

1 **True S-cones are concentrated in the ventral mouse retina for color detection in the upper**
2 **visual field**

4 Francisco M. Nadal-Nicolás*, Vincent P. Kunze¹, John M. Ball¹, Brian Peng¹, Akshay Krisnan¹,
5 Gaohui Zhou¹, Lijin Dong, Wei Li*.

7 *Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda,*
8 *Maryland, USA.*

10 ¹Equal contribution

11 *Corresponding authors

13 **ABSTRACT**

15 Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors
16 with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and
17 a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping
18 gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across
19 the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true' S-
20 cones (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-
21 cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching
22 the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which
23 may augment synaptic input to SCBCs. Such a unique true S-cone pattern forms a basis for mouse
24 color vision, likely reflecting evolutionary adaption to enhance color coding for the upper visual
25 field suitable for mice's habitat and behavior.

27 **KEYWORDS**

29 Genuine S-cone, cone distribution, cone cluster, mammalian photoreceptor, S-cone bipolar cells,
30 blue bipolar cells, color vision.

31 **1. INTRODUCTION**

32
33 Topographic representation of the visual world in the brain originates from the light-sensitive
34 photoreceptors in the retina (Rhim et al., 2017). Although the neuronal architecture of the retina
35 is similar among different vertebrates, the numbers and distributions of photoreceptors vary
36 considerably (Hunt and Peichl, 2014). Such patterns have been evolutionarily selected, adapting
37 to the animal's unique behavior (diurnal or nocturnal) and lifestyle (prey or predator) for better
38 use of the visual information in the natural environment (Dominy and Lucas, 2001; Gerl and
39 Morris, 2008; Peichl, 2005). Color, an important visual cue for survival, is encoded by comparing
40 signals carried by photoreceptors with different spectral preferences (Baden and Osorio, 2019).
41 While trichromatic color vision is privileged for some primates, dichromatic vision is the
42 evolutionarily ancient retinal circuit common to most mammals (Marshak and Mills, 2014; Puller
43 and Haverkamp, 2011; Jacobs, 1993). The mouse retina, a model widely used for vision research,
44 expresses two types of opsins, S- and M-opsin, that peak at 360 nm and 508 nm respectively
45 (Jacobs et al., 1991; Nikonov et al., 2006). The expression patterns of these two opsins form
46 opposing and overlapping gradients along the dorsal-ventral axis, resulting in a majority of cones
47 expressing both opsins (herein either "mixed cones" or M⁺S⁺) (Applebury et al., 2000; Ng et al.,
48 2001; Wang et al., 2011). While co-expression of both opsins broadens the spectral range of
49 individual cones and improves perception under varying conditions of ambient light (Chang et al.,
50 2013), which provides for a nearly optimal achromatic contrast above and below the horizon
51 (Baden et al., 2013), it does pose a challenge for color-coding, particularly so for mixed cones that
52 lack narrow spectral tuning. However, it has been discovered that a small population of cones
53 only expressing S-opsin ("true S-cones", or S⁺M⁻). These true S-cones are thought to be evenly
54 distributed across the retina and to be critical for encoding color, especially in the dorsal retina
55 where they are quasi-evenly distributed in a sea of cones expressing only M-opsin ("true
56 M-cones", or M⁺S⁻), a pattern akin to mammalian retinas in general (Haverkamp et al., 2005;
57 Wang et al., 2011). Nonetheless, subsequent physiological studies revealed that color-opponent
58 retinal ganglion cells (RGCs) are more abundant in the dorsal-ventral transition zone (Warwick et
59 al., 2018) and the ventral retina (Joesch and Meister, 2016). Intriguingly, a behavior-based mouse
60 study demonstrated that their ability to distinguish color is restricted to the ventral retina
61 (Denman et al., 2018). These results prompt us to study, at the single-cell level and across the
62 whole retina, the spatial distributions of cone types with different opsin expression
63 configurations in order to better understand the anatomical base for the unique color-coding
64 scheme of the mouse retina.

65
66 **2. RESULTS AND DISCUSSION**

67
68 **2.1. True S-cones are highly concentrated in the ventral retina of pigmented mouse.**
69 In mouse retina, the gradients of S- and M-opsin expression along the dorsal-ventral axis have
70 been well documented (Fig. 1A-B), but the distribution of individual cone types with different
71 combinations of opsin expression across the whole retina has not been characterized (but see
72 Baden et al., 2013, which we discuss below). We developed a highly reliable algorithm (Fig. S1A-
73 B) to automatically quantify different cone types (true S; true M, and mixed cones, Fig. S1C) based
74 on high-resolution images of entire flat-mount retinas immunolabeled with S- and M-opsin

75 antibodies. Surprisingly, instead of finding an even distribution of true S-cones as previously
76 believed (Baden et al., 2013; Haverkamp et al., 2005; Wang et al., 2011), we found the ventral
77 region had much more numerous S-cones (~30% of the local cone population; Fig. 1C left, Table
78 S1A) than did the dorsal region (~1%). This result is evident from density plots of cone types,
79 showing highly concentrated true S-cones in the ventral retina (Fig. 2A, left column, bottom row).
80

81 **2.2. Despite the vast difference in S-opsin expression pattern, the distribution of true S-cones
82 is strikingly similar between the pigmented and albino mouse.**

83 Such a highly skewed distribution of true S-cones conflicts with current understanding about the
84 mouse retina. Therefore, we also examined an albino mouse line to determine whether this
85 observation persists across different mouse strains. Interestingly, S-opsin expression extended
86 well into the dorsal retina of the albino mouse (Fig. 1B-C) (Ortín-Martínez et al., 2014).
87 Consequently, most cones in the dorsal retina were mixed cones, and true M-cones were very
88 sparse (7%, compared to 97% in pigmented mouse, Fig. 1C right, Table S1A, Fig. 2A right).
89 However, the percentage and distribution of true S-cones were remarkably conserved between
90 strains (33% vs 29%, Fig. 1C and Table S1A) with nearly identical density maps (Fig. 2A, bottom
91 row). The distribution of three main cone populations in four retinal quadrants centered upon
92 the optic nerve head reveals different profiles for mixed and true M-cones, but a very similar
93 pattern for true S-cones between the two mouse strains (Fig. 2C).
94

95 **2.3. S-cone bipolar cells exhibit a dorsal-ventral gradient with a higher density in the ventral
96 retina.**

97 One concern regarding cone classification based on opsin immunolabeling is that some S⁺M⁻
98 cones may instead be mixed cones with low M-opsin expression. In fact, a similar cone-type
99 distribution of mouse retina has been observed; however, out of caution, S⁺M⁻ cones were only
100 referred to as “anatomical” S-cones due to a lack of confirmation regarding their bipolar
101 connections (Baden et al., 2013). Thus, both true S-cones and S-cone bipolar cells have been
102 generally believed to be evenly distributed across the retina (Baden et al., 2013; Haverkamp et
103 al., 2005; Wang et al., 2011). In order to confirm the distribution of true S-cones, it will be critical
104 to uncover the distribution and dendritic contacts of S-cone bipolar cells (type 9 or SCBCs).
105 Previously, SCBCs have only been identified among other bipolar, amacrine and ganglion cells in
106 a Thy1-Clomeleon mouse line, rendering the quantification of their distribution across the entire
107 retina impractical (Haverkamp et al., 2005). We generated a Copine9-Venus mouse line (Fig. 3,
108 Table S1C), in which SCBCs are specifically marked, owing to the fact that *Cpne9* is a SCBC-
109 enriched gene (Shekhar et al., 2016). These bipolar cells are often seen to extend long dendrites
110 to reach true S-cones, bypassing other cone types (Fig. 3B-C). The majority of dendritic endings
111 form enlarged terminals beneath true S-cones pedicles, but occasional slender “blind” endings
112 are present (see arrows in Fig. 3C), which have been documented for S-cone bipolar cells in many
113 species (Haverkamp et al., 2005; Herr et al., 2003; Kouyama and Marshak, 1992). Unexpectedly,
114 we found that the distribution of SCBCs was also skewed toward VN retina, albeit with a
115 shallower gradient (Fig. 3D-E). Thus, in the dorsal retina, the true S-cone to SCBC ratio is
116 approximately 1:3.6, compared to 5.3:1 in the ventral retina (Table S2). Accordingly, we observed
117 substantial divergence in the dorsal retina, with a single true S-cone connecting to as many as six
118 SCBCs, whereas in the ventral retina, a single SCBC contacted 4-5 true S-cones (Fig. 3C). Thus,

119 while SCBCs in VN retina are not as concentrated as true S-cones, they form convergent contacts
120 exclusively with true S-cones. This confirms the identity of true S-cones revealed by
121 immunohistochemistry and supports the finding that true S-cones are highly concentrated in VN
122 mouse retina.

123

124 **2.4. True S-cones in the ventral retina are not evenly distributed but form clusters.**

125 Given that the increased density of SCBCs in the ventral retina does not match that of true S-
126 cones, individual SCBCs may be required to develop more dendrites to contact true S-cones.
127 Intriguingly, we discovered in both strains that true S-cones in the ventral retina appeared to
128 cluster together rather than forming an even distribution, as revealed by K-nearest neighbor
129 analysis (Fig. 4A-B, Table S2). To further quantitatively assess how much they differ from a
130 spatially even distribution, we computed two measures of regularity for true S cones: nearest
131 neighbor and Voronoi diagram regularity indices (NNRI and VDRI, respectively (Reese and Keeley,
132 2015; Fig. 4C-D). Far from being evenly distributed, true S-cone placement was quite irregular
133 and nearly indistinguishable from random placement (including a slight trend toward regularity
134 measures lower than random, which may indicate a tendency toward clustering; see Reese, 2008).
135 To further probe the possibility of true S-cone clustering, we investigated the proportions of true
136 S-cone neighbors that are also true S-cones (denoted here as the S-cone neighbor ratio [SCNR]).
137 Intriguingly, SCNRs were significantly larger than random chance—especially so in ventral retinas,
138 further indicating a clustering of true S-cones in those areas (Fig. 4E). Notably, a more extreme
139 form of clustering of S-cones has been observed in the “wild” mouse (Warwick et al., 2018) and
140 with much lower densities in some felids (Ahnelt et al., 2000). Here, such clustering may reflect
141 the mode of true S-cone development in the ventral retina, for example, by “clonal expansion”
142 to achieve unusually high densities (Bruhn and Cepko, 1996; Reese et al., 1999). Intriguingly, it
143 may also facilitate the wiring of true S-cones with sparsely distributed SCBCs in the ventral retina.
144

145 **2.5. Enriched true S-cones in the ventral retina may provide an anatomical base for mouse color 146 vision.**

147 Despite having a rod-dominated retina, mice can perceive color (Denman et al., 2018; Jacobs et
148 al., 2004). Although it remains uncertain whether the source of long-wavelength sensitive signals
149 for color opponency arises in rods or M-cones (Baden and Osorio, 2019; Ekesten et al., 2000;
150 Ekesten and Gouras, 2005; Joesch and Meister, 2016; Reitner et al., 1991), it is clear that true S-
151 cones provide short-wavelength signals for color discrimination. Thus, such high enrichment of
152 true S-cones in the ventral retina is a previously missed anatomical feature for mouse color vision.
153 From projections mapping true S-cone densities into visual space (Fig S2; Sterratt et al., 2013), it
154 is conceivable that high ventral true S-cone density will provide a much higher sensitivity of short-
155 wavelength signals, thus facilitating color detection for the upper visual field. Although the true
156 S-cone signals carried by SCBCs in the dorsal retina might not be significant for color detection,
157 they could certainly participate in other functions, such as non-image forming vision, that are
158 known to involve short-wavelength signals (Altimus et al., 2008; Doyle et al., 2008; Patterson et
159 al., 2020). Interestingly, the overall true S-cone percentage in the mouse retina remains
160 approximately 10% (Fig. 2B), and the average true S-cone to SCBC ratio across the whole retina
161 is about 1.7:1 (Table. 1B-C), similar to what has been reported in other mammals (Ahnelt et al.,
162 2006; Ahnelt and Kolb, 2000; Hendrickson and Hicks, 2002; Hunt and Peichl, 2014; Kryger et al.,

163 1998; Lukáts et al., 2005; Müller and Peichl, 1989; Ortín-Martínez et al., 2010; Peichl et al., 2000;
164 Schiviz et al., 2008; Shinozaki et al., 2010). Such a spatial rearrangement of true S-cones and
165 SCBCs likely reflects evolutionary adaption to enhance color coding for the upper visual field as
166 best suited for mice's habitat and behavior. In addition, the clustering of true S-cones in the
167 ventral retina may allow several neighboring cones to converge onto the same BC, thus
168 enhancing signal-to-noise ratios for more accurate detection (Schmidt et al., 2019). It is also
169 remarkable that despite the very different S-opsin expression patterns, the true S-cone
170 population and distribution are strikingly similar between pigmented and albino mice, suggesting
171 a common functional significance.

172

173 **3. ACKNOWLEDGEMENTS**

174 The authors would like to thank the NEI Animal Care team, especially Megan Kopera and Ashley
175 Yedlicka.

176

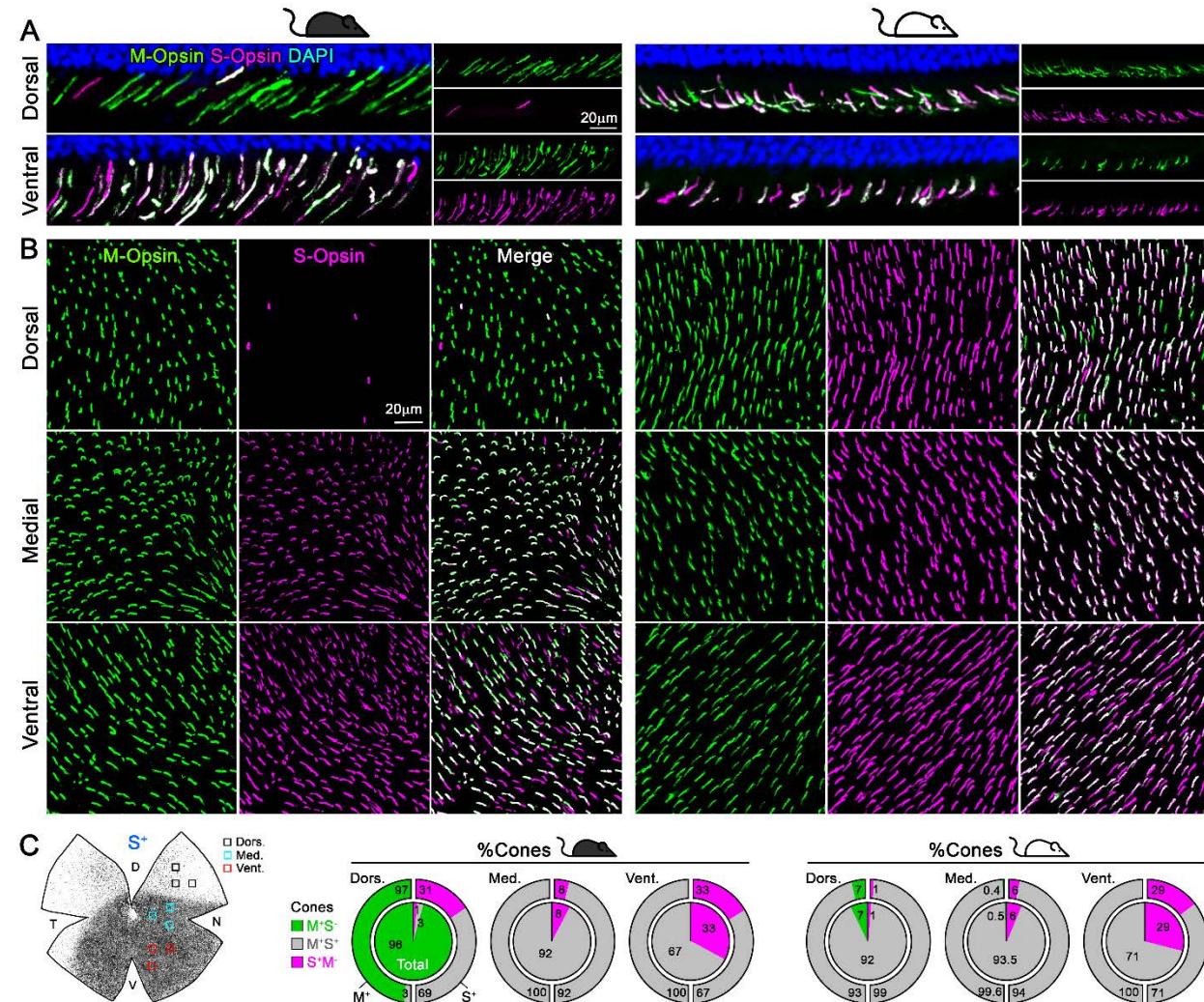
177 **4. AUTHOR CONTRIBUTIONS**

178 The experiments were conceived and designed by F.M.N.N., V.P.K. and W.L. Experiments were
179 conducted by F.M.N.N., B.P., A.K., G.Z. and data were analyzed by F.M.N.N., B.P., A.K., J.B., G.Z.,
180 W.L. The Copine9-Venus mouse line was generated by L.D. The automatic script and simulations
181 were written by F.M.N.N. and J.B. The original draft was written by F.M.N.N. and W.L. and all
182 authors have written, reviewed and edited the final paper.

183

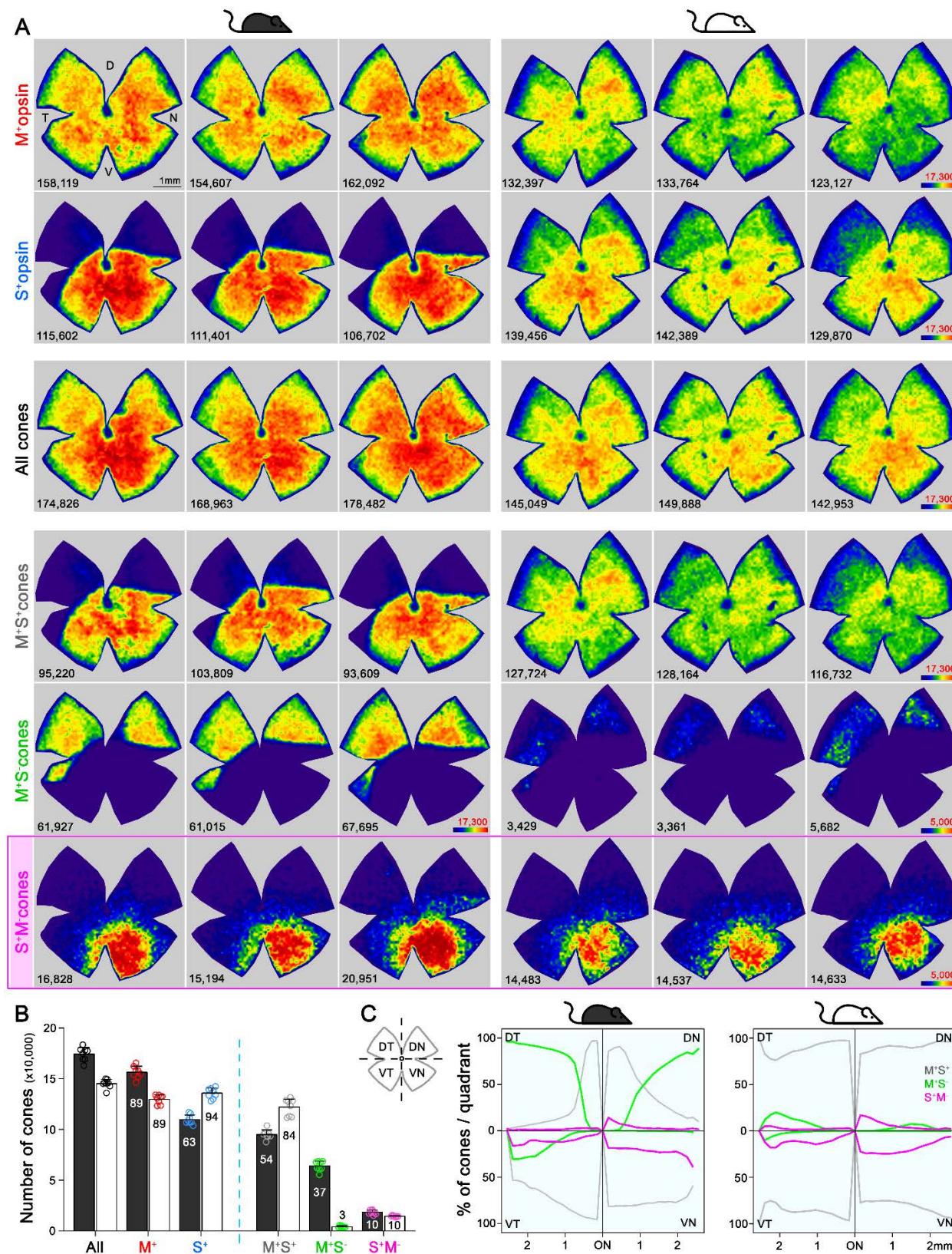
184 **5. COMPETING INTERESTS**

185 The authors declare no competing or financial interests.


186

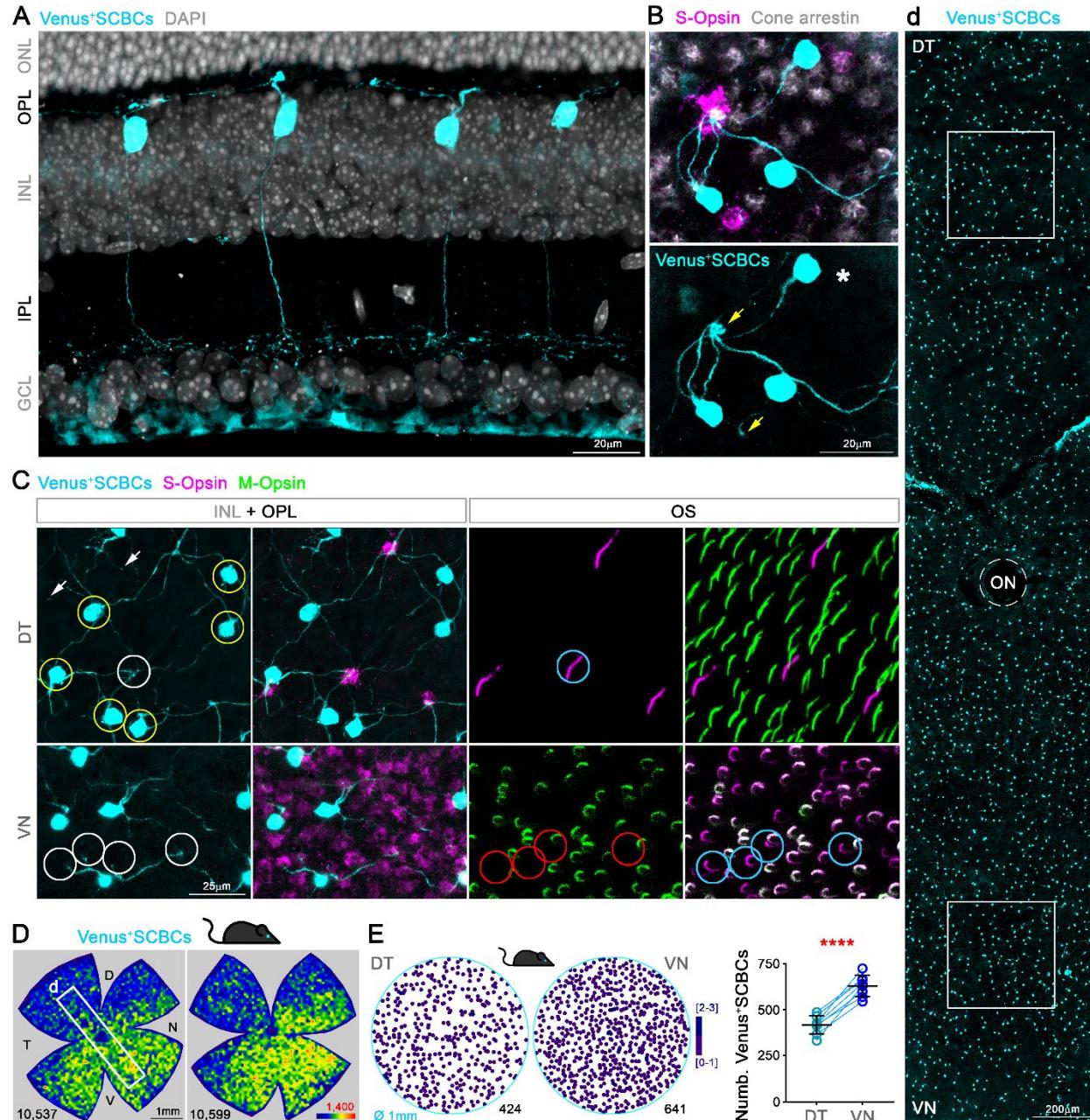
187 **6. FUNDING**

188 This research was supported by Intramural Research Program of the National Eye Institute,
189 National Institutes of Health to WL.


190
191

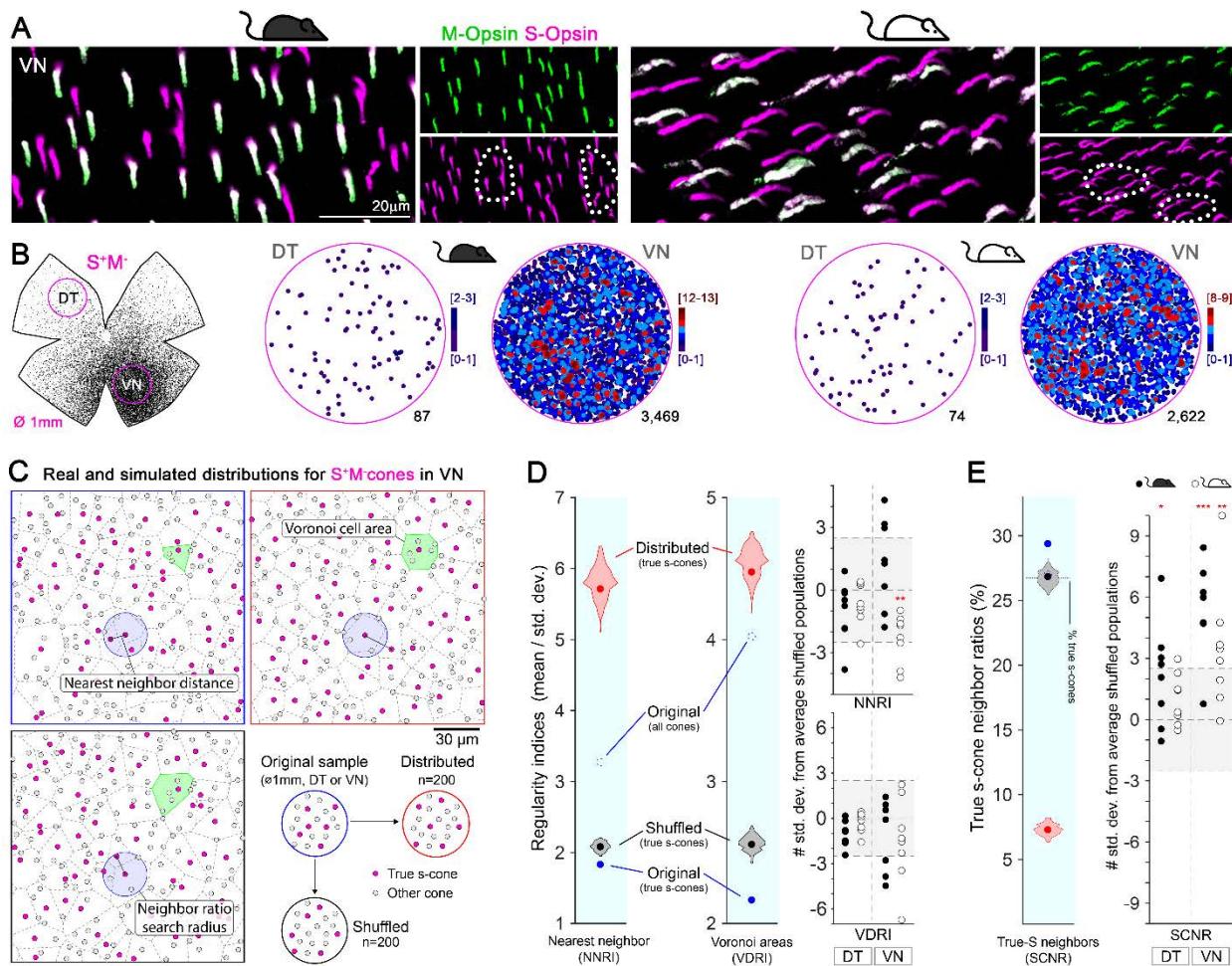
7. FIGURES

192
193
194
195
196
197
198
199
200
201


Figure 1. Cone outer segments across retinal areas. Immunodetection of M and S wavelength-sensitive opsins in retinal sections (A) and flat-mount retinas (B) in two mouse strains (pigmented and albino mice, left and right columns respectively). (C) Retinal scheme of S-opsin expression used for image sampling to quantify and classify cones in three different retinal regions. Pie graphs showing the percentage of cones manually classified as M⁺S⁻ (true M, green), S⁺M⁻ (true S, magenta) and M⁺S⁺ (mixed, gray) based on the opsin expression in different retinal areas. The outer rings show the relative proportions of M-opsin⁺ or S-opsin⁺ cones to mixed (gray) or true M- or S-cones (green or magenta respectively). Black mouse: pigmented mouse strain (C57BL6), white mouse: albino mouse strain (CD1).

202

203 **Figure 2.** Topography and total number of different opsins (M⁺, S⁺) and cone-type populations in
204 the whole mouse retina. (A) Density maps depicting the distributions of different cone


205 populations classified anatomically as: All, M⁺S⁺ (mixed) M⁺S⁻ (true M), S⁺M⁻ (true S) in pigmented
206 and albino mice (left and right side respectively). Each column shows different cone populations
207 from the same retina and, at the bottom of each map is shown the number of quantified cones.
208 Color scales are shown in the right panel of each row (from 0 [purple] to 17,300 or 5,000
209 cones/mm² [dark red] for all cone types except to the true S-cones and true M-cone in the albino
210 strain). Retinal orientation depicted by D: dorsal, N: nasal, T: temporal, V: ventral. (B) Histogram
211 showing the mean \pm standard deviation of different cone subtypes (Table 1B). The percentages
212 of each cone subtype are indicated inside of each bar, where 100% indicates the total of the 'all
213 cones' group. (C) Opsin expression profile across the different retinal quadrants (retinal scheme,
214 DT: dorsotemporal, DN: dorsonasal, VT: ventrotemporal, VN: ventronasal). Line graphs showing
215 the spatial profile of relative opsins expression (mixed [gray], true M- [green], true S-cones
216 [magenta]), where the sum of these three cone populations at a given distance from the optic
217 nerve (ON) head equals 100%. Black mouse: pigmented mouse strain, white mouse: albino
218 mouse strain.

219
220
221
222
223
224
225
226
227
228
229

Figure 3. S-cone Bipolar cells (SCBCs) in Cpe9-Venus mouse retina. (A) Retinal cross section showing the characteristic morphology of SCBCs (Behrens et al., 2016; Breuninger et al., 2011). (B) Detailed view of the selective connectivity between Venus⁺SCBCs and true S-cone terminals (yellow arrows). Note that SCBCs avoid contacts with cone terminals lacking S-opsin expression (true M-cone pedicles, identified using cone arrestin), as well as a mixed cone pedicle, marked with an asterisk. (C) Images from flat-mount retinas focused on the inner nuclear and outer plexiform layers (INL+OPL) or in the photoreceptor outer segment (OS) layer of the corresponding area. Magnifications showing divergent and convergent connectivity patterns from true S-cone pedicles in dorsal and ventral retinal domains, respectively. In the DT retina, six Venus⁺SCBCs (yellow circles) contact a single true S-cone pedicle (white circle in DT); while one Venus⁺ SCBC

230 contacts at least four true S-cone pedicles in the VN retina (white circles in VN), which belong to
231 cones possessing S⁺M⁻OSs (blue circles). (D) Density maps depicting the distributions of SCBCs in
232 Cpne9-Venus mice. (d) Venus⁺SCBCs along the DT-VN axis from a flat-mount retina
233 (corresponding to the white frame in D) showing the gradual increase of SCBCs in VN retina where
234 true S-cone density peaks (last row in Fig. 2A). (E) Demonstration of Venus⁺SCBC densities color-
235 coded by the k-nearest neighbor algorithm according to the number of other Venus⁺SCBCs found
236 within an 18 μ m radius in two circular areas of interest (DT and VN). Venus⁺ SCBCs were
237 significantly denser in VN ($p<0.0001$).

238

239 **Figure 4. Clustering of true S-cones in the ventronasal (VN) retina.** (A) Retinal magnifications from
 240 flat-mount retinas demonstrating grouping of true S-cones in the VN area, where true S-cone
 241 density peaks. Dashed lines depict independent groups of true S-cones that are not commingled
 242 with mixed cones (M⁺S⁺, white outer segments in the merged image). (B) Retinal scheme of true
 243 S-cones used for selecting two circular areas of interest along the dorsotemporal-ventronasal
 244 (DT-VN) axis. Circular maps demonstrate true S-cone clustering in these regions. true S-cone
 245 locations are color-coded by the k-nearest neighbor algorithm according to the number of other
 246 true S-cones found within an 18 μm radius. (C-E) Analytical comparisons of DT and VN
 247 populations of true S-cones to their simulated alternatives. C) Example real and simulated true
 248 S-cone populations and their quantification. Images depict true S-cone locations (magenta dots)
 249 and boundaries of their Voronoi cells (dashed lines) from original and example simulated
 250 ("distributed", "shuffled") cone populations. Gray dots indicate the locations of other cone types.
 251 Observed cone locations were used for all simulated populations; only their cone identities were
 252 changed. The annotated features are examples of those measurements used in the calculations
 253 presented in D-E. (D) Comparison of sample regularity indices for one albino VN retinal sample
 254 to violin plots of those values observed for n=200 simulated cone populations. Note that average
 255 regularity indices for true S-cones were lower than that of shuffled populations, whereas those
 256 values lay between shuffled and distributed populations when all cones were considered. Plots
 257 on the right show values for all actual retinal samples normalized using the mean and standard

258 deviations of their simulated “shuffled” counterparts. The y-axis range corresponding to ± 2.5
259 standard deviations from the mean (i.e., that containing $\sim 99\%$ of shuffled samples) is highlighted.
260 (E) Comparison of the real average SCNR for the example in C-D to those values for its simulated
261 counterparts. Note that the average SCNR for all cones in this sample was equal to that predicted
262 by random chance (i.e., the ratio of true S-cones to all cones), which in turn was equal to the
263 average for true S-cones for shuffled samples. In contrast, the real true S-cone SCNR was higher.
264 Plot on the right shows true S-cone SCNR values for all samples, normalized as described for D.

265 **8. SUPPLEMENTARY MATERIAL**

266
267 **Table S1.** (A) Cone numbers in different retinal areas along the dorsoventral axis in pigmented
268 and albino mouse. Three images/area (dorsal, medial and ventral) from four retinas/strain.
269 Different cone type quantifications are shown as average \pm SD, corresponding to the percentages
270 shown in Fig 1C. The total number of cones analyzed per location and strain are shown in the last
271 column. Total number of cones (B) or S-cone Bipolar cells (SCBCs, C) in eight retinas/mouse strain
272 or line (average \pm SD, see also Fig. 2B). Significant differences between strains $p<0.05$ (*), $p<0.01$
273 (**), $p<0.001$ (**), $p<0.0001$ (****).

274

A. Cones per retinal area

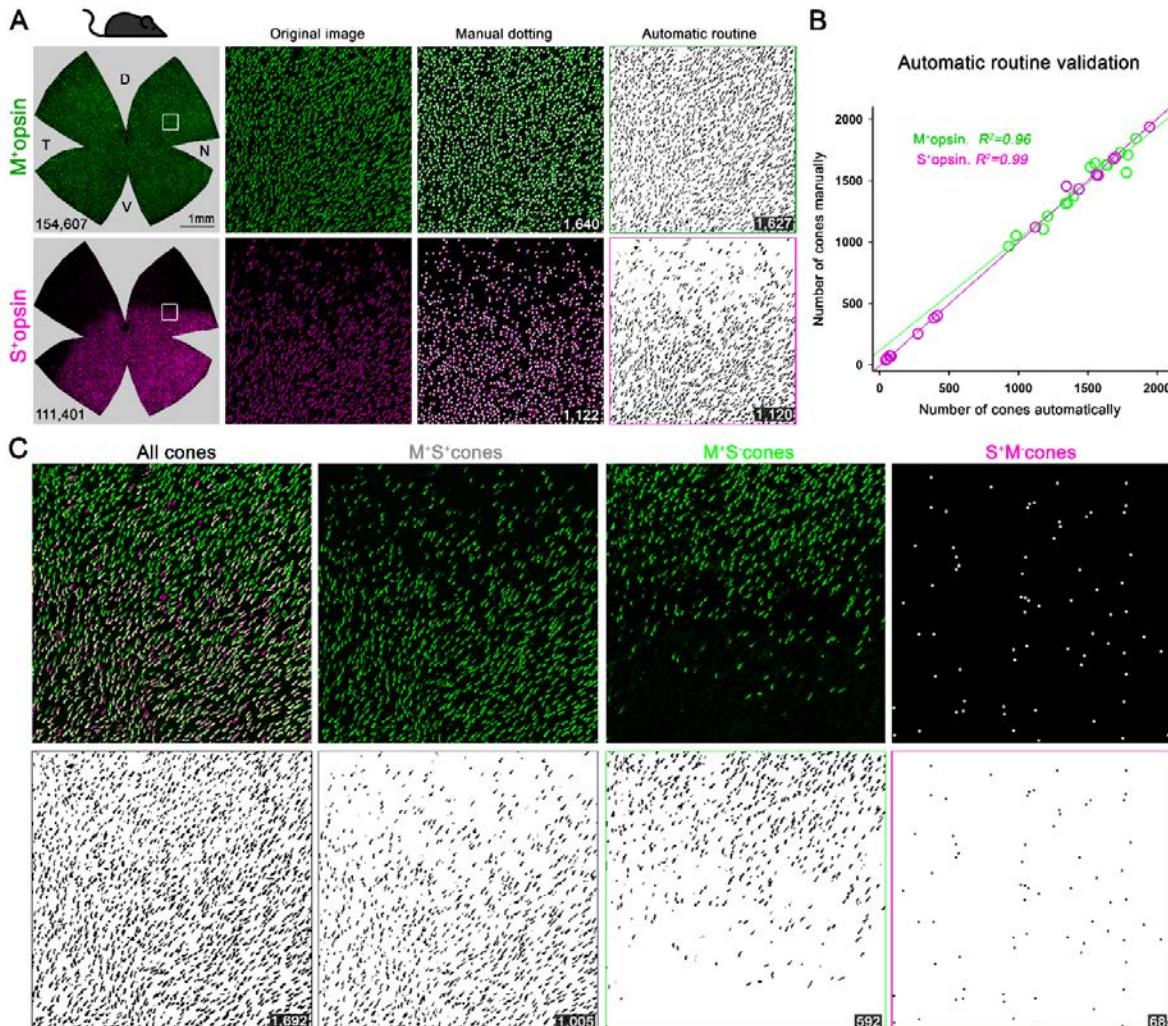
Retinal location	Strain	M⁺S⁺	M⁺S⁻	S⁺M⁻	Total # of cones
Dorsal	Pigmented	6.3 \pm 10.5	205 \pm 32.4	2.8 \pm 1.9	2,568
	Albino	189 \pm 27.5****	14.8 \pm 5.7****	2.5 \pm 0.9	2,472
Medial	Pigmented	274 \pm 53.7	0.1 \pm 0.3	20.2 \pm 6.7	3,208
	Albino	213 \pm 14.2*	0.9 \pm 2.6	14.2 \pm 7.8	2,731
Ventral	Pigmented	196.1 \pm 26.2	0 \pm 0	96.1 \pm 14.6	3,506
	Albino	195.8 \pm 18	0 \pm 0	79.8 \pm 13**	3,307

B. Total number of cone-type population

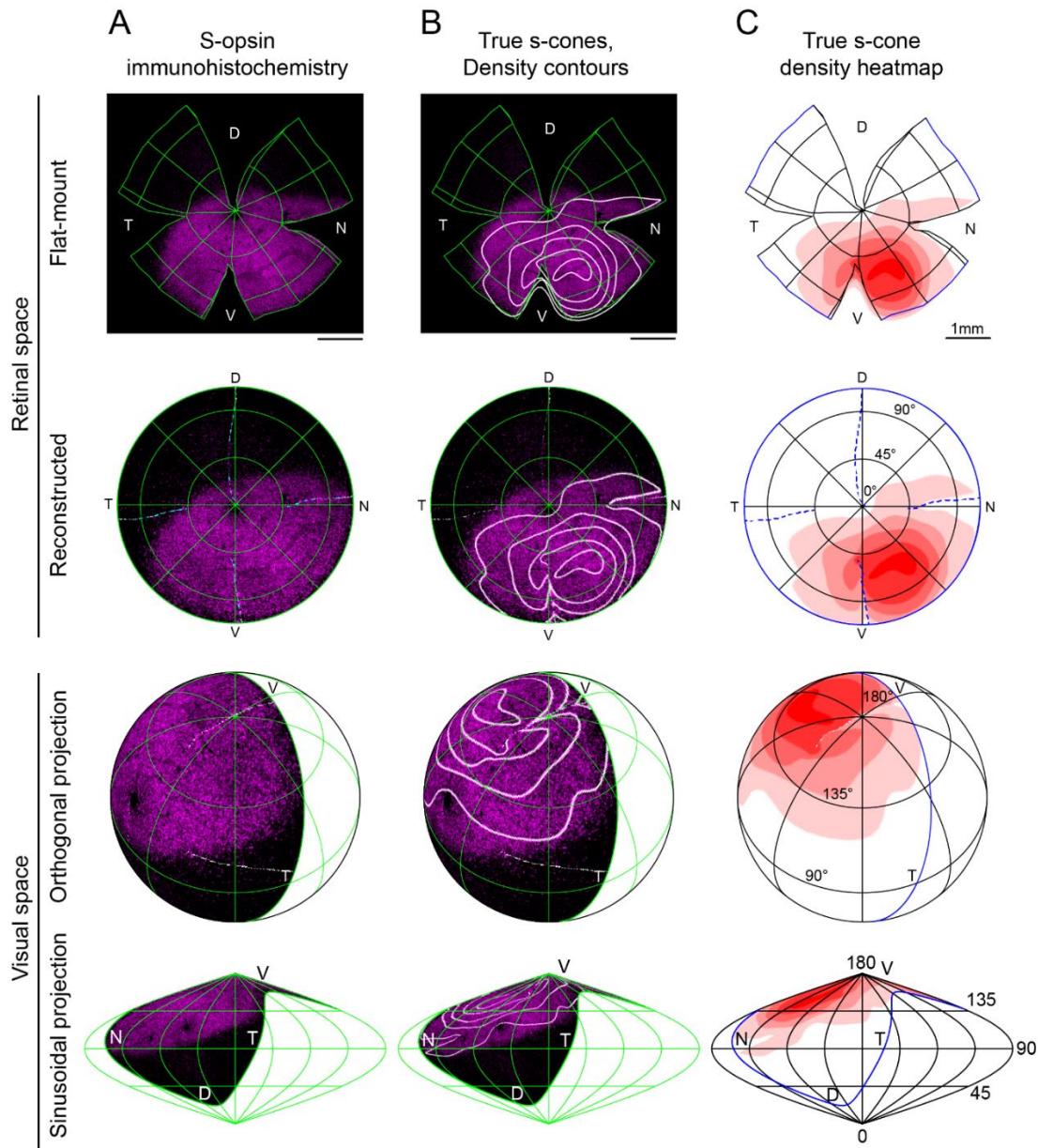
Strain	All	M⁺	S⁺	M⁺S⁺	M⁺S⁻	S⁺M⁻
Pigmented	174,826 \pm 6,647	154,617 \pm 5,801	109,569 \pm 4,654	94,926 \pm 4,526	63,992 \pm 4,823	18,608 \pm 1,989
	144,914*** \pm 4,354	129,586*** \pm 4,379	135,682*** \pm 5,137	122,063*** \pm 7,669	4,132*** \pm 932	14,366*** \pm 625
Albino						

C. Total number of Venus⁺S-cone Bipolar cells

Line	Venus⁺SCBCs
Cpne9-Venus	11,100 \pm 903


275

276


277 **Table S2.** Numbers of true S-cones (A) and Cpne9-Venus⁺SCBCs (B) in dorsotemporal (DT) and
278 ventronasal (VN) circular areas (1mm diameter, Figs 3E and 4B). Quantitative data are shown as
279 average \pm SD from eight retinas/strain or line. The mean of true S-cones and Venus⁺SCBCs in
280 these circular areas was used to calculate the DT:VN and true S-cone:SCBC (C) ratios. Significant
281 differences between strains $p<0.05$ (*), $p<0.001$ (**). True S-cones and SCBCs were significant
282 different between DT and VN retina ($p<0.0001$).

283

Strain/Line	DT	VN	DT:VN Ratio
A. true S-cones			
Pigmented	115 \pm 34	3,359 \pm 437	1:31
Albino	82 \pm 10*	2,346 \pm 405***	1:29
B. S-Cone Bipolar Cells			
Cpne9-Venus	417 \pm 49	630 \pm 58	1:1.5
C. true S-cone:S-cone bipolar cell Ratio			
Pigmented	1:3.6	5.3:1	
Albino	1:5.1	3.7:1	

284
285 **Figure S1.** Validation of automatic routine for cone outer segment quantification. (A) Retinal
286 photomontages for M- and S-opsin signal in the same pigmented retina (correspond to second
287 column in Fig. 2A). The square depicts an area of interest selected (transition zone of S-opsin
288 expression) to perform the automatic routine validation by comparing manual and automatic
289 quantifications. The images processed by the automatic routine using ImageJ show the selection
290 of positive objects from the corresponding original image. (B) X, Y graph showing the linear
291 correlation (Pearson coefficient, R^2) between manual and automatic quantifications. 21,898 M⁺
292 and 13,705 S⁺cones were manually annotated while 21,689 M⁺ and 13,661 S⁺cones were
293 automatically identified in 3 random images obtained from 5 retinal photomontages. (C) All,
294 mixed, true M- and true S-cone populations are extracted from the original M- and S-cone images.
295 All-cones were quantified after overlapping M- and S-signals. mixed (M⁺S⁺) cones were obtained
296 by subtracting the background of the S-opsin image in the M-opsin one. true M-cones (M⁺S⁻) for
297 pigmented mice are obtained after subtracting the S-opsin signal to the M-opsin photomontage.
298 Finally, true M-cones for albino and true S-cones (S⁺M⁻), in both strains, are manually marked on
299 the retinal photomontage (Adobe Photoshop CC). The B&W images shown the processed image
300 after quantifying automatically. At the bottom of each image is shown the number of quantified
301 cones. Black mouse: pigmented mouse strain.

302
303 **Figure S2.** Reconstruction and mapping of true S-cone densities into visual space. Representative
304 left eye from a 3-month-old pigmented mouse (C57). (A) S-opsin antibody labeling; (B) true s-
305 cone density contour lines separated by quintiles overlaid onto s-opsin labeling; (C) quintile
306 heatmap contours of true S-cone density. The top two rows demonstrate the flat-mount retina
307 with marks for edges and relaxing cuts, followed by its reconstruction into uncut retinal space
308 with lines of latitude and longitude that have been projected onto the flat-mount. The bottom
309 two rows show the reconstructed retina inverted into visual space using orthogonal and
310 sinusoidal projections. For these views, eye orientation angles for elevation and azimuth of 22°
311 and 64°, respectively, have been used as in (Sterrett et al., 2013). For orthogonal projections, the
312 globe has been rotated forward by 50° to emphasize the relationship of true S-cone densities to
313 the upper pole of the visual field. S-opsin labeling is restricted to the upper visual field, but true
314 S-cones are concentrated toward its lateral edges.

315 **9. REFERENCES**

316

317 Ahnelt PK, Fernández E, Martínez O, Bolea JA, Kübber-Heiss A. 2000. Irregular S-cone mosaics in
318 felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross
319 correlation. *J Opt Soc Am A Opt Image Sci Vis* **17**:580–588. doi:10.1364/josaa.17.000580

320 Ahnelt PK, Kolb H. 2000. The mammalian photoreceptor mosaic-adaptive design. *Prog Retin Eye*
321 *Res* **19**:711–777. doi:10.1016/s1350-9462(00)00012-4

322 Ahnelt PK, Schubert C, Kübber-Heiss A, Schiviz A, Anger E. 2006. Independent variation of retinal
323 S and M cone photoreceptor topographies: A survey of four families of mammals. *Vis*
324 *Neurosci* **23**:429–435. doi:10.1017/S095252380623342X

325 Altimus CM, Güler AD, Villa KL, McNeill DS, Legates TA, Hattar S. 2008. Rods-cones and
326 melanopsin detect light and dark to modulate sleep independent of image formation.
327 *Proc Natl Acad Sci USA* **105**:19998–20003. doi:10.1073/pnas.0808312105

328 Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, Farhangfar F, Kage K, Krzystolik MG, Lyass
329 LA, Robbins JT. 2000. The murine cone photoreceptor: a single cone type expresses both
330 S and M opsins with retinal spatial patterning. *Neuron* **27**:513–523. doi:10.1016/s0896-
331 6273(00)00062-3

332 Baden T, Osorio D. 2019. The Retinal Basis of Vertebrate Color Vision. *Annu Rev Vis Sci* **5**:177–
333 200. doi:10.1146/annurev-vision-091718-014926

334 Baden T, Schubert T, Chang L, Wei T, Zaichuk M, Wissinger B, Euler T. 2013. A tale of two retinal
335 domains: near-optimal sampling of achromatic contrasts in natural scenes through
336 asymmetric photoreceptor distribution. *Neuron* **80**:1206–1217.
337 doi:10.1016/j.neuron.2013.09.030

338 Behrens C, Schubert T, Haverkamp S, Euler T, Berens P. 2016. Connectivity map of bipolar cells
339 and photoreceptors in the mouse retina. *eLife* **5**. doi:10.7554/eLife.20041

340 Breuninger T, Puller C, Haverkamp S, Euler T. 2011. Chromatic bipolar cell pathways in the mouse
341 retina. *J Neurosci* **31**:6504–6517. doi:10.1523/JNEUROSCI.0616-11.2011

342 Bruhn SL, Cepko CL. 1996. Development of the pattern of photoreceptors in the chick retina. *J*
343 *Neurosci* **16**:1430–1439.

344 Chang L, Breuninger T, Euler T. 2013. Chromatic coding from cone-type unselective circuits in the
345 mouse retina. *Neuron* **77**:559–571. doi:10.1016/j.neuron.2012.12.012

346 Denman DJ, Luviano JA, Ollerenshaw DR, Cross S, Williams D, Buice MA, Olsen SR, Reid RC. 2018.
347 Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform
348 across visual space. *eLife* **7**. doi:10.7554/eLife.31209

349 Dominy NJ, Lucas PW. 2001. Ecological importance of trichromatic vision to primates. *Nature*
350 **410**:363–366. doi:10.1038/35066567

351 Doyle SE, Yoshikawa T, Hillson H, Menaker M. 2008. Retinal pathways influence temporal niche.
352 *Proc Natl Acad Sci USA* **105**:13133–13138. doi:10.1073/pnas.0801728105

353 Ekesten B, Gouras P. 2005. Cone and rod inputs to murine retinal ganglion cells: evidence of cone
354 opsin specific channels. *Vis Neurosci* **22**:893–903. doi:10.1017/S0952523805226172

355 Ekesten B, Gouras P, Yamamoto S. 2000. Cone inputs to murine retinal ganglion cells. *Vision Res*
356 **40**:2573–2577. doi:10.1016/s0042-6989(00)00122-x

357 Gerl EJ, Morris MR. 2008. The Causes and Consequences of Color Vision. *Evo Edu Outreach* **1**:476–
358 486. doi:10.1007/s12052-008-0088-x

359 Haverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T. 2005. The primordial,
360 blue-cone color system of the mouse retina. *J Neurosci* **25**:5438–5445.
361 doi:10.1523/JNEUROSCI.1117-05.2005

362 Hendrickson A, Hicks D. 2002. Distribution and density of medium- and short-wavelength
363 selective cones in the domestic pig retina. *Exp Eye Res* **74**:435–444.
364 doi:10.1006/exer.2002.1181

365 Herr S, Klug K, Sterling P, Schein S. 2003. Inner S-cone bipolar cells provide all of the central
366 elements for S cones in macaque retina. *J Comp Neurol* **457**:185–201.
367 doi:10.1002/cne.10553

368 Hunt DM, Peichl L. 2014. S cones: Evolution, retinal distribution, development, and spectral
369 sensitivity. *Vis Neurosci* **31**:115–138. doi:10.1017/S0952523813000242

370 Jacobs GH. 1993. The distribution and nature of colour vision among the mammals. *Biol Rev Camb
371 Philos Soc* **68**:413–471. doi:10.1111/j.1469-185x.1993.tb00738.x

372 Jacobs GH, Neitz J, Deegan JF. 1991. Retinal receptors in rodents maximally sensitive to ultraviolet
373 light. *Nature* **353**:655–656. doi:10.1038/353655a0

374 Jacobs GH, Williams GA, Fenwick JA. 2004. Influence of cone pigment coexpression on spectral
375 sensitivity and color vision in the mouse. *Vision Res* **44**:1615–1622.
376 doi:10.1016/j.visres.2004.01.016

377 Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency.
378 *Nature* **532**:236–239. doi:10.1038/nature17158

379 Kouyama N, Marshak DW. 1992. Bipolar cells specific for blue cones in the macaque retina. *J
380 Neurosci* **12**:1233–1252.

381 Kryger Z, Galli-Resta L, Jacobs GH, Reese BE. 1998. The topography of rod and cone
382 photoreceptors in the retina of the ground squirrel. *Vis Neurosci* **15**:685–691.
383 doi:10.1017/s0952523898154081

384 Lukáts A, Szabó A, Röhlich P, Vígh B, Szél A. 2005. Photopigment coexpression in mammals:
385 comparative and developmental aspects. *Histol Histopathol* **20**:551–574.
386 doi:10.14670/HH-20.551

387 Marshak DW, Mills SL. 2014. Short-wavelength cone-opponent retinal ganglion cells in mammals.
388 *Vis Neurosci* **31**:165–175. doi:10.1017/S095252381300031X

389 Müller B, Peichl L. 1989. Topography of cones and rods in the tree shrew retina. *J Comp Neurol*
390 **282**:581–594. doi:10.1002/cne.902820409

391 Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP,
392 Vidal-Sanz M, Agudo-Barriuso M. 2014. Displaced retinal ganglion cells in albino and
393 pigmented rats. *Front Neuroanat* **8**:99. doi:10.3389/fnana.2014.00099

394 Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. 2018. The aging rat retina: from function to
395 anatomy. *Neurobiol Aging* **61**:146–168. doi:10.1016/j.neurobiolaging.2017.09.021

396 Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C, Vennström B, Reh TA, Forrest D. 2001. A thyroid
397 hormone receptor that is required for the development of green cone photoreceptors.
398 *Nat Genet* **27**:94–98. doi:10.1038/83829

399 Nikonov SS, Kholodenko R, Lem J, Pugh EN. 2006. Physiological features of the S- and M-cone
400 photoreceptors of wild-type mice from single-cell recordings. *J Gen Physiol* **127**:359–374.
401 doi:10.1085/jgp.200609490

402 Ortín-Martínez A, Jiménez-López M, Nadal-Nicolás FM, Salinas-Navarro M, Alarcón-Martínez L,
403 Sauvé Y, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. 2010. Automated
404 quantification and topographical distribution of the whole population of S- and L-cones
405 in adult albino and pigmented rats. *Invest Ophthalmol Vis Sci* **51**:3171–3183.
406 doi:10.1167/iovs.09-4861

407 Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Alburquerque-Béjar JJ, Nieto-López L,
408 García-Ayuso D, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. 2014. Number and
409 distribution of mouse retinal cone photoreceptors: differences between an albino (Swiss)
410 and a pigmented (C57/BL6) strain. *PLoS ONE* **9**:e102392.
411 doi:10.1371/journal.pone.0102392

412 Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. 2020. A Color Vision Circuit for
413 Non-Image-Forming Vision in the Primate Retina. *Curr Biol*.
414 doi:10.1016/j.cub.2020.01.040

415 Peichl L. 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and
416 lifestyle? *Anat Rec A Discov Mol Cell Evol Biol* **287**:1001–1012. doi:10.1002/ar.a.20262

417 Peichl L, Künzle H, Vogel P. 2000. Photoreceptor types and distributions in the retinae of
418 insectivores. *Vis Neurosci* **17**:937–948. doi:10.1017/s0952523800176138

419 Puller C, Haverkamp S. 2011. Bipolar cell pathways for color vision in non-primate dichromats.
420 *Vis Neurosci* **28**:51–60. doi:10.1017/S0952523810000271

421 Reese BE. 2008. 1.22 - Mosaics, Tiling, and Coverage by Retinal Neurons In: Masland RH, Albright
422 TD, Albright TD, Masland RH, Dallos P, Oertel D, Firestein S, Beauchamp GK, Catherine
423 Bushnell M, Basbaum AI, Kaas JH, Gardner EP, editors. *The Senses: A Comprehensive
424 Reference*. New York: Academic Press. pp. 439–456. doi:10.1016/B978-012370880-
425 9.00278-4

426 Reese BE, Keeley PW. 2015. Design principles and developmental mechanisms underlying retinal
427 mosaics. *Biol Rev Camb Philos Soc* **90**:854–876. doi:10.1111/brv.12139

428 Reese BE, Necessary BD, Tam PP, Faulkner-Jones B, Tan SS. 1999. Clonal expansion and cell
429 dispersion in the developing mouse retina. *Eur J Neurosci* **11**:2965–2978.
430 doi:10.1046/j.1460-9568.1999.00712.x

431 Reitner A, Sharpe LT, Zrenner E. 1991. Is colour vision possible with only rods and blue-sensitive
432 cones? *Nature* **352**:798–800. doi:10.1038/352798a0

433 Rhim I, Coello-Reyes G, Ko H-K, Nauhaus I. 2017. Maps of cone opsin input to mouse V1 and
434 higher visual areas. *J Neurophysiol* **117**:1674–1682. doi:10.1152/jn.00849.2016

435 Rodieck RW. 1991. The density recovery profile: a method for the analysis of points in the plane
436 applicable to retinal studies. *Vis Neurosci* **6**:95–111. doi:10.1017/s095252380001049x

437 Schiviz AN, Ruf T, Kuebber-Heiss A, Schubert C, Ahnelt PK. 2008. Retinal cone topography of
438 artiodactyl mammals: influence of body height and habitat. *J Comp Neurol* **507**:1336–
439 1350. doi:10.1002/cne.21626

440 Schmidt BP, Boehm AE, Tuten WS, Roorda A. 2019. Spatial summation of individual cones in
441 human color vision. *PLoS ONE* **14**:e0211397. doi:10.1371/journal.pone.0211397

442 Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ,
443 Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR. 2016. Comprehensive
444 Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. *Cell* **166**:1308–
445 1323.e30. doi:10.1016/j.cell.2016.07.054

446 Shinozaki A, Hosaka Y, Imagawa T, Uehara M. 2010. Topography of ganglion cells and
447 photoreceptors in the sheep retina. *J Comp Neurol* **518**:2305–2315.
448 doi:10.1002/cne.22333

449 Stabio ME, Sonderegger KB, Haghgou SD, Day BL, Chidsey B, Sabbah S, Renna JM. 2018. A novel
450 map of the mouse eye for orienting retinal topography in anatomical space. *J Comp Neurol*
451 **526**:1749–1759. doi:10.1002/cne.24446

452 Sterratt DC, Lyngholm D, Willshaw DJ, Thompson ID. 2013. Standard anatomical and visual space
453 for the mouse retina: computational reconstruction and transformation of flattened
454 retinae with the Retistruct package. *PLoS Comput Biol* **9**:e1002921.
455 doi:10.1371/journal.pcbi.1002921

456 Wang YV, Weick M, Demb JB. 2011. Spectral and temporal sensitivity of cone-mediated
457 responses in mouse retinal ganglion cells. *J Neurosci* **31**:7670–7681.
458 doi:10.1523/JNEUROSCI.0629-11.2011

459 Warwick RA, Kaushansky N, Sarid N, Golan A, Rivlin-Etzion M. 2018. Inhomogeneous Encoding of
460 the Visual Field in the Mouse Retina. *Curr Biol* **28**:655-665.e3.
461 doi:10.1016/j.cub.2018.01.016

462 Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 2013. One-step generation of mice
463 carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering.
464 *Cell* **154**:1370–1379. doi:10.1016/j.cell.2013.08.022

465

466 **10. METHODS**

467

468 **10.1. KEY RESOURCES**

469

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Goat polyclonal anti-OPN1SW (N-20)	Santa Cruz Biotechnology	Cat#sc-14363
Rabbit polyclonal anti-Opsin Red/Green	Millipore/Sigma	Cat#AB5405
Rabbit polyclonal anti-Cone arrestin	Millipore/Sigma	Cat#AB15282
Chicken polyclonal anti-GFP	Millipore/Sigma	Cat#AB16901
Donkey polyclonal anti-Rabbit 488	Jackson Immunoresearch	Cat#711-547-003
Donkey polyclonal anti-Rabbit Cy3	Jackson Immunoresearch	Cat#711-165-152
Donkey polyclonal anti-Goat 647	Jackson Immunoresearch	Cat#705-605-147
Donkey polyclonal anti-Goat Cy3	Jackson Immunoresearch	Cat#705-166-147
Donkey polyclonal anti-Chicken 488	Jackson Immunoresearch	Cat#703-545-155
Experimental Models: Organisms/Strains		
C57BL/6J pigmented mouse inbred strain	Jackson Laboratory	Cat#000664
CD-1 IGS albino mouse strain	Charles River	Cat#022
Copine9-Venus mouse line	This paper	-
Software and Algorithms		
Zen lite Black edition 2.3 SP1	Zeiss	https://www.zeiss.com/microscopy/us/products/microscope-software/zen-lite.html
FIJI-ImageJ v1.52r	NIH	https://imagej.nih.gov/ij/
Sigma Plot 13.0	Systat Software	https://systatsoftware.com/products/sigmaplot/
GraphPad Prism 8.3.0	Graph Pad Software	https://www.graphpad.com/scientific-software/prism/
Photoshop CC 20.0.6	Adobe	https://www.adobe.com/products/photoshop.html
MATLAB2016	MathWorks	https://www.mathworks.com/products/matlab.html
R	The R Project for Statistical Computing	https://www.r-project.org/
Retina and Visual Space Retistruct Package	Sterratt DC et al., PLoS Comput Biol 9(2): e1002921	https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002921
Zotero 5.0	Corporation for Digital Scholarship	https://www.zotero.org/download/

470

471 **10.2. LEAD CONTACT AND MATERIALS AVAILABILITY**

472 Further information and requests for resources and reagents should be directed to and will be
473 fulfilled by the Lead Contact, Wei Li (liwei2@nei.nih.gov).

474

475 **10.3. METHOD DETAILS**

476

477 **10.3.1. Animal handling and Ethic statement**

478 Three months old male pigmented (*C57BL/6J*, n=5), albino (*CD1*, n=5) mice were obtained from
479 the National Eye Institute breeding colony. The Venus-Cpne9 mouse line (based on previous
480 single cell sequencing data (Shekhar et al., 2016)) carries a reporter (Venus) allele under the
481 control of the mouse Cpne9 locus. The reporter allele was created directly in B6.SJL(F1) zygotes
482 using CRISPR-mediated homologous recombination (HR) (Yang et al., 2013). Briefly, a HR
483 targeting template was assembled with PCR fragments of 5' and 3' homology arms of 910 bp and
484 969 bp respectively, flanking exon one, and a Venus expression cassette carrying the bovine
485 growth hormone polyadenylation (bGH-PolyA) signal sequence as the terminator. Homology
486 arms were designed such that integration of the reporter cassette would be at the position right
487 after the first codon of the Cpne9 gene in exon one. A pair of guide RNAs (gRNA), with outward
488 orientation (38 bp apart), were synthesized by *in vitro* transcription as described (Yang et al.,
489 2013) and tested for their efficiency and potential toxicity in a zygote differentiation assay where
490 mouse fertilized eggs were electroporated with SpCas9 protein and gRNA ribonuclear particles.
491 Eggs were cultured in vitro for 4 days in KSOM (Origio Inc, CT) until differentiated to blastocysts.
492 Viability and indel formation were counted respectively. gRNA sequences are (1)
493 Copine9_gRNA_L(73/25), 5'GAGACATGACTGGTCAA3'; (2) Copine9_gRNA_R(62/4.40),
494 5'GCCTCGGAGCGTAGCGTCC3'. A mixture of the targeting plasmid (super coiled, 25ng/μl) with
495 two tested gRNAs (25 ng/μl each) and the SpCas9 protein (Life Science technology, 30ng/μl) were
496 microinjected into mouse fertilized eggs and transferred to pseudopregnant female recipients as
497 described elsewhere (Yang et al., 2013). With a total of 15 F0 live births from 6 pseudopregnant
498 females, 11 were found to carry the knockin allele by homologous recombination, a HR rate of
499 73%. F0 founders in B6.SJL F1 (50% C57BL6 genome) were crossed consecutively for 3
500 generations with C57BL6/J mice to reach near congenic state to C57BL6/J.

501 Mice were housed a 12:12 hours light/dark cycle. All experiments and animal care are conducted
502 in accordance with protocols approved by the Animal Care and Use Committee of the National
503 Institutes of Health and following the Association for Research in Vision and Ophthalmology
504 guidelines for the use of animals in research.

505

506 **10.3.2. Tissue collection**

507 All animals were sacrificed with an overdose of CO₂ and perfused transcardially with saline
508 followed by 4% paraformaldehyde. To preserve retinal orientation, eight retinas per mouse strain
509 were dissected as flat whole-mounts by making four radial cuts (the deepest one in the dorsal
510 pole previously marked with a burn signal as described (Nadal-Nicolás et al., 2018; Stabio et al.,
511 2018). The two remaining retinas were cut in dorso-ventral orientation (14μm) after
512 cryoprotection in increasing gradients of sucrose (Sigma-Aldrich SL) and embedding in optimal
513 cutting temperature (OCT; Sakura Finetek).

514

515 **10.3.3. Immunohistochemical labeling**

516 Immunodetection of flat-mounted retinas or retinal sections was carried out as previously
517 described (Nadal-Nicolás et al., 2018). Importantly, the retinal pigmented epithelium was
518 removed before the immunodetection. First, whole-retinas were permeated (4x10') in PBS 0.5%
519 Triton X-100 (Tx) and incubated by shaking overnight at room temperature with S-opsin (1:1200)

520 and M-opsin (1:1000) or cone arrestin (1:300) primary antibodies diluted in blocking buffer (2%
521 normal donkey serum). Cpne9-Venus retinas were additionally incubated with an anti-GFP
522 antibody (1:100) to enhance the original Venus signal. Retinas were washed in PBS 0.5% Tx before
523 incubating the appropriate secondary antibodies overnight (1:500). Finally, retinas were
524 thoroughly washed prior to mounting with photoreceptor side up on slides and covered with
525 anti-fading solution. Retinal sections were counterstained with DAPI.

526

527 **10.3.4. Image acquisition**

528 Retinal whole-mounts were imaged with a 20x objective using a LSM 780 Zeiss confocal
529 microscope equipped with computer-driven motorized stage controlled by Zen Lite software
530 (Black edition, Zeiss). M- and S-opsins were imaged together to allow the identification and
531 quantification of different cone types. Magnifications from flat mounts and retinal cross-sections
532 (Fig. 1) were taken from dorsal, medial and ventral areas using a 63x objective for opsin co-
533 expression analysis. Images from retinal cross-sections were acquired ~1.5mm dorsally or
534 ventrally from the optic disc.

535

536 **10.3.5. Sampling and opsin co-expression measurement**

537 In four retinas per strain, we acquired images from three 135x135 μm samples (63x) per each
538 area of interest (dorsal, medial and ventral). These areas were selected according to the S-opsin
539 gradient in wholmount retinas (see scheme in Fig. 1C). Cone outer segments were manually
540 classified as true M- (M^+S^-), true S- (S^+M^-) or mixed (M^+S^+) cones depending on their opsin
541 expression. Data representation was performed using GraphPad Prism 8.3 software.

542

543 **10.3.6. Image processing: manual and automated whole quantification**

544 To characterize the distribution of the different cone photoreceptor types in the mouse retina,
545 we developed and validated an automatic routine (ImageJ, NIH) to identify, quantify the total
546 number of outer segments and finally extract the location of each individual cone (Fig. S1A).
547 Briefly, maximum-projection images were background-subtracted and thresholded to create a
548 binary mask that was then processed using watershed and despeckle filters to isolate individual
549 cones and reduce noise. The “3D Objects Counter” plugin was applied to such images to count
550 cones within fixed parameters (shape and size) and extract their xy coordinates for further
551 analysis. This automation was validated by statistical comparation with manual counting
552 performed by an experienced investigator (Pearson correlation coefficient $R^2 = 96\text{-}99\%$ for M- or
553 S-opsin respectively, Fig. S1B). To count cone subtypes, images were pre-processed with image
554 processing software (Adobe Photoshop CC) to isolate the desired subtype and then manually
555 marked using Photoshop, or automatically counted using ImageJ as described above. Total cone
556 populations were determined by combining M- and S-opsin channels, while mixed M^+S^+ cones
557 were obtained by masking the M-opsin signal with the S-opsin channel. true M-cones in
558 pigmented mice were obtained by subtracting the S-opsin signal from the M-opsin
559 photomontage. Finally, true M-cones (in albino samples), true S-cones (both strains) (Fig. S1C)
560 and Venus⁺SCBCs (Cpne9-Venus mouse line) were manually marked on the retinal photomontage
561 (Adobe Photoshop CC).

562

563 **10.3.7. Topographical distributions.**

564 Topographical distributions of cone population densities were calculated from cone locations
565 identified in whole-mount retinas using image processing (see above). From these populations,
566 isodensity maps were created using SigmaPlot 13.0 (Systat Software). These maps are filled
567 contour plots generated by assigning to each area of interest (83.3x83.3 μm) a color code
568 according to its cone density, ranging from 0 (purple) to 17,300 cones/mm² for all cone types
569 except for true S-cones and true M-cone in the albino strain (5,000 cones/mm²), as represented
570 in the last image of each row of Fig. 2A, or 1,400 SCBCs/mm² (Fig. 3D) within a 10-step color-scale.
571 These calculations allow as well, the illustration of the number of cones at a given position from
572 the ON center. To analyze the relative opsin expression along the retinal surface, we have
573 considered three cone populations (mixed, true M- and true S-cones) dividing the retina in four
574 quadrants: dorsotemporal, dorsonasal, ventrotemporal and ventronasal (DT, DN, VT and VN
575 respectively, scheme in Fig. 2C). The relative percentage of cone-types are represented in line
576 graphs from four retinas/strain (SigmaPlot 13.0).

577

578 **10.3.8. SCBC sampling and ‘true S-cone’ connectivity**

579 To characterize the connectivity of Venus⁺S-cone bipolar cells (Venus⁺SCBCs) with true S-cone
580 terminals, we acquired images from the same area (260x260 μm , 63x) at two focal planes: First,
581 we focused upon the INL+OPL, then the corresponding photoreceptor outer segment (OS) layer,
582 respectively, for two areas of interest (DT and VN). To verify connectivity between Venus⁺SCBCs
583 dendrites and true S-cone pedicles in the OPL, we also stained the cone pedicles with cone
584 arrestin and traced cone pedicles to their respective OS to verify S⁺M⁻ opsin labeling (Fig. 3).

585

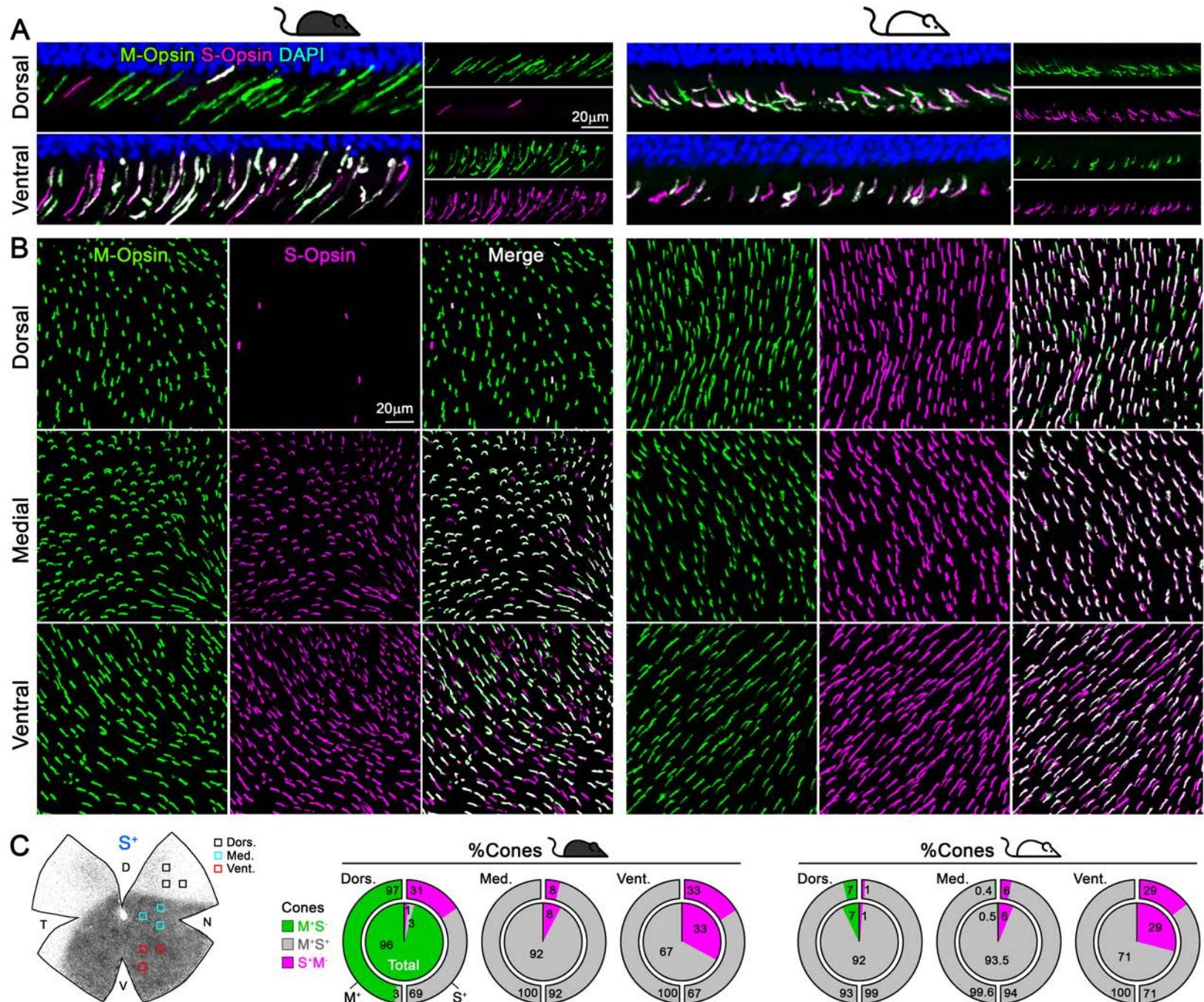
586 **10.3.9. Clustering analysis. K-neighbor maps and variance analysis of Voronoi dispersion.**

587 To assess the clustering of true S-cones and S-cone bipolar cell (SCBC) clustering, we performed
588 two comparable sets of analyses. First, we extracted two circular areas (1mm diameter) in the
589 DT-VN axis at 1mm from the optic disc center (scheme in 4B). A K-nearest neighbor algorithm
590 (Nadal-Nicolás et al., 2014) was used to map the number of neighboring true S-cones within a 18
591 μm radius of each true S-cone to a color-code in its retinal position (Fig. 4B). Regularity indices
592 were computed for each retinal sample using Voronoi diagrams for cone positions as well as
593 nearest neighbor distances (VDRI and NNRI, respectively (Reese and Keeley, 2015); Fig. 4C-E).
594 NNRLs were computed as the ratio of the mean to the standard deviation for the distance from
595 true S-cones to their nearest true S-cone neighbor. true S-cone neighbor ratios (SCNR) were
596 calculated for each retinal sample as the average proportion of true s-cones within a given radius
597 for each cone. This search radius was calculated separately for each sample to correct for sample-
598 to-sample variations in total density: this radius (r) was calculated as $r = 3 \sqrt{A / (\sqrt{2} \pi N)}$, where
599 A is the circular area of the 1mm diameter retinal sample and N is the total number of cones in
600 that sample. For a highly regular cell mosaic containing N cells filling an area A , this calculation
601 estimates the location of the first minimum in the density recovery profile (Rodieck, 1991),
602 providing the average radius of a circle centered upon a cone that will encompass its first tier of
603 cone neighbors (but exclude the second tier) in an evenly distributed mosaic. To minimize edge
604 effects from computations of NNRI, VDRI, SCNR, those values for cones closer to the outer sample
605 edge than the SCNR search radius were discarded. To produce simulated cone mosaics for
606 comparison with observed values, cone distributions with evenly “distributed” true S-cones were

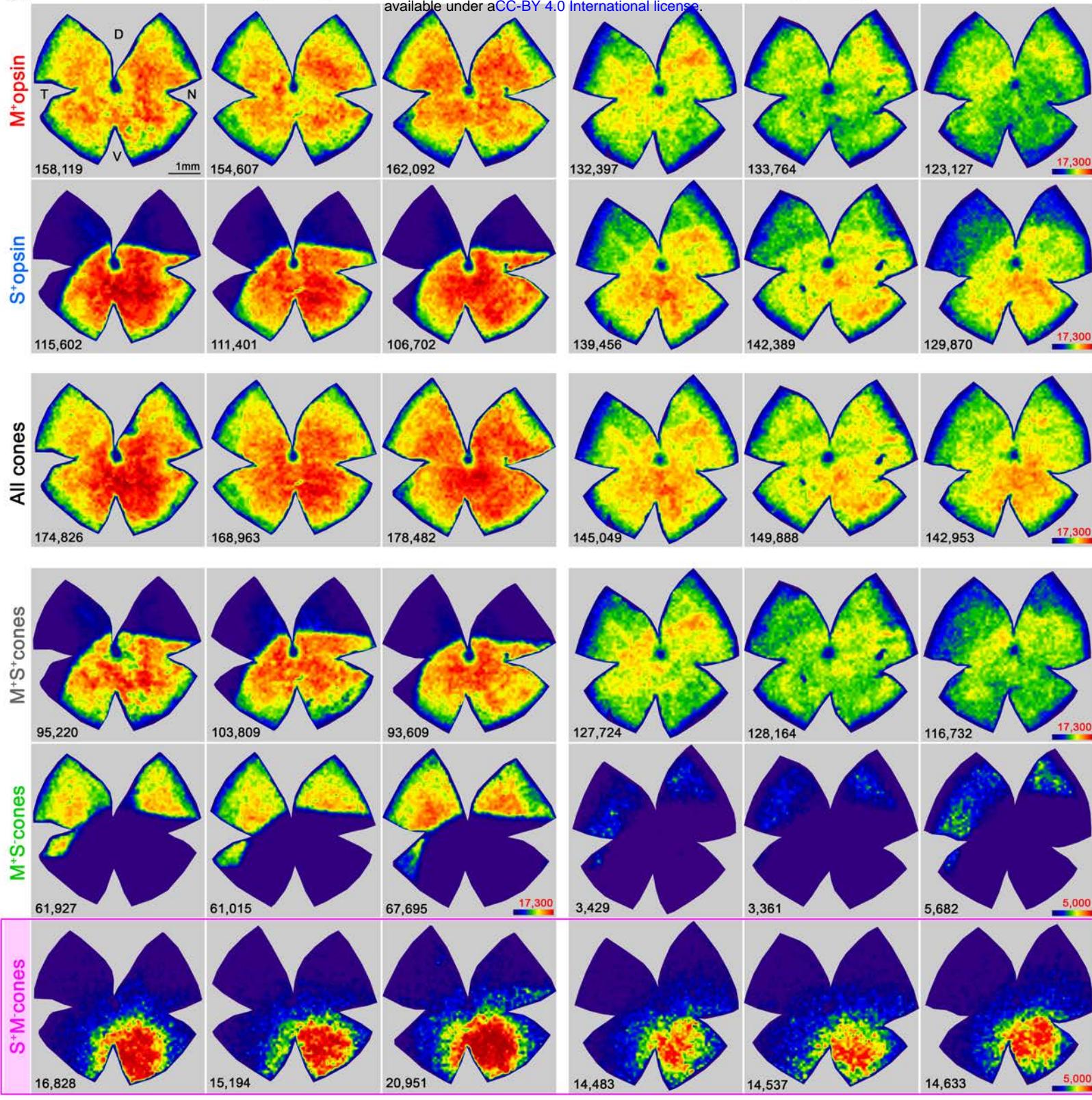
607 generated by first using a simple mutual repulsion simulation to maximize the distances between
608 true S-cones, followed by assigning the nearest positions among all cone locations as being “true
609 S”. “Shuffled” populations of true S-cones were generated by permuting cone identities randomly
610 among all cone locations, holding the proportion of true S-cones constant. Voronoi diagrams,
611 neighbor calculations, and mosaic generation and other computations were performed using
612 MATLAB R2016b.

613

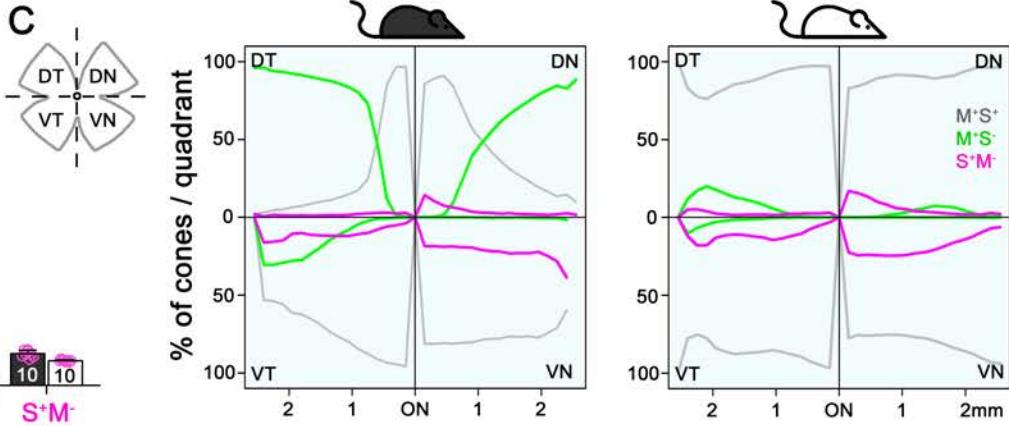
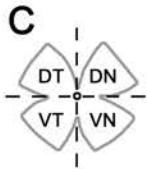
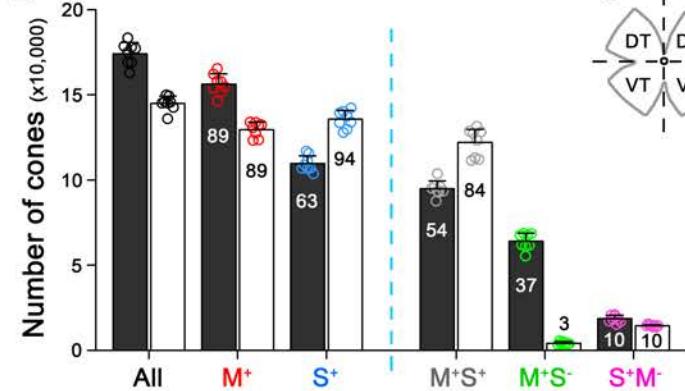
614 **10.3.10. Retinal reconstruction and visuotopic projection**

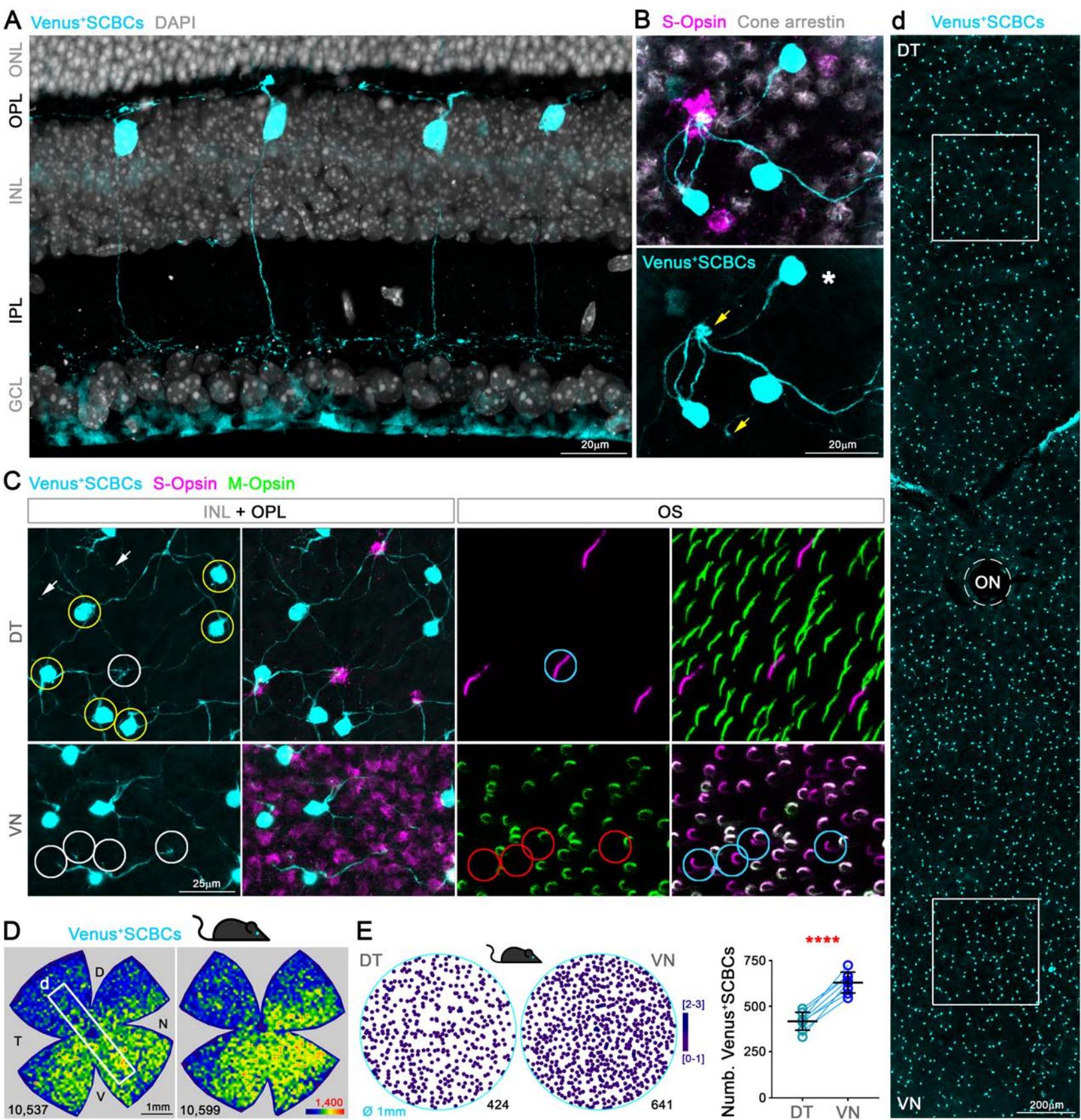

615 Retinal images were reconstructed and projected into visual space using R software v.3.5.2 for
616 64-bit Microsoft Windows using Retistruct v.0.6.2 as in (Sterratt et al., 2013). Reconstruction
617 parameters from that citation were used: namely, a rim angle of 112° ($\text{phi}_0 = 22^\circ$), and eye
618 orientation angles of 22° (elevation) and 64° (azimuthal). For Figure S2, true s-cone density
619 contour lines and heatmaps were computed in MATLAB and overlaid onto flat-mount retina opsin
620 labeling images using ImageJ prior to processing by Retistruct.

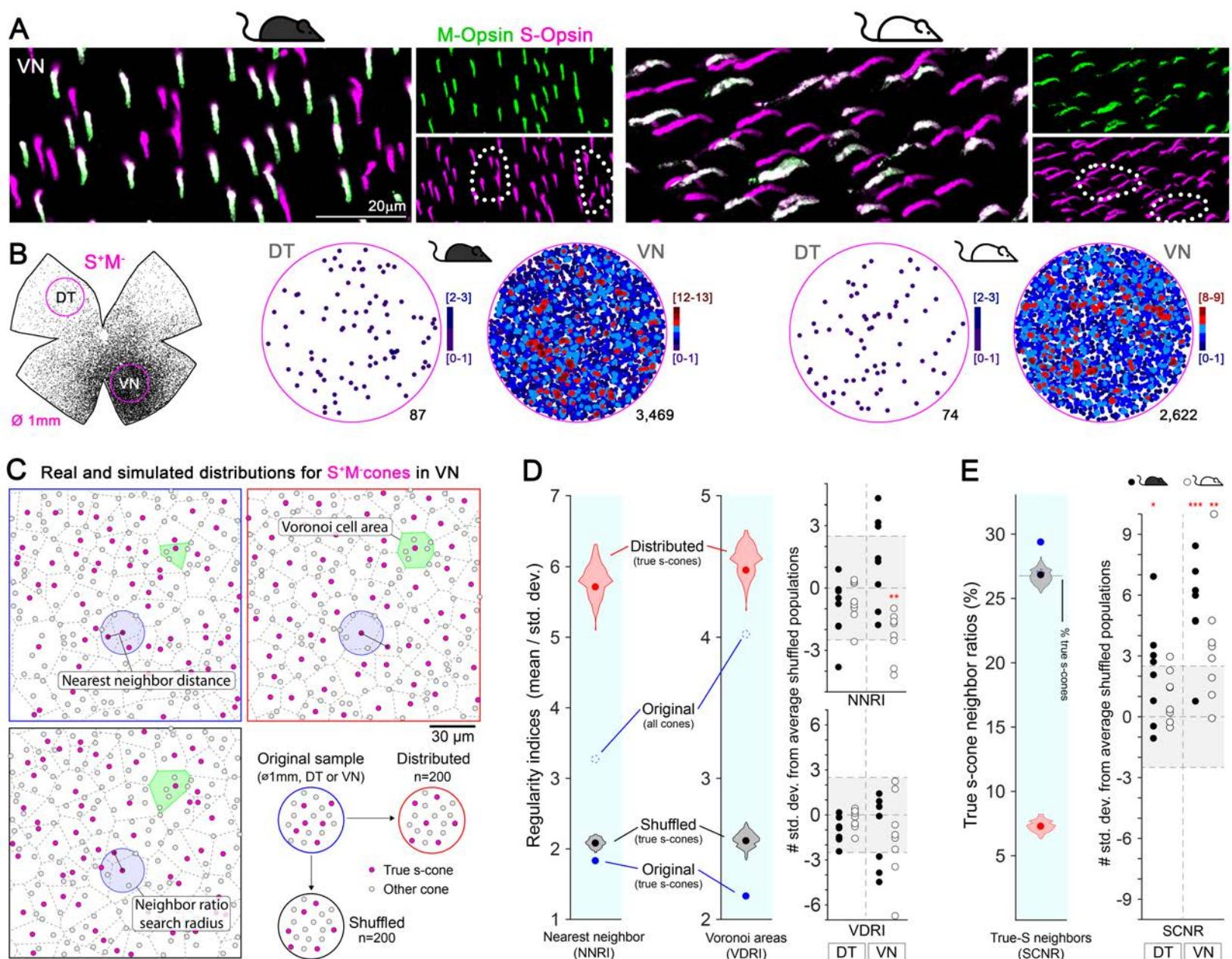
621

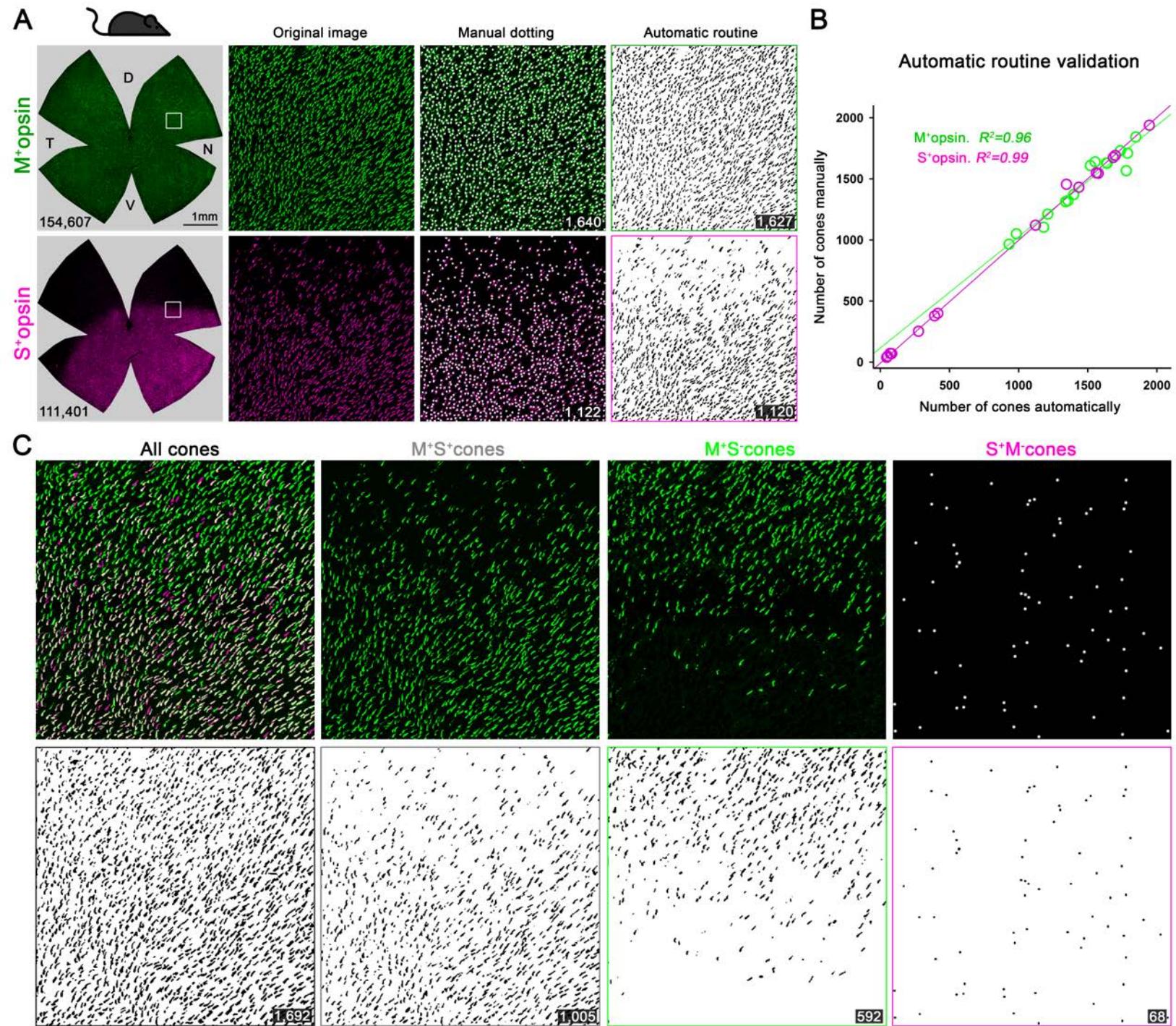

622 **10.3.11. Statistical analysis**

623 Statistical comparisons for the percentage of cones/retinal location, the total cone
624 quantifications (Table S1) and the DT or VN true S-cones and Venus⁺SCBCs (Table S2) were carried
625 out using GraphPad Prism v8.3 for Microsoft Windows. Data are presented as mean \pm standard
626 deviation. All data sets passed the D'Agostino-Pearson test for normality, and the comparisons
627 between strains were performed with Student's *t*-test.

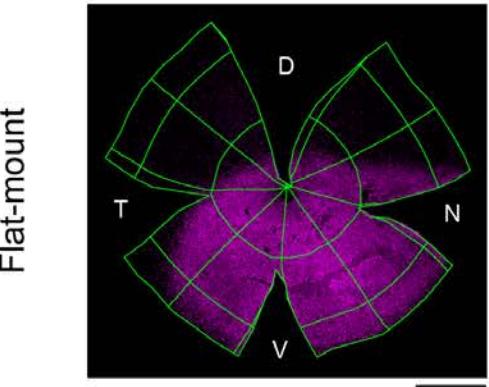



628 For each 1mm retinal sample, VDRI, NNRI, and SCNR values were normalized and compared to
629 the distributions of “shuffled” cone populations. Such comparisons were not performed against
630 “distributed” populations, because in those populations, VDRI and NNRI values were consistently
631 much higher—and SCNR much lower—than in real samples (see Fig. 4D-E). The “shuffled”
632 populations for each retinal region produced measurements that were well described by normal
633 distributions (Kolmogorov-Smirnov test, MATLAB). Thus, to allow comparisons across samples,
634 we converted each measurement into a Z-score using the mean and standard deviation of those
635 measures from shuffled populations. One-tailed Student's *t*-tests were performed to compare
636 the normalized measures to the distribution of “randomly shuffled” cone population measures,
637 and significance was determined at the $p < 0.05$ level.

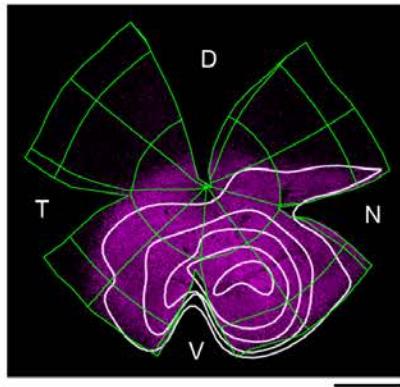


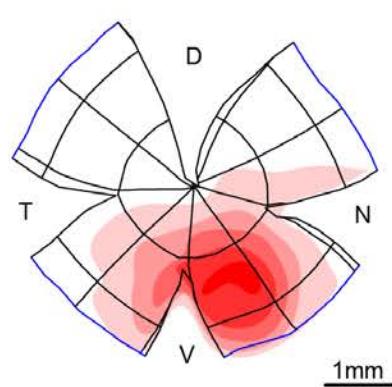

A



B

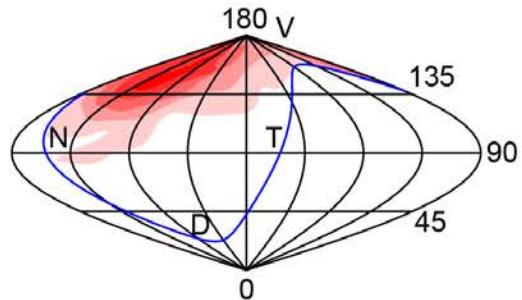
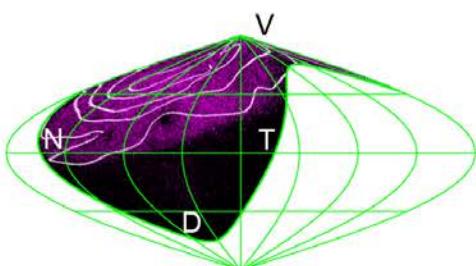
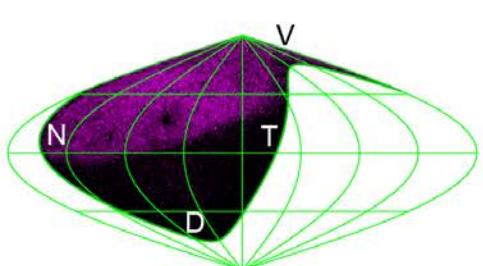
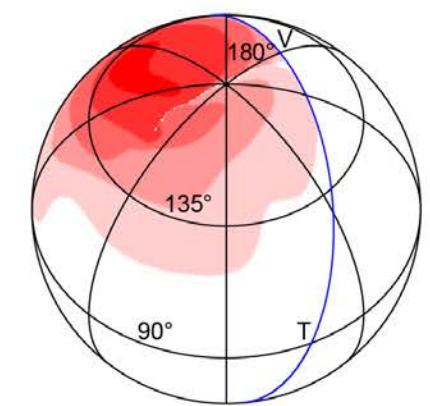
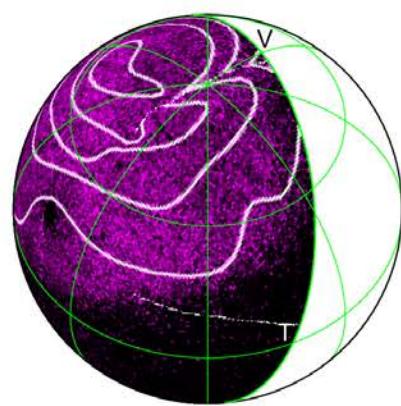
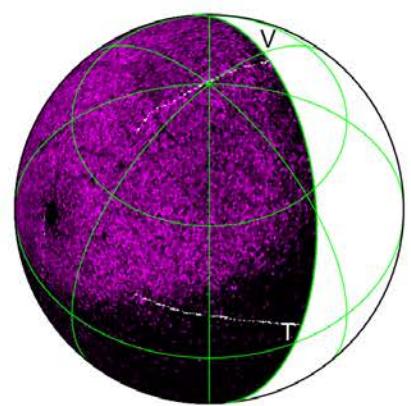
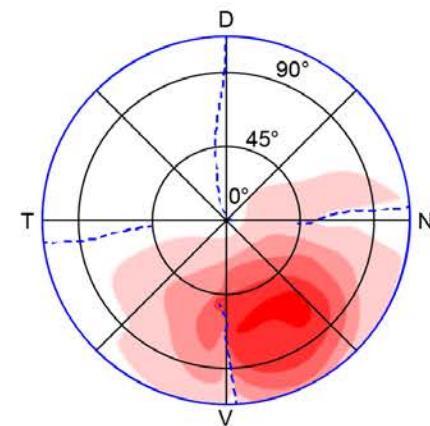
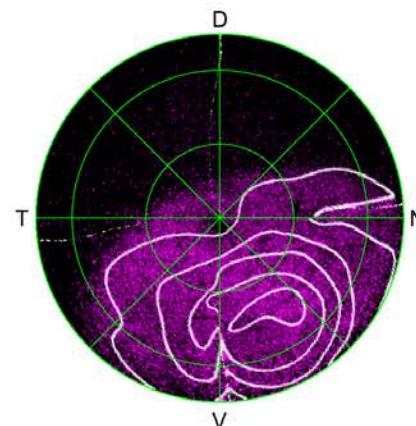
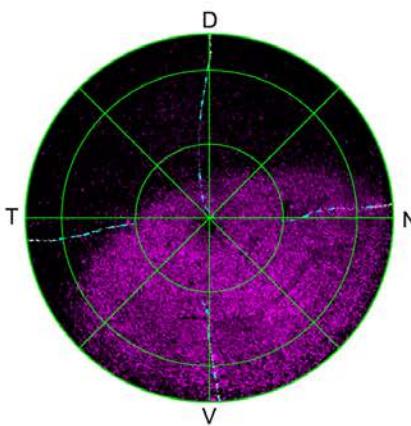





A
S-opsin
immunohistochemistry

B
True s-cones,
Density contours

C
True s-cone
density heatmap

Retinal space

Reconstructed

Visual space

Sinusoidal projection

