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16  Highlights

17

18 ¢ Multimodal diseases are those in which affected individuals can be divided into subtypes (or ‘data
19 modes’); for instance, ‘mild’ vs. ‘severe’, based on (unknown) modifiers of disease severity.

20

21 e The role of the microbiome in multimodal diseases has been studied in animals; however, findings
22 are often deemed irreproducible, or unreasonably biased, with pathogenic roles in 95% of reports.
23

24 e As a solution to repeatably, investigators have been told to seek funds to increase the number of
25 human-microbiome donors (N) to increase the reproducibility of animal studies.

26

27 e Herein, we illustrate that although increasing N could help identify statistical effects (patterns of
28 analytical irreproducibility), clinically-relevant information will not always be identified.

29

30 ¢ Depending on which diseases need to be compared, ‘random sampling’ alone leads to reproducible
31 ‘patterns of analytical irreproducibility’ in multimodal disease simulations.

32

33 o Instead of solely increasing N, we illustrate how disease multimodality could be understood,

34 visualized and used to guide the study of diseases by selecting and focusing on ‘disease modes’.
35

36

37  Abstract

38 Multimodal diseases are those in which affected individuals can be divided into subtypes (or ‘data

39 modes’); for instance, ‘mild’ vs. ‘severe’, based on (unknown) modifiers of disease severity. Studies have
40  shown that despite the inclusion of a large number of subjects, the causal role of the microbiome in

41 human diseases remains uncertain. The role of the microbiome in multimodal diseases has been studied
42 in animals; however, findings are often deemed irreproducible, or unreasonably biased, with pathogenic
43 roles in 95% of reports. As a solution to repeatability, investigators have been told to seek funds to

44 increase the number of human-microbiome donors (N) to increase the reproducibility of animal studies
45 (doi:10.1016/j.cell.2019.12.025). Herein, through simulations, we illustrate that increasing N will not

46  uniformly/universally enable the identification of consistent statistical differences (patterns of analytical
47  irreproducibility), due to random sampling from a population with ample variability in disease and the

48 presence of ‘disease data subtypes’ (or modes). We also found that studies do not use cluster statistics
49  when needed (97.4%, 37/38, 95%CI=86.5,99.5), and that scientists who increased N, concurrently

50  reduced the number of mice/donor (y=-0.21x, R?=0.24; and vice versa), indicating that statistically,

51 scientists replace the disease variance in mice by the variance of human disease. Instead of assuming
52 that increasing N will solve reproducibility and identify clinically-predictive findings on causality, we

53 propose the visualization of data distribution using kernel-density-violin plots (rarely used in rodent

54  studies; 0%, 0/38, 95%CI=6.9e-18,9.1) to identify ‘disease data subtypes’ to self-correct, guide and

55 promote the personalized investigation of disease subtype mechanisms.

56

57 Keywords: violin plots, random sampling, analytical irreproducibility, microbiome, fecal matter

58 transplantation, data disease subtypes
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59  Introduction
60 Multimodal diseases are those in which affected individuals can be divided into subtypes (or ‘data
61 modes’); for instance, ‘mild’ vs. ‘severe’, based on (unknown) modifiers of disease severity. Since the
62 availability of DNA-sequencing platforms, there have been major advances in our understanding of the
63 human microbiome, its ecological complexity, and temporal oscillations. However, to differentiate the
64  causal connection between microbiome alterations and human diseases (from that of secondary
65 alterations due to disease), animal models, primarily germ-free rodents transplanted with human gut/fecal
66 microbiota (hGM-FMT), have been critical as in vivo phenotyping tools for human diseases.
67 Unfortunately, despite considerable efforts from organizations and guidelines to help scientists design
68 and report preclinical experiments (e.g., ARRIVE)"?, there are still concerns of study reproducibility.
69 Studies have described novel technical sources of ‘artificial’ microbiome heterogeneity that could
70  explain why hGM-FMT study results vary?®. In our own work?, we discovered that scientists lacked
71 appropriate methods for the description and analysis of cage-clustered data. To help scientists to self-
72 correct issues on rodent experimentation, we identified ‘six action themes’ and provided examples, and
73 statistical code, on how to use and compute ‘study power’ as a reproducible parameter that could enable
74 inter-laboratory comparisons and improve the planning of human clinical trials based on preclinical data?.
75 In this regard, a recent perspective article on hGM-associated rodent studies by Walter et al.”
76 (“Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-
77  Associated Rodents”; published in Cell, January 23« 2020) recommended to scientists seek additional
78  funding to increase the number of human donors (N) as a main solution to improve experimental rigor and
79 reproducibility, and to determine the causal role of the hGM in disease. Given that large disease
80  variability is experimentally problematic for both humans and animals, we hypothesized that increasing N
81 would not ensure consistent results due to the aleatory effects of random sampling of subjects from a
82 population with multimodal disease distributions (i.e., multimodal: >2 types of modes or ‘subtypes of
83  disease data’ can be seen in a population; the most, and the least diseased). To verify this hypothesis in
84  the context of h\GM and N, we used published (observed) preclinical distribution (disease variability)
85 estimates to conduct a statistical and visualization analysis of the impact of repeated random sampling on
86  the significance of statistical comparisons between simulated disease groups, at various N.
87 Underscoring the importance of the central limit theorem (which can be visualized in[8]),
88 simulations indicate that more studies addressing disease multimodality (independent of N; personalized
89  disease subtyping studies) are preferable than fewer studies with larger N that do not address disease
90  multimodality. After examining the statistical content of 38 studies®#° listed in Walter et al,” we found that
91 scientists who increased N, concurrently reduced the number of MxD, indicating that statistically,
92  scientists replace the disease variance in mice by the disease variance in humans in their \GM-FMT
93 studies. Further, studies lacked proper clustered-data statistics to control for animal density; which is a
94 major source of misleading results (false-positive, or false-negative), especially when scientists prefer to
95  house many rodents per cage, and when the number of mice per experiment is low?45,
96 Herein, we provide a conceptual framework that illustrates various patterns of analytical
97 irreproducibility by simulating and integrating the dynamics of: N, random sampling, group means, sample
98 variance, and the population disease diversity that could be visualized as unimodal, bimodal or
99 multimodal, through the use of kernel-based violin density plots for the identification of data subtypes.
100 Simulations and provided examples could help scientists i) visualize the dynamics of random sampling
101 from a heterogeneous population of healthy and diseased subjects, ii) decide on N once preclinical data
102 are generated, and iii) improve experimental rigor in hGM-FMT studies.
103
104 RESULTS
105 ‘Disease subtypes’ occur in simulations using published data and UNIMODAL distributions
106 In microbiome rodent studies, the selection of a sufficient number of both human donors (N), and
107  the number of mice required to test each human donor (MxD), is critical to account for the effects of
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108  random sampling, which exist when the hGM induces variable disease severity in humans and

109 rodents. Thus, to visualize the variability of disease severity (data subtypes/modes) in rodents, and the
110  effect of N on the reproducibility of pairwise statistical comparisons between groups of hypothetically,

111 randomly selected human donors, we first conducted a series of simulations using the meantSD

112 (observed data) from hGM-FMT mice in Basson et al.*® (note the dispersed overlapping variances, SD in
113 Figure 1A). Using the observed data we generated random datasets using functions designed to draw
114 numbers from an inversed Gaussian distribution (with unimodal normal continuous probability; 0,«). We
115 demonstrate how the random selection of donors (sampled as groups for each of three iterative datasets)
116 influence the direction and significance level in pairwise comparative statistics (Figure 1B).

117 Simulations showed that the number of MxD is important because mice have various response
118 patterns to the hGM (i.e., disease severity, data subtypes/modes), which can be consistently detected
119  depending on the MxD and thus the variability introduced by random sampling. Simulations showed that
120  for the three group datasets (plotted as ‘Dis1’, ‘Dis2’ and ‘Healthy’), it was possible to reproducibly identify
121 two-to-three unique donor disease severity subtypes (data modes) in mice induced by the hGM (‘high’,
122 ‘middle’, and ‘low’ disease severity). Simulation plots made it visually evident that testing <4-5 MxD

123 yielded mean values more likely to be affected by intrinsic variability of random sampling; thus, making
124 studies with >6 MxD more stable and preferable. Conversely, studies with 1-2 MxD are at risk of being
125 strongly dependent on randomness. Iterative simulations showed that the mean effect (e.g., ileal

126 histology) in transplanted mice varies minimally (i.e., stabilizes) after 72 MxD, depending on the random
127  dataset iterated. Beyond that, increasing MxD becomes less cost-effective/unnecessary if the focus is the
128  human donors (Figure 1C).

129
130  Random sampling from overlapping diseases yield ‘linear patterns of analytical irreproducibility’
131 Often, published literature contains figures and statistical analysis conducted with 3 donors per

132 disease group. Thus, to mimic this scenario and to examine the role of random sampling on the

133 reproducibility of pairwise statistical results (‘significant’ vs. ‘non-significant’), we conducted, i) multiple 3-
134 donor/group (‘trio-trio’) pairwise comparisons, and ii) a simultaneous overall analysis for the cumulative
135 sum of all the 3-donor trios simulated for each disease group. That is, we monitored and quantified

136  whether results for each random iteration were significant (using univariate Student’s t-statistics p<0.05)
137  or non-significant (p>0.05) for groups of simulated donor datasets (‘Dis1’, ‘Dis2, and ‘Healthy’). Assessing
138 the effect of random sampling at various N, and also as N accumulated, we were able to illustrate that
139 pairwise trio-trio comparisons between the simulated datasets almost always produce non-significant

140 results when iterative trios were compared (due to large SD overlapping; see bars in Figure 1D

141 representing 21 sets of pairwise trio-trio p-values). However, as N increases by the cumulative addition of
142 all (mostly ‘non-significant’) donor trios (i.e., N increases in multiples of 3, for a range of N between 3 and
143 63 donors/group; [3, 6, 9, 12...63]), pairwise statistical comparisons between the simulated datasets did
144 not produce consistent results (see line plots in Figure 1D representing p-value for cumulative addition of
145  donors when sampling iterations were simulated).

146 Results are clinically relevant because the simulated N, being much larger (63 donors/group) than
147  the largest N tested by one of the studies reviewed by Walter et al” (21 donors/group)*® demonstrates that
148 the analysis of randomly selected patients would not always yield reproducible results due to the chance
149  of sampling aleatory sets of individuals with varying degrees of disease severity, regardless of how many
150  donors are recruited in an study. To provide a specific example, using ‘Dis1’ as a referent, cumulative

151  pairwise comparisons (vs. ‘Dis2’, and vs. ‘Healthy’) revealed at least five different patterns of

152 ‘irreproducible’ statistical results as N increased between 3 and 63 per group. Figure 1D illustrates four of
153  these variable cumulative linear patterns of analytical irreproducibility, in which, remarkably, i) ‘Dis1’

154  becomes significantly different vs. Dis2, and vs. ‘Healthy’, as N increases, ii) ‘Dis1’ becomes significantly
155 different from ‘Dis2’ but not vs. ‘Healthy’, iii) ‘Dis1’ was significantly different from healthy but not vs.

156 ‘Dis2’, and iv) ‘Dis1’ never becomes significantly different despite sampling up to 63 donors/group. See
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157  Supplementary Figure 1 for complementary plots illustrating linearity of patterns (R2, mean 0.51+0.23,
158 21 simulations) Hence, results clearly illustrate that seeking funds to recruit more donors is not a prudent
159  statistical solution to the problem of understanding disease causality of widely variable conditions in both
160 humans and animals. By analytical irreproducibility, herein, we refer to the inability to reproduce the

161 direction and statistical significance of a test effect when analyses are conducted between groups created
162 by the random selection of subjects from distributions defined based on observed (mean+SD) data.

163

164 100,000 Monte Carlo simulations illustrate the effect of randomness on analytical reproducibility
165 To summarize the overall significance of the inconsistent patterns observed via random sampling,
166  we computed an aggregate ‘cumulative probability of being a significant simulation’ for 50 pairwise

167  statistical simulation sets fulfilling the 4 linear patterns described above. Emphasizing the concept that
168 increasing N is not a reproducible solution, Figure 1E shows that only 35.3+4.0% of comparisons

169  between ‘Dis1’ and ‘Dis2’, and 58.8+3.3% for ‘Dis1’ and ‘Healthy’ were significant.

170 Expanding the validity of these inverted-Gaussian simulations for N=63 donors/group, we then
171 conducted i) Monte Carlo adjusted Student’s unpaired t-tests, and ii) Monte-Carlo adjusted one-way

172 ANOVA with Tukey correction for family errors and multiple comparisons. Monte Carlo simulations used
173 data drawn from a normal (non-inverted) Gaussian distribution around the group means with a pooled SD
174  of +4, and were conducted using GraphPad, a popular statistical software in published studies. To

175 estimate a probability closer to the real expectation (narrower confidence intervals), 100,000 simulations
176  were performed. Supporting the observations above (based on inverse normal simulations), Monte Carlo
177  Gaussian simulations showed that, using pairwise comparison, ‘Dis1’ would be significantly different from
178  Dis 2 (adjusted T-test p<0.05) only 57.7% of the time (95%CI|=58-57.4), with 1540 simulations producing
179 negative (contradictory) mean differences between the groups. Compared to ‘Healthy’, ‘Dis1’ and ‘Dis2’
180  were significant only 9.1% (95%CI|=9.2-8.9) and 78.3% (95%CI|=78.6-78.1) of the time, respectively.

181 Under the ‘Weak Law of Large Numbers™"4°, and randomization principles, it is almost always
182 possible to detect some level of statistical significance(s) and mean group differences when asymptotic
183 mathematical methods based on numerous simulations are used, for example, as a surrogate for multiple
184  experiments which are not possible in real research settings. However, in this case, the mean simulated
185  differences yielding from 100,000 simulations were minuscule (1.6 for ‘Dis1’-‘Dis2’; -1.97 ‘Healthy’-'Dis2’,
186  and 0.42, ‘Healthy’-‘Dis1’). Compared to the range of disease variance for each disease, such minuscule
187  differences may not be clinically relevant to explain disease variance at the individual level. Note that the
188 SD was 4, therefore it is intuitive to visualize in a numerical context such as small differences across

189  greatly overlapping unimodal simulations. Correcting for family errors, One-way ANOVA corrected with
190 10,000 Monte Carlo simulations with N=63/group, showed that at least one of the three groups would be
191  statistically different in approximately only 67.2% of the simulations (95%CI|=64.2-70.0), whereas in

192 32.8% (95%CI1=64.2-70.0) of simulations, the groups would appear as statistically similar (see Table 1 for
193 estimations after 100,000 Monte Carlo simulations; note narrower Cl as simulations increase). The

194 comparison of ‘Dis1’ vs. ‘Dis2’ in Table 1, clearly demonstrates that the percentage of cases, in which a
195 simulation could be significant, depends on the degree of data dispersion. For example, simulations with
196 SD of 4, compared to SD of 10, produce significant results less often, illustrating how data with larger
197  dispersions contribute to poor statistical reproducibility, which cannot necessarily be corrected by

198  increasing N.

199
200 Random sampling can lead to ‘erratic patterns of analytical irreproducibility’ as N increases
201 To increase the external validity of our observations, we next simulated the mean+SD data

202 published from a hGM-FMT study on colorectal cancer conducted by Baxter et al'®. In agreement with
203 Basson et al, Baxter et al revealed comparably bimodal colorectal cancer phenotypes in mice resulting
204  from both the diseased (colorectal cancer) patients and healthy human donors (Figure 1F). Equally

205  important, we observed for both Basson et al*® and Baxter et al'®, what we describe as the fifth ‘pattern of
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206 analytical irreproducibility’ in this report. That is, in some cases, the steady addition of donor trios/group
207 (as simulations proceeded for increasing values of N) made it possible to identify simulations where

208 erratic changes in the statistical significance for group comparisons switched randomly, yet gradually,
209  from being significant to non-significant as more donor trios were ‘recruited’ into the simulations (Figure
210  1G). Clinically relevant, simulations indicated (in a reproducible manner), that adding extra patients could
211 at times actually invert the overall cumulative effect of the p-value, possibly due to the variable distribution
212 and multimodal nature of the human and rodent responses to experimental interventions. As such,

213 simulations indicate that it is advisable to conduct several a-priori determined interim results in clinical
214  trials to ensure that significance is numerically stable (p<0.05), as well as the relevance of personalized
215 analysis to examine disease variance in populations. Unfortunately, there are no guidelines or examples
216 available to assist in determining how many donors would be sufficient, and to visualize the effect of

217 random sampling of individuals from a vastly heterogeneous population of healthy and diseased subjects,
218  once rodent preclinical data is generated.

219
220  Violin plots and statistical methods for visualization of MULTIMODAL ‘disease data subtypes’
221 To visualize the underlying mechanisms that could explain the ‘linear and erratic patterns of

222 analytical irreproducibility’ introduced by random sampling, we first used dot plots based on observed and
223 simulated data, followed by kernel-based statistics and plots. Plot appearance and one-way ANOVA
224  statistics showed that when N is increased, significant results, when present for largely overlapping

225 phenotypes, are primarily due to small differences between sample means (Figure 2A-B). Simulations
226  that compared 3 groups of 65 donors/group almost always yielded a significantly different group;

227 however, dot plots show that the significant differences between means are just a small fraction of the
228 total disease variability as verified with Monte Carlo simulations above. That is, as N increases,

229 comparisons can become significant (see plot with 65 donors in Figure 2C). In this context, a significant
230  difference of such a narrow magnitude may not be clinically relevant, or generalizable, to explain the
231 presence of a disease phenotype in a population, especially for those individuals at the extreme ranges of
232 the disease distribution.

233 Mechanistically, the detection of significant comparisons can be attributed to the effect that

234 ‘increasing N’ has on the data mean and variance, which increases at a higher rate for the variance as
235 shown in Figure 2D. Instead of increasing N as a general solution, we propose to scientists to use violin
236 plots, over other plots commonly encouraged by publishers® (e.g., bar, boxplot and dot plots), because
237  violin plots provide an informative approach, at the group-sample level, for making inferences about

238  ‘disease data subtypes’ in the population (see ‘subtypes’ shown with arrows in Figure 2E).

239 Violin plots are similar to a box plot, as they show a marker for the data median, interquartile
240 ranges, and the individual data points®'. However, as a unique feature, violin plots show the probability
241 density of the data at different values, usually smoothed by a kernel density estimator. The idea of a

242 kernel average smoother is that within a range of aligned data points, for each data point to be

243 smoothened (X0), there is a constant distance size (A) of choice for the kernel window (radius, or width),
244 around which a weighted average for nearby data points are estimated. Weighted analysis gives data
245 points that are closer to X0 higher weights within the kernel window, thus identifying areas with higher
246  data densities (which correspond to the disease data modes). As an example of the benefits of using
247  violin plots, Figure 2F illustrates that as N increases, so does the ability of scientists to subjectively infer
248 the presence of disease subtypes. To strengthen the reproducibility of ‘subtype’ mode identification,

249 herein we recommend the use of statistical methods to identify disease data modes (e.g., see the modes
250  function in Methods and Discussion), because as N increases, the visual detection of modes becomes
251  increasingly more subjective as shown in Figure 2F.
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252 Kernel density violin plots help guide subtype analysis to identify biologically significant results
253 Violin plots and kernel density distribution curves in Figure 3 illustrate why comparing groups of
254 randomly sampled individuals may not yield biologically relevant information, even though statistical

255 analysis identifies that the mean values differ between compared groups. Figure 3A illustrates the

256  different patterns of potential donor subtypes (i.e., data modes, visualized in violin plots as disease

257  data/curve ‘shoulders’) that would yield significant results in a single experiment depending on the donors
258 sampled. However, the kernel density plots in Figure 3B show that significant findings do not necessarily
259 indicate/yield clinically relevant thresholds or parameters to differentiate between the populations (due to
260  the overlapping and inflation of data ‘shoulders’ in some subjects within the samples). To contrast the
261 data simulated from Basson et al., we replaced data from ‘Dis1’ dataset with a Gaussian distributed

262  sample of random numbers (within 13.5+3.5, labeled as ‘fake disease X’; vs. 6.4+4.3, and 4.5+2.5 for
263 ‘Dis2’ and ‘Healthy’, respectively) to illustrate how a kernel plot would appear when significant differences
264 have a clinically relevant impact in differentiating disease subtypes (Figure 3C-D).

265 Collectively, simulations indicate that the uneven random sampling of subtypes across a disease
266  group would be an important factor in determining the direction of significance if studies were repeated,
267  owing primarily to the probability of sampling data ‘shoulders’ or ‘valleys’ in both healthy and diseased
268  populations.

269
270 Simulation of BIMODAL diseases illustrate mechanism of analytical irreproducibility
271 In our report thus far, we have used unimodal simulations to show how random sampling affects

272  statistical results. However, there has been an increased interest in understanding data multimodality in
273 various biological processes®>®3 for which new statistical approaches have been proposed. Methods to
274  simulate multimodal distributions are however not trivial, in part due to the unknown nature of

275 multimodality in biological processes. To facilitate the understanding of the conceptual mechanisms that
276 influence the effect of data multimodality and random sampling on statistical significance, Figure 4

277  schematically contextualizes the statistical and data distribution principles that can interfere with

278 reproducibility of statistical results when simulations are repeated.

279 Random simulations from unimodal distributions work on the assumption that numbers (e.g.,

280  donors’ disease severity) are drawn from a population, independently from one another. That is, the

281  probability of sampling or drawing a number from a population is not influenced by the number that was
282  selected prior. While this form of random sampling is very useful in deterministic mathematics, it does not
283 capture the dependence of events that occur in biology. That is, in biology, the probability of an event to
284  occur depends on the nature of the preceding events. To increase the external validity of our report, we
285 thus conducted simulations based on three strategies to draw density curves resembling bimodal

286  distributions. Figure 5A depicts distributions derived from both ‘truncated beta’, and the combination of
287  two ‘mixed unimodal’ distribution functions (e.g., two independent Gaussian curves in one plot), which are

288 illustrative of multimodality, but not necessarily reliable methods to examine the effects from dependent
289  random sampling in multimodality.
290 Thus, we used ‘Random walk Markov chain Metropolis-Hastings algorithms’ to simulate random

291 sampling, accounting for the hypothetical dependence between two different disease subtypes. To

292  simulate the statistical comparison of two these two hypothetical bimodal diseases, we i) ran Markov

293 Chain Monte Carlo (MCMC) simulations (Figure 5B), ii) used the ‘dip test’ to determine if the simulated
294  data were statistically multimodal Figure 5C, and iii) used the Student’s t-test to determine the statistical
295  significance, the mean differences and directions for the simulated distributions, using N=100. The MCMC
296  simulations clearly illustrate how random sampling of two bimodal hypothetical diseases lead to

297 inconsistent patterns of statistical results when compared. Notice that the data dispersion increases as N
298  increases; see summary statistics in Figure 5D.

299 Conclusively, MCMC illustrations emphasize that increasing N in the study of multimodal

300 diseases in a single study should not be assumed to provide results that can be directly extrapolated to
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301 the population, but rather, MCMC emphasize that the target study of data subtypes could lead to the
302 identification of mechanisms which could explain why diseases vary within biological systems (e.g.,
303  humans and mice).

304
305 Personalized ‘data disease subtyping’ must be combined with proper ‘cage-cluster’ statistics
306 One important caveat to consider across animal studies is that increasing N alone is futile if

307 clustered-data statistics are not used to control for animal cage-density (>1 mouse/cage), which our group
308 showed contributes to ‘artificial heterogeneity’, ‘cyclical microbiome bias’, and false-positive/false-

309  negative conclusions?®*. To infer the role of scientific decision on the need for particular statistical

310 methods, we examined the studies reviewed by Walter et al.” for ‘animal density’ and ‘statistical’ content
311  (see Methods). Of note, only one of the 38 studies (2.6%, 95%CI=0.1-13.8%) used proper statistical

312 methods (mixed-models) to control for cage-clustering'®. Although on average, studies tested 6.6 patients
313 and 6.4 controls/group (range=1-21), most studies were below the average (65.7%, 25/38, 95%CI|=48.6-
314 80.4%), with 14 having <4 donors/group (Figure 6A). However, of interest, the number of human donors
315 included in a study was inversely correlated with the number of mice/per donor used in the FMT

316  experiments Figure 6B.

317 Unfortunately, the majority of studies (25/38, 65.8%, 95%CI|=48.6-80.4%) did not report animal
318  density, consistent with previous analyses?; while 10.5% of the studies (4/38, 95%CI=2.9-24.8%) housed
319 their mice individually, which is advantageous because study designs are free of ICC, eliminating the

320 need for cage-cluster statistics (Figure 6C). Our review of the statistical methods used across the 38

321 studies also revealed that most scientists used GraphPad chiefly for graphics and univariate analysis of
322  mouse phenotype data. This finding suggests an underutilization of the available functions in statistical
323  software, for example, Monte Carlo simulations, to help understand the effect of random sampling on the
324 reproducibility and significance of observed study results, and the likelihood of repeatability by others
325  (Monte Carlo adjusted 95% confidence intervals) (Figure 6D).

326
327  DISCUSSION
328 Despite the inclusion of large numbers of human subjects in microbiome studies, the causal role

329  of the human microbiome in disease remains uncertain. Exemplifying that a large N is not necessarily
330 informative with complex human diseases, a large metanalysis® of raw hGM data from obese and IBD
331 patients showed that human disease phenotypes do not always yield reproducible inter-laboratory

332  predictive biological signatures. Even when hundreds of individuals are studied, especially, if the ‘effect
333  size for the disease of interest’ is narrow (i.e., in obesity; larger in IBD) relative to the variability of the

334  disease. For the human IBD subtypes (i.e., ulcerative colitis, and Crohn’s disease), the metanalysis®®

335 concluded that only the ileal form of Crohn’s disease showed consistent hGM signatures compared to
336 both healthy control donors and patients with either colonic Crohn’s disease or ulcerative colitis,®® but no
337 consistent signatures were observed for obesity. In this context, herein we present observations derived
338  from simulation analysis to highlight that Walter et al”’s recommendation to scientists to seek further

339  funding to recruit more human donors (increasing N) is an imperfect solution to increase study

340  reproducibly.

341 Using a simple strategy of assuming random numbers drawn from an observed sample

342  distribution, we have analytically illustrated that increasing N yields aberrant and/or conflicting statistical
343 predictions, which depend on the patterns of disease variability and presence of disease subtypes (data
344  modes). Specifically, our simulations revealed that the number of discernable data subtypes may wax and
345 wane as N increases, and that increasing N does not uniformly enable the identification of statistical

346  differences between groups. Further, subjects randomly selected from a multimodal diseased population
347 may create groups with differences that do not always have the same direction. Especially, i) if the human
348 disease of interest exhibits variable phenotypes (e.g., cancer, obesity, asthma), and ii) if multivariable
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349 cage-clustered data analyses are not used to account for ICC of phenotypes within/between animal

350 cages.

351 Under the ‘weak law of large numbers’ principle in mathematics (Bernoulli's theorem*”4°; see ref
352  for further illustration®”), as N increases, the distribution of the study/sample means approximates the
353 mean of the actual population, which facilitates the identification of statistically significant (but not

354 biologically meaningful) differences between otherwise overlapping sample datasets. Commonly used
355 statistical methods (e.qg., t-tests; parametric vs. nonparametric) are designed to quantify differences

356 around the sample centers (mean, median) and range of dispersion (standard errors or deviation) of two
357  groups. However, these methods do not account for the distribution shape (unimodal vs. bi/multimodal) of
358 the compared datasets. With arbitrary increases in N, what is insignificant becomes significant, thus

359 increasing the tendency for the null hypothesis to be rejected despite clinically negligible differences®®-%°,
360 To guide the selection of sufficient N (cases) or disease data subtype, herein we highlight the use
361 of two simple statistical steps, i) to first determine if the shape of the dataset is unimodal (e.g., dip test),
362 and if not unimodal, then ii) to use statistical simulations and tests to determine the number of

363 modes/data values of interest. By doing so will facilitate the objective design of personalized/disease

364  subtyping experiments. Although comparisons between group means is important because some

365  diseases are truly different, findings from our own hGM-FMT#¢, and others'®8 highlight the relevance of
366  studying disease subtypes and the sources of variability by personalizing the functional analysis of the
367 hGM in mice (i.e., that both ‘pathological’ and ‘beneficial’ effects can be seen in hGM-FMT mice

368 independent of donor disease status). For example, in our own work, the functional characterization of
369 ‘beneficial’ or ‘non-beneficial’ disease microbiome subtypes in IBD patients at times of remission could
370 lead to the identification of an ideal patient fecal sample for future autologous transplantation during times
371 of active disease. Therefore, personalized research has the potential to identify different functional

372  microbiome subtypes (on a given outcome, e.g., assay or hGM-FMT mice) for one individual.

373 With respect to determining unimodality, easily implementable tests are available in STATA

374 (diptest and mode; proprietary and community contributed) and R (Package ‘multimode’, community

375  contributed)®. The dip test®' quantifies departures from unimodality and does not require a priori

376 knowledge of potential multimodality and thus information can be easily interpreted from the test statistics
377 and the P-value 8283, Although reports and comparative analysis of statistical performance have been
378 described for various multimodality tests (e.g., Dip test, Bimodality test, Silverman’s test and likelihood
379 ratio test®*, and kernel methods), including simpler alternatives that use benchmarks to determine the
380 influence of data outliers 52536265 it is important to emphasize that every method depends on its intended
381 application and data set (and data shape),® and therefore must be accompanied by the inspection of the
382  data distributions (‘shoulders’, ‘bumps’, and respective ‘valleys’).

383 In conclusion, by conducting a series of simulations and a review of statistical methods in current
384 hGM-FMT literature, we extensively illustrate the constraints of increasing N as a main solution to identify
385  causal links between the hGM and disease. We also highlight the integral role of multivariable cage-

386 clustered data analyses, as previously described by our group?. Herein, we provided a conceptual

387  framework that integrates the dynamics of sample center means and range of dispersion from the

388  compared datasets with kernel and violin plots to identify ‘data disease subtypes’. Biological insights from
389  well-controlled, analyzed and personalized analyses will lead to precise ‘person-specific’ principles of
390 disease, or identification of anti-inflammatory hGM, that could explain clinical/treatment outcomes in

391 patients with certain disease subtypes, and self-correct, guide and promote the personalized investigation

392  of disease subtype mechanisms.
393
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405 Table 1. Comparative percentages of simulations that yielded significant results for two statistical
406  approaches based on randomly simulated data derived from unimodal distributions

Inverse Normal Gaussian Monte Carlo Normal Gaussian
Simulation, n= and 50 T-tests 100,000 Adjusted T-tests 100,000 Adjusted One Way with
statistical test (significant cumulative linear ~ (overall significance with multiple comparison Tukey test®
pattern*) (95%CI=) N=63/group)(95%CI=)?
Dis1 vs Dis2 35.3% (22.9, 50.8) 57.7% (57.4, 58.0) 37.8% (37.5, 38.1)
Dis1 vs Healthy 58.8% (43.2, 71.8) 9.1% (8.9, 9.3) 3.8% (3.7, 3.9)
Dis2 vs Healthy ND 78.3% (78.0, 78.6) 59.6% (59.3, 59.9)

One Way ANOVA
p<0.05 68.1% (68.4 to 67.8)
p>0.05 31.9% (32.2 to 31.6)

407 *Not overall p-value at N=63. ND, not determined.

408 ab Notice that the percentage of simulations achieving significance is inflated when analysis for three groups is conducted with T-
409 tests (instead of ANOVA) which does not control for false positives due to family errors. Proper comparison between >2 groups
410 should be performed with methods to control for such family errors (e.g., ANOVA-post-hoc Tukey statistics). Note that the

411 percentage is different as illustrated in Figure 1D because the patterns with non-linear behavior are not considered.
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Figure 1. Random sampling from overlapping diseases yield ‘linear patterns of analytical
irreproducibility’. Simulations on observed data from Basson et al*® to visualize naturally/highly variable
disease/healthy datasets. a) Method overview to generate pseudo-random numbers and simulations from
published (observed) data. b) Visualization of simulated outcome from random integers generated based
on 3 donors/group for Disease 1 (‘Dis1’), Disease 2 (‘Dis2’), and healthy groups. ¢) Simulation of hGM
transplanted into mice yields reproducible simulated ‘disease data subtypes’ from 6 mice/group. d) Four
patterns of analytical irreproducibility. Representative simulations comparing 2 groups of donors, with N
ranging from 3 (trio)donors/group to 63, in multiples of 3 (cumulative addition of new trios per group). Y
axis, p-value of differences using 2-group Student-t test. Notice as N increases, the cumulative
significance (red line) exhibit different linear patterns due to variance introduced by random sampling. e)
Cumulative probability of a simulation to yield a significant difference (blue; significant, black; non-
significant; parentheses, std. dev.). A comparison was deemed significant, if at least one p-value<0.05
across simulations with N between 3 and 63 donors/group. f) Visualization of simulated outcome using
observed data from Baxter et al'®. g) Random simulations illustrate two other possible analytical patterns.
Notice as N increases, group differences become more significant, until an inflection point, where adding
more donors makes the significance disappear. See Supplementary Figure 1 for additional examples
and computed R? value to illustrate the linearity of the correlation between N and statistical significance.
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431 Figure 2. Violin plots enable visualization of data subtypes in simulations of random sampling as
432  afunction of N. Observed raw data derived from Basson et al published data. a-b) Dot plots (mean,

433 range) of observed (1 trio; 3 donors/group), and simulated data (3 and 6 donors/group; panel B). Note
434  that differences are not significant because of the variability between diseases. ¢) Dot plots (mean, range)
435 of simulated data for 9, 21 and 65 donors per group. Note that simulated mean effects became significant
436  with 65 donors/group. However, the mean difference is small compared to the variance of the groups and
437  the difference is not biologically different because it is a function of the total variance (23%). d) Kernel
438 density simulations (10,000) based on observed (n=3) and simulated data. Note that as N increases the
439 mean becomes more narrow while the variance widens. See 100,000 Monte Carlo simulations in Table 1.
440 e) Comparison of visual appearance and data display for simulated data to illustrate ‘disease data

441 subtypes’ in the population (i.e., ‘disease data shoulders’/subtypes shown as arrows). f) Violin plots allow
442  visualization of data subtypes as N increases (‘disease data shoulders’/subtypes shown as arrows).
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444 Figure 3. Violin plots illustrate that statistical differences with large N may not have clinical
445 predictive utility at individual level. Violin and kernel plots illustrate statistical vs. biologically relevant
446  differences. a) Violin plots of four simulated random number sets illustrate that each set of donors may
447 have unique subtypes of disease illustrated with arrowheads (disease severity scores with higher number
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451 distinctive separation for the plots indicating that it is not biologically useful as a predictor of outcome.
452 ¢) Violin plots illustrate meaningful statistical difference for population (compared to panel 3b). ‘Fake
453 disease X' (‘DisX’) was generated as a ‘mock’ disease following Gaussian distribution around the mean.
454 Monte Carlo simulations were significant 96.5% (upper limit 97.6, lower limit 95.4%). d) Kernel density
455 curves of panel 3c illustrates example of distribution separation with both statistical difference and
456  biological relevance.
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Figure 4. Conceptual framework of the effect of random sampling from a multimodal disease
population on the reproducibility of study results. Schematic conceptualization of random sampling
from a bi/multi-modal disease distribution (subtypes) and utility of violin and kernel density plots to

visualize disease subtypes.
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Figure 5. Markov chain Monte Carlo (MCMC) simulations emphasize targeted study of subtypes in
the study of multimodal diseases. Random walk Markov chain Metropolis-Hastings’ algorithm to
simulate random sampling accounting for the hypothetical dependence of two different disease subtypes.
a) Mathematical function that allows distribution of number sampling if numbers that follow a bi-modal
distribution. Simulation depicts distributions derived from ‘truncated beta’ and the combination of two
‘mixed unimodal’ distribution functions. b) Random sampling iterations after Markov chain simulations
(N=100) comparing two hypothetical bimodal data distributions (red dotted line vs. blue solid line) for an
outcome of disease severity, wherein 100,000 simulations represent approximately the real distribution
(grey line; zero). As a stochastic model, the Markov chain algorithm considers biologically relevant
sampling dependence. Notice how random sampling for two bimodal distributions can yield non-
consistent statistical results variability between iterations, in this case N=100 (-5, SD of 3; 7, SD of 3). ¢)
Example of a Hartigan-Hartigan (Hartigans’) unimodality dip test and a modes test ¢'62 showing a
multimodal data distribution of a hypothetical dataset (black dotted line) compared to a normal univariate
density plot (red line). To identify data subtypes (modes), the dip test®' computes a p-value to help
determine if a data is unimodal or multimodal and does not require a priori knowledge of potential
multimodality and can be interpreted from its test statistics and P-value (p<0.05 indicates data is not
unimodal, p>0.05-1.0 indicating at least one data mode exists in dataset). d) Effect of increasing N on t-
test significance (direction, arrow), and dip test for MCMC simulations using the Markov chain simulation
scripts (panel C) comparing two hypothetical bimodal data distributions (red dotted line vs. blue solid line),
controlling for randomness (set.seed 101) while increasing N. Plots scaled between -10 and 10
illustrate increased data dispersion as N increases (grey line; zero). See Supplementary Figure 2
for wider range of N and the examples for dip test and modes analysis using STATA and R
commands.
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control) and average number of mice per human donor in each study (right plot). b) Correlation plot with
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Supplementary Figure 1. Further examples for data simulations with R? value illustrate linearity as
illustrated in Figure 1D. Computed R? value (mean 0.51+0.23, 20 simulations) illustrate the linearity of
the correlation between N and statistical significance. Y axis, p-value of the differences using 2-group

Student-t test.
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Supplementary Figure 2. Markov chain Monte Carlo (MCMC) simulations and examples of dip test.
Random walk Markov chain Metropolis-Hastings’ algorithm to simulate random sampling accounting for

the hypothetical dependence of two different disease subtypes (complement to plots presented in Figure
5).
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METHODS
Preclinical hGM-FMT (observed) data used for simulations. To facilitate the visualization of how

random sampling and disease variability influences study conclusions (significant vs. non-significant p-
values) in the context of N, we conducted a series of simulations from preclinical hGM-FMT disease
phenotyping data estimates from our own IBD studies (Basson et al)*® and that of Baxter et al'® (a study
reviewed by Walter et al[7]). In brief, by transplanting feces from inflammatory bowel disease (IBD),
namely Crohn’s disease (‘Dis1’) and ulcerative colitis (‘Dis2’), and ‘Healthy’ donors (n=3 donors for each
‘disease/healthy’ state) into a germ-free spontaneous mouse model of cobblestone/ileal Crohn’s disease
(SAMP1/YitFc)*67, Basson et al*® observed with ~90% engraftment of human microbial taxa after 60
days, that the hGM-FMT effect on mouse IBD-phenotype was independent of the disease state of the
donor. Specifically, samples from some IBD patients and some healthy donors did not affect the severity
of intestinal inflammation in mice, while the remaining donors exacerbated inflammation. The overlapping
presence of both pro-inflammatory and non-inflammatory hGM in the disease phenotype of the mice for
IBD and healthy human donors, indicate the presence of data bimodality. Comparably, Baxter et al[17]
found that differences in the number of tumors resulting in a hGM-FMT mouse model of chemically
induced colorectal cancer (CRC) was independent of the cancer status of the human donors (n=3
colorectal cancer, n=3 healthy individuals).

Simulations from preclinical hGM-FMT data. Simulations were first conducted using random and
inverse random normal functions using the mean+SD data from published data'®*¢. In all depicted
illustrations, the randomly generated numbers used computer software/automated pseudorandom
(seeded and unseeded) methods. Unless described otherwise, the numbers generated were restricted to
be confined within biologically meaningful data boundaries based on published data (for example, 0 as
minimum for normal histological score or intestinal inflammation, and 80 as arbitrary ~3-fold the maximum
possible histological score). For illustration purposes, the x- or y-axes in plots were generically labeled as
‘outcome disease severity’. Simulating a situation where a scientist would recruit a trio of donors (3
donors) per group at a time, and was interested in conducting interim statistical analysis following the
addition of every trio of donors to the study, we summarized the pairwise group analysis for the simulated
disease comparisons, for various N, and for consecutively added donors as an aggregate ‘cumulative
probability of being a significant simulation’ statistic. Comparisons were deemed significant if at least one
p-value was <0.05 across simulations. Student’s unpaired t-test and/or One-way ANOVA with Tukey
statistical comparisons were also adjusted using Monte Carlo simulations to determine the adjusted p
values and the % of simulations to demonstrate that not all disease group comparisons would be
reproducible. As a control normal (unimodal) simulation, we created several datasets, including one
depicted in illustrations as ‘fake disease X’). Lastly, to illustrate the effect of random sampling from data
simulations from multimodal distribution functions, unconstrained-parameter simulations of two mixed yet
separate normal distributions, were performed using the Random Walk Metropolis-Hasting algorithm, a
form of doing dependent sampling from a proposed posterior distribution, as a well-established method of
Markov Chain Monte Carlo (MCMC) simulations, using R, and STATA (v15.1). In the latter, the MCMC
sampling of a new individual is dependent on the prior probability of being part of a mode within a bimodal
distribution, instead of being completely random from a unimodal distribution, using a log-likelihood
correction to prevent negative sigma values and also allow for asymmetrical distributions. This method is
beneficial as it asymptotically converges to the true proposal distribution, and so represents a more
robust method of data simulation of other potential alternatives of simulating sampling from bimodal
distributions (i.e., binomial, and mixed normal distributions).

Variability of statistical methods in hGM-FMT rodent studies. To determine the sources of statistical

methods variability in hGM-FMT rodent studies, we reviewed the content of 38 studies listed in Walter et
al.” For computation purposes, we searched each article for the following keywords “cage,” “stat*”,
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“housed,” “multiple,” “multivariable,” “cluster,” “mixed,” “individual*”, “random*” and appropriately extracted
details to additional inserted columns of an excel file. Detailed statistical tests and software used, focused
on assessing the effect of the hGM in the rodent phenotypes, were extracted to determine if studies used
proper cluster statistical analysis, and/or controlled for random effects introduced by caging, when
needed; that is, if scientists housed more than one mouse per cage. Integer numbers, including
descriptions of animal density, were assigned to the sourced keywords to allow for statistical analysis. If a
range was provided for N or animal density (e.g., 1-5), estimations were computed using the median
value within the range, as well as the minimum and maximum values. Average of estimated center values
were used for analysis and graphical summaries

Statistical Analysis. Descriptive statistics for parametric data were employed if assumptions were
fulfilled (e.g., 1-way ANOVA). Non-fulfilled assumptions were addressed with nonparametric methods
(e.g., Kruskal-Wallis). The 95% confidence intervals are reported to account for sample size and for
external validity. The test of multimodality was conducted using the dip test (which measures the
departure of a sample from unimodality, using as reference the uniform distribution as a worst case) and
STATAS!, with packages available in R, The tabulation of modes from a variable in a dataset was
computed using the modes and hsmode function in STATA.®%70 -Statistical and simulation analyses were
conducted or plotted with Excel, R, Stata, and GraphPad.
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