

1 Patterns of 'Analytical Irreproducibility' in Multimodal Diseases

2

3 Abigail R Basson^{1,2}, Fabio Cominelli^{1,2,3,4}, Alex Rodriguez-Palacios^{*1,2,3,4}

4

5

6 ¹ Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine,
7 Cleveland, OH, USA.

8 ² Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH,
9 USA.

10 ³ Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland,
11 OH, USA.

12 ⁴ Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve
13 University, Cleveland, OH, USA.

14 **15 Corresponding Author:** Alex Rodriguez-Palacios (axr503@case.edu)

16 **Highlights**

17

- 18 Multimodal diseases are those in which affected individuals can be divided into subtypes (or 'data
19 modes'); for instance, 'mild' vs. 'severe', based on (unknown) modifiers of disease severity.
- 20
- 21 The role of the microbiome in multimodal diseases has been studied in animals; however, findings
22 are often deemed irreproducible, or unreasonably biased, with pathogenic roles in 95% of reports.
- 23
- 24 As a solution to repeatability, investigators have been told to seek funds to increase the number of
25 human-microbiome donors (N) to increase the reproducibility of animal studies.
- 26
- 27 Herein, we illustrate that although increasing N could help identify statistical effects (patterns of
28 analytical irreproducibility), clinically-relevant information will not always be identified.
- 29
- 30 Depending on which diseases need to be compared, 'random sampling' alone leads to reproducible
31 'patterns of analytical irreproducibility' in multimodal disease simulations.
- 32
- 33 Instead of solely increasing N, we illustrate how disease multimodality could be understood,
34 visualized and used to guide the study of diseases by selecting and focusing on 'disease modes'.
- 35
- 36

37 **Abstract**

38 Multimodal diseases are those in which affected individuals can be divided into subtypes (or 'data
39 modes'); for instance, 'mild' vs. 'severe', based on (unknown) modifiers of disease severity. Studies have
40 shown that despite the inclusion of a large number of subjects, the causal role of the microbiome in
41 human diseases remains uncertain. The role of the microbiome in multimodal diseases has been studied
42 in animals; however, findings are often deemed irreproducible, or unreasonably biased, with pathogenic
43 roles in 95% of reports. As a solution to repeatability, investigators have been told to seek funds to
44 increase the number of human-microbiome donors (N) to increase the reproducibility of animal studies
45 (doi:10.1016/j.cell.2019.12.025). Herein, through simulations, we illustrate that increasing N will not
46 uniformly/universally enable the identification of consistent statistical differences (patterns of analytical
47 irreproducibility), due to random sampling from a population with ample variability in disease and the
48 presence of 'disease data subtypes' (or modes). We also found that studies do not use cluster statistics
49 when needed (97.4%, 37/38, 95%CI=86.5,99.5), and that scientists who increased N, concurrently
50 reduced the number of mice/donor ($y=-0.21x$, $R^2=0.24$; and vice versa), indicating that statistically,
51 scientists replace the disease variance in mice by the variance of human disease. Instead of assuming
52 that increasing N will solve reproducibility and identify clinically-predictive findings on causality, we
53 propose the visualization of data distribution using kernel-density-violin plots (rarely used in rodent
54 studies; 0%, 0/38, 95%CI=6.9e-18,9.1) to identify 'disease data subtypes' to self-correct, guide and
55 promote the personalized investigation of disease subtype mechanisms.

56

57 **Keywords:** violin plots, random sampling, analytical irreproducibility, microbiome, fecal matter
58 transplantation, data disease subtypes

59 **Introduction**

60 Multimodal diseases are those in which affected individuals can be divided into subtypes (or 'data
61 modes'); for instance, 'mild' vs. 'severe', based on (unknown) modifiers of disease severity. Since the
62 availability of DNA-sequencing platforms, there have been major advances in our understanding of the
63 human microbiome, its ecological complexity, and temporal oscillations. However, to differentiate the
64 causal connection between microbiome alterations and human diseases (from that of secondary
65 alterations due to disease), animal models, primarily germ-free rodents transplanted with human gut/fecal
66 microbiota (**hGM-FMT**), have been critical as *in vivo* phenotyping tools for human diseases.
67 Unfortunately, despite considerable efforts from organizations and guidelines to help scientists design
68 and report preclinical experiments (e.g., ARRIVE)^{1,2}, there are still concerns of study reproducibility.

69 Studies have described novel technical sources of 'artificial' microbiome heterogeneity that could
70 explain why hGM-FMT study results vary²⁻⁶. In our own work², we discovered that scientists lacked
71 appropriate methods for the description and analysis of cage-clustered data. To help scientists to self-
72 correct issues on rodent experimentation, we identified 'six action themes' and provided examples, and
73 statistical code, on how to use and compute 'study power' as a reproducible parameter that could enable
74 inter-laboratory comparisons and improve the planning of human clinical trials based on preclinical data².

75 In this regard, a recent perspective article on hGM-associated rodent studies by Walter *et al.*⁷
76 ("Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-
77 Associated Rodents"; published in Cell, January 23rd 2020) recommended to scientists seek additional
78 funding to increase the number of human donors (N) as a main solution to improve experimental rigor and
79 reproducibility, and to determine the causal role of the hGM in disease. Given that large disease
80 variability is experimentally problematic for both humans and animals, we hypothesized that increasing N
81 would not ensure consistent results due to the aleatory effects of random sampling of subjects from a
82 population with multimodal disease distributions (*i.e.*, multimodal: >2 types of modes or 'subtypes of
83 disease data' can be seen in a population; the most, and the least diseased). To verify this hypothesis in
84 the context of hGM and N, we used published (observed) preclinical distribution (disease variability)
85 estimates to conduct a statistical and visualization analysis of the impact of repeated random sampling on
86 the significance of statistical comparisons between simulated disease groups, at various N.

87 Underscoring the importance of the central limit theorem (which can be visualized in[8]),
88 simulations indicate that more studies addressing disease multimodality (independent of N; personalized
89 disease subtyping studies) are preferable than fewer studies with larger N that do not address disease
90 multimodality. After examining the statistical content of 38 studies⁸⁻⁴⁵ listed in Walter *et al.*⁷ we found that
91 scientists who increased N, concurrently reduced the number of MxD, indicating that statistically,
92 scientists replace the disease variance in mice by the disease variance in humans in their hGM-FMT
93 studies. Further, studies lacked proper clustered-data statistics to control for animal density; which is a
94 major source of misleading results (false-positive, or false-negative), especially when scientists prefer to
95 house many rodents per cage, and when the number of mice per experiment is low^{2,46}.

96 Herein, we provide a conceptual framework that illustrates various patterns of analytical
97 irreproducibility by simulating and integrating the dynamics of: N, random sampling, group means, sample
98 variance, and the population disease diversity that could be visualized as unimodal, bimodal or
99 multimodal, through the use of kernel-based violin density plots for the identification of data subtypes.
100 Simulations and provided examples could help scientists *i*) visualize the dynamics of random sampling
101 from a heterogeneous population of healthy and diseased subjects, *ii*) decide on N once preclinical data
102 are generated, and *iii*) improve experimental rigor in hGM-FMT studies.

103 **RESULTS**

104 **'Disease subtypes' occur in simulations using published data and UNIMODAL distributions**

105 In microbiome rodent studies, the selection of a sufficient number of both human donors (N), and
106 the number of mice required to test each human donor (**MxD**), is critical to account for the effects of

108 random sampling, which exist when the hGM induces variable disease severity in humans and
109 rodents. Thus, to visualize the variability of disease severity (data subtypes/modes) in rodents, and the
110 effect of N on the reproducibility of pairwise statistical comparisons between groups of hypothetically,
111 randomly selected human donors, we first conducted a series of simulations using the mean \pm SD
112 (observed data) from hGM-FMT mice in Basson *et al.*⁴⁶ (note the dispersed overlapping variances, SD in
113 **Figure 1A**). Using the observed data we generated random datasets using functions designed to draw
114 numbers from an inverted Gaussian distribution (with unimodal normal continuous probability; 0, ∞). We
115 demonstrate how the random selection of donors (sampled as groups for each of three iterative datasets)
116 influence the direction and significance level in pairwise comparative statistics (**Figure 1B**).

117 Simulations showed that the number of MxD is important because mice have various response
118 patterns to the hGM (i.e., disease severity, data subtypes/modes), which can be consistently detected
119 depending on the MxD and thus the variability introduced by random sampling. Simulations showed that
120 for the three group datasets (plotted as 'Dis1', 'Dis2' and 'Healthy'), it was possible to reproducibly identify
121 two-to-three unique donor disease severity subtypes (data modes) in mice induced by the hGM ('high',
122 'middle', and 'low' disease severity). Simulation plots made it visually evident that testing <4-5 MxD
123 yielded mean values more likely to be affected by intrinsic variability of random sampling; thus, making
124 studies with >6 MxD more stable and preferable. Conversely, studies with 1-2 MxD are at risk of being
125 strongly dependent on randomness. Iterative simulations showed that the mean effect (e.g., ileal
126 histology) in transplanted mice varies minimally (i.e., stabilizes) after 7 ± 2 MxD, depending on the random
127 dataset iterated. Beyond that, increasing MxD becomes less cost-effective/unnecessary if the focus is the
128 human donors (**Figure 1C**).
129

130 **Random sampling from overlapping diseases yield 'linear patterns of analytical irreproducibility'**

131 Often, published literature contains figures and statistical analysis conducted with 3 donors per
132 disease group. Thus, to mimic this scenario and to examine the role of random sampling on the
133 reproducibility of pairwise statistical results ('significant' vs. 'non-significant'), we conducted, *i*) multiple 3-
134 donor/group ('trio-trio') pairwise comparisons, and *ii*) a simultaneous overall analysis for the cumulative
135 sum of all the 3-donor trios simulated for each disease group. That is, we monitored and quantified
136 whether results for each random iteration were significant (using univariate Student's t-statistics $p<0.05$)
137 or non-significant ($p>0.05$) for groups of simulated donor datasets ('Dis1', 'Dis2, and 'Healthy'). Assessing
138 the effect of random sampling at various N, and also as N accumulated, we were able to illustrate that
139 pairwise trio-trio comparisons between the simulated datasets almost always produce non-significant
140 results when iterative trios were compared (due to large SD overlapping; see bars in **Figure 1D**
141 representing 21 sets of pairwise trio-trio p-values). However, as N increases by the cumulative addition of
142 all (mostly 'non-significant') donor trios (i.e., N increases in multiples of 3, for a range of N between 3 and
143 63 donors/group; [3, 6, 9, 12...63]), pairwise statistical comparisons between the simulated datasets did
144 not produce consistent results (see line plots in Figure 1D representing p-value for cumulative addition of
145 donors when sampling iterations were simulated).

146 Results are clinically relevant because the simulated N, being much larger (63 donors/group) than
147 the largest N tested by one of the studies reviewed by Walter *et al.*⁷ (21 donors/group)⁴⁰ demonstrates that
148 the analysis of randomly selected patients would not always yield reproducible results due to the chance
149 of sampling aleatory sets of individuals with varying degrees of disease severity, regardless of how many
150 donors are recruited in an study. To provide a specific example, using 'Dis1' as a referent, cumulative
151 pairwise comparisons (vs. 'Dis2', and vs. 'Healthy') revealed at least five different patterns of
152 'irreproducible' statistical results as N increased between 3 and 63 per group. **Figure 1D** illustrates four of
153 these variable cumulative linear patterns of analytical irreproducibility, in which, remarkably, *i*) 'Dis1'
154 becomes significantly different vs. Dis2, and vs. 'Healthy', as N increases, *ii*) 'Dis1' becomes significantly
155 different from 'Dis2' but not vs. 'Healthy', *iii*) 'Dis1' was significantly different from healthy but not vs.
156 'Dis2', and *iv*) 'Dis1' never becomes significantly different despite sampling up to 63 donors/group. See

157 **Supplementary Figure 1** for complementary plots illustrating linearity of patterns (R^2 , mean 0.51 ± 0.23 ,
158 21 simulations) Hence, results clearly illustrate that seeking funds to recruit more donors is not a prudent
159 statistical solution to the problem of understanding disease causality of widely variable conditions in both
160 humans and animals. By analytical irreproducibility, herein, we refer to the inability to reproduce the
161 direction and statistical significance of a test effect when analyses are conducted between groups created
162 by the random selection of subjects from distributions defined based on observed (mean \pm SD) data.
163

164 **100,000 Monte Carlo simulations illustrate the effect of randomness on analytical reproducibility**

165 To summarize the overall significance of the inconsistent patterns observed via random sampling,
166 we computed an aggregate ‘cumulative probability of being a significant simulation’ for 50 pairwise
167 statistical simulation sets fulfilling the 4 linear patterns described above. Emphasizing the concept that
168 increasing N is not a reproducible solution, **Figure 1E** shows that only $35.3\pm4.0\%$ of comparisons
169 between ‘Dis1’ and ‘Dis2’, and $58.8\pm3.3\%$ for ‘Dis1’ and ‘Healthy’ were significant.

170 Expanding the validity of these inverted-Gaussian simulations for N=63 donors/group, we then
171 conducted **i**) Monte Carlo adjusted Student’s unpaired t-tests, and **ii**) Monte-Carlo adjusted one-way
172 ANOVA with Tukey correction for family errors and multiple comparisons. Monte Carlo simulations used
173 data drawn from a normal (non-inverted) Gaussian distribution around the group means with a pooled SD
174 of ± 4 , and were conducted using GraphPad, a popular statistical software in published studies. To
175 estimate a probability closer to the real expectation (narrower confidence intervals), 100,000 simulations
176 were performed. Supporting the observations above (based on inverse normal simulations), Monte Carlo
177 Gaussian simulations showed that, using pairwise comparison, ‘Dis1’ would be significantly different from
178 Dis 2 (adjusted T-test $p<0.05$) only 57.7% of the time (95%CI=58-57.4), with 1540 simulations producing
179 negative (contradictory) mean differences between the groups. Compared to ‘Healthy’, ‘Dis1’ and ‘Dis2’
180 were significant only 9.1% (95%CI=9.2-8.9) and 78.3% (95%CI=78.6-78.1) of the time, respectively.

181 Under the ‘Weak Law of Large Numbers’⁴⁷⁻⁴⁹, and randomization principles, it is almost always
182 possible to detect some level of statistical significance(s) and mean group differences when asymptotic
183 mathematical methods based on numerous simulations are used, for example, as a surrogate for multiple
184 experiments which are not possible in real research settings. However, in this case, the mean simulated
185 differences yielding from 100,000 simulations were minuscule (1.6 for ‘Dis1’-‘Dis2’; -1.97 ‘Healthy’-‘Dis2’,
186 and 0.42, ‘Healthy’-‘Dis1’). Compared to the range of disease variance for each disease, such minuscule
187 differences may not be clinically relevant to explain disease variance at the individual level. Note that the
188 SD was 4, therefore it is intuitive to visualize in a numerical context such as small differences across
189 greatly overlapping unimodal simulations. Correcting for family errors, One-way ANOVA corrected with
190 10,000 Monte Carlo simulations with N=63/group, showed that at least one of the three groups would be
191 statistically different in approximately only 67.2% of the simulations (95%CI=64.2-70.0), whereas in
192 32.8% (95%CI=64.2-70.0) of simulations, the groups would appear as statistically similar (see **Table 1** for
193 estimations after 100,000 Monte Carlo simulations; note narrower CI as simulations increase). The
194 comparison of ‘Dis1’ vs. ‘Dis2’ in Table 1, clearly demonstrates that the percentage of cases, in which a
195 simulation could be significant, depends on the degree of data dispersion. For example, simulations with
196 SD of 4, compared to SD of 10, produce significant results less often, illustrating how data with larger
197 dispersions contribute to poor statistical reproducibility, which cannot necessarily be corrected by
198 increasing N.
199

200 **Random sampling can lead to ‘erratic patterns of analytical irreproducibility’ as N increases**

201 To increase the external validity of our observations, we next simulated the mean \pm SD data
202 published from a hGM-FMT study on colorectal cancer conducted by Baxter *et al*¹⁶. In agreement with
203 Basson *et al*, Baxter *et al* revealed comparably bimodal colorectal cancer phenotypes in mice resulting
204 from both the diseased (colorectal cancer) patients and healthy human donors (**Figure 1F**). Equally
205 important, we observed for both Basson *et al*⁴⁶ and Baxter *et al*¹⁶, what we describe as the fifth ‘pattern of

206 analytical irreproducibility' in this report. That is, in some cases, the steady addition of donor trios/group
207 (as simulations proceeded for increasing values of N) made it possible to identify simulations where
208 erratic changes in the statistical significance for group comparisons switched randomly, yet gradually,
209 from being significant to non-significant as more donor trios were 'recruited' into the simulations (**Figure**
210 **1G**). Clinically relevant, simulations indicated (in a reproducible manner), that adding extra patients could
211 at times actually invert the overall cumulative effect of the p-value, possibly due to the variable distribution
212 and multimodal nature of the human and rodent responses to experimental interventions. As such,
213 simulations indicate that it is advisable to conduct several *a-priori* determined interim results in clinical
214 trials to ensure that significance is numerically stable ($p<0.05$), as well as the relevance of personalized
215 analysis to examine disease variance in populations. Unfortunately, there are no guidelines or examples
216 available to assist in determining how many donors would be sufficient, and to visualize the effect of
217 random sampling of individuals from a vastly heterogeneous population of healthy and diseased subjects,
218 once rodent preclinical data is generated.
219

220 **Violin plots and statistical methods for visualization of MULTIMODAL 'disease data subtypes'**

221 To visualize the underlying mechanisms that could explain the 'linear and erratic patterns of
222 analytical irreproducibility' introduced by random sampling, we first used dot plots based on observed and
223 simulated data, followed by kernel-based statistics and plots. Plot appearance and one-way ANOVA
224 statistics showed that when N is increased, significant results, when present for largely overlapping
225 phenotypes, are primarily due to small differences between sample means (**Figure 2A-B**). Simulations
226 that compared 3 groups of 65 donors/group almost always yielded a significantly different group;
227 however, dot plots show that the significant differences between means are just a small fraction of the
228 total disease variability as verified with Monte Carlo simulations above. That is, as N increases,
229 comparisons can become significant (see plot with 65 donors in **Figure 2C**). In this context, a significant
230 difference of such a narrow magnitude may not be clinically relevant, or generalizable, to explain the
231 presence of a disease phenotype in a population, especially for those individuals at the extreme ranges of
232 the disease distribution.

233 Mechanistically, the detection of significant comparisons can be attributed to the effect that
234 'increasing N' has on the data mean and variance, which increases at a higher rate for the variance as
235 shown in **Figure 2D**. Instead of increasing N as a general solution, we propose to scientists to use violin
236 plots, over other plots commonly encouraged by publishers⁵⁰ (e.g., bar, boxplot and dot plots), because
237 violin plots provide an informative approach, at the group-sample level, for making inferences about
238 'disease data subtypes' in the population (see 'subtypes' shown with arrows in **Figure 2E**).

239 Violin plots are similar to a box plot, as they show a marker for the data median, interquartile
240 ranges, and the individual data points⁵¹. However, as a unique feature, violin plots show the probability
241 density of the data at different values, usually smoothed by a kernel density estimator. The idea of a
242 kernel average smoother is that within a range of aligned data points, for each data point to be
243 smoothed (X_0), there is a constant distance size (λ) of choice for the kernel window (radius, or width),
244 around which a weighted average for nearby data points are estimated. Weighted analysis gives data
245 points that are closer to X_0 higher weights within the kernel window, thus identifying areas with higher
246 data densities (which correspond to the disease data modes). As an example of the benefits of using
247 violin plots, **Figure 2F** illustrates that as N increases, so does the ability of scientists to subjectively infer
248 the presence of disease subtypes. To strengthen the reproducibility of 'subtype' mode identification,
249 herein we recommend the use of statistical methods to identify disease data modes (e.g., see the *modes*
250 function in **Methods** and **Discussion**), because as N increases, the visual detection of modes becomes
251 increasingly more subjective as shown in **Figure 2F**.

252 **Kernel density violin plots help guide subtype analysis to identify biologically significant results**

253 Violin plots and kernel density distribution curves in **Figure 3** illustrate why comparing groups of
254 randomly sampled individuals may not yield biologically relevant information, even though statistical
255 analysis identifies that the mean values differ between compared groups. **Figure 3A** illustrates the
256 different patterns of potential donor subtypes (i.e., data modes, visualized in violin plots as disease
257 data/curve 'shoulders') that would yield significant results in a single experiment depending on the donors
258 sampled. However, the kernel density plots in **Figure 3B** show that significant findings do not necessarily
259 indicate/yield clinically relevant thresholds or parameters to differentiate between the populations (due to
260 the overlapping and inflation of data 'shoulders' in some subjects within the samples). To contrast the
261 data simulated from Basson *et al.*, we replaced data from 'Dis1' dataset with a Gaussian distributed
262 sample of random numbers (within 13.5 ± 3.5 , labeled as 'fake disease X'; vs. 6.4 ± 4.3 , and 4.5 ± 2.5 for
263 'Dis2' and 'Healthy', respectively) to illustrate how a kernel plot would appear when significant differences
264 have a clinically relevant impact in differentiating disease subtypes (**Figure 3C-D**).

265 Collectively, simulations indicate that the uneven random sampling of subtypes across a disease
266 group would be an important factor in determining the direction of significance if studies were repeated,
267 owing primarily to the probability of sampling data 'shoulders' or 'valleys' in both healthy and diseased
268 populations.

269

270 **Simulation of BIMODAL diseases illustrate mechanism of analytical irreproducibility**

271 In our report thus far, we have used unimodal simulations to show how random sampling affects
272 statistical results. However, there has been an increased interest in understanding data multimodality in
273 various biological processes^{52,53} for which new statistical approaches have been proposed. Methods to
274 simulate multimodal distributions are however not trivial, in part due to the unknown nature of
275 multimodality in biological processes. To facilitate the understanding of the conceptual mechanisms that
276 influence the effect of data multimodality and random sampling on statistical significance, **Figure 4**
277 schematically contextualizes the statistical and data distribution principles that can interfere with
278 reproducibility of statistical results when simulations are repeated.

279 Random simulations from unimodal distributions work on the assumption that numbers (e.g.,
280 donors' disease severity) are drawn from a population, *independently* from one another. That is, the
281 probability of sampling or drawing a number from a population is not influenced by the number that was
282 selected prior. While this form of random sampling is very useful in deterministic mathematics, it does not
283 capture the *dependence* of events that occur in biology. That is, in biology, the probability of an event to
284 occur *depends* on the nature of the preceding events. To increase the external validity of our report, we
285 thus conducted simulations based on three strategies to draw density curves resembling bimodal
286 distributions. **Figure 5A** depicts distributions derived from both 'truncated beta', and the combination of
287 two 'mixed unimodal' distribution functions (e.g., two *independent* Gaussian curves in one plot), which are
288 illustrative of multimodality, but not necessarily reliable methods to examine the effects from *dependent*
289 random sampling in multimodality.

290 Thus, we used 'Random walk Markov chain Metropolis-Hastings algorithms' to simulate random
291 sampling, accounting for the hypothetical dependence between two different disease subtypes. To
292 simulate the statistical comparison of two these two hypothetical bimodal diseases, we *i*) ran Markov
293 Chain Monte Carlo (MCMC) simulations (**Figure 5B**), *ii*) used the 'dip test' to determine if the simulated
294 data were statistically multimodal **Figure 5C**, and *iii*) used the Student's t-test to determine the statistical
295 significance, the mean differences and directions for the simulated distributions, using N=100. The MCMC
296 simulations clearly illustrate how random sampling of two bimodal hypothetical diseases lead to
297 inconsistent patterns of statistical results when compared. Notice that the data dispersion increases as N
298 increases; see summary statistics in **Figure 5D**.

299 Conclusively, MCMC illustrations emphasize that increasing N in the study of multimodal
300 diseases in a single study should not be assumed to provide results that can be directly extrapolated to

301 the population, but rather, MCMC emphasize that the target study of data subtypes could lead to the
302 identification of mechanisms which could explain why diseases vary within biological systems (e.g.,
303 humans and mice).

304

305 **Personalized ‘data disease subtyping’ must be combined with proper ‘cage-cluster’ statistics**

306 One important caveat to consider across animal studies is that increasing N alone is futile if
307 clustered-data statistics are not used to control for animal cage-density (>1 mouse/cage), which our group
308 showed contributes to ‘artificial heterogeneity’, ‘cyclical microbiome bias’, and false-positive/false-
309 negative conclusions^{2,54}. To infer the role of scientific decision on the need for particular statistical
310 methods, we examined the studies reviewed by Walter *et al.*⁷ for ‘animal density’ and ‘statistical’ content
311 (see **Methods**). Of note, only one of the 38 studies (2.6%, 95%CI=0.1-13.8%) used proper statistical
312 methods (mixed-models) to control for cage-clustering¹⁸. Although on average, studies tested 6.6 patients
313 and 6.4 controls/group (range=1-21), most studies were below the average (65.7%, 25/38, 95%CI=48.6-
314 80.4%), with 14 having <4 donors/group (**Figure 6A**). However, of interest, the number of human donors
315 included in a study was inversely correlated with the number of mice/per donor used in the FMT
316 experiments (**Figure 6B**).

317 Unfortunately, the majority of studies (25/38, 65.8%, 95%CI=48.6-80.4%) did not report animal
318 density, consistent with previous analyses²; while 10.5% of the studies (4/38, 95%CI=2.9-24.8%) housed
319 their mice individually, which is advantageous because study designs are free of ICC, eliminating the
320 need for cage-cluster statistics (**Figure 6C**). Our review of the statistical methods used across the 38
321 studies also revealed that most scientists used GraphPad chiefly for graphics and univariate analysis of
322 mouse phenotype data. This finding suggests an underutilization of the available functions in statistical
323 software, for example, Monte Carlo simulations, to help understand the effect of random sampling on the
324 reproducibility and significance of observed study results, and the likelihood of repeatability by others
325 (Monte Carlo adjusted 95% confidence intervals) (**Figure 6D**).

326

327 **DISCUSSION**

328 Despite the inclusion of large numbers of human subjects in microbiome studies, the causal role
329 of the human microbiome in disease remains uncertain. Exemplifying that a large N is not necessarily
330 informative with complex human diseases, a large metanalysis⁵⁵ of raw hGM data from obese and IBD
331 patients showed that human disease phenotypes do not always yield reproducible inter-laboratory
332 predictive biological signatures. Even when hundreds of individuals are studied, especially, if the ‘effect
333 size for the disease of interest’ is narrow (*i.e.*, in obesity; larger in IBD) relative to the variability of the
334 disease. For the human IBD subtypes (*i.e.*, ulcerative colitis, and Crohn’s disease), the metanalysis⁵⁵
335 concluded that only the ileal form of Crohn’s disease showed consistent hGM signatures compared to
336 both healthy control donors and patients with either colonic Crohn’s disease or ulcerative colitis,⁵⁶ but no
337 consistent signatures were observed for obesity. In this context, herein we present observations derived
338 from simulation analysis to highlight that Walter *et al.*⁷’s recommendation to scientists to seek further
339 funding to recruit more human donors (increasing N) is an imperfect solution to increase study
340 reproducibly.

341 Using a simple strategy of assuming random numbers drawn from an observed sample
342 distribution, we have analytically illustrated that increasing N yields aberrant and/or conflicting statistical
343 predictions, which depend on the patterns of disease variability and presence of disease subtypes (data
344 modes). Specifically, our simulations revealed that the number of discernable data subtypes may wax and
345 wane as N increases, and that increasing N does not uniformly enable the identification of statistical
346 differences between groups. Further, subjects randomly selected from a multimodal diseased population
347 may create groups with differences that do not always have the same direction. Especially, *i*) if the human
348 disease of interest exhibits variable phenotypes (e.g., cancer, obesity, asthma), and *ii*) if multivariable

349 cage-clustered data analyses are not used to account for ICC of phenotypes within/between animal
350 cages.

351 Under the 'weak law of large numbers' principle in mathematics (Bernoulli's theorem⁴⁷⁻⁴⁹; see ref
352 for further illustration⁵⁷), as N increases, the distribution of the study/sample means approximates the
353 mean of the actual population, which facilitates the identification of statistically significant (but not
354 biologically meaningful) differences between otherwise overlapping sample datasets. Commonly used
355 statistical methods (e.g., t-tests; parametric vs. nonparametric) are designed to quantify differences
356 around the sample centers (mean, median) and range of dispersion (standard errors or deviation) of two
357 groups. However, these methods do not account for the distribution shape (unimodal vs. bi/multimodal) of
358 the compared datasets. With arbitrary increases in N, what is insignificant becomes significant, thus
359 increasing the tendency for the null hypothesis to be rejected despite clinically negligible differences^{58,59}.

360 To guide the selection of sufficient N (cases) or disease data subtype, herein we highlight the use
361 of two simple statistical steps, *i*) to first determine if the shape of the dataset is unimodal (e.g., dip test),
362 and if not unimodal, then *ii*) to use statistical simulations and tests to determine the number of
363 modes/data values of interest. By doing so will facilitate the objective design of personalized/disease
364 subtyping experiments. Although comparisons between group means is important because some
365 diseases are truly different, findings from our own hGM-FMT⁴⁶, and others^{16,18} highlight the relevance of
366 studying disease subtypes and the sources of variability by personalizing the functional analysis of the
367 hGM in mice (i.e., that both 'pathological' and 'beneficial' effects can be seen in hGM-FMT mice
368 independent of donor disease status). For example, in our own work, the functional characterization of
369 'beneficial' or 'non-beneficial' disease microbiome subtypes in IBD patients at times of remission could
370 lead to the identification of an ideal patient fecal sample for future autologous transplantation during times
371 of active disease. Therefore, personalized research has the potential to identify different functional
372 microbiome subtypes (on a given outcome, e.g., assay or hGM-FMT mice) for one individual.

373 With respect to determining unimodality, easily implementable tests are available in STATA
374 (*diptest* and *mode*; proprietary and community contributed) and R (Package '*multimode*', community
375 contributed)⁶⁰. The dip test⁶¹ quantifies departures from unimodality and does not require *a priori*
376 knowledge of potential multimodality and thus information can be easily interpreted from the test statistics
377 and the P-value^{62,63}. Although reports and comparative analysis of statistical performance have been
378 described for various multimodality tests (e.g., Dip test, Bimodality test, Silverman's test and likelihood
379 ratio test⁶⁴, and kernel methods), including simpler alternatives that use benchmarks to determine the
380 influence of data outliers^{52,53,62,65}, it is important to emphasize that every method depends on its intended
381 application and data set (and data shape),⁶⁶ and therefore must be accompanied by the inspection of the
382 data distributions ('shoulders', 'bumps', and respective 'valleys').

383 In conclusion, by conducting a series of simulations and a review of statistical methods in current
384 hGM-FMT literature, we extensively illustrate the constraints of increasing N as a main solution to identify
385 causal links between the hGM and disease. We also highlight the integral role of multivariable cage-
386 clustered data analyses, as previously described by our group². Herein, we provided a conceptual
387 framework that integrates the dynamics of sample center means and range of dispersion from the
388 compared datasets with kernel and violin plots to identify 'data disease subtypes'. Biological insights from
389 well-controlled, analyzed and personalized analyses will lead to precise 'person-specific' principles of
390 disease, or identification of anti-inflammatory hGM, that could explain clinical/treatment outcomes in
391 patients with certain disease subtypes, and self-correct, guide and promote the personalized investigation
392 of disease subtype mechanisms.

393

394 **AUTHOR CONTRIBUTIONS.**

395 A.R.P. proposed analytical arguments, conducted statistical analysis and simulations. A.B. and A.R.P
396 conducted the survey, interpreted/analyzed data, and wrote manuscript. F.C. contributed with scientific
397 suggestions and revisions to the manuscript. All authors approved manuscript.

398

399 **AVAILABILITY OF DATA AND MATERIALS.**

400 All data analyzed for this report are included in the following published articles^{7,16,46} and/or their
401 supplementary information files. The authors will make all statistical codes available upon request.

402

403 **DECLARATION OF INTERESTS**

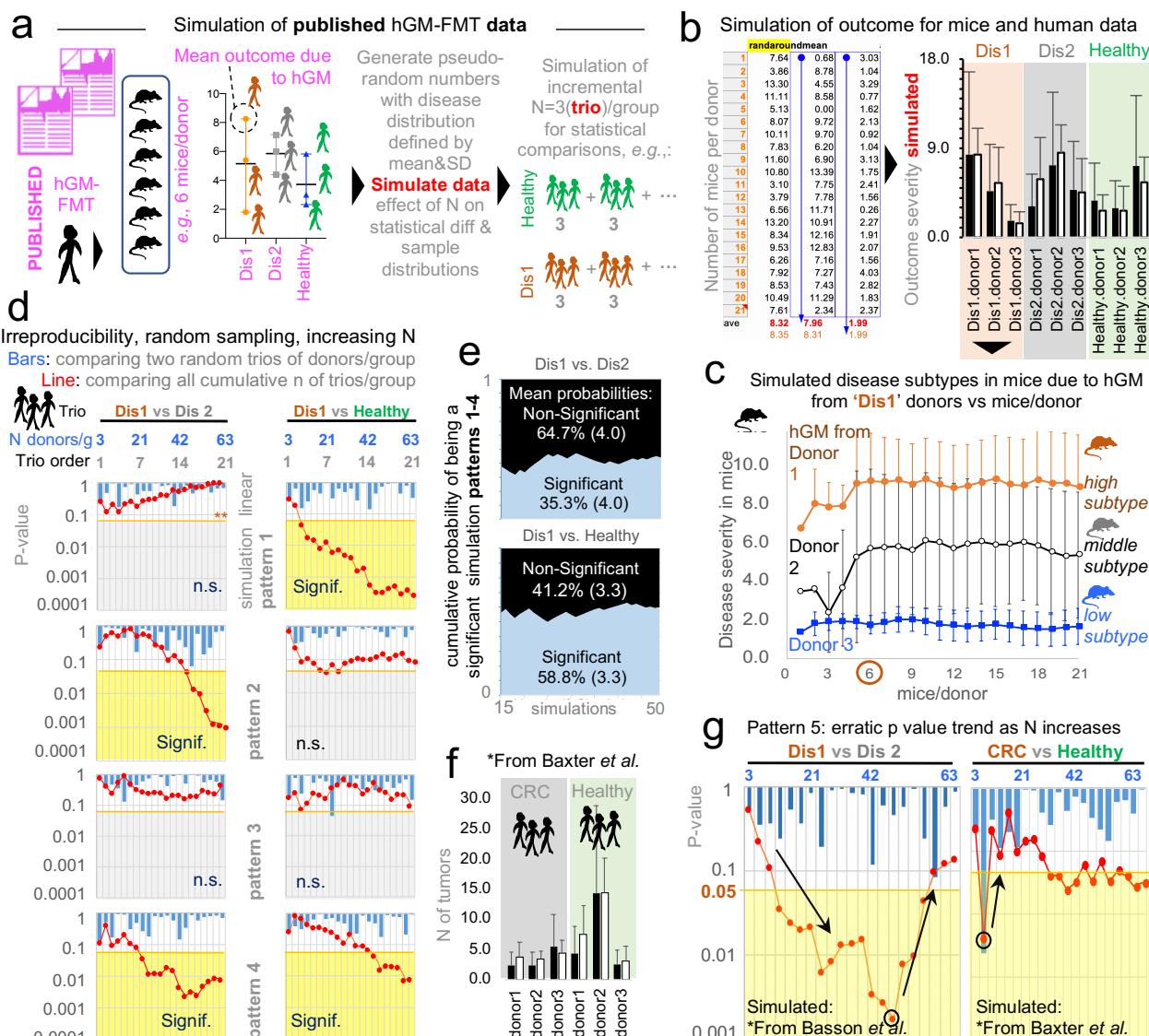
404 The authors declare no competing interests.

405 **Table 1.** Comparative percentages of simulations that yielded significant results for two statistical
406 approaches based on randomly simulated data derived from unimodal distributions

	Inverse Normal Gaussian	Monte Carlo Normal Gaussian	
Simulation, n= and statistical test	50 T-tests (significant cumulative linear pattern*) (95%CI=)	100,000 Adjusted T-tests (overall significance with N=63/group)(95%CI=) ^a	100,000 Adjusted One Way with multiple comparison Tukey test ^b
Dis1 vs Dis2	35.3% (22.9, 50.8)	57.7% (57.4, 58.0)	37.8% (37.5, 38.1)
Dis1 vs Healthy	58.8% (43.2, 71.8)	9.1% (8.9, 9.3)	3.8% (3.7, 3.9)
Dis2 vs Healthy	ND	78.3% (78.0, 78.6)	59.6% (59.3, 59.9) One Way ANOVA p<0.05 68.1% (68.4 to 67.8) p>0.05 31.9% (32.2 to 31.6)

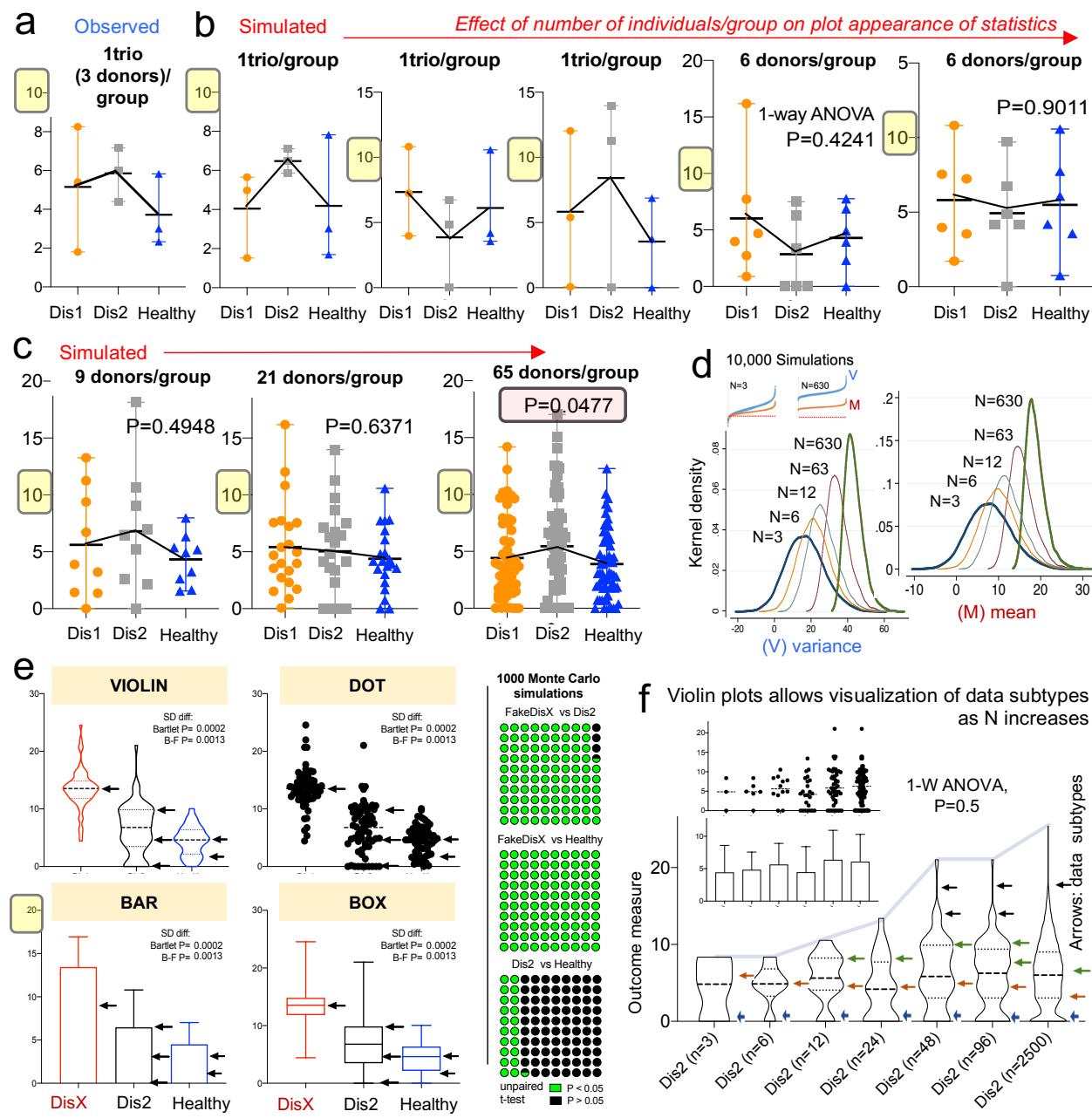
407 *Not overall p-value at N=63. ND, not determined.

408 ^{a,b} Notice that the percentage of simulations achieving significance is inflated when analysis for three groups is conducted with T-
409 tests (instead of ANOVA) which does not control for false positives due to family errors. Proper comparison between >2 groups
410 should be performed with methods to control for such family errors (e.g., ANOVA-post-hoc Tukey statistics). Note that the
411 percentage is different as illustrated in Figure 1D because the patterns with non-linear behavior are not considered.

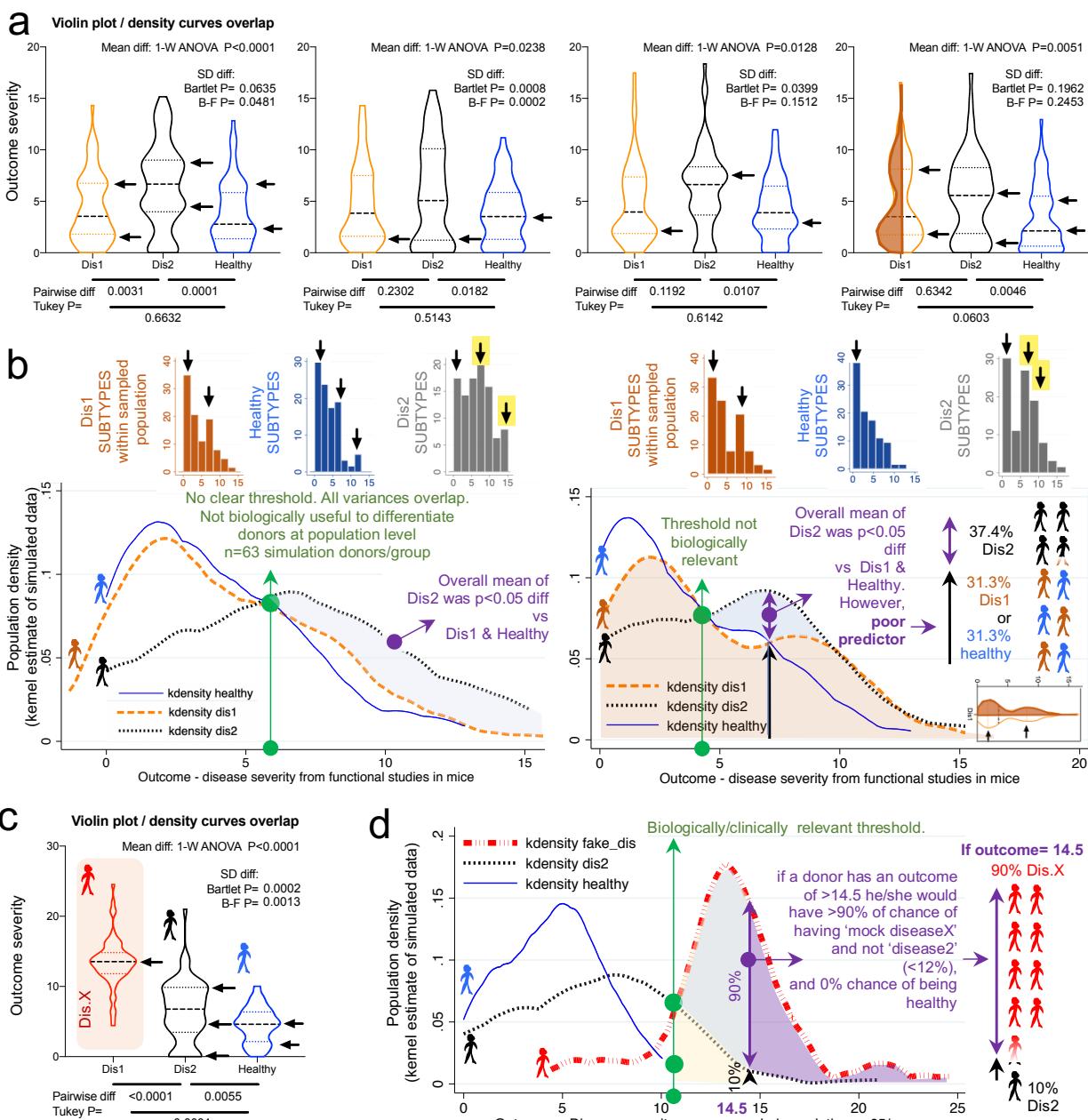


412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

Figure 1. Random sampling from overlapping diseases yield 'linear patterns of analytical irreproducibility'. Simulations on observed data from Basson *et al*⁴⁶ to visualize naturally/highly variable disease/healthy datasets. **a**) Method overview to generate pseudo-random numbers and simulations from published (observed) data. **b**) Visualization of simulated outcome from random integers generated based on 3 donors/group for Disease 1 ('Dis1'), Disease 2 ('Dis2'), and healthy groups. **c**) Simulation of hGM transplanted into mice yields reproducible simulated 'disease data subtypes' from 6 mice/group. **d**) Four patterns of analytical irreproducibility. Representative simulations comparing 2 groups of donors, with N ranging from 3 (trio)donors/group to 63, in multiples of 3 (cumulative addition of new trios per group). Y axis, p-value of differences using 2-group Student-t test. Notice as N increases, the cumulative significance (red line) exhibit different linear patterns due to variance introduced by random sampling. **e**) Cumulative probability of a simulation to yield a significant difference (blue; significant, black; non-significant; parentheses, std. dev.). A comparison was deemed significant, if at least one p-value<0.05 across simulations with N between 3 and 63 donors/group. **f**) Visualization of simulated outcome using observed data from Baxter *et al*¹⁶. **g**) Random simulations illustrate two other possible analytical patterns. Notice as N increases, group differences become more significant, until an inflection point, where adding more donors makes the significance disappear. See [Supplementary Figure 1](#) for additional examples and computed R² value to illustrate the linearity of the correlation between N and statistical significance.



430
431 **Figure 2. Violin plots enable visualization of data subtypes in simulations of random sampling as**
432 **a function of N.** Observed raw data derived from Basson *et al* published data. **a-b)** Dot plots (mean,
433 range) of observed (1 trio; 3 donors/group), and simulated data (3 and 6 donors/group; panel B). Note
434 that differences are not significant because of the variability between diseases. **c)** Dot plots (mean, range)
435 of simulated data for 9, 21 and 65 donors per group. Note that simulated mean effects became significant
436 with 65 donors/group. However, the mean difference is small compared to the variance of the groups and
437 the difference is not biologically different because it is a function of the total variance (23%). **d)** Kernel
438 density simulations (10,000) based on observed (n=3) and simulated data. Note that as N increases the
439 mean becomes more narrow while the variance widens. See 100,000 Monte Carlo simulations in **Table 1**.
440 **e)** Comparison of visual appearance and data display for simulated data to illustrate 'disease data
441 subtypes' in the population (i.e., 'disease data shoulders'/subtypes shown as arrows). **f)** Violin plots allow
442 visualization of data subtypes as N increases ('disease data shoulders'/subtypes shown as arrows).



443
444
445
446
447
448
449
450
451
452
453
454
455
456

Figure 3. Violin plots illustrate that statistical differences with large N may not have clinical predictive utility at individual level. Violin and kernel plots illustrate statistical vs. biologically relevant differences. **a)** Violin plots of four simulated random number sets illustrate that each set of donors may have unique subtypes of disease illustrated with arrowheads (disease severity scores with higher number of simulated donors). Arrows indicate 'disease data shoulders/subtypes' vary with every simulation of 63 donors/group. **b)** Kernel density curves illustrate large overlap of sample population from simulated data (see panel A). Significant differences are highlighted by shaded area. Note the threshold does not have distinctive separation for the plots indicating that it is not biologically useful as a predictor of outcome. **c)** Violin plots illustrate meaningful statistical difference for population (compared to panel 3b). 'Fake disease X' ('DisX') was generated as a 'mock' disease following Gaussian distribution around the mean. Monte Carlo simulations were significant 96.5% (upper limit 97.6, lower limit 95.4%). **d)** Kernel density curves of panel 3c illustrates example of distribution separation with both statistical difference and biological relevance.

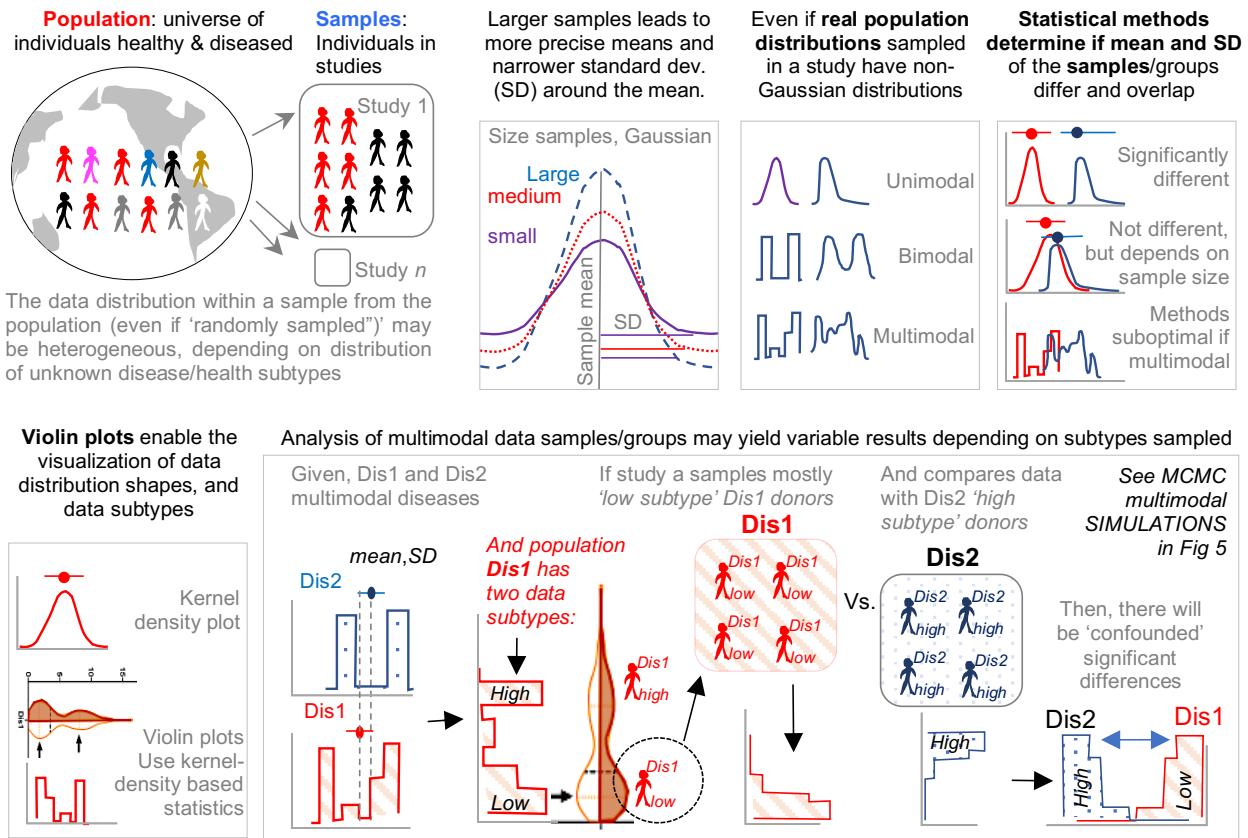
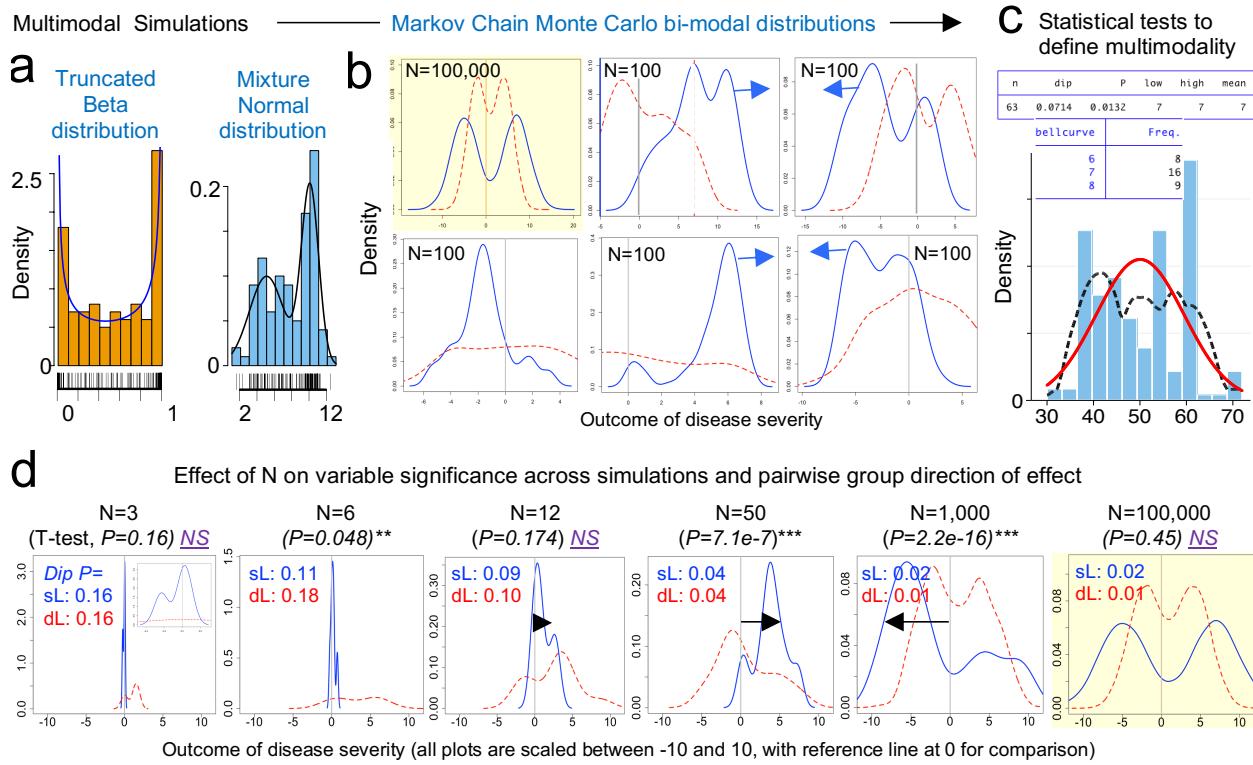
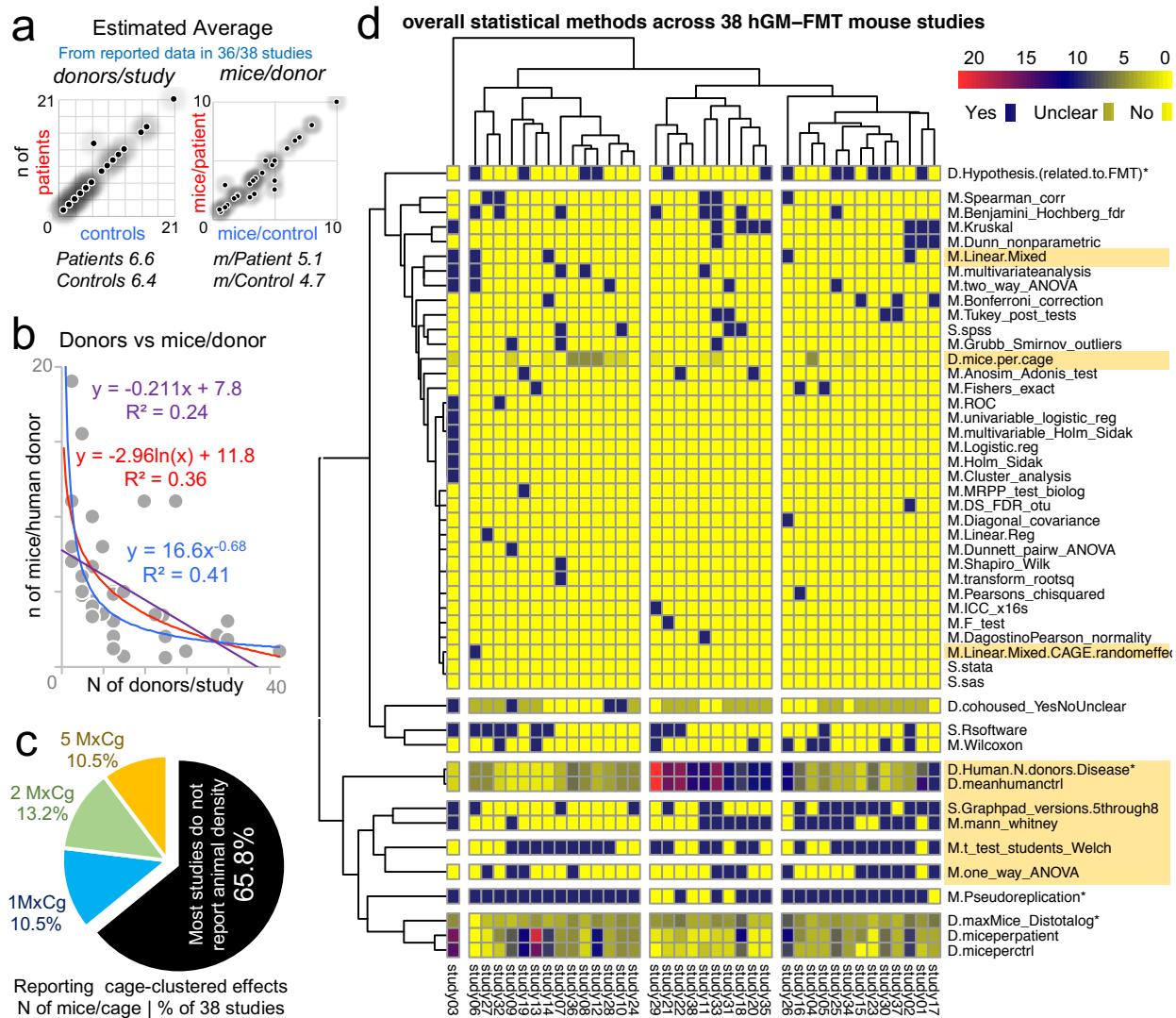


Figure 4. Conceptual framework of the effect of random sampling from a multimodal disease population on the reproducibility of study results. Schematic conceptualization of random sampling from a bi/multi-modal disease distribution (subtypes) and utility of violin and kernel density plots to visualize disease subtypes.



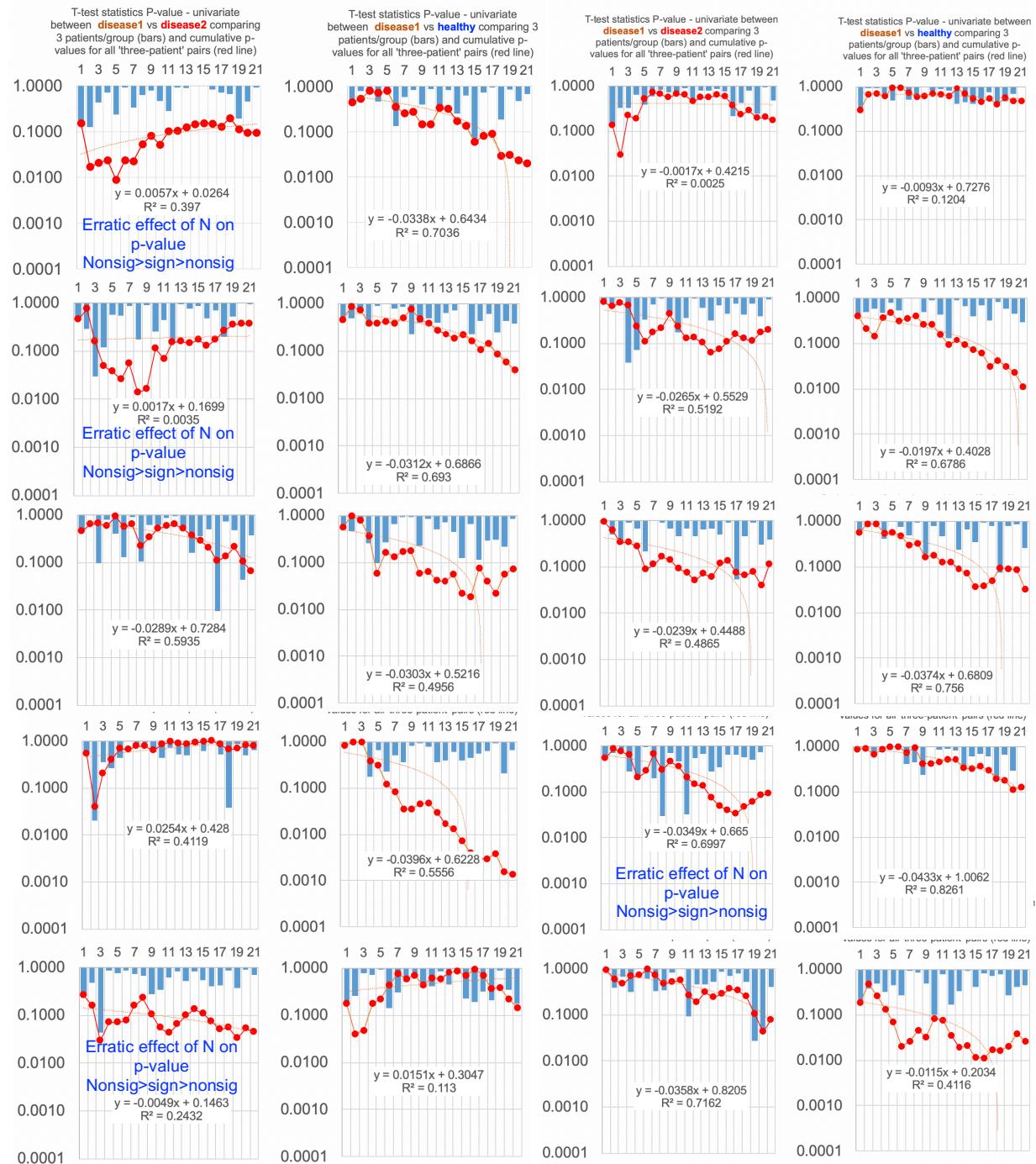
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5. Markov chain Monte Carlo (MCMC) simulations emphasize targeted study of subtypes in the study of multimodal diseases. Random walk Markov chain Metropolis-Hastings' algorithm to simulate random sampling accounting for the hypothetical dependence of two different disease subtypes. **a)** Mathematical function that allows distribution of number sampling if numbers that follow a bi-modal distribution. Simulation depicts distributions derived from 'truncated beta' and the combination of two 'mixed unimodal' distribution functions. **b)** Random sampling iterations after Markov chain simulations ($N=100$) comparing two hypothetical bimodal data distributions (red dotted line vs. blue solid line) for an outcome of disease severity, wherein 100,000 simulations represent approximately the real distribution (grey line; zero). As a stochastic model, the Markov chain algorithm considers biologically relevant sampling dependence. Notice how random sampling for two bimodal distributions can yield non-consistent statistical results variability between iterations, in this case $N=100$ (-5, SD of 3; 7, SD of 3). **c)** Example of a Hartigan-Hartigan (Hartigans') unimodality *dip test* and a *modes* test^{61,62} showing a multimodal data distribution of a hypothetical dataset (black dotted line) compared to a normal univariate density plot (red line). To identify data subtypes (modes), the dip test⁶¹ computes a p-value to help determine if a data is unimodal or multimodal and does not require *a priori* knowledge of potential multimodality and can be interpreted from its test statistics and P-value ($p<0.05$ indicates data is not unimodal, $p>0.05-1.0$ indicating at least one data mode exists in dataset). **d)** Effect of increasing N on t-test significance (direction, arrow), and dip test for MCMC simulations using the Markov chain simulation scripts (panel C) comparing two hypothetical bimodal data distributions (red dotted line vs. blue solid line), controlling for randomness (set.seed 101) while increasing N. Plots scaled between -10 and 10 illustrate increased data dispersion as N increases (grey line; zero). See **Supplementary Figure 2** for wider range of N and the examples for dip test and modes analysis using STATA and R commands.



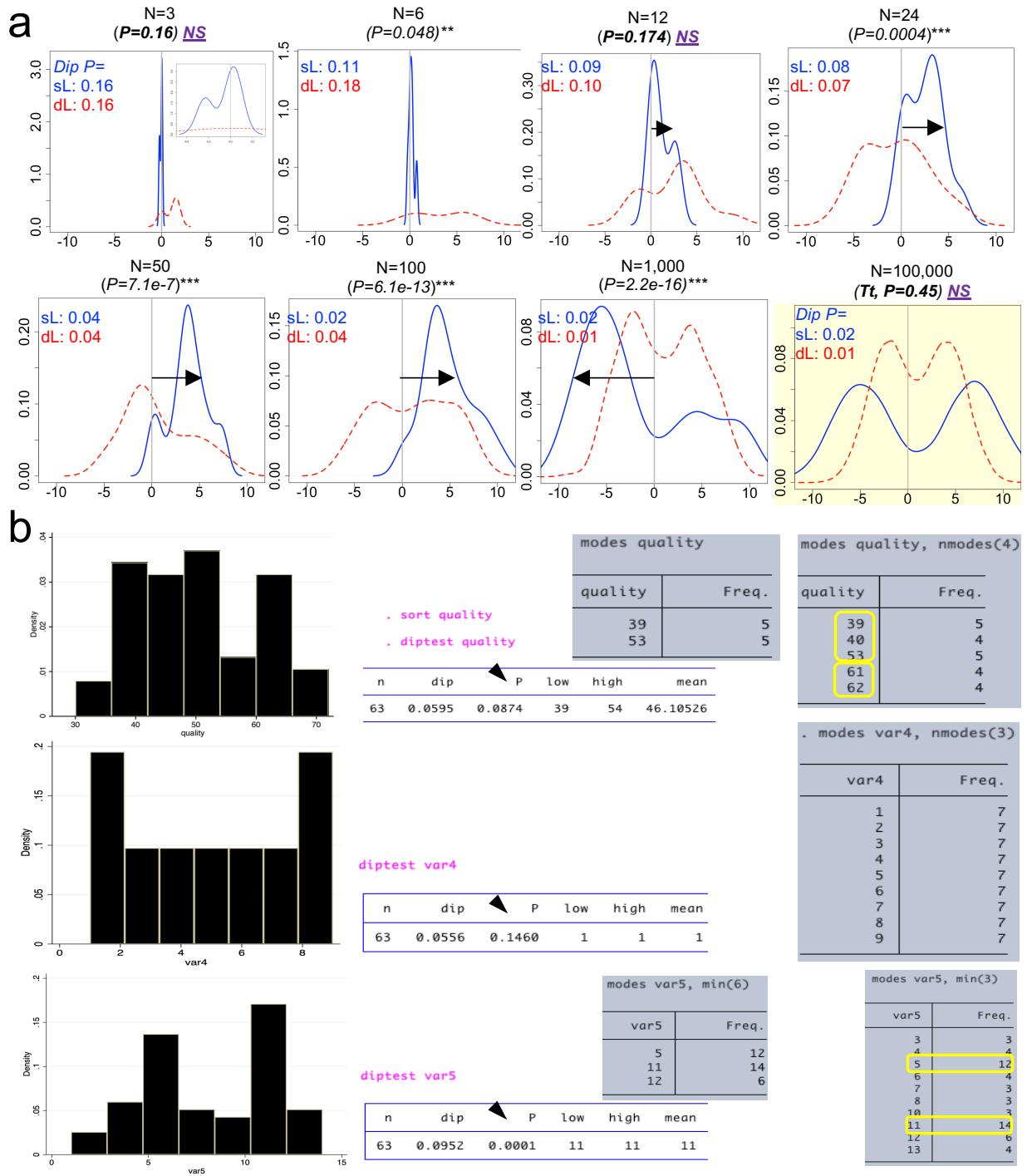
486
487

Figure 6. Study design and statistical methods among 38 hGM-FMT studies reveal lack of cage-clustered analysis and dominance of univariate analysis. Analysis of 38 studies as reviewed by Walter *et al*⁷. **a**) Average and correlation for number of donors (left plot; patients with disease vs. healthy control) and average number of mice per human donor in each study (right plot). **b**) Correlation plot with exponential, logarithmic and linear fits shows that scientists tend to use less animals when more donors are tested, creating a 'trade-off' between data uncertainty due to variance in human disease with that of variance in animal models for disease of interest. **c**) Pie chart shows distribution of studies reporting mice per cage (MxG) attributing to cage-clustered effects. (keywords: cage/cluster*, individual/house*, mice per*, density*, mixed/random/fix/methods/stat*, P=). Note that most studies do not report MxG (i.e., animal density). **d**) Heatmap illustrates the overall statistical methods (M), statistical software (S) and study design (D) used by the 38 reviewed studies. Note that only one study ('study 6')¹⁸ used linear mixed methods to control for the random effects of cage clustering and that the majority of studies limited analysis of datasets to univariate-based approaches. *Asterix indicate variables examined by Walter. Notice the dichotomy between software, the GUI interface R statistical software and GraphPad. Highlighted areas shown for reference; notice the cluster around GraphPad and univariate analysis.



503
504
505
506
507

Supplementary Figure 1. Further examples for data simulations with R^2 value illustrate linearity as illustrated in Figure 1D. Computed R^2 value (mean 0.51 ± 0.23 , 20 simulations) illustrate the linearity of the correlation between N and statistical significance. Y axis, p-value of the differences using 2-group Student-t test.



508

509 **Supplementary Figure 2. Markov chain Monte Carlo (MCMC) simulations and examples of dip test.**
510 Random walk Markov chain Metropolis-Hastings' algorithm to simulate random sampling accounting for
511 the hypothetical dependence of two different disease subtypes (complement to plots presented in Figure
512 5).

513 **METHODS**
514 **Preclinical hGM-FMT (observed) data used for simulations.** To facilitate the visualization of how
515 random sampling and disease variability influences study conclusions (significant vs. non-significant p-
516 values) in the context of N, we conducted a series of simulations from preclinical hGM-FMT disease
517 phenotyping data estimates from our own IBD studies (Basson *et al*)⁴⁶ and that of Baxter *et al*¹⁶ (a study
518 reviewed by Walter *et al*[7]). In brief, by transplanting feces from inflammatory bowel disease (IBD),
519 namely Crohn's disease ('Dis1') and ulcerative colitis ('Dis2'), and 'Healthy' donors (n=3 donors for each
520 'disease/healthy' state) into a germ-free spontaneous mouse model of cobblestone/ileal Crohn's disease
521 (SAMP1/YitFc)^{46,67}, Basson *et al*⁴⁶ observed with ~90% engraftment of human microbial taxa after 60
522 days, that the hGM-FMT effect on mouse IBD-phenotype was independent of the disease state of the
523 donor. Specifically, samples from some IBD patients and some healthy donors did not affect the severity
524 of intestinal inflammation in mice, while the remaining donors exacerbated inflammation. The overlapping
525 presence of both pro-inflammatory and non-inflammatory hGM in the disease phenotype of the mice for
526 IBD and healthy human donors, indicate the presence of data bimodality. Comparably, Baxter *et al*[17]
527 found that differences in the number of tumors resulting in a hGM-FMT mouse model of chemically
528 induced colorectal cancer (CRC) was independent of the cancer status of the human donors (n=3
529 colorectal cancer, n=3 healthy individuals).

530

531 **Simulations from preclinical hGM-FMT data.** Simulations were first conducted using random and
532 inverse random normal functions using the mean±SD data from published data^{16,46}. In all depicted
533 illustrations, the randomly generated numbers used computer software/automated pseudorandom
534 (seeded and unseeded) methods. Unless described otherwise, the numbers generated were restricted to
535 be confined within biologically meaningful data boundaries based on published data (for example, 0 as
536 minimum for normal histological score or intestinal inflammation, and 80 as arbitrary ~3-fold the maximum
537 possible histological score). For illustration purposes, the x- or y-axes in plots were generically labeled as
538 'outcome disease severity'. Simulating a situation where a scientist would recruit a trio of donors (3
539 donors) per group at a time, and was interested in conducting interim statistical analysis following the
540 addition of every trio of donors to the study, we summarized the pairwise group analysis for the simulated
541 disease comparisons, for various N, and for consecutively added donors as an aggregate 'cumulative
542 probability of being a significant simulation' statistic. Comparisons were deemed significant if at least one
543 p-value was <0.05 across simulations. Student's unpaired t-test and/or One-way ANOVA with Tukey
544 statistical comparisons were also adjusted using Monte Carlo simulations to determine the adjusted p
545 values and the % of simulations to demonstrate that not all disease group comparisons would be
546 reproducible. As a control normal (unimodal) simulation, we created several datasets, including one
547 depicted in illustrations as 'fake disease X'). Lastly, to illustrate the effect of random sampling from data
548 simulations from multimodal distribution functions, unconstrained-parameter simulations of two mixed yet
549 separate normal distributions, were performed using the Random Walk Metropolis-Hastings algorithm, a
550 form of doing dependent sampling from a proposed posterior distribution, as a well-established method of
551 Markov Chain Monte Carlo (MCMC) simulations, using R, and STATA (v15.1). In the latter, the MCMC
552 sampling of a new individual is dependent on the prior probability of being part of a mode within a bimodal
553 distribution, instead of being completely random from a unimodal distribution, using a log-likelihood
554 correction to prevent negative sigma values and also allow for asymmetrical distributions. This method is
555 beneficial as it asymptotically converges to the true proposal distribution, and so represents a more
556 robust method of data simulation of other potential alternatives of simulating sampling from bimodal
557 distributions (i.e., binomial, and mixed normal distributions).

558

559 **Variability of statistical methods in hGM-FMT rodent studies.** To determine the sources of statistical
560 methods variability in hGM-FMT rodent studies, we reviewed the content of 38 studies listed in Walter *et
561 al.*⁷ For computation purposes, we searched each article for the following keywords "cage," "stat*",

562 "housed," "multiple," "multivariable," "cluster," "mixed," "individual*", "random*" and appropriately extracted
563 details to additional inserted columns of an excel file. Detailed statistical tests and software used, focused
564 on assessing the effect of the hGM in the rodent phenotypes, were extracted to determine if studies used
565 proper cluster statistical analysis, and/or controlled for random effects introduced by caging, when
566 needed; that is, if scientists housed more than one mouse per cage. Integer numbers, including
567 descriptions of animal density, were assigned to the sourced keywords to allow for statistical analysis. If a
568 range was provided for N or animal density (e.g., 1-5), estimations were computed using the median
569 value within the range, as well as the minimum and maximum values. Average of estimated center values
570 were used for analysis and graphical summaries

571
572 **Statistical Analysis.** Descriptive statistics for parametric data were employed if assumptions were
573 fulfilled (e.g., 1-way ANOVA). Non-fulfilled assumptions were addressed with nonparametric methods
574 (e.g., Kruskal-Wallis). The 95% confidence intervals are reported to account for sample size and for
575 external validity. The test of multimodality was conducted using the dip test (which measures the
576 departure of a sample from unimodality, using as reference the uniform distribution as a worst case) and
577 STATA⁶¹, with packages available in R⁶⁸. The tabulation of modes from a variable in a dataset was
578 computed using the *modes* and *hsmode* function in STATA.^{69,70} Statistical and simulation analyses were
579 conducted or plotted with Excel, R, Stata, and GraphPad.

580
581

582 REFERENCES

- 583 1 Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience
584 research reporting: the ARRIVE guidelines for reporting animal research. *PLoS Biol* **8**, e1000412,
585 doi:10.1371/journal.pbio.1000412 (2010).
- 586 2 Basson, A. *et al.* Artificial microbiome heterogeneity spurs six practical action themes and
587 examples to increase study power-driven reproducibility *Sci Rep* **10** Article number: 5039,
588 doi:10.1038/s41598-020-60900-y (2019).
- 589 3 Franklin, C. L. & Ericsson, A. C. Microbiota and reproducibility of rodent models. *Lab Animal* **46**,
590 114-122, doi:10.1038/laban.1222 (2017).
- 591 4 Ericsson, A. C. *et al.* The influence of caging, bedding, and diet on the composition of the
592 microbiota in different regions of the mouse gut. *Sci Rep* **8**, doi:10.1038/s41598-018-21986-7
593 (2018).
- 594 5 Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in
595 experimental science. *Nature* **534**, 191-199, doi:10.1038/nature18285 (2016).
- 596 6 Arrieta, M. C., Walter, J. & Finlay, B. B. Human Microbiota-Associated Mice: A Model with
597 Challenges. *Cell Host Microbe* **19**, 575-578, doi:10.1016/j.chom.2016.04.014 (2016).
- 598 7 Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or Exaggerating Causality for
599 the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. *Cell* **180**, 221-232,
600 doi:10.1016/j.cell.2019.12.025 (2020).
- 601 8 Soderborg, T. K. *et al.* The gut microbiota in infants of obese mothers increases inflammation and
602 susceptibility to NAFLD. *Nat Commun* **9**, 4462, doi:10.1038/s41467-018-06929-0 (2018).
- 603 9 Liu, R. *et al.* Neuroinflammation in Murine Cirrhosis Is Dependent on the Gut Microbiome and Is
604 Attenuated by Fecal Transplant. *Hepatology* **71**, 611-626, doi:10.1002/hep.30827 (2020).
- 605 10 Fielding, R. A. *et al.* Muscle strength is increased in mice that are colonized with microbiota from
606 high-functioning older adults. *Exp Gerontol* **127**, 110722, doi:10.1016/j.exger.2019.110722
607 (2019).
- 608 11 Maeda, Y. *et al.* Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T
609 Cells in the Intestine. *Arthritis Rheumatol* **68**, 2646-2661, doi:10.1002/art.39783 (2016).
- 610 12 Stoll, M. L. *et al.* Akkermansia muciniphila is permissive to arthritis in the K/BxN mouse model of
611 arthritis. *Genes Immun* **20**, 158-166, doi:10.1038/s41435-018-0024-1 (2019).
- 612 13 Petursdottir, D. H. *et al.* Early-Life Human Microbiota Associated With Childhood Allergy
613 Promotes the T Helper 17 Axis in Mice. *Front Immunol* **8**, 1699, doi:10.3389/fimmu.2017.01699
614 (2017).

615 14 Feehley, T. *et al.* Healthy infants harbor intestinal bacteria that protect against food allergy. *Nat Med* **25**, 448-453, doi:10.1038/s41591-018-0324-z (2019).

616 15 Battaglioli, E. J. *et al.* Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. *Sci Transl Med* **10**, doi:10.1126/scitranslmed.aam7019 (2018).

617 16 Baxter, N. T., Zackular, J. P., Chen, G. Y. & Schloss, P. D. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. *Microbiome* **2**, 20, doi:10.1186/2049-2618-2-20 (2014).

618 17 Wong, S. H. *et al.* Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. *Gastroenterology* **153**, 1621-1633 e1626, doi:10.1053/j.gastro.2017.08.022 (2017).

619 18 Tomkovich, S. *et al.* Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. *J Clin Invest* **130**, 1699-1712, doi:10.1172/JCI124196 (2019).

620 19 Kelly, J. R. *et al.* Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. *J Psychiatr Res* **82**, 109-118, doi:10.1016/j.jpsychires.2016.07.019 (2016).

621 20 Zheng, P. *et al.* Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. *Mol Psychiatry* **21**, 786-796, doi:10.1038/mp.2016.44 (2016).

622 21 Fujii, Y. *et al.* Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. *Biosci Biotechnol Biochem* **83**, 2144-2152, doi:10.1080/09168451.2019.1644149 (2019).

623 22 Zheng, P. *et al.* The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. *Sci Adv* **5**, eaau8317, doi:10.1126/sciadv.eaau8317 (2019).

624 23 Li, S. X. *et al.* Gut microbiota from high-risk men who have sex with men drive immune activation in gnotobiotic mice and in vitro HIV infection. *PLoS Pathog* **15**, e1007611, doi:10.1371/journal.ppat.1007611 (2019).

625 24 Smith, M. I. *et al.* Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. *Science* **339**, 548-554, doi:10.1126/science.1229000 (2013).

626 25 Kau, A. L. *et al.* Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. *Sci Transl Med* **7**, doi:10.1126/scitranslmed.aaa4877 (2015).

627 26 Wagner, V. E. *et al.* Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. *Sci Transl Med* **8**, 366ra164, doi:10.1126/scitranslmed.aah4669 (2016).

628 27 Natividad, J. M. *et al.* Ecobiotherapy Rich in Firmicutes Decreases Susceptibility to Colitis in a Humanized Gnotobiotic Mouse Model. *Inflamm Bowel Dis* **21**, 1883-1893, doi:10.1097/MIB.000000000000422 (2015).

629 28 Nagao-Kitamoto, H. *et al.* Functional Characterization of Inflammatory Bowel Disease-Associated Gut Dysbiosis in Gnotobiotic Mice. *Cell Mol Gastroenterol Hepatol* **2**, 468-481, doi:10.1016/j.jcmgh.2016.02.003 (2016).

630 29 De Palma, G. *et al.* Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. *Sci Transl Med* **9**, doi:10.1126/scitranslmed.aaf6397 (2017).

631 30 Touw, K. *et al.* Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models. *Physiol Rep* **5**, doi:10.14814/phy2.13182 (2017).

632 31 Chen, Y. J. *et al.* Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. *J Gastroenterol Hepatol* **33**, 1844-1852, doi:10.1111/jgh.14281 (2018).

633 32 Britton, G. J. *et al.* Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORgammat(+) Regulatory T Cells and Exacerbate Colitis in Mice. *Immunity* **50**, 212-224 e214, doi:10.1016/j.immuni.2018.12.015 (2019).

634 33 Torres, J. *et al.* Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. *Gut* **69**, 42-51, doi:10.1136/gutjnl-2018-317855 (2020).

635 34 Sampson, T. R. *et al.* Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. *Cell* **167**, 1469-1480 e1412, doi:10.1016/j.cell.2016.11.018 (2016).

670 35 Berer, K. *et al.* Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune
671 encephalomyelitis in mice. *Proc Natl Acad Sci U S A* **114**, 10719-10724,
672 doi:10.1073/pnas.1711233114 (2017).

673 36 Cekanaviciute, E. *et al.* Gut bacteria from multiple sclerosis patients modulate human T cells and
674 exacerbate symptoms in mouse models. *Proc Natl Acad Sci U S A* **114**, 10713-10718,
675 doi:10.1073/pnas.1711235114 (2017).

676 37 Sharon, G. *et al.* Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral
677 Symptoms in Mice. *Cell* **177**, 1600-1618 e1617, doi:10.1016/j.cell.2019.05.004 (2019).

678 38 Koren, O. *et al.* Host Remodeling of the Gut Microbiome and Metabolic Changes during
679 Pregnancy. *Cell* **150**, 470-480, doi:10.1016/j.cell.2012.07.008 (2012).

680 39 Ridaura, V. K. *et al.* Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in
681 Mice. *Science* **341**, 1079-U1049, doi:10.1126/science.1241214 (2013).

682 40 Goodrich, J. K. *et al.* Human genetics shape the gut microbiome. *Cell* **159**, 789-799,
683 doi:10.1016/j.cell.2014.09.053 (2014).

684 41 Kovatcheva-Datchary, P. *et al.* Dietary Fiber-Induced Improvement in Glucose Metabolism Is
685 Associated with Increased Abundance of Prevotella. *Cell Metab* **22**, 971-982,
686 doi:10.1016/j.cmet.2015.10.001 (2015).

687 42 Chiu, C. C. *et al.* Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed
688 Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic
689 Steatohepatitis. *Nutrients* **9**, doi:10.3390/nu9111220 (2017).

690 43 Li, J. *et al.* Gut microbiota dysbiosis contributes to the development of hypertension. *Microbiome*
691 **5**, 14, doi:10.1186/s40168-016-0222-x (2017).

692 44 Zhang, L. B., MI.; Roager, HM.; Fonvig, CE.; Hellgren, LI.; Frandsen, HL.; Pedersen, O.; Holm,
693 J-C.; Hansen, T.; Licht, TR. Environmental spread of microbes impacts the development of
694 metabolic phenotypes in mice transplanted with microbial communities from humans. *The ISME
695 Journal* **11**, 14, doi:doi.org/10.1038/ismej.2016.151 (2017).

696 45 Ge, X. *et al.* Potential role of fecal microbiota from patients with slow transit constipation in the
697 regulation of gastrointestinal motility. *Sci Rep* **7**, 441, doi:10.1038/s41598-017-00612-y (2017).

698 46 Basson, A. *et al.* Human Gut Microbiome Transplantation in Ileitis Prone Mice: A Tool for the
699 Functional Characterization of the Microbiota in Inflammatory Bowel Disease Patients. *Inflamm
700 Bowel Dis*, doi:10.1093/ibd/izz242 (2019).

701 47 Papoulis, A. *Probability, Random Variables, and Stochastic Processes*. 2nd edn, 69-71
702 (McGraw-Hill, 1984).

703 48 Feller, W. in *An Introduction to Probability Theory and Its Applications* Vol. 3rd 69-71 (Wiley,
704 1971).

705 49 Weisstein, E. W. *Weak Law of Large Numbers*. From MathWorld--A Wolfram Web Resource.
706 Accessed March 4, 2020. <http://mathworld.wolfram.com/WeakLawofLargeNumbers.html>.

707 50 Krzywinski, M. & Altman, N. Visualizing samples with box plots. *Nat Methods* **11**, 119-120,
708 doi:10.1038/nmeth.2813 (2014).

709 51 Hintze, J. & Nelson, R. Violin Plots: A Box Plot-Density Trace Synergism. *The American
710 Statistician* **52**, 181-184, doi:10.1080/00031305.1998.10480559 (1998).

711 52 Johnsson, K., Linderoth, M. & Fontes, M. What is a "unimodal" cell population? Using statistical
712 tests as criteria for unimodality in automated gating and quality control. *Cytometry A* **91**, 908-916,
713 doi:10.1002/cyto.a.23173 (2017).

714 53 Testroet, E. D. *et al.* A novel and robust method for testing bimodality and characterizing porcine
715 adipocytes of adipose tissue of 5 purebred lines of pig. *Adipocyte* **6**, 102-111,
716 doi:10.1080/21623945.2017.1304870 (2017).

717 54 Rodriguez-Palacios, A. *et al.* 'Cyclical Bias' in Microbiome Research Revealed by A Portable
718 Germ-Free Housing System Using Nested Isolation. *Sci Rep* **8**, 18, doi:10.1038/s41598-018-
719 20742-1 (2018).

720 55 Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity
721 and IBD. *FEBS Lett* **588**, 4223-4233, doi:10.1016/j.febslet.2014.09.039 (2014).

722 56 Gevers, D. *et al.* The treatment-naive microbiome in new-onset Crohn's disease. *Cell Host
723 Microbe* **15**, 382-392, doi:10.1016/j.chom.2014.02.005 (2014).

724 57 Hanck, C., Arnold, M., Gerber, A. & Schmelzer, M. in *Introduction to Econometrics with R*
725 (Germany, 2019).

726 58 Biau, D. J., Kerneis, S. & Porcher, R. Statistics in brief: the importance of sample size in the
727 planning and interpretation of medical research. *Clin Orthop Relat Res* **466**, 2282-2288,
728 doi:10.1007/s11999-008-0346-9 (2008).

729 59 Faber, J. & Fonseca, L. M. How sample size influences research outcomes. *Dental Press J Orthod* **19**, 27-29, doi:10.1590/2176-9451.19.4.027-029.ebo (2014).

730 60 Package 'multimode' v. 1.4 (2018).

731 61 Hartigan, J. A. & Hartigan, P. M. The Dip Test of Unimodality. *The Annals of Statistics* **13**, 70-84
733 (1985).

734 62 Freeman, J. B. & Dale, R. Assessing bimodality to detect the presence of a dual cognitive
735 process. *Behav Res Methods* **45**, 83-97, doi:10.3758/s13428-012-0225-x (2013).

736 63 Stanbro, M. Hartigan's Dip Test of Unimodality Applied on Terrestrial Gamma-ray Flashes.

737 64 Wolfe, J. H. Pattern clustering by multivariate mixture analysis. *Multivariate Behavioral Research*
738 **5**, 329-350 (1970).

739 65 Xu, L., Bedrick, E. J., Hanson, T. & Restrepo, C. A Comparison of Statistical Tools for Identifying
740 Modality in Body Mass Distributions. *Journal of Data Science* **12**, 175-196 (2014).

741 66 Kang, Y.-J. & Noh, Y. Development of Hartigan's Dip Statistic with Bimodality Coefficient to
742 Assess Multimodality of Distributions. *Mathematical Problems in Engineering Article ID 4819475*,
743 17 (2019).

744 67 Rodriguez-Palacios, A. *et al.* Stereomicroscopic 3D-pattern profiling of murine and human
745 intestinal inflammation reveals unique structural phenotypes. *Nat Commun* **6**, 7577,
746 doi:10.1038/ncomms8577 (2015).

747 68 Hartigan's Dip Test Statistic for Unimodality - Corrected v. 0.75-7 (R Foundation for Statistical
748 Computing, 2016).

749 69 Cox, N. J. sg113_2: Tabulation of modes. *Stata Journal* **3**, 26-27. Reprinted in *Stata Technical
750 Bulletin Reprints*, vol.29, pp. 180-181 (2009).

751 70 Bickel, D. R. & Fruhwirth, R. On a fast, robust estimator of the mode: Comparisons to other
752 robust estimators with applications. *Computational Statistics & Data Analysis* **50**, 3500-3530
753 (2006).

754