrigger utilizes the distribution mode of percent-spliced-in (Psi/J) to detect the differential 

splicing between cell groups. However, the distribution modes were just limited within five types 

and could not reflect the reality accurately. Thus, there is an urgent requirement to develop a 

convenient and effective computation tool to detect the differential splicing between groups. 

To explore the T cell splicing heterogeneity in high resolution, we have developed a novel 
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computation framework, DESJ-detection, to detect differential splicing between groups at the 

single-cell level. We applied it to a published scRNA-seq dataset from HCC patients. We 

identified 1,176 DESJs across the 11 cell clusters and found the functional similar T cell subsets 

shared a similar splicing pattern. We revealed the relationship between alternative splicing and T 

cell functional subpopulations, especially pre-exhausted and pre-activation subpopulations. Thus, 

the systematic evaluation of differential splicing across T cells in TME of HCC provides 

comprehensive knowledge of the alternative splicing characteristics of TILs and will facilitate the 

progress of cancer diagnosis and treatment. 

 

2. Material and methods 

2.1 Data Sets 

We downloaded the scRNA-seq raw reads of Human T cells in Fastq from EGD database 

(EGAS00001002072). The corresponding gene expression matrix was downloaded from GEO 

database (GSE98638). This dataset contained 5,063 T cells assigned into 12 clusters[1]. These T 

cells were sampled from peripheral blood, tumor, and adjacent normal liver tissue. The detailed 

clinical information of patients and cell clusters information was listed in Table 1. The human 

genome with the version of GRCH38 was taken as the alignment reference using by STAR[18]. 

2.1 Pipeline for creation of junction count matrix 

we used the developed pipeline to create the junction count matrix. Firstly, we merged all the 

SJ.out.tab files output by the STAR aligner. Secondly, we retained junctions that were detected 

more than Rm reads in at least Cellm cells (Cellm = 10, Rm = 4, by default). Thirdly, we only 

retained the junctions that unique annotated by one gene. At last, we obtained the count matrix 

containing the read number of junctions in each cell (FigureS1 A). 

2.2 Description of software to detect differential junction usage 

The software required four inputs: junction count matrix (matrix A)、junction annotation file (from 

the pipeline we developed)、the uniquely mapped read number of each cell, and cell clustering 

information. For a schematic illustration of differential splicing analysis process, refer to Figure1 

A. Firstly, we extracted junctions of a single gene (Gene1) from matrix A and normalized it with 

the number of uniquely mapped reads to obtain matrix C. Then, we performed iteration k-means 
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for cells in matrix C to outlier the cells (SD < 0.2 and Mean < 1 by default) (precise steps are 

shown Algorithm 1). Third, we normalized the remained cells with all the junction reads count of 

Gene1 (matrix D). Finally, we used limma-trend to detect the DESJs between groups. The 

software output a res.xls file including statistically significant DESJs (adj.p.value≤ 0.01 and 

log2(FC)≥ 1 or ≤ –1) and junction expression heatmaps of each gene with DESJs.  

 

Algorithm 1: Filter outlier 

Input: Matrix C, maxsd, maxmean 

Output: Outlier cells list 

two_clusters � kmeans(Matrix C) 

cell_list � Find the cell list with minimum mean and standard deviation comparing to the other 

cluster 

Matrixtmp � Matrix C[,cell_list] 

Meantmp � rowMeans(Matrixtmp) 

Sdtmp � rowSd(Matrixtmp) 

while Meantmp < maxmean  &  Sdtmp < maxsd do 

     two_cluster � kmeans(Matrixtmp) 

     cell_list � Find the cells with minimum mean and sd comparing to the other clusters 

     Matrixtmp � Matrix C[,cell_list] 

     Meantmp � rowMeans(Matrixtmp) 

     Sdtmp � rowSd(Matrixtmp) 

return cell_list 

 

2.3 Simulate scRNA-seq data 

We adopted a simulating strategy to evaluate the performance of our method. Firstly, we selected 

200 genes from human GTF files among which 100 genes would be simulated as containing 

differential alternative splicing events. Then we further selected two transcripts for each gene to 

get a total of 400 transcripts. Next, we simulated RPK (reads per kilobase) value of 400 transcripts 

by a Perl script. RPK ratio of two transcripts belongs to the same gene was reciprocal between two 

cells while the RPK value of gene was a constant, such as 25, 50, 100, and 200. Two simulated 
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cells were labeled as group A and group B, respectively. The cells with the same label were 

simulated a similar RPK ratio of two transcripts belong to the same gene. In addition, we set four 

levels of log2(RPK ratio) as 0,1,2,3 to simulate the degree of junction differential expressed. 

Besides, we stimulated the dropout ratio as four levels: 0, 0.1, 0.2, 0.4 by applying the simulator 

strategy of BRIE. Finally, fastq files were generated by Spanki[19] with errorfree mode and 

splicing junction information was acquired. We obtained 200 cells for each condition. The 

description of simulation was displayed as follows. Visit GitHub for more detailed information. 

(https://github.com/lucky-Mendel/DSJ-detection-simulator) 

(1) Obtain sim_rpk files for each pair of cells using a Perl script. 

(2) (necessary if dropout >0) generate a dice format file as input in step3. 

(3) (necessary if dropout >0) simulate dropout event with a modified script coming from the 

BRIE simulator. 

(4) Output fastq files by Spanki.  

2.4 Differential gene expression analysis and gene set enrichment analysis 

We performed the Limmar R package to analyze differential expressed genes between two target 

clusters. The significant genes were identified as those met these criteria: 1) FDR adjusted p-value 

of F test < 0.01; 2) the absolute value of log2 fold change was larger than 2. After differential gene 

expression analysis, we obtained the genes which were highly expressed in one group. We 

performed gene set enrichment analysis[20, 21] by the web-based tool provided by broad 

institute(http://software.broadinstitute.org/).  

2.5 Survival analysis 

The TCGA LIHC data were applied to assess the relationship between patient survival and 

individual genes, individual isoforms, and gene sets from specific cell clusters. We downloaded 

the data of gene expression and isoform count from UCSC Xena[22] (http://xena.ucsc.edu/) and 

retrieved clinical data from the Genomic Data Commons Data Portal 

(https://gdc-portal.nci.nih.gov/). Three hundred and seventy-seven patients without 

immunotherapy treatment were included in the survival analysis. Firstly, the isoform read count 

data were normalized by the isoform’s length and uniquely mapped read number of each patient. 

Then. to rectify the influence of T cell compositions within each sample, the expression of 

selected genes and isoforms in the tumor were divided by the geometric mean expression of CD3 
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genes. CD3 gene expression was assigned as the arithmetic mean of the corresponding isoforms 

(CD3D, CD3E and CD3G). Thirdly, for each selected genes and isoforms, we set the relative 

expression lower and upper threshold as the median minus or plus 10% MAD (median absolute 

deviation) respectively. Fourthly, we retained the samples whose relative expression is beyond 

these thresholds then divided patients into high and low expression groups. To explore whether 

CD103-201 isoform was correlated with prognosis, we calculated two scores for each patient by a 

weighted sum of fold change value of signature genes between CD103-201+ population and 

CD103-201- (Supplementary Table 1) and gene expression in TCGA data. Then, the patients were 

split into two groups by the median value of the expression score of patients. The statistical 

analysis was performed using the R package ‘‘survival’’. 

2.6 Developmental trajectory inference 

We used the Monocle (version 2)[23] to order CD8/CD4 T cells in pseudo time respectively. TPM 

value was converted into normalized mRNA counts by the “relative2abs” function in monocle 

then we created an object with the parameter “expressionFamily = negbinomial.size”. Finally, the 

CD8+/CD4+ T cell differentiation trajectory was determined by the default parameters of Monocle.   

2.7 Definition of exhaustion and naïveness scores. 

Similar to Guo et.al[2], we firstly identified the most significant genes between exhausted T 

cluster (C04_CD8.LAYN) and other T clusters using moderated t-test implemented by the R 

package limma (log2(FC) >= 4 & FDR < 0.01). Then, we defined the exhaustion score for CD8+ T 

cells as the average expression of these markers after z-score transformation (original value is 

log2(TPM+1)). A similar method was used to define naïveness scores for CD4+ T cells using the 

common naïve markers. Finally, we calculated the significant level of the exhaustion and 

naiveness scores of cells from different clusters by t-test. 

 

3 Results 

3.1 The overview of DESJ-detection 

Revealing splicing differences at the single-cell level would deepen our understanding of cell 

heterogeneity, function, and phenotype. The major challenges in differential splicing analysis are 

scRNA-seq data has much dropout events and low sequencing depth compared to bulk RNA-Seq, 

which hinders reflection of the real splicing structure of genes. Besides, splicing analysis in 
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RNA-Seq data mainly is limited in SE (exon skip events) and MXE (mutually exclusive exon 

events). To address these two challenges, we proposed DESJ-detection, an algorithm that uses 

junction-spanning reads to detect DESJs. Firstly, we input all the junctions read count of each cell 

and output junction-cell count matrix of each gene. Secondly, we applied iterative K-means to 

cluster cells and removed the clusters with low expression (SD < 0.2 and Mean < 1) of all 

junctions resulting from low coverage and high dropout rate. Then, we utilized a new 

normalization method to eliminate the influence of differential expression at the gene level on 

differential junction expression detection. Specifically, it normalized the junction read count with 

the read count of each gene rather than uniquely mapped reads of each cell. Finally, we identified 

DESJs based Limma-tread algorithm with the value of fold change (FD) and adjusted p-value. 

Meanwhile, DESJ-detection can detect the DESJs at any region of a gene, so it can discover any 

patterns of alternative splicing, rather limited in SE and MXE events (Fig. 1A). We also developed 

a convenient pipeline (https://github.com/liushang17/DESJ-detection), which starts from the 

generation of junctions, filtering and annotation of junctions, preparation of junction count table 

and detection of DESJs (Fig. S1A). 

 To assess the performance of the software in differential alternative splicing detection, we 

simulated scRNA-seq data with a pipeline based Spanki considering different factors, including 

reads coverage, dropout rate, and degree of junction differential expressed. Our method was 

proved to be effective. For example, the simulated cells were divided into five clusters by the 

expression of two isoforms of PPT1. As we can see, four cell clusters showed junction differential 

expression and another cluster with low gene expression was removed by the iterative K-means 

clustering, because it failed to reveal the real junction usage (Fig. S1B). In the meantime, we 

observed the sensitivity level reached up to about 70% even at the lowest coverage level (RPK = 

25) when the junction differential expression is more than control and without dropout events. 

And the sensitivity was essentially maintained at 85% at the general coverage level (RPK>=50). 

In addition, the sensitivity also reached a high percentage (>=70%) when dropout rate is more 

than 0 (Fig. S1 C). Besides, more than 95% of identified genes was DESJ related genes. Taken 

together, DESJ-detection proved its robustness in dropout events, low coverage requirement for 

detection, and high sensitivity to DESJs. 

3.2 Differential usage of junctions in UTR regions across T cell clusters 
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we performed DESJ-detection in a published scRNA-seq data set. It includes 5,063 T cells 

from tumor tissues, normal tissues, and peripheral blood of six HCC patients and had been 

assigned into 11 T cell subsets, including naïve T cells (C01_CD8.LEF1, C06_CD4.CCR7), 

effector T cells (C02_CD8.CX3CR1, C11_CD4.GNLY), exhausted T cells (C04_CD8.LAYN, 

C10_CD4.CXCL13), Tregs (C07_CD4.FOXP3, C08_CD4.CTLA4), mucosal-associated invariant 

T cells (C03_CD8.SLC4A10), and intermediate T cells (C05_CD8.GZMK, C09_CD4.GZMA). 

We obtained a set of 134,414 junctions that satisfied read count more than 4 in at least 10 cells, 

covering 12,587 genes (Fig. S2 A& Fig. S2 B). We further filtered the junctions that not located at 

any annotated genes or located at fusion genes. In the end, we retained 119,311 junctions from 

10,556 genes. By DESJs analysis, we finally identified 1,176 DESJs across 11 clusters (log2(FC) 

≥ 1, adjust p-value ≤ 0.01) (Supplementary Table 2).  

To characterize the distribution of DESJs in genomics, we investigated the frequency of 

DESJs between different genome regions. We found significant higher frequency of DESJs in 

UTR regions than coding regions between clusters (p-value = 0.004 for CD8+ T cells and p-value 

= 6.456e-13 for CD4+ T cells, Student’s t-test. Fig. 2 A &Fig. S2 C & Fig. S2 D). This may result 

from longer junction length (end site - start site + 1) in UTR region. We additionally observed that 

DESJs are significantly longer than nonDESJ both in UTR and Coding regions. Besides, the 

DESJs in UTR regions were also longer than the these in Coding regions (Fig. 2B). Because UTR 

regions are longer than coding regions, these two phenomena may be explained that the longer 

junctions would provide more possible splice sites and potential regulation functions. Previous 

studies have revealed that the ratio of genes whose UTR region happened alternative splicing 

made up to 10%-18% [24, 25]. Besides, alternative splicing in UTR also made a great contribution 

to regulate gene expression[26]. Therefore, our results revealed that alternative splicing in UTR 

region has been underestimated because of its higher frequency of differential alternative splicing 

between cell clusters. Specifically, we supposed alternative splicing in UTR regions may 

contribute a lot to not only gene expression regulation but also cell heterogeneity. 

At the meantime, we noticed that the considerable differential expression genes between 

clusters were also DESJ related genes in T cells (Fig.2 C). In addition, there were about 60% 

differential expression genes possessing DESJs in the UTR region (Fig. S2 G). For example, 

ARHGAP9, a member of RhoGAP family and associated with good survival, was a differential 
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expressed gene (highly expressed in C04_CD8.LAY, C10_CD4.CXCL13, and C08_CD4. CTLA4). 

And it also showed differential splicing in UTR region between CD8+ T cell clusters 

(C01_CD8.LEF1, C02_CD8.CX3CR1, C04_CD8.LAYN, C05_CD8.GZMK) (Fig. 2 D & Fig. S2 

F). Specifically, ARHGAP9-203 was upregulated in exhausted T cells and Tumor-infiltrated Tregs, 

while ARHGAP9-204 was mainly expressed in naïve T cells and peripheral blood Tregs (Fig. 2 

D).  

KEGG pathway analysis of genes possessing DESJs in UTR was mainly involved in the 

VEGF signaling pathway, T cell receptor signaling pathway, spliceosome, P53 signaling pathway, 

and cell apoptosis. Meanwhile, the genes with DESJs in the Coding region were associated with 

innate immune pathways and spliceosomes. Hence, these emphasized the alternative splicing in 

UTR regions may relate with the specific function of cells. Taken together, our results indicated 

that alternative splicing in UTR regions may play a regulated role in gene expression between cell 

clusters. 

3.3 T cell heterogeneity at splicing level 

To explore the association between alternative splicing and the heterogeneity of T cell 

function, we further utilized the identified DESJs across T cell clusters to obtain cell-type-specific 

splicing junctions. In this study, we detected 335 DESJs from 165 genes among CD8+ sub-clusters 

and 484 junctions from 239 genes among CD4+ sub-clusters (Supplementary Table 2). We used 

two distinct datasets to hierarchically clustered T cells, the number of DESJs and the expression of 

DESJs across all cell clusters. Both of them indicated that cells with a similar function rather than 

the lineage, exhibited a similar alternative splicing pattern. (Fig. 3 A). For example, 

tumor-infiltrating Treg and exhausted T cell (C04_CD8.LAYN, C08_CD4.CTLA4, 

C10_CD4.CXCL13) clustered together, demonstrating a huge difference between them and others. 

What’s more, naïve T cell (C01_CD8.LEF1, C06_CD4.CCR7), effector T cell 

(C02_CD8.CX3CR1, C11_CD4.GNLY), and intermediate state (C05_CD8.GZMK, 

C09_CD4.GZMA) clustered together respectively. In the meantime, we mentioned that exhausted 

T cells showed the most significant difference in the DESJ number with other T cells, indicating 

exhausted T cells would emerge the greatest changes in alternative splicing. These results 

indicated junction usage difference between cell clusters mainly depends on the functional state of 

the clusters. 
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We next focused on the DESJs related genes between four functional states, including naïve T 

cells, effector T cells, exhausted T cells, and mediate T cells. Naïve and exhausted T cells mainly 

showed differential splicing in genes of splicing and immune, such as CD45, HSPB1, CLK1, 

SRSF2, SNRNP70. Effector T cells were characterized by the differential splicing in ZEB2, FYB1, 

and SYNE1 (Fig. 3 B). Among all the DESJs related gene, WARS that highly expressed in 

exhausted T cell and being a maker of exhaustion, showed differential splicing between exhausted 

T cell and other T cells (Fig 3 C, D &Fig. S3 A). The junction (chr14_100369259_100376259_2), 

representing WARS-202 showed the widespread expression in all T cells while the junction 

(chr14_100369259_100375282_2), representing WARS-204, only widely expressed in Tregs 

(C08_CD4.CTLA4) and exhausted T cells (C04_CD8.LAYN, C10_CD4.CXCL13). Prognostic 

analysis with TCGA LIHC data revealed that the upregulated expression of WARS was associated 

with worse prognosis (Fig. 3 E). Thus, we proposed the upregulation expression of isoform 

WARS-204 actually represented worse prognosis (Fig. 3 F). Furthermore, the prognostic analysis 

with TCGA LIHC data at the isoform level confirmed our hypothesis (Fig. S3 B).  

This case inspirited us whether some immunity therapy-related target genes also displayed such 

a phenomenon. We found two T cell immunity checkpoint genes whose upregulation expression 

related to worse prognosis, TNFRSF4, and HAVCR2. However, only one of its isoforms is in 

accordance with its gene performance, implying that this isoform may be as an actual therapy 

target (Fig. S3 C). In summary, these results demonstrated alternative splicing would have a huge 

effect on the function and phenotype of T cells and would be potential markers for cancer 

prognosis and treatment. 

3.4 Two novel functional subpopulations identified by CD103-201 and ARHGAP15-205 

To further show the inner heterogeneity in T cell clusters, we utilized DESJs to identify the 

functional subpopulations. After that, we inferred the potential function of isoforms. ITGAE, also 

known as CD103, is a tissue-resident T cell marker and highly expressed in exhausted T cells. One 

of its isoforms, CD103-201, was upregulated in CD8+ exhausted T cells (CD4_CD8.LAYN), 

while another isoform CD103-202 universally expressed in all CD8+ T cells. The differential 

splicing of CD103 was not any common alternative splicing patterns (SE, MXE, IR, A5SS, and 

A3SS), resulting from CD103-201 expressed nine more exons than CD103-202 (Fig. 4 A). In 

addition, we observed CD103-202 showed widespread expression in C04_CD8.LAYN, while 
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CD103-201 exhibited a bimodal pattern in C04_CD8.LAYN, implying that different isoforms of 

ITGAE would play different roles in exhausted T cells function (Fig. 4 B). Meanwhile, the two 

populations (CD103-201+ and CD103-201- populations) displayed obviously different expression 

patterns. Specifically, CD103-201+ population highly expressed exhausted marker ENTPD1, while 

CD103-201- population showed high expression of ribosome proteins, including RPL27, RPL35A, 

RPS29, RPS21 (Fig. 4 C). GO enrichment analysis shows CD103-201- population own extremely 

strong translation vitality, indicating CD103-201- population may be in the state of transition (Fig. 

S4 A). To verify this hypothesis, we performed pseudotime analysis among all the four CD8+ 

clusters. CD103-201- population and C05_CD8.GZMK were located more centrally in the 

Monocle trajectory and had a significantly lower exhaustion score than CD103-201+ population. 

Thus, this result further suggested that CD103-201- population was possible in “pre-exhaustion” 

state (Fig. 4 D). As expected, we also observed that CD103-201- population was associated with 

better prognosis in TCGA LIHC data compared with CD103-201+ population (P= 0.009, Cox 

regression, Fig. S4 B). In summary, these results represented CD103-201 may be associated with 

T cell exhaustion and have the potential to clinical application. 

ARHGAP15, a Rac1-specific GAP, was reported to be associated with the development of 

diverse tumors, including colorectal cancer[27], glioma[28] and pancreatic ductal 

adenocarcinoma[29]. However, it is little-known about the relationship between T cell state and 

ARHGAP15 at the isoform level. Our study discovered that ARHGAP15-201 expressed 

universally in all cell clusters, but ARHGAP15-205 exhibited a highly specific expression pattern 

(Fig. 4E). Further, ARHGAP15-205 shows a striking bimodal expression distribution in both CD8 

naïve T cells (C1_CD8-LEF1) and CD4 naïve T cell (C6_CD4-CCR7) (Fig. 4F & Fig. S4 E). This 

implied ARHGAP15-205 may affect the functional state of naïve T cell. We identified 174 genes 

highly expressed in ARHGAP15-205+ naïve T cell (FDR < 0.01, log2(Fold change) ≥ 1) 

(Supplementary Table 1). These genes significantly overlapped with signature genes of cell cluster 

in the activated state, which was identified by three previous studies (Fig. S4 C). Thus, we 

supposed the ARHGAP15-205+ population has a similar activation characteristic. Signature genes 

of ARHGAP15-205+ include S100A4, ITGB1, S100A6, and LGALS1, supporting that 

ARHGAP15-205+ population trend toward activation state (Fig. 4 G). On the contrary, 

ARHGAP15-205- population highly expressed the genes related to resting state, including CCR7, 
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SELL and LEF1, demonstrating it is in the relative resting state (Fig. 4 G). Meanwhile, GO 

biological process enrichment analysis showed ARHGAP15-205+ population signature genes 

enriched in the cell differentiation (including leukocyte differentiation and lymphocyte 

differentiation) and cell activation (Fig. S4 D). What’s more, the pseudotime analysis of cells in 

C06_CD4.CCR7, C09_CD4.GZMA, C10_CD4.CXCL13, and C11_CD4.GNLY showed 

ARHGAP15-205+ cells were closer to cells in C09_CD4.GZMA and had a lower naïve score 

compared with ARHGAP15-205- population (Fig. 4 H). These results suggested that 

ARHGAP15-205+ CD4 naive T cells, might be in the pre-activation state and possess immune 

killing function. The identical performance also emerged in CD8 naïve T cell (C01_CD8-LEF1) 

(Fig. S4 E, F). Altogether, these results emphasized that alternative splicing analysis at single-cell 

level would reveal cell heterogeneity and discover cell sub-clusters in higher resolution than gene 

expression level. 

 

4 Discussion 

The scRNA-seq technology has developed rapidly and has been widely applied in many 

frontier fields including tumor heterogeneity, cell differentiation, and neural development. 

Compared to 3′ enrichment methods, full-length single-cell RNA data can not only quantify gene 

expression but also analyze the structure of genes in high resolution, such as single nucleotide 

variants (SNV) and alternative splicing (AS) detection. Due to the lack of available software to 

analyze cell heterogeneity with alternative splicing, single-cell research currently is still limited to 

gene expression profiling. Here we have developed a differential alternative splicing detection 

software for the full-length scRNA-seq dataset. 

DESJ-detection was proved to detect the DESJs between different cell types at the single-cell 

level in a robust and effective way. To detect the DESJs between two cell groups would be 

affected by the technical limitation in scRNA-Seq, which would lead to the incorrect 

representation of the alternative splicing structure. The iteration k-means could effectively find 

and filter these cells. It works like wringing out two sponges containing water, only when as much 

as water was removed would the properties of the two sponges themselves be compared accurately. 

In addition, the different read count of genes, resulting from different sequence depth and gene 

expression level, would prevent the precision detection of DESJs. Taking these two factors into 
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consideration, we normalized the junction matrix of each gene with reads count of the gene in 

each cell. This computation framework suggested a novel strategy to detect the differential 

alternative splicing between two groups of cells at the single-cell level and filled the gap in this 

field. However, DESJ-detection could not accurately detect the isoforms composition of a single 

cell for any given genes because some junctions may not uniquely belong to one isoform. 

Additional work to develop an improved version to address the above shortcoming is ongoing and 

would result in the interpretation of isoform difference in higher resolution. 

We performed DESJs-detection in a T cell dataset from six patients diagnosed with HCC 

provides novel insight into T cell heterogeneity. One interesting finding is cell clusters with a 

similar functions displayed a minor number of DESJs related genes comparing with others and 

possessed a similar DESJs expression pattern. For example, exhausted T cells and 

tumor-infiltrating Tregs, which shared similar high expression genes LAYN, HAVCR9, and 

ENTPD1, also shared similar splicing patterns, such as WARS, ARHGAP9, SRSF2. These 

relationships may partly be explained that cells with a similar function would share similar 

expression profiles of genes as well as isoforms. At the same time, some unique isoforms in 

exhausted T cells are related to poor prognoses, such as WARS and CCND3. Therefore, altering the 

isoform preference of specific genes in T cells might be another way for cancer immunotherapy. 

The association between alternative splicing and the cell clusters may be applied to infer the 

function of alternative splicing and predict novel subpopulations. For example, 

CD103-201 revealed a novel sub-cluster, pre-exhausted population. And then, CD103-201 may be 

inferred to play a role in T cell exhaustion in liver cancer. A similar phenomenon emerged at 

ARHGAP15-205, an isoform related to T cell activation. Further studies are needed to affirm these 

results by experiments and interrogate the potential mechanism, as well as other isoforms related 

to the cell functional state.  

With the rapid development of scRNA-seq, smart-seq3[30] with longer read length and faster 

sequencing has emerged, leading to researches on single-cell alternative splicing a hot topic. 

However, the conditions to support single cell alternative splicing analysis, including sequencing 

depth and coverage have not been explicitly disclosed. Secondly, there is still a lack of 

corresponding methods on how to construct a profile of alternative splicing at the single-cell level. 

Finally, the combined analysis of single-cell alternative splicing and gene expression has not been 
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explored. Our program will greatly contribute to enriching the research strategy of alternative 

splicing and exploring its potential function extensively.  
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Figure S2
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Figure S3
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Figure S4
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Table1 

Annotation about cell clusters 

Cluster Cell number Function annotation Type 

C01_CD8.LEF1 161 Naïve T cell CD8+ T cell 

C02_CD8.CX3CR1 288 Effector T cell CD8+ T cell 

C03_CD8.SLC4A10 363 MAIT CD8+ T cell 

C04_CD8.LAYN 300 Exhausted T cell CD8+ T cell 

C05_CD8.GZMK 467 T cell in mediate state CD8+ T cell 

C06_CD4.CCR7 646 Naïve T cell CD4+ T cell 

C07_CD4.FOXP3 261 Peripheral Treg CD4+ T cell 

C08_CD4.CTLA4 582 Tumor Treg CD4+ T cell 

C09_CD4.GZMA 689 T cell in mediate state CD4+ T cell 

C10_CD4.CXCL13 146 Exhausted T cell CD4+ T cell 

C11_CD4.GNLY 167 Effector T cell CD4+ T cell 

Unknown 993 NA NA 
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Figure legend 

Figure 1. | The overview of DESJ-detection. 

FigureS1. | The diagrammatic sketch of the pipeline for the creation of junction count 

matrix and the performance of DESJ-detection on simulated data. A, The preparation 

work (see method for detailed information). B, Heatmap of five identified clusters by 

iterative K-means with all junction of PPT1 from simulated data. The Violet bar represents 

cells highly expressing PPT1 long isoform. The green bar represents cells highly 

expressing PPT1 short isoform. The pink bar represents a cell moderately expressing 

PPT1 long isoform. Blue bar represents cell moderately expressing PPT1 short isoform. 

Yellowish-brown bar represent cell failing to reflect the composition of PPT1 isoforms. C, 

Left shows the sensitivity of DESJ detection by DESJ-detection. Right is the schematic 

diagram of isoform usage difference of simulated data. 

Figure 2. | Wide differential usage of junctions in the UTR regions across T cell clusters. A, 

The proportions of differential splicing junction frequency in the UTR regions and the 

Coding regions across CD8+ T cells. B, The length difference between DESJ and 

nonDESJ in Coding region and UTR region. C, The overlap between differential 

expression genes and DESJ associated genes among T cells clusters. D, Sashimi plots 

illustrating the read distribution of ARHGAP9 in CD8+ T cells from P0508. The colors 

represent different isoforms. This alternative splicing of ARHGAP9 happens in the UTR 

regions. Naïve T cells (C01_CD8.LEF1) show obvious differential usage of isoforms from 

other clusters. E, Result of KEGG pathway analysis for genes with differential splicing in 

the UTR regions.  
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Figure S2. | Wide differential usage of junctions in the UTR regions across T cell clusters. 

A, The read number distribution of all junction from 5,063 cells. B, The cell number 

distribution of junction with at least 4 reads supporting. C, The proportions of differential 

splicing junction in the UTR regions and the Coding regions across CD4+ T cells. D, The 

frequency of DESJ in the UTR regions is significantly higher than the Coding regions. E, 

Result of KEGG pathway analysis for genes with differential splicing in the Coding regions. 

F, Sashimi plots illustrating the read distribution of ARHGAP9 in CD4+ T cells from P0508 

patient, similar to CD8+ T cells in Figure2D. Naïve T cells (C06_CD4.CCR7) and blood 

Tregs (C07_CD4.FOXP3) show obvious differential usage of isoforms from other clusters 

in CD4 T cells. G, The proportion of differential expression genes with differential splicing 

junctions in the UTR regions. 

Figure 3. | T cell heterogeneity at splicing level. A, Upper: Heatmap of DESJ associated 

genes number between pairwise clusters across T cells. Below: z-score normalized mean 

expression of all DESJ in each T cell cluster. Boxes with different colors highlight the 

patterns of different functional T subtypes. B, the z-score normalized mean expression of 

selected DESJ that shares in the similar function subtypes. C, Violin plots comparing the 

expression of WARS in 11 T cell clusters. D, The disease-free survival curve based on 

TCGA HCC data showing patients with higher expression of WARS had a poor prognosis. 

E, Sashimi plots illustrating the read distribution of WARS in CD8+ T cells from P0508 

patient. WARS-204 highly expresses in exhausted T clusters (C04_CD8.LAYN). F, 

Disease-free-survival (DFS) curve comparing the high and low expression of WARS-204 

based on the TCGA HCC cohort shows higher expression of WARS-204 in tumor means 
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bad prognosis. 

Figure S3. | T cell heterogeneity at splicing level. A, Sashimi plots illustrating the read 

distribution of WARS in CD4+ T cells from P0508. WARS-204 highly expresses in 

exhausted T clusters (C10_CD4.CXCL13) and Tumor Tregs (C08_CD4.CTLA4). B, Result 

of GO enrichment analysis for genes in Figure3B. C, Disease-free-survival (DFS) curve 

comparing the high and low expression of WARS-201, WARS-202, and WARS-203 based 

on the TCGA HCC cohort. D, Disease-free-survival (DFS) curve comparing the high and 

low expression of HAVCR2, HAVCR2-201, TNFRSF4 and TNFRSF4-201 based on the 

TCGA HCC cohort. 

Figure 4. | Two novel functional sub-population identified by CD103-201 and 

ARHGAP15-205. A, Heatmap of 4 CD8+ clusters with junctions from ITGAE (CD103). 

Alternative junctions, representing CD103-201, highly express in exhausted T cells 

(C04_CD8.LAYN), while constitute junctions universally express in all T cell clusters. B, 

The bimodal distribution of alternative junctions from CD103 shows the Intrinsic 

heterogeneity in exhausted T cells (C04_CD8.LAYN). Cell density is color-coded, with red 

denoting high density and yellow low density. C, Volcano plot showing differentially 

expressed genes between the CD103-201+ and CD103-201-populations. Each red dot 

denotes an individual gene with adjusted P-value < 0.01 (two-sided moderated t-test with 

limma) and abs(fold change) ≥ 8. D, Result of GO enrichment analysis for genes highly 

expressing in CD103-201- population. E, Disease-free-survival (DFS) curve comparing 

the high and low expression of marker genes of CD103-201+ high population and 

CD103-201- population. F, Sashimi plots illustrating the read distribution of ARHGAP15 in 
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CD4+ T cells from P0508. ARHGAP15-205 highly expresses in naïve T cells 

(C06_CD4.CCR7). G, Similar to CD103, the bimodal distribution of ARHGAP15-205 

shows the Intrinsic heterogeneity in naive T cells (C06_CD4.CCR7). H, The Venn graph 

showing the overlap of activation associated genes identified in this study with those from 

previous studies by De Simone et al. (2016) (p = 2e-85) determined by hypergeometric 

test. I, Volcano plot showing differentially expressed genes between the ARHGAP15-205+ 

and ARHGAP15-205-populations. Each red dot denotes an individual gene with adjusted 

P value < 0.01 (two-sided moderated t-test with limma) and abs(fold change) ≥ 2. J, 

Result of GO enrichment analysis for genes highly expressing in ARHGAP15-205+ 

population. 

Figure S4. | Two novel functional subpopulations identified by CD103-201 and 

ARHGAP15-205. A, Left: CD8+ T cells (excluding MAIT cells) was ordered along 

pseudotime in a two-dimensional state-space defined by Monocle2. Cell orders are 

inferred from the expression of DEGs across CD8+T cell populations. Each point with 

different colors corresponds to individual cells in different clusters. The middle plot shows 

the order of CD103-201+ population and CD103-201- population. Right: The exhaustion 

score calculated by the mean expression of gene sets related to exhaustion status (see 

Methods) correlated with Monocle components. Violin plots in the top corners show the 

distribution of exhaustion scores in various cell clusters. Different colors represent 

different clusters. P values were calculated by Pearson correlation, and P < 2.2 × 10-16 

represents a P value approaching 0. B, Similar to FigureS4 A, the same pseudotime plot 

for four clusters of CD4+ T helper cells and the similar naiveness score calculated in all 
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CD4+ T helper cells. C, Similar to Figure4G, the bimodal distribution of ARHGAP15-205 

shows the Intrinsic heterogeneity in naive T cells (C01_CD8.LEF1). D, Violin plots show 

the expression difference in ARHAGP15-205- and ARHGAP15-205+ C01_CD8.LEF1 

subpopulation about activation markers, including S100A4, S100A11, ITGB1 and ANAX1. 
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