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Highlights 16 
17 

• Multimodal diseases are those in which affected individuals can be divided into subtypes (or ‘data18 
modes’); for instance, ‘mild’ vs. ‘severe’, based on (unknown) modifiers of disease severity.19 

20 
• The role of the microbiome in multimodal diseases has been studied in animals; however, findings21 

are often deemed irreproducible, or unreasonably biased, with pathogenic roles in 95% of reports.22 
23 

• As a solution to repeatably, investigators have been told to seek funds to increase the number of24 
human-microbiome donors (N) to increase the reproducibility of animal studies.25 

26 
• Herein, we illustrate that although increasing N could help identify statistical effects (patterns of 27 

analytical irreproducibility), clinically-relevant information will not always be identified.28 
29 

• Depending on which diseases need to be compared, ‘random sampling’ alone leads to reproducible30 
‘patterns of analytical irreproducibility’ in multimodal disease simulations.31 

32 
• Instead of solely increasing N, we illustrate how disease multimodality could be understood,33 

visualized and used to guide the study of diseases by selecting and focusing on ‘disease modes’.34 
35 
36 

Abstract 37 
Multimodal diseases are those in which affected individuals can be divided into subtypes (or ‘data 38 

modes’); for instance, ‘mild’ vs. ‘severe’, based on (unknown) modifiers of disease severity. Studies have 39 
shown that despite the inclusion of a large number of subjects, the causal role of the microbiome in 40 
human diseases remains uncertain. The role of the microbiome in multimodal diseases has been studied 41 
in animals; however, findings are often deemed irreproducible, or unreasonably biased, with pathogenic 42 
roles in 95% of reports. As a solution to repeatability, investigators have been told to seek funds to 43 
increase the number of human-microbiome donors (N) to increase the reproducibility of animal studies 44 
(doi:10.1016/j.cell.2019.12.025). Herein, through simulations, we illustrate that increasing N will not 45 
uniformly/universally enable the identification of consistent statistical differences (patterns of analytical 46 
irreproducibility), due to random sampling from a population with ample variability in disease and the 47 
presence of ‘disease data subtypes’ (or modes). We also found that studies do not use cluster statistics 48 
when needed (97.4%, 37/38, 95%CI=86.5,99.5), and that scientists who increased N, concurrently 49 
reduced the number of mice/donor (y=-0.21x, R2=0.24; and vice versa), indicating that statistically, 50 
scientists replace the disease variance in mice by the variance of human disease. Instead of assuming 51 
that increasing N will solve reproducibility and identify clinically-predictive findings on causality, we 52 
propose the visualization of data distribution using kernel-density-violin plots (rarely used in rodent 53 
studies; 0%, 0/38, 95%CI=6.9e-18,9.1) to identify ‘disease data subtypes’ to self-correct, guide and 54 
promote the personalized investigation of disease subtype mechanisms. 55 

56 
Keywords: violin plots, random sampling, analytical irreproducibility, microbiome, fecal matter 57 
transplantation, data disease subtypes 58 
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Introduction 59 
Multimodal diseases are those in which affected individuals can be divided into subtypes (or ‘data 60 

modes’); for instance, ‘mild’ vs. ‘severe’, based on (unknown) modifiers of disease severity. Since the 61 
availability of DNA-sequencing platforms, there have been major advances in our understanding of the 62 
human microbiome, its ecological complexity, and temporal oscillations. However, to differentiate the 63 
causal connection between microbiome alterations and human diseases (from that of secondary 64 
alterations due to disease), animal models, primarily germ-free rodents transplanted with human gut/fecal 65 
microbiota (hGM-FMT), have been critical as in vivo phenotyping tools for human diseases. 66 
Unfortunately, despite considerable efforts from organizations and guidelines to help scientists design 67 
and report preclinical experiments (e.g., ARRIVE)1,2, there are still concerns of study reproducibility. 68 

Studies have described novel technical sources of ‘artificial’ microbiome heterogeneity that could 69 
explain why hGM-FMT study results vary2-6. In our own work2, we discovered that scientists lacked 70 
appropriate methods for the description and analysis of cage-clustered data. To help scientists to self-71 
correct issues on rodent experimentation, we identified ‘six action themes’ and provided examples, and 72 
statistical code, on how to use and compute ‘study power’ as a reproducible parameter that could enable 73 
inter-laboratory comparisons and improve the planning of human clinical trials based on preclinical data2. 74 

In this regard, a recent perspective article on hGM-associated rodent studies by Walter et al.7 75 
(“Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-76 
Associated Rodents”; published in Cell, January 23rd 2020) recommended to scientists seek additional 77 
funding to increase the number of human donors (N) as a main solution to improve experimental rigor and 78 
reproducibility, and to determine the causal role of the hGM in disease. Given that large disease 79 
variability is experimentally problematic for both humans and animals, we hypothesized that increasing N 80 
would not ensure consistent results due to the aleatory effects of random sampling of subjects from a 81 
population with multimodal disease distributions (i.e., multimodal: >2 types of modes or ‘subtypes of 82 
disease data’ can be seen in a population; the most, and the least diseased). To verify this hypothesis in 83 
the context of hGM and N, we used published (observed) preclinical distribution (disease variability) 84 
estimates to conduct a statistical and visualization analysis of the impact of repeated random sampling on 85 
the significance of statistical comparisons between simulated disease groups, at various N. 86 

Underscoring the importance of the central limit theorem (which can be visualized in[8]), 87 
simulations indicate that more studies addressing disease multimodality (independent of N; personalized 88 
disease subtyping studies) are preferable than fewer studies with larger N that do not address disease 89 
multimodality. After examining the statistical content of 38 studies8-45  listed in Walter et al,7 we found that 90 
scientists who increased N, concurrently reduced the number of MxD, indicating that statistically, 91 
scientists replace the disease variance in mice by the disease variance in humans in their hGM-FMT 92 
studies. Further, studies lacked proper clustered-data statistics to control for animal density; which is a 93 
major source of misleading results (false-positive, or false-negative), especially when scientists prefer to 94 
house many rodents per cage, and when the number of mice per experiment is low2,46. 95 

Herein, we provide a conceptual framework that illustrates various patterns of analytical 96 
irreproducibility by simulating and integrating the dynamics of: N, random sampling, group means, sample 97 
variance, and the population disease diversity that could be visualized as unimodal, bimodal or 98 
multimodal, through the use of kernel-based violin density plots for the identification of data subtypes. 99 
Simulations and provided examples could help scientists i) visualize the dynamics of random sampling 100 
from a heterogeneous population of healthy and diseased subjects, ii) decide on N once preclinical data 101 
are generated, and iii) improve experimental rigor in hGM-FMT studies. 102 

103 
RESULTS 104 
‘Disease subtypes’ occur in simulations using published data and UNIMODAL distributions 105 

In microbiome rodent studies, the selection of a sufficient number of both human donors (N), and 106 
the number of mice required to test each human donor (MxD), is critical to account for the effects of 107 
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random sampling, which exist when the hGM induces variable disease severity in humans and 108 
rodents.  Thus, to visualize the variability of disease severity (data subtypes/modes) in rodents, and the 109 
effect of N on the reproducibility of pairwise statistical comparisons between groups of hypothetically, 110 
randomly selected human donors, we first conducted a series of simulations using the mean±SD 111 
(observed data) from hGM-FMT mice in Basson et al.46 (note the dispersed overlapping variances, SD in 112 
Figure 1A). Using the observed data we generated random datasets using functions designed to draw 113 
numbers from an inversed Gaussian distribution (with unimodal normal continuous probability; 0,∞). We 114 
demonstrate how the random selection of donors (sampled as groups for each of three iterative datasets) 115 
influence the direction and significance level in pairwise comparative statistics (Figure 1B). 116 

Simulations showed that the number of MxD is important because mice have various response 117 
patterns to the hGM (i.e., disease severity, data subtypes/modes), which can be consistently detected 118 
depending on the MxD and thus the variability introduced by random sampling. Simulations showed that 119 
for the three group datasets (plotted as ‘Dis1’, ‘Dis2’ and ‘Healthy’), it was possible to reproducibly identify 120 
two-to-three unique donor disease severity subtypes (data modes) in mice induced by the hGM (‘high’, 121 
‘middle’, and ‘low’ disease severity). Simulation plots made it visually evident that testing <4-5 MxD 122 
yielded mean values more likely to be affected by intrinsic variability of random sampling; thus, making 123 
studies with >6 MxD more stable and preferable. Conversely, studies with 1-2 MxD are at risk of being 124 
strongly dependent on randomness. Iterative simulations showed that the mean effect (e.g., ileal 125 
histology) in transplanted mice varies minimally (i.e., stabilizes) after 7±2 MxD, depending on the random 126 
dataset iterated. Beyond that, increasing MxD becomes less cost-effective/unnecessary if the focus is the 127 
human donors (Figure 1C). 128 
 129 
Random sampling from overlapping diseases yield ‘linear patterns of analytical irreproducibility’  130 

Often, published literature contains figures and statistical analysis conducted with 3 donors per 131 
disease group. Thus, to mimic this scenario and to examine the role of random sampling on the 132 
reproducibility of pairwise statistical results (‘significant’ vs. ‘non-significant’), we conducted, i) multiple 3-133 
donor/group (‘trio-trio’) pairwise comparisons, and ii) a simultaneous overall analysis for the cumulative 134 
sum of all the 3-donor trios simulated for each disease group. That is, we monitored and quantified 135 
whether results for each random iteration were significant (using univariate Student’s t-statistics p<0.05) 136 
or non-significant (p>0.05) for groups of simulated donor datasets (‘Dis1’, ‘Dis2, and ‘Healthy’). Assessing 137 
the effect of random sampling at various N, and also as N accumulated, we were able to illustrate that 138 
pairwise trio-trio comparisons between the simulated datasets almost always produce non-significant 139 
results when iterative trios were compared (due to large SD overlapping; see bars in Figure 1D 140 
representing 21 sets of pairwise trio-trio p-values). However, as N increases by the cumulative addition of 141 
all (mostly ‘non-significant’) donor trios (i.e., N increases in multiples of 3, for a range of N between 3 and 142 
63 donors/group; [3, 6, 9, 12…63]), pairwise statistical comparisons between the simulated datasets did 143 
not produce consistent results (see line plots in Figure 1D representing p-value for cumulative addition of 144 
donors when sampling iterations were simulated). 145 

Results are clinically relevant because the simulated N, being much larger (63 donors/group) than 146 
the largest N tested by one of the studies reviewed by Walter et al7 (21 donors/group)40 demonstrates that 147 
the analysis of randomly selected patients would not always yield reproducible results due to the chance 148 
of sampling aleatory sets of individuals with varying degrees of disease severity, regardless of how many 149 
donors are recruited in an study. To provide a specific example, using ‘Dis1’ as a referent, cumulative 150 
pairwise comparisons (vs. ‘Dis2’, and vs. ‘Healthy’) revealed at least five different patterns of 151 
‘irreproducible’ statistical results as N increased between 3 and 63 per group. Figure 1D illustrates four of 152 
these variable cumulative linear patterns of analytical irreproducibility, in which, remarkably, i) ‘Dis1’ 153 
becomes significantly different vs. Dis2, and vs. ‘Healthy’, as N increases, ii) ‘Dis1’ becomes significantly 154 
different from ‘Dis2’ but not vs. ‘Healthy’, iii) ‘Dis1’ was significantly different from healthy but not vs. 155 
‘Dis2’, and iv) ‘Dis1’ never becomes significantly different despite sampling up to 63 donors/group. See 156 
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Supplementary Figure 1 for complementary plots illustrating linearity of patterns (R2, mean 0.51±0.23, 157 
21 simulations) Hence, results clearly illustrate that seeking funds to recruit more donors is not a prudent 158 
statistical solution to the problem of understanding disease causality of widely variable conditions in both 159 
humans and animals. By analytical irreproducibility, herein, we refer to the inability to reproduce the 160 
direction and statistical significance of a test effect when analyses are conducted between groups created 161 
by the random selection of subjects from distributions defined based on observed (mean±SD) data. 162 
 163 
100,000 Monte Carlo simulations illustrate the effect of randomness on analytical reproducibility 164 

To summarize the overall significance of the inconsistent patterns observed via random sampling, 165 
we computed an aggregate ‘cumulative probability of being a significant simulation’ for 50 pairwise 166 
statistical simulation sets fulfilling the 4 linear patterns described above. Emphasizing the concept that 167 
increasing N is not a reproducible solution, Figure 1E shows that only 35.3±4.0% of comparisons 168 
between ‘Dis1’ and ‘Dis2’, and 58.8±3.3% for ‘Dis1’ and ‘Healthy’ were significant. 169 

Expanding the validity of these inverted-Gaussian simulations for N=63 donors/group, we then 170 
conducted i) Monte Carlo adjusted Student’s unpaired t-tests, and ii) Monte-Carlo adjusted one-way 171 
ANOVA with Tukey correction for family errors and multiple comparisons. Monte Carlo simulations used 172 
data drawn from a normal (non-inverted) Gaussian distribution around the group means with a pooled SD 173 
of ±4, and were conducted using GraphPad, a popular statistical software in published studies. To 174 
estimate a probability closer to the real expectation (narrower confidence intervals), 100,000 simulations 175 
were performed. Supporting the observations above (based on inverse normal simulations), Monte Carlo 176 
Gaussian simulations showed that, using pairwise comparison, ‘Dis1’ would be significantly different from 177 
Dis 2 (adjusted T-test p<0.05) only 57.7% of the time (95%CI=58-57.4), with 1540 simulations producing 178 
negative (contradictory) mean differences between the groups. Compared to ‘Healthy’, ‘Dis1’ and ‘Dis2’ 179 
were significant only 9.1% (95%CI=9.2-8.9) and 78.3% (95%CI=78.6-78.1) of the time, respectively. 180 

Under the ‘Weak Law of Large Numbers’47-49, and randomization principles, it is almost always 181 
possible to detect some level of statistical significance(s) and mean group differences when asymptotic 182 
mathematical methods based on numerous simulations are used, for example, as a surrogate for multiple 183 
experiments which are not possible in real research settings. However, in this case, the mean simulated 184 
differences yielding from 100,000 simulations were minuscule (1.6 for ‘Dis1’-‘Dis2’; -1.97 ‘Healthy’-‘Dis2’, 185 
and 0.42, ‘Healthy’-‘Dis1’). Compared to the range of disease variance for each disease, such minuscule 186 
differences may not be clinically relevant to explain disease variance at the individual level. Note that the 187 
SD was 4, therefore it is intuitive to visualize in a numerical context such as small differences across 188 
greatly overlapping unimodal simulations. Correcting for family errors, One-way ANOVA corrected with 189 
10,000 Monte Carlo simulations with N=63/group, showed that at least one of the three groups would be 190 
statistically different in approximately only 67.2% of the simulations (95%CI=64.2-70.0), whereas in 191 
32.8% (95%CI=64.2-70.0) of simulations, the groups would appear as statistically similar (see Table 1 for 192 
estimations after 100,000 Monte Carlo simulations; note narrower CI as simulations increase). The 193 
comparison of ‘Dis1’ vs. ‘Dis2’ in Table 1, clearly demonstrates that the percentage of cases, in which a 194 
simulation could be significant, depends on the degree of data dispersion. For example, simulations with 195 
SD of 4, compared to SD of 10, produce significant results less often, illustrating how data with larger 196 
dispersions contribute to poor statistical reproducibility, which cannot necessarily be corrected by 197 
increasing N. 198 
 199 
Random sampling can lead to ‘erratic patterns of analytical irreproducibility’ as N increases 200 

To increase the external validity of our observations, we next simulated the mean±SD data 201 
published from a hGM-FMT study on colorectal cancer conducted by Baxter et al16. In agreement with 202 
Basson et al, Baxter et al revealed comparably bimodal colorectal cancer phenotypes in mice resulting 203 
from both the diseased (colorectal cancer) patients and healthy human donors (Figure 1F). Equally 204 
important, we observed for both Basson et al46 and Baxter et al16, what we describe as the fifth ‘pattern of 205 
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analytical irreproducibility’ in this report. That is, in some cases, the steady addition of donor trios/group 206 
(as simulations proceeded for increasing values of N) made it possible to identify simulations where 207 
erratic changes in the statistical significance for group comparisons switched randomly, yet gradually, 208 
from being significant to non-significant as more donor trios were ‘recruited’ into the simulations (Figure 209 
1G). Clinically relevant, simulations indicated (in a reproducible manner), that adding extra patients could 210 
at times actually invert the overall cumulative effect of the p-value, possibly due to the variable distribution 211 
and multimodal nature of the human and rodent responses to experimental interventions. As such, 212 
simulations indicate that it is advisable to conduct several a-priori determined interim results in clinical 213 
trials to ensure that significance is numerically stable (p<0.05), as well as the relevance of personalized 214 
analysis to examine disease variance in populations. Unfortunately, there are no guidelines or examples 215 
available to assist in determining how many donors would be sufficient, and to visualize the effect of 216 
random sampling of individuals from a vastly heterogeneous population of healthy and diseased subjects, 217 
once rodent preclinical data is generated. 218 
 219 
Violin plots and statistical methods for visualization of MULTIMODAL ‘disease data subtypes’ 220 

To visualize the underlying mechanisms that could explain the ‘linear and erratic patterns of 221 
analytical irreproducibility’ introduced by random sampling, we first used dot plots based on observed and 222 
simulated data, followed by kernel-based statistics and plots. Plot appearance and one-way ANOVA 223 
statistics showed that when N is increased, significant results, when present for largely overlapping 224 
phenotypes, are primarily due to small differences between sample means (Figure 2A-B). Simulations 225 
that compared 3 groups of 65 donors/group almost always yielded a significantly different group; 226 
however, dot plots show that the significant differences between means are just a small fraction of the 227 
total disease variability as verified with Monte Carlo simulations above. That is, as N increases, 228 
comparisons can become significant (see plot with 65 donors in Figure 2C). In this context, a significant 229 
difference of such a narrow magnitude may not be clinically relevant, or generalizable, to explain the 230 
presence of a disease phenotype in a population, especially for those individuals at the extreme ranges of 231 
the disease distribution. 232 

Mechanistically, the detection of significant comparisons can be attributed to the effect that 233 
‘increasing N’ has on the data mean and variance, which increases at a higher rate for the variance as 234 
shown in Figure 2D. Instead of increasing N as a general solution, we propose to scientists to use violin 235 
plots, over other plots commonly encouraged by publishers50 (e.g., bar, boxplot and dot plots), because 236 
violin plots provide an informative approach, at the group-sample level, for making inferences about 237 
‘disease data subtypes’ in the population (see ‘subtypes’ shown with arrows in Figure 2E). 238 

Violin plots are similar to a box plot, as they show a marker for the data median, interquartile 239 
ranges, and the individual data points51. However, as a unique feature, violin plots show the probability 240 
density of the data at different values, usually smoothed by a kernel density estimator. The idea of a 241 
kernel average smoother is that within a range of aligned data points, for each data point to be 242 
smoothened (X0), there is a constant distance size (λ) of choice for the kernel window (radius, or width), 243 
around which a weighted average for nearby data points are estimated.  Weighted analysis gives data 244 
points that are closer to X0 higher weights within the kernel window, thus identifying areas with higher 245 
data densities (which correspond to the disease data modes). As an example of the benefits of using 246 
violin plots, Figure 2F illustrates that as N increases, so does the ability of scientists to subjectively infer 247 
the presence of disease subtypes. To strengthen the reproducibility of ‘subtype’ mode identification, 248 
herein we recommend the use of statistical methods to identify disease data modes (e.g., see the modes 249 
function in Methods and Discussion), because as N increases, the visual detection of modes becomes 250 
increasingly more subjective as shown in Figure 2F.  251 
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Kernel density violin plots help guide subtype analysis to identify biologically significant results 252 
Violin plots and kernel density distribution curves in Figure 3 illustrate why comparing groups of 253 

randomly sampled individuals may not yield biologically relevant information, even though statistical 254 
analysis identifies that the mean values differ between compared groups. Figure 3A illustrates the 255 
different patterns of potential donor subtypes (i.e., data modes, visualized in violin plots as disease 256 
data/curve ‘shoulders’) that would yield significant results in a single experiment depending on the donors 257 
sampled. However, the kernel density plots in Figure 3B show that significant findings do not necessarily 258 
indicate/yield clinically relevant thresholds or parameters to differentiate between the populations (due to 259 
the overlapping and inflation of data ‘shoulders’ in some subjects within the samples). To contrast the 260 
data simulated from Basson et al., we replaced data from ‘Dis1’ dataset with a Gaussian distributed 261 
sample of random numbers (within 13.5±3.5, labeled as ‘fake disease X’; vs. 6.4±4.3, and 4.5±2.5 for 262 
‘Dis2’ and ‘Healthy’, respectively) to illustrate how a kernel plot would appear when significant differences 263 
have a clinically relevant impact in differentiating disease subtypes (Figure 3C-D). 264 

Collectively, simulations indicate that the uneven random sampling of subtypes across a disease 265 
group would be an important factor in determining the direction of significance if studies were repeated, 266 
owing primarily to the probability of sampling data ‘shoulders’ or ‘valleys’ in both healthy and diseased 267 
populations. 268 
 269 
Simulation of BIMODAL diseases illustrate mechanism of analytical irreproducibility 270 

In our report thus far, we have used unimodal simulations to show how random sampling affects 271 
statistical results. However, there has been an increased interest in understanding data multimodality in 272 
various biological processes52,53 for which new statistical approaches have been proposed. Methods to 273 
simulate multimodal distributions are however not trivial, in part due to the unknown nature of 274 
multimodality in biological processes. To facilitate the understanding of the conceptual mechanisms that 275 
influence the effect of data multimodality and random sampling on statistical significance, Figure 4 276 
schematically contextualizes the statistical and data distribution principles that can interfere with 277 
reproducibility of statistical results when simulations are repeated.  278 

Random simulations from unimodal distributions work on the assumption that numbers (e.g., 279 
donors’ disease severity) are drawn from a population, independently from one another. That is, the 280 
probability of sampling or drawing a number from a population is not influenced by the number that was 281 
selected prior. While this form of random sampling is very useful in deterministic mathematics, it does not 282 
capture the dependence of events that occur in biology. That is, in biology, the probability of an event to 283 
occur depends on the nature of the preceding events. To increase the external validity of our report, we 284 
thus conducted simulations based on three strategies to draw density curves resembling bimodal 285 
distributions. Figure 5A depicts distributions derived from both ‘truncated beta’, and the combination of 286 
two ‘mixed unimodal’ distribution functions (e.g., two independent Gaussian curves in one plot), which are 287 
illustrative of multimodality, but not necessarily reliable methods to examine the effects from dependent 288 
random sampling in multimodality.  289 

Thus, we used ‘Random walk Markov chain Metropolis-Hastings algorithms’ to simulate random 290 
sampling, accounting for the hypothetical dependence between two different disease subtypes. To 291 
simulate the statistical comparison of two these two hypothetical bimodal diseases, we i) ran Markov 292 
Chain Monte Carlo (MCMC) simulations (Figure 5B), ii) used the ‘dip test’ to determine if the simulated 293 
data were statistically multimodal Figure 5C, and iii) used the Student’s t-test to determine the statistical 294 
significance, the mean differences and directions for the simulated distributions, using N=100. The MCMC 295 
simulations clearly illustrate how random sampling of two bimodal hypothetical diseases lead to 296 
inconsistent patterns of statistical results when compared. Notice that the data dispersion increases as N 297 
increases; see summary statistics in Figure 5D.  298 

Conclusively, MCMC illustrations emphasize that increasing N in the study of multimodal 299 
diseases in a single study should not be assumed to provide results that can be directly extrapolated to 300 
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the population, but rather, MCMC emphasize that the target study of data subtypes could lead to the 301 
identification of mechanisms which could explain why diseases vary within biological systems (e.g., 302 
humans and mice).  303 
 304 
Personalized ‘data disease subtyping’ must be combined with proper ‘cage-cluster’ statistics 305 

One important caveat to consider across animal studies is that increasing N alone is futile if 306 
clustered-data statistics are not used to control for animal cage-density (>1 mouse/cage), which our group 307 
showed contributes to ‘artificial heterogeneity’, ‘cyclical microbiome bias’, and false-positive/false-308 
negative conclusions2,54. To infer the role of scientific decision on the need for particular statistical 309 
methods, we examined the studies reviewed by Walter et al.7 for ‘animal density’ and ‘statistical’ content 310 
(see Methods). Of note, only one of the 38 studies (2.6%, 95%CI=0.1-13.8%) used proper statistical 311 
methods (mixed-models) to control for cage-clustering18. Although on average, studies tested 6.6 patients 312 
and 6.4 controls/group (range=1-21), most studies were below the average (65.7%, 25/38, 95%CI=48.6-313 
80.4%), with 14 having <4 donors/group (Figure 6A). However, of interest, the number of human donors 314 
included in a study was inversely correlated with the number of mice/per donor used in the FMT 315 
experiments Figure 6B. 316 

Unfortunately, the majority of studies (25/38, 65.8%, 95%CI=48.6-80.4%) did not report animal 317 
density, consistent with previous analyses2;  while 10.5% of the studies (4/38, 95%CI=2.9-24.8%) housed 318 
their mice individually, which is advantageous because study designs are free of ICC, eliminating the 319 
need for cage-cluster statistics (Figure 6C). Our review of the statistical methods used across the 38 320 
studies also revealed that most scientists used GraphPad chiefly for graphics and univariate analysis of 321 
mouse phenotype data. This finding suggests an underutilization of the available functions in statistical 322 
software, for example, Monte Carlo simulations, to help understand the effect of random sampling on the 323 
reproducibility and significance of observed study results, and the likelihood of repeatability by others 324 
(Monte Carlo adjusted 95% confidence intervals) (Figure 6D).  325 

  326 
DISCUSSION  327 

Despite the inclusion of large numbers of human subjects in microbiome studies, the causal role 328 
of the human microbiome in disease remains uncertain. Exemplifying that a large N is not necessarily 329 
informative with complex human diseases, a large metanalysis55 of raw hGM data from obese and IBD 330 
patients showed that human disease phenotypes do not always yield reproducible inter-laboratory 331 
predictive biological signatures. Even when hundreds of individuals are studied, especially, if the ‘effect 332 
size for the disease of interest’ is narrow (i.e., in obesity; larger in IBD) relative to the variability of the 333 
disease. For the human IBD subtypes (i.e., ulcerative colitis, and Crohn’s disease), the metanalysis55 334 
concluded that only the ileal form of Crohn’s disease showed consistent hGM signatures compared to 335 
both healthy control donors and patients with either colonic Crohn’s disease or ulcerative colitis,56 but no 336 
consistent signatures were observed for obesity. In this context, herein we present observations derived 337 
from simulation analysis to highlight that Walter et al7’s recommendation to scientists to seek further 338 
funding to recruit more human donors (increasing N) is an imperfect solution to increase study 339 
reproducibly.  340 

Using a simple strategy of assuming random numbers drawn from an observed sample 341 
distribution, we have analytically illustrated that increasing N yields aberrant and/or conflicting statistical 342 
predictions, which depend on the patterns of disease variability and presence of disease subtypes (data 343 
modes). Specifically, our simulations revealed that the number of discernable data subtypes may wax and 344 
wane as N increases, and that increasing N does not uniformly enable the identification of statistical 345 
differences between groups. Further, subjects randomly selected from a multimodal diseased population 346 
may create groups with differences that do not always have the same direction. Especially, i) if the human 347 
disease of interest exhibits variable phenotypes (e.g., cancer, obesity, asthma), and ii) if multivariable 348 
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cage-clustered data analyses are not used to account for ICC of phenotypes within/between animal 349 
cages. 350 

Under the ‘weak law of large numbers’ principle in mathematics (Bernoulli's theorem47-49; see ref 351 
for further illustration57), as N increases, the distribution of the study/sample means approximates the 352 
mean of the actual population, which facilitates the identification of statistically significant (but not 353 
biologically meaningful) differences between otherwise overlapping sample datasets. Commonly used 354 
statistical methods (e.g., t-tests; parametric vs. nonparametric) are designed to quantify differences 355 
around the sample centers (mean, median) and range of dispersion (standard errors or deviation) of two 356 
groups. However, these methods do not account for the distribution shape (unimodal vs. bi/multimodal) of 357 
the compared datasets. With arbitrary increases in N, what is insignificant becomes significant, thus 358 
increasing the tendency for the null hypothesis to be rejected despite clinically negligible differences58,59.  359 

To guide the selection of sufficient N (cases) or disease data subtype, herein we highlight the use 360 
of two simple statistical steps, i) to first determine if the shape of the dataset is unimodal (e.g., dip test), 361 
and if not unimodal, then ii) to use statistical simulations and tests to determine the number of 362 
modes/data values of interest. By doing so will facilitate the objective design of personalized/disease 363 
subtyping experiments.  Although comparisons between group means is important because some 364 
diseases are truly different, findings from our own hGM-FMT46, and others16,18 highlight the relevance of 365 
studying disease subtypes and the sources of variability by personalizing the functional analysis of the 366 
hGM in mice (i.e., that both ‘pathological’ and ‘beneficial’ effects can be seen in hGM-FMT mice 367 
independent of donor disease status). For example, in our own work, the functional characterization of 368 
‘beneficial’ or ‘non-beneficial’ disease microbiome subtypes in IBD patients at times of remission could 369 
lead to the identification of an ideal patient fecal sample for future autologous transplantation during times 370 
of active disease. Therefore, personalized research has the potential to identify different functional 371 
microbiome subtypes (on a given outcome, e.g., assay or hGM-FMT mice) for one individual.  372 

With respect to determining unimodality, easily implementable tests are available in STATA 373 
(diptest and mode; proprietary and community contributed) and R (Package ‘multimode’, community 374 
contributed)60. The dip test61 quantifies departures from unimodality and does not require a priori 375 
knowledge of potential multimodality and thus information can be easily interpreted from the test statistics 376 
and the P-value 62,63. Although reports and comparative analysis of statistical performance have been 377 
described for various multimodality tests (e.g., Dip test, Bimodality test, Silverman’s test and likelihood 378 
ratio test64, and kernel methods), including simpler alternatives that use benchmarks to determine the 379 
influence of data outliers 52,53,62,65, it is important to emphasize that every method depends on its intended 380 
application and data set (and data shape),66 and therefore must be accompanied by the inspection of the 381 
data distributions (‘shoulders’, ‘bumps’, and respective ‘valleys’). 382 

In conclusion, by conducting a series of simulations and a review of statistical methods in current 383 
hGM-FMT literature, we extensively illustrate the constraints of increasing N as a main solution to identify 384 
causal links between the hGM and disease. We also highlight the integral role of multivariable cage-385 
clustered data analyses, as previously described by our group2. Herein, we provided a conceptual 386 
framework that integrates the dynamics of sample center means and range of dispersion from the 387 
compared datasets with kernel and violin plots to identify ‘data disease subtypes’. Biological insights from 388 
well-controlled, analyzed and personalized analyses will lead to precise ‘person-specific’ principles of 389 
disease, or identification of anti-inflammatory hGM, that could explain clinical/treatment outcomes in 390 
patients with certain disease subtypes, and self-correct, guide and promote the personalized investigation 391 
of disease subtype mechanisms. 392 
  393 
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Table 1. Comparative percentages of simulations that yielded significant results for two statistical 405 
approaches based on randomly simulated data derived from unimodal distributions  406 

 Inverse Normal Gaussian Monte Carlo Normal Gaussian 

Simulation, n= and 
statistical test 

50 T-tests 
(significant cumulative linear 
pattern*) (95%CI=) 

100,000 Adjusted T-tests 
(overall significance with 
N=63/group)(95%CI=)a 

100,000 Adjusted One Way with 
multiple comparison Tukey testb 

Dis1 vs Dis2 35.3% (22.9, 50.8) 57.7% (57.4, 58.0) 37.8% (37.5, 38.1) 
Dis1 vs Healthy 58.8% (43.2, 71.8) 9.1% (8.9, 9.3) 3.8% (3.7, 3.9) 
Dis2 vs Healthy ND 78.3% (78.0, 78.6) 59.6% (59.3, 59.9) 
   One Way ANOVA  

p<0.05 68.1% (68.4 to 67.8) 
p>0.05 31.9% (32.2 to 31.6)  

*Not overall p-value at N=63. ND, not determined.  407 
a,b Notice that the percentage of simulations achieving significance is inflated when analysis for three groups is conducted with T-408 
tests (instead of ANOVA) which does not control for false positives due to family errors. Proper comparison between >2 groups 409 
should be performed with methods to control for such family errors (e.g., ANOVA-post-hoc Tukey statistics).  Note that the 410 
percentage is different as illustrated in Figure 1D because the patterns with non-linear behavior are not considered.  411 
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 412 
Figure 1. Random sampling from overlapping diseases yield ‘linear patterns of analytical 413 
irreproducibility’. Simulations on observed data from Basson et al46 to visualize naturally/highly variable 414 
disease/healthy datasets. a) Method overview to generate pseudo-random numbers and simulations from 415 
published (observed) data. b) Visualization of simulated outcome from random integers generated based 416 
on 3 donors/group for Disease 1 (‘Dis1’), Disease 2 (‘Dis2’), and healthy groups. c) Simulation of hGM 417 
transplanted into mice yields reproducible simulated ‘disease data subtypes’ from 6 mice/group. d) Four 418 
patterns of analytical irreproducibility. Representative simulations comparing 2 groups of donors, with N 419 
ranging from 3 (trio)donors/group to 63, in multiples of 3 (cumulative addition of new trios per group). Y 420 
axis, p-value of differences using 2-group Student-t test. Notice as N increases, the cumulative 421 
significance (red line) exhibit different linear patterns due to variance introduced by random sampling.  e) 422 
Cumulative probability of a simulation to yield a significant difference (blue; significant, black; non-423 
significant; parentheses, std. dev.). A comparison was deemed significant, if at least one p-value<0.05 424 
across simulations with N between 3 and 63 donors/group. f) Visualization of simulated outcome using 425 
observed data from Baxter et al16. g) Random simulations illustrate two other possible analytical patterns. 426 
Notice as N increases, group differences become more significant, until an inflection point, where adding 427 
more donors makes the significance disappear. See Supplementary Figure 1 for additional examples 428 
and computed R2 value to illustrate the linearity of the correlation between N and statistical significance.  429 
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 430 
Figure 2. Violin plots enable visualization of data subtypes in simulations of random sampling as 431 
a function of N. Observed raw data derived from Basson et al published data. a-b) Dot plots (mean, 432 
range) of observed (1 trio; 3 donors/group), and simulated data (3 and 6 donors/group; panel B). Note 433 
that differences are not significant because of the variability between diseases. c) Dot plots (mean, range) 434 
of simulated data for 9, 21 and 65 donors per group. Note that simulated mean effects became significant 435 
with 65 donors/group. However, the mean difference is small compared to the variance of the groups and 436 
the difference is not biologically different because it is a function of the total variance (23%). d) Kernel 437 
density simulations (10,000) based on observed (n=3) and simulated data. Note that as N increases the 438 
mean becomes more narrow while the variance widens. See 100,000 Monte Carlo simulations in Table 1. 439 
e) Comparison of visual appearance and data display for simulated data to illustrate ‘disease data 440 
subtypes’ in the population (i.e., ‘disease data shoulders’/subtypes shown as arrows). f) Violin plots allow 441 
visualization of data subtypes as N increases (‘disease data shoulders’/subtypes shown as arrows).  442 
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 443 
Figure 3. Violin plots illustrate that statistical differences with large N may not have clinical 444 
predictive utility at individual level. Violin and kernel plots illustrate statistical vs. biologically relevant 445 
differences. a) Violin plots of four simulated random number sets illustrate that each set of donors may 446 
have unique subtypes of disease illustrated with arrowheads (disease severity scores with higher number 447 
of simulated donors). Arrows indicate ‘disease data shoulders/subtypes’ vary with every simulation of 63 448 
donors/group. b) Kernel density curves illustrate large overlap of sample population from simulated data 449 
(see panel A). Significant differences are highlighted by shaded area. Note the threshold does not have 450 
distinctive separation for the plots indicating that it is not biologically useful as a predictor of outcome.  451 
c) Violin plots illustrate meaningful statistical difference for population (compared to panel 3b). ‘Fake 452 
disease X’ (‘DisX’) was generated as a ‘mock’ disease following Gaussian distribution around the mean. 453 
Monte Carlo simulations were significant 96.5% (upper limit 97.6, lower limit 95.4%). d) Kernel density 454 
curves of panel 3c illustrates example of distribution separation with both statistical difference and 455 
biological relevance. 456 
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  457 
Figure 4. Conceptual framework of the effect of random sampling from a multimodal disease 458 
population on the reproducibility of study results. Schematic conceptualization of random sampling 459 
from a bi/multi-modal disease distribution (subtypes) and utility of violin and kernel density plots to 460 
visualize disease subtypes.   461 
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 462 
Figure 5. Markov chain Monte Carlo (MCMC) simulations emphasize targeted study of subtypes in 463 
the study of multimodal diseases. Random walk Markov chain Metropolis-Hastings’ algorithm to 464 
simulate random sampling accounting for the hypothetical dependence of two different disease subtypes. 465 
a) Mathematical function that allows distribution of number sampling if numbers that follow a bi-modal 466 
distribution.  Simulation depicts distributions derived from ‘truncated beta’ and the combination of two 467 
‘mixed unimodal’ distribution functions. b) Random sampling iterations after Markov chain simulations 468 
(N=100) comparing two hypothetical bimodal data distributions (red dotted line vs. blue solid line) for an 469 
outcome of disease severity, wherein 100,000 simulations represent approximately the real distribution 470 
(grey line; zero). As a stochastic model, the Markov chain algorithm considers biologically relevant 471 
sampling dependence. Notice how random sampling for two bimodal distributions can yield non-472 
consistent statistical results variability between iterations, in this case N=100 (-5, SD of 3; 7, SD of 3). c) 473 
Example of a Hartigan-Hartigan (Hartigans’) unimodality dip test and a modes test 61,62 showing a 474 
multimodal data distribution of a hypothetical dataset (black dotted line) compared to a normal univariate 475 
density plot (red line). To identify data subtypes (modes), the dip test61 computes a p-value to help 476 
determine if a data is unimodal or multimodal and does not require a priori knowledge of potential 477 
multimodality and can be interpreted from its test statistics and P-value (p<0.05 indicates data is not 478 
unimodal, p>0.05-1.0 indicating at least one data mode exists in dataset). d) Effect of increasing N on t-479 
test significance (direction, arrow), and dip test for MCMC simulations using the Markov chain simulation 480 
scripts (panel C) comparing two hypothetical bimodal data distributions (red dotted line vs. blue solid line), 481 
controlling for randomness (set.seed 101) while increasing N. Plots scaled between -10 and 10 482 
illustrate increased data dispersion as N increases (grey line; zero). See Supplementary Figure 2 483 
for wider range of N and the examples for dip test and modes analysis using STATA and R 484 
commands.  485 
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 486 
 487 
Figure 6. Study design and statistical methods among 38 hGM-FMT studies reveal lack of cage-488 
clustered analysis and dominance of univariate analysis. Analysis of 38 studies as reviewed by 489 
Walter et al7. a) Average and correlation for number of donors (left plot; patients with disease vs. healthy 490 
control) and average number of mice per human donor in each study (right plot). b) Correlation plot with 491 
exponential, logarithmic and linear fits shows that scientists tend to use less animals when more donors 492 
are tested, creating a ‘trade-off’ between data uncertainty due to variance in human disease with that of 493 
variance in animal models for disease of interest. c) Pie chart shows distribution of studies reporting mice 494 
per cage (MxCg) attributing to cage-clustered effects. (keywords: cage/cluster*, individual/house*, mice 495 
per*, density*, mixed/random/fix/methods/stat*, P=). Note that most studies do not report MxCg (i.e., 496 
animal density). d) Heatmap illustrates the overall statistical methods (M), statistical software (S) and 497 
study design (D) used by the 38 reviewed studies.  Note that only one study (‘study 6’)18 used linear 498 
mixed methods to control for the random effects of cage clustering and that the majority of studies limited 499 
analysis of datasets to univariate-based approaches. *Asterix indicate variables examined by Walter. 500 
Notice the dichotomy between software, the GUI interface R statistical software and GraphPad. 501 
Highlighted areas shown for reference; notice the cluster around GraphPad and univariate analysis.  502 
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503 
Supplementary Figure 1. Further examples for data simulations with R2 value illustrate linearity as 504 
illustrated in Figure 1D. Computed R2 value (mean 0.51±0.23, 20 simulations) illustrate the linearity of 505 
the correlation between N and statistical significance. Y axis, p-value of the differences using 2-group 506 
Student-t test. 507 
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 508 

Supplementary Figure 2. Markov chain Monte Carlo (MCMC) simulations and examples of dip test. 509 
Random walk Markov chain Metropolis-Hastings’ algorithm to simulate random sampling accounting for 510 
the hypothetical dependence of two different disease subtypes (complement to plots presented in Figure 511 
5). 512 
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METHODS 513 
Preclinical hGM-FMT (observed) data used for simulations. To facilitate the visualization of how 514 
random sampling and disease variability influences study conclusions (significant vs. non-significant p-515 
values) in the context of N, we conducted a series of simulations from preclinical hGM-FMT disease 516 
phenotyping data estimates from our own IBD studies (Basson et al)46 and that of Baxter et al16 (a study 517 
reviewed by Walter et al[7]).  In brief, by transplanting feces from inflammatory bowel disease (IBD), 518 
namely Crohn’s disease (‘Dis1’) and ulcerative colitis (‘Dis2’), and ‘Healthy’ donors (n=3 donors for each 519 
’disease/healthy’ state) into a germ-free spontaneous mouse model of cobblestone/ileal Crohn’s disease 520 
(SAMP1/YitFc)46,67, Basson et al46 observed with ~90% engraftment of human microbial taxa after 60 521 
days, that the hGM-FMT effect on mouse IBD-phenotype was independent of the disease state of the 522 
donor. Specifically, samples from some IBD patients and some healthy donors did not affect the severity 523 
of intestinal inflammation in mice, while the remaining donors exacerbated inflammation. The overlapping 524 
presence of both pro-inflammatory and non-inflammatory hGM in the disease phenotype of the mice for 525 
IBD and healthy human donors, indicate the presence of data bimodality. Comparably, Baxter et al[17] 526 
found that differences in the number of tumors resulting in a hGM-FMT mouse model of chemically 527 
induced colorectal cancer (CRC) was independent of the cancer status of the human donors (n=3 528 
colorectal cancer, n=3 healthy individuals). 529 
 530 
Simulations from preclinical hGM-FMT data. Simulations were first conducted using random and 531 
inverse random normal functions using the mean±SD data from published data16,46. In all depicted 532 
illustrations, the randomly generated numbers used computer software/automated pseudorandom 533 
(seeded and unseeded) methods. Unless described otherwise, the numbers generated were restricted to 534 
be confined within biologically meaningful data boundaries based on published data (for example, 0 as 535 
minimum for normal histological score or intestinal inflammation, and 80 as arbitrary ~3-fold the maximum 536 
possible histological score). For illustration purposes, the x- or y-axes in plots were generically labeled as 537 
‘outcome disease severity’. Simulating a situation where a scientist would recruit a trio of donors (3 538 
donors) per group at a time, and was interested in conducting interim statistical analysis following the 539 
addition of every trio of donors to the study, we summarized the pairwise group analysis for the simulated 540 
disease comparisons, for various N, and for consecutively added donors as an aggregate ‘cumulative 541 
probability of being a significant simulation’ statistic. Comparisons were deemed significant if at least one 542 
p-value was <0.05 across simulations. Student’s unpaired t-test and/or One-way ANOVA with Tukey 543 
statistical comparisons were also adjusted using Monte Carlo simulations to determine the adjusted p 544 
values and the % of simulations to demonstrate that not all disease group comparisons would be 545 
reproducible. As a control normal (unimodal) simulation, we created several datasets, including one 546 
depicted in illustrations as ‘fake disease X’). Lastly, to illustrate the effect of random sampling from data 547 
simulations from multimodal distribution functions, unconstrained-parameter simulations of two mixed yet 548 
separate normal distributions, were performed using the Random Walk Metropolis-Hasting algorithm, a 549 
form of doing dependent sampling from a proposed posterior distribution, as a well-established method of 550 
Markov Chain Monte Carlo (MCMC) simulations, using R, and STATA (v15.1). In the latter, the MCMC 551 
sampling of a new individual is dependent on the prior probability of being part of a mode within a bimodal 552 
distribution, instead of being completely random from a unimodal distribution, using a log-likelihood 553 
correction to prevent negative sigma values and also allow for asymmetrical distributions. This method is 554 
beneficial as it asymptotically converges to the true proposal distribution, and so represents a more 555 
robust method of data simulation of other potential alternatives of simulating sampling from bimodal 556 
distributions (i.e., binomial, and mixed normal distributions).  557 
 558 
Variability of statistical methods in hGM-FMT rodent studies. To determine the sources of statistical 559 
methods variability in hGM-FMT rodent studies, we reviewed the content of 38 studies listed in Walter et 560 
al.7  For computation purposes, we searched each article for the following keywords “cage,” “stat*”, 561 
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“housed,” “multiple,” “multivariable,” “cluster,” “mixed,” “individual*”, “random*” and appropriately extracted 562 
details to additional inserted columns of an excel file. Detailed statistical tests and software used, focused 563 
on assessing the effect of the hGM in the rodent phenotypes, were extracted to determine if studies used 564 
proper cluster statistical analysis, and/or controlled for random effects introduced by caging, when 565 
needed; that is, if scientists housed more than one mouse per cage. Integer numbers, including 566 
descriptions of animal density, were assigned to the sourced keywords to allow for statistical analysis. If a 567 
range was provided for N or animal density (e.g., 1-5), estimations were computed using the median 568 
value within the range, as well as the minimum and maximum values. Average of estimated center values 569 
were used for analysis and graphical summaries  570 
 571 
Statistical Analysis. Descriptive statistics for parametric data were employed if assumptions were 572 
fulfilled (e.g., 1-way ANOVA). Non-fulfilled assumptions were addressed with nonparametric methods 573 
(e.g., Kruskal-Wallis). The 95% confidence intervals are reported to account for sample size and for 574 
external validity. The test of multimodality was conducted using the dip test (which measures the 575 
departure of a sample from unimodality, using as reference the uniform distribution as a worst case) and 576 
STATA61, with packages available in R68. The tabulation of modes from a variable in a dataset was 577 
computed using the modes and hsmode function in STATA.69,70 .Statistical and simulation analyses were 578 
conducted or plotted with Excel, R, Stata, and GraphPad. 579 
 580 
 581 
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