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Abstract

Dimensionality reduction is a key step in the analysis of single-cell RNA sequencing data and produces a
low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear
techniques are most suitable to handle the intrinsic complexity of large, heterogeneous single cell data.
With no linear relation between genes and embedding however, there is no way to extract the identity of
genes most relevant for any cell’s position in the low-dimensional embedding, and thus the underlying
process.

In this paper, we introduce the concepts of global and local gene relevance to compute an equivalent
of principal component analysis loadings for non-linear low-dimensional embeddings. While global gene
relevance identifies drivers of the overall embedding, local gene relevance singles out genes that change
in small, possibly rare subsets of cells. We apply our method to single-cell RNAseq datasets from different
experimental protocols and to different low dimensional embedding techniques, shows our method’s
versatility to identify key genes for a variety of biological processes.

To ensure reproducibility and ease of use, our method is released as part of destiny 3.0, a popular R
package for building diffusion maps from single-cell transcriptomic data. It is readily available through
Bioconductor.

1 Introduction Dimension reduction methods create a low dimensional embedding
of the high dimensional gene expression space and are widely used.
Such embeddings serve as a visual overview of the data on which gene
expression profiles and per-cell or per-cluster statistics can be compared.

Single cell RNA sequencing (scRNAseq) has massively improved the
resolution developmental trajectories Baron et al| (2016) and allowed
unprecedented insights into the heterogeneity of complex tissues |Vento-
Tormo et al.|(2018);[Tritschler ez al.|(2017). On the flip side, new challenges
have arisen due to the amount of data that needs to be processed [Angerer
et al.| (2017), higher levels of technical and biological noise |Yuan et al.
(2017), and identification and interpretation of known and novel cell types

Embeddings can also serve as inputs for further downstream computational
analysis. E.g., principal component analysis (PCA) is a popular technique
to identify orthogonal linear combinations of genes that explain variance in
the data. PCA loadings quantify the contribution of genes to each principal
component and help to understand the genetic drivers of the underlying
molecular processes. However, linear methods are often not able to capture
the complexity of high-dimensional datasets [Haghverdi et al.| (2015),
which is why nonlinear dimension reduction methods (see e.g. t-SNE
Husnain ef al.|(2019), diffusion maps/Husnain ez al.{(2019);/Coifman e al.
(2005);Haghverdi et al.|(2015), UMAPMclnnes et al.|(2018)); Becht et al.

1

Pliner et al.|(2019). To exploit the new opportunities and deal with the new
challenges, a large number of algorithms and tools have been developed
Zappia et al.|(2018).
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Fig. 1. The gene relevance concept. A gene expression matrix (a) from a single cell RNA sequencing experiment is reduced to a low-dimensional embedding (b), with each dot representing

a cell, and the color representing the expression of gene A, B, ..., Z. Expression changes are calculated from estimates of partial derivatives with respect to the embedding (c), which results

in one value per cell X gene x dimension combination. We score the relevance of each gene in each cell according to the partial derivatives’ F1 norm. This score indicates how locally relevant

each gene is (d). The fraction of cells ranking a given gene above a threshold defines a global gene relevance score. In our illustrative example, gene B has been ranked among the top 10

genes in 5.4% of all cells (e). To identify the relevant genes for a particular local process in the embedding, the local scores are smoothed before the gene with the highest local score is

selected (f).

(2018), and graph-based methods (2011)) have become the

standard for scRNAseq data analysis. For non-linear embeddings however,
no intrinsic measure of individual genes’ contribution to each embedding
dimension exists. Without such a measure, the identification of genes that
drive the variability in the data requires tedious manual inspection and
exclusive prior knowledge about possible target genes.

Here, we introduce gene relevance, a measure for a gene’s contribution
to variance in low dimensional embeddings, and present a method to
infer a local as well as a global gene relevance score from any kind of
low-dimensional embedding. To demonstrate the utility of the method,
we apply gene relevance to several datasets. In a blood cell dataset from
mouse embryos, we are able to automatically identify genes involved in
embryonic blood differentiation. Gene relevance is available as part of the

R package destiny Angerer 7 al] 20T6).

2 Results

We define gene relevance as a measure of how much a gene contributes to
the cell-to-cell variability in a low dimensional embedding of a sScRNAseq
dataset as a function of this embedding (see Fig.Eh—c). It can be interpreted
as a generalization of PCA loadings to non-linear dimensionality reduction
techniques. Note that PCA loadings are constant with respect to the PC
space while feature importance in a non-linear embedding is naturally a
non-constant function of this embedding. A ranking of genes based on
their relevance is built for every cell of the embedding. These rankings,
then, can be combined to obtain a measurement of the “local” or “global”
relevance of each gene (see Fig.mi-e and Methods), which highlight genes
relevant in small or large cell subpopulations, respectively. To explore and
visualize the results further, the method also provides a “gene relevance
map”, where the locally most relevant genes are displayed along with the
corresponding region of the embedding (see Fig.ED.

We demonstrate our method on a scRNAseq dataset of blood

progenitors and blood cells from mouse embryos (2016)

(see Fig. @ and Methods for more details). In the original publication,
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Fig. 2. Gene relevance automatically detects drivers of embryonic blood development. (a)
Diffusion map of 271 single hematopoietic progenitor cells from mostly day 7.5 and 7.75

mouse embryos, profiled in[Scialdone etal|(20T6) (b) Global gene relevance identifies Hbb-
bh1 and Hba-x as genes that change most dramatically during hematopoietic development.
(c) Local gene relevance in the diffusion space reveals the contribution of relevant genes in
specific regions of the process. The genes corresponding to each color are shown in panel
b. (d) Gene relevance maps detail the areas where the contribution of genes is highest.

Alox5ap shows a high local relevance in the top region of the diffusion map and has been

implicated with early blood development|Tbarra-Soria et al| 2018).

this data was used to reconstruct a trajectory representing primitive
erythropoiesis, along which blood marker expression increases and other
markers (such as endothelial cells) decrease. There, an ad-hoc method was
devised to find important genes in the 2D diffusion map embedding of the
data. Here we show how our method can be used “out of the box” to rank
genes based on their local and global relevance.
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First, we ranked all highly variable genes according to their global gene
relevance (see Fig.[Zb). As expected, the high-ranking genes are mostly
associated with blood development, including the hemoglobin genes Hba-
al, Hba-x, Hbb-bhl, and the erythrocyte membrane genes Gypa and
Cited4|Yahata ef al.{(2002). The genes Cyr61 and Hapln! are involved in
extracellular matrix and important for development of the cardiovascular
system|Latinki¢ et al.|(2001). The top of the list has a good overlap with the
ad-hoc method in|Scialdone ef al.|(2016): 4 genes are shared between the
top ten of both lists, and we find a Rank-Biased Overlap of RBOp = 0.48,
where we used p = 0.9, which assigns ~86% of the weight to the first 10
genes|Webber et al.|(2010).

Second, we created a local gene relevance map (Fig. EF). Five out
of the six locally most relevant genes (see Fig. Pk) are among the ten
most globally relevant ones. Interestingly, Alox5ap is included only in
the local gene relevance map, because its contribution is confined to a
small region of the diffusion space (bottom right panel in Fig. PH) and
hard to detect at the level of gene expression (see Suppl. Fig. [T). This
gene was not discovered by the ad-hoc method of |Scialdone ef al.|(2016),
but it has been recently found to be important in early blood development
Ibarra-Soria ef al.|(2018). Locally and globally relevant genes can also be
inferred in other embeddings such as t-SNE [Maaten and Hinton| (2008)
and UMAP Becht et al.| (2018), with a high overlap of relevant genes
(RBO(p = 0.9) = 0.53, 4 of the top ten relevant genes are identical.
See Suppl. Fig.2).

Applied to other scRNAseq data sets, we showcase versatility and ease
of application of our method. In a data set of human endocrine cells|Veres
et al.| (2019), gene relevance maps detect genes driving the separation
of subpopulations in the embedding (see Suppl. Fig. [3h), in accordance
to the markers identified in the original paper. In human brain organoid
cells|Gray Camp et al.|(2015), we detect relevant genes different from the
markers specified in the paper. The reason seems to be a low density region
between mesenchymal cells and neurons/neural progenitors (see Suppl.
Fig. Bb). The found genes therefore seem to mostly drive the difference
between progenitors and neurons: TXNRD1 plays a vital role for neuron
progenitor cellsSoerensen ef al.|(2008)), the selenoprotein SELT protects
neurons against oxidative stress in mouse models [Boukhzar et al.|(2016),
and CRABP1 modulates the neuronal cell cycle in mice|Lin ef al.|(2017).

Finally, we applied gene relevance to mouse embryonic stem cells
grown in different culture media Kolodziejczyk et al.|(2015). As expected
for cells in a relatively homogenous pluripotent steady state, the relevant
genes were enriched for cell cycle and other housekeeping gene ontology
processes (see Suppl. Fig. B).

As a sanity check, we apply gene relevance to scRNAseq data from
embryonic stem cells cultured in three different pluripotency retaining
media. We expected to find a homogenous, steady state cell population.
Indeed the relevant genes for diffusion map embedding of all three media
turned out to be involved in housekeeping, metabolic and proliferation
pathways (see Suppl. Fig.[5).

3 Discussion

We presented a method that is able to reliably detect relevant genes from
low dimensional embeddings of scRNAseq data. More specifically, our
method computes both a global and a local gene relevance score: global
gene relevance identifies the main drivers of the cell-to-cell variability
in the whole embedding; local gene relevance picks up genes relevant
in smaller regions of the embedding, e.g. to identify important genes in
rare cell sub-populations. In addition to a gene ranking based on global
relevance, the method also provides graphic tools to visualize the local
gene relevance (see Fig. Eh) and the changes in gene expression levels

within the embedding (see Fig. [Tk and Suppl. Fig. [T). It can be used for
any single cell data set and any dimensionality reduction technique.

We applied our method to three datasets, including one from mouse
embryonic blood progenitors, where we show that it performs comparably
to a technique custom-made for the dataset. Interestingly, our method
identifies Alox5ap (Fig. |Z[), a gene that was recently shown to be important
for blood development in a later publication |Ibarra-Soria et al.|(2018)). In
two other examples, we used human cells, endocrine| Veres ez al.|(2019) and
from brain organoids |Gray Camp et al.| (2015), showing that the method
works robustly in varied conditions.

Other methods to identify important genes from scRNAseq data exist,
but most of them aim to find marker genes that can best distinguish different
cell types |Delaney et al.|(2019). Conversely, the method we presented is
unsupervised and does not rely on cell type annotation.

Recently, two computational methods have been developed to identify
variable genes in spatial RNAseq datasets, trendsceek and SpatialDE
Edsgird ef al.|(2018); |Svensson et al.| (2018). While these methods were
designed to find patterns in spatial transcriptomic datasets, they can also
be used to identify relevant genes in low-dimensional embeddings of
scRNAseq datasets (see Suppl. Fig. [f] in [Edsgird e al] (2018)). We
compared our approach to trendsceek and found similar genes (see Suppl.
Fig. [6). Our method completed in 6.5 seconds while trendsceek needed
1080 seconds and only ran successfully on the exact data provided in its
R package. SpatialDE returned a perfect score for a too large number
of genes to be useful. This is probably related to both methods being
optimized towards identifying spatial patterns. Moreover, neither method
allows estimation of local gene relevance.

To summarize, our gene relevance method is a fast and versatile
exploratory tool that can help identify the biological processes and reveal
the presence of potentially rare cell sub-populations. It is available online,
easily applicable, and faster than model fitting approaches. While we
focussed our discussion on scRNAseq datasets, our method can be applied
to virtually any kind of dataset where low-dimensional embeddings are
obtained, including, for instance, single-cell epigenomic |[Shema et al.
(2018) and mass cytometry data|Spitzer and Nolan|(2016).

4 Methods

Single cell RNA sequencing data. We used count data from 271 cells
mostly from the neural plate (embryonic day 7.5) and head fold (embryonic
day 7.75) development stages of mouse embryos, published in|Scialdone
et al.|(2016). There, the libraries were constructed using the Smart-seq2
protocol, read counts were obtained via HTseq-count Scialdone et al.
(2016). The 271 cells we used correspond to the clusters annotated as
“blood progenitor” and “primitive erythroid” in the original publication.
We selected highly variable genes using the method of [Brennecke et al.
(2013)) because of its stable performance|Yip et al.|(2018)), and embedded
the log-transformed data using the diffusion map implementation destiny
Angerer et al.|(2016).

Neighborhoods. 1f a k nearest neighbor (KNN) search has been performed
as part of the embedding, it can be efficiently used for estimating
the gene relevance. To perform the kNN search, destiny offers the
choice between euclidean distance, cosine distance, and spearman rank
correlation distance. The latter was used in all analyses performed for this

paper.
Local gene relevance. We define local gene relevance of gene g &€

{1,...,G}incell ¢ € {1,...,C}, LR(gc), as the Frobenius norm
F(dgc) of the differential dg.:
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LR (gc) = F (dge) = (1)

The differential dgy. of gene g in cell ¢ describes the change in gene
expression x4 along a change in embedding coordinates sp., where
p € {1,..., P} is the embedding dimension and dg. corresponds to the
partial derivatives of the gene expression with respect to each embedding
coordinate:

dge = (&”"“,..., ax"c) @

We estimated dg. from the cells’ neighborhood NNy (c) in gene
expression space, approximating using finite differences:

—_— NA?

if xge =0
(dgc)p =

3

Tge—Tgn
)

median otherwise

nENNy (c)Anc Spn~Spe
Global gene relevance. In each cell ¢, genes can be ranked according to
their local relevances LR g, from most to least relevant. Given the ranks
T8IR,. of gene g and arank cutoffrg ., we define global gene relevance
GRyg, .. (9) of gene g as:

C
Z:c:1 [rgLRgC < rgmax]

ORrg0n (9) = & )

with the iverson bracket notation

1, if Pistrue .
[P] = , for any predicate P (5)
0, otherwise
Gene relevance maps. For a set of genes of interest Q € {1,...,G}

(which can be chosen, e.g., among those with highest global relevance)
and each cell ¢, we define the locally most relevant gene [ after a number
of smoothing steps m:

LRy, ifm=0

le*

©)

=argmax{ | . )
geQ % 2oneNN (c) [lnm = g] , otherwise.

During a smoothing iteration, we replace the local gene relevance score
of cell c and gene g with the fraction of neighbours that have g as the most
relevant gene.

5 Availability of data and materials

The datasets analysed within this publication are available from their
original publications as follows: The differentiating mouse embryonic
stem cell data |Scialdone et al.| (2016) is available at http://
gastrulation.stemcells.cam.ac.uk/scialdone2016,the
pluripotent mouse embryonic stem cell data|Kolodziejczyk et al.|(2015) at
https://www.ebi.ac.uk/teichmann-srv/espresso/, the
human brain organoid data|Gray Camp et al.{(2015) at GSE75140, and the
human endocrine cell data|Veres et al.|(2019) at GSE114412,
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