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Abstract  

Understanding B cell evolution following vaccination or infection is crucial for 

instructing targeted immunotherapies when searching for potential therapeutic or 
virus-neutralizing antibodies. Antibody phylogenetics holds the potential to quantify 

both clonal selection and somatic hypermutation, two key players shaping B cell 
evolution. A wide range of bioinformatic pipelines and phylogenetic inference 

methods have been utilized on antibody repertoire sequencing datasets to delineate 
B cell evolution. Although the majority of B cell repertoire studies incorporate some 

aspect of antibody evolution, how the chosen computational methods affect the 
results is largely ignored. Therefore, we performed an extensive computational 

analysis on time-resolved antibody repertoire sequencing data to better characterize 
how commonly employed bioinformatic practices influence conclusions regarding 

antibody selection and evolution. Our findings reveal that different combinations of 
clonal lineage assignment strategies, phylogenetic inference methods, and biological 

sampling affect the inferred size, mutation rates, and topologies of B cell lineages in 
response to virus infection.   
 

Introduction 

B cells are important for the clearance and neutralization of various infectious 
pathogens via interactions of their characteristic B cell receptor (BCR, or secreted 
version: antibodies). Sophisticated molecular mechanisms generate an ensemble of 

antibodies capable to interact with a vast number of foreign antigens. Part of this 
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diversity is achieved through the initial somatic recombination of variable (V), diversity 
(D), and joining (J) germline segments, which together encode for the antigen-binding 

region of the antibody (Tonegawa, 1983). Further diversity is introduced via somatic 
hypermutation (SHM), in which mutations are selectively introduced into the antibody 

locus (Di Noia and Neuberger, 2007; Methot and Di Noia, 2017). These mutations can 
increase the binding strength to a particular antigen (referred to as affinity maturation) 

and occasionally confer a neutralizing phenotype against a particular pathogen. 
Some HIV-neutralizing antibodies, for example, require multiple rounds of SHM over 

long periods of time to induce neutralizing capabilities against a wide range of HIV 
strains (Wu et al., 2015; LaBranche et al., 2018; Landais and Moore, 2018; Klein et 

al., 2013). One can then compare these broadly neutralizing antibodies to the 

unmutated germline common ancestor (i.e. the original V-D-J recombined ancestor 
before SHM) to both identify critical mutations for pathogen neutralization and to 

discover new pathogen-binding variants (LaBranche et al., 2018).  

The advent of high-throughput sequencing has allowed an unprecedented resolution 
with which B cell dynamics can be studied during infection. High-throughput 

immunoglobulin repertoire sequencing (Ig-seq) experiments aim to isolate and 
describe co-existing B cell populations within an organism, providing thousands to 

millions of sequences for subsequent analyses (Georgiou et al., 2014; Miho et al., 

2018). While these sequencing reads contain the evolutionary histories of multiple, 
independent monoclonal antibody lineages, how exactly this multitude of data should 
be processed remains unclear. The general pipeline involves first assigning reads to 

a single antibody lineage based on some similarity criteria (e.g., germline genes, 
sequencing homology, CDR3 lengths), with the goal of clustering all sequences 

arising from a single V-D-J recombination event (Yermanos et al., 2018). The 

sequences for each clonal lineage are then used as input to a phylogenetic inference 
method, thereby producing a phylogenetic tree in which the recovered sequences 

are the tips and the root is the unmutated germline ancestor. These phylogenetic 
trees can then be compared using metrics such as branch lengths, number of 

sequences per tree, or tree imbalance, both within and across individuals. Previous 
work has demonstrated that phylogenetics can aid discovery of virus-specific 

antibodies (Zhu, Wu, et al., 2013). However, extracting relevant biological information 
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from the mass of phylogenetic trees co-evolving within a single host, which we refer 
to as the “antibody forest”, remains less straightforward. While many different tools 

and bioinformatics practices exist, specifically for clonal lineage analysis (Ralph and 
Matsen IV, 2016; Briney et al., 2016; Schramm et al., 2016; Gupta et al., 2015, 2015), 

it remains unclear how custom pipelines of clonal lineage assignment, phylogenetic 

inference, and topological analysis impact our understanding and interpretation of B 
cell evolution.  

In the case of assigning reads to a given V-D-J recombination event, some 
publications have relied solely upon V- and J-gene usage, whereas others have 

implemented requirements pertaining to complementary determining region 3 (CDR3) 
lengths or sequence homology (Bhiman et al., 2015; Bonsignori et al., 2016; Doria-

Rose et al., 2014; Jackson et al., 2014; Soto et al., 2016; Stern et al., 2014). 

Furthermore, there exist several methods to construct phylogenetic trees, including 
distance-based metrics, maximum likelihood (ML), maximum parsimony (MP), and 

Bayesian inference (Stamatakis, 2006; Gascuel, 2006; Bouckaert et al., 2014). While 

there exist multiple simulation tools capable of exploring how inference method 
impacts the resulting phylogenetic trees derived from simulated B cell data 

(Yermanos et al., 2017; Davidsen and Matsen IV, 2018; Safonova et al., 2015; Weber 
et al., 2019), the extent of this influence on the evolutionary conclusions on 

experimental data remains largely unexplored. It remains unknown, for example, the 

extent of which the phylogenetic inference strategy impacts the biological 
conclusions pertaining to the evolutionary landscape across various infection 

cohorts.  
Here, we explored how various bioinformatics pipelines shape evolutionary 

conclusions arising from Ig-Seq experiments. Using previously published time-
resolved Ig-Seq experiments from blood-derived B cell and bone marrow (BM) PC 

(PC) repertoires (Kräutler et al., 2020), we analyzed the robustness of multiple 
conclusions based on phylogenetic analyses for three cohorts: uninfected mice, mice 

infected with low dose (acute) lymphocytic choriomeningitis virus (LCMV), and mice 
infected with high dose (chronic) LCMV. This unique experimental model provides a 

system in which a viral infection is either cleared within two weeks (in the case of the 
low-dose, acute infection) in a primarily CD8 T+ cell dependent manner or over the 
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course of months in the case of mice receiving the high dose infection. It was 
expected that these three cohorts have distinct B cell evolutionary profiles given the 

sustained presence of virus and germinal centers in the case of chronic infected mice 
compared to the other two cohorts. 

In particular, we investigated how (i) clonal lineage assignment strategies, (ii) 
phylogenetic reconstruction strategies, and (iii) biological sample strategies impacted 

results. First, we show that properties of the clonal lineages including size and 
number of trees highly depend upon the initial rooting strategies. Second, the 

resulting phylogenies depend upon the chosen inference method despite using the 
same B cell sequences as input. Furthermore, we demonstrated that leveraging 

known reference germline information improves Bayesian reconstruction of certain 
parameters, such as tree height. Finally, we observed that clonal lineage strategies 

and phylogenetic inference methods impact size and temporal resolution of public 
clonal lineages. Our findings both suggest a degree of caution when interpreting Ig-

Seq data and highlight the importance of benchmarking pipelines commonly 
employed in systems immunology. 

 
Results 

Rooting strategy influences number, size and time-resolution of clonal lineages 

Assigning sequences from bulk Ig-seq data is typically one of the first steps in 
reconstructing B cell clonal lineages (Yermanos et al., 2018). Although multiple tools 

specifically tailored to clonal lineage assignment now exist (Ralph and Matsen IV, 
2016; Briney et al., 2016; Schramm et al., 2016; Safonova and Pevzner, 2019), a vast 

number of studies have performed some variation of first aligning the recovered 

antibody sequences to the reference germline sequences and subsequently 
clustering based on germline gene usage, edit distance sequence homology and/or 
CDR3 length (Stern et al., 2014; Doria-Rose et al., 2014; Bhiman et al., 2015; Tsioris 

et al., 2015). While different germline aligner tools have been previously compared 

(Marcou et al., 2018), how the aligner tools impact the repertoire fingerprint remains 

less characterized. We therefore compared the influence of various clonal lineage 

assignment pipelines following identical germline assignment of when analyzing 
recently published time-resolved Ig-Seq data (Kräutler et al., 2020). This sequencing 

data set consists of bulk heavy chain sequencing from 15 mice of the three different 
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previously mentioned cohorts (uninfected, acute LCMV and chronic LCMV infection) 
and provides a unique opportunity to compare the influence of the bioinformatics 

processing pipeline across both multiple individuals and cohorts (Figure 1A). Ten 
mice were infected with either low- or high-dose LCMV (nhigh-dose=5, nlow-dose=5), 

resulting in acute (resolved within two weeks) and chronic infections (resolved after 
months), respectively. Furthermore, five uninfected mice were included as a control. 

For each mouse (excluding one acute mouse), blood samples at 10, 20, 50, 60 and 
70 days post infection (dpi) and bone marrow PCs (a subset of antibody secreting B 

cells) 70 dpi were collected, in all samples the heavy chain repertoires were subjected 
to Ig-seq (Kräutler et al., 2020).  

We first aligned the sequencing reads for each repertoire to the murine reference 

germline segments and subsequently defined clonotypes by the full-length VDJ 
region using MiXCR (Bolotin et al., 2015). After grouping all unique full-length VDJ 

nucleotide sequences for each mouse, we first asked how the quantity of clonal 
lineages for each mouse was impacted by clonal lineage assignment. We thereby 

assigned full-length VDJ sequences to a given clonal lineage if they shared the 
following characteristics: i) identical V- and J-gene germline segments (VJ), ii) 

identical V- and J-gene combination with the same CDR3 length (VJ_CDR3), iii) 
identical V- and J-gene combination with both the same CDR3 length and at least 

70% CDR3 edit distance homology (VJ_CDR3_70), iv) and identical V-, D- and J-gene 
assignment with the same CDR3 length (VDJ_CDR3) (Figures 1B, S1A). Enumerating 

the number of clonal lineages per mouse revealed major discrepancies when 
comparing the size of the antibody forest for each of the aforementioned rooting 

methods (Figure 1B). Indeed, some rooting strategies, such as grouping sequences 
by V- and J-genes greatly reduced the number of clonal lineages for each mouse 

(Figure 1B, S1A). Other more stringent strategies to assign sequences to a given 
clonal family increased the number of clonal lineages as one may expect (Figure 1B). 

For all strategies, excluding grouping solely by V- and J-gene usage, the trends for 
both individual mice and cohort remained consistent despite the fact that the 

absolute number of clonal lineages varied across the different parameter settings 
(Figure 1B, S1A). This involved all mice infected with LCMV having more clonal 
lineages than the uninfected counterpart. This pattern was similarly observed when 
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looking at the number of sequences per clonal lineage across each cohort (Figure 1C, 
S1B). We then quantified how the rooting strategy impacted the earliest time point 

observed within each clonal family, indicative of the time a given B cell was recruited 
into the immune response. Our analysis revealed that across all conditions the 

chronic cohort revealed a large proportion (at least 10%) of lineages that were first 
sampled at 20 dpi. While this continued recruitment of new clonal lineages during 

chronic viral infection was seen across all rooting strategies, the pipeline largely 
determined whether the majority of trees were seen already at 10 dpi or first at 70 dpi 

(Figure 1D). Finally, we asked how the number of time points per clonal lineage was 
impacted by the lineage assignment strategy. Similar to the earlier seen time point, 

the trend that chronically infected mice had more unique time points represented in 
each clonal lineage remained constant (Figure S2). Together, these results indicate 

that the number and size of clonal lineages is influenced by the rooting strategy, but 
after a certain threshold of stringency, for example, by forcing lineages to share 

identical CDR3 length or a high degree of homology, the trend across cohorts remains 
relatively stable. However, the temporal resolution (i.e. number of time points and 

earliest time point) of the clonal lineages produced partially contradicting 
conclusions, pending on imposing a homology requirement upon sharing V- and J-

genes plus CDR3 length or not.  

  

Phylogenetic inference strategy alters tree topology  

After observing the variability introduced solely due to the clonal lineage assignment 

strategy, we next questioned whether this noise was compounded by the 
phylogenetic inference method. Multiple inference methods and tools have been 

applied to Ig-seq data, including neighbor joining, maximum parsimony, maximum 
likelihood and Bayesian analysis (Jackson et al., 2014; Stern et al., 2014; Wu et al., 

2015; Zhou et al., 2013; de Bourcy et al., 2017). We initially quantified whether two 

different inference methods resulted in identical tree topologies for the four 
aforementioned rooting strategies. Surprisingly, there was only minor congruence 

between tree topologies after inputting identical sequences into either neighbor 
joining or maximum likelihood pipelines (Figures 2A-C). For example, two distinct 

topologies were produced from identical sequences for a randomly selected clonal 
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lineage from a chronically infected mouse (Figure 2A). Indeed, this phenomenon of 
divergent topologies despite identical input sequences was observed for all rooting 

strategies, with the V-J rooting strategy showing the highest divergence (Figure 2B). 
The more stringent methods requiring either identical CDR3 length, D-gene 

alignment, or a sequence homology threshold still resulted in merely ~30% of trees 
possessing identical topologies (ignoring branch length differences) (Figure 2B). Next, 

we questioned how similar the topology structure was for lineages containing 
identical sequences yet produced using different inference methods. For this, we 

calculated the normalized Robinson-Foulds (RF) distance, a commonly used metric 
that quantifies the number of partitions unique to each tree (RF distance of 0 = 

identical trees) (Robinson and Foulds, 1981). Similar to the percent of identical trees, 
the normalized RF distance revealed that the rooting method dramatically impacts 

how similar the topologies are despite identical input sequences, with the two most 
stringent rooting methods (VJ_CDR3_70 and VDJ_CDR3) possessing the lowest RF 

distances.  
After observing such low agreement in tree topologies inferred using different 

methods for each clonal lineage, we questioned whether these topological 
differences alter metrics summarizing the trees. We first calculated the Laplacian 

spectra, a recently described metric that infers phylogenetic properties based on the 
underlying graph structure (Lewitus and Morlon, 2016), for all trees under the different 
rooting conditions. Plotting the spectral density from the exemplary trees (Figure 2A) 

revealed that, indeed, dramatic visual differences were distinguishable between the 
two phylogenetic inference methods (Figure 2D). To quantify this across mice and 

cohorts, we calculated the mean of multiple metrics describing the Laplacian spectra, 
such as the asymmetry, skewness, peakedness and the number of modalities 

(Lewitus and Morlon, 2016) and performed principal component analysis. A clear 
separation between the two inference methods was observed (Figure 2E). While the 

mouse-specific trend was somewhat constant for some mice (e.g. location of mouse 
A4 relative to the other mice in both conditions), for others the relative position 

dramatically shifted (e.g. C5 and N2 were much closer together for NJ trees and more 
distant for ML trees) (Figure 2E). We finally asked if other metrics that quantify tree 

imbalance produced similar discrepancies between the NJ and ML inference 
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pipelines. To this end, we quantified the Colless number, a metric describing the 
balance of all internal nodes within a clonal lineage (Colless, 1982), for each NJ and 

ML tree across the three cohorts. Overall, the Colless number for trees containing 
identical sequences and potentially different topologies was similarly correlated 

across all three cohorts (r2=~0.6) (Figure 2F). Interestingly, those trees with higher 
Colless numbers showed more variability between NJ and ML methods, with some 

trees completely imbalanced (normalized Colless number = 1) in one method and not 
in the other. Taken together, our data suggest that the phylogenetic inference method 

influences tree topology and biological conclusions. 
 

Incorporating reference germline into Bayesian phylogenetics 

In order to produce a rooted tree in the context of B cell evolution, both ML and NJ 

methods require setting the unmutated reference germline segments as the outgroup. 
In contrast, the Bayesian phylogenetic inference program BEAST inherently produces 

a rooted topology without the need to explicitly specify an outgroup. This strategy, 
however, completely ignores any prior information regarding known reference 

germline sequences and potentially worsens estimation of mutation rates and 
evolutionary distance. While there is the option to specify the germline sequence as 

a monophyletic taxon in BEAST, how this influences the resulting clonal lineage 
remains unexplored. We therefore asked how either including or excluding the 

reference germline gene segments impacted the clonal lineages for each of the 
aforementioned rooting strategies while keeping all other parameters constant. To 

answer this, we randomly sampled 50 time-resolved (containing sequences from 
more than 1 time point) clonal families per cohort for the four different rooting 
strategies and estimated the Bayesian phylogenetic trees. We assessed how 

topology and parameters were impacted for the different settings (Figure 3A). We 
immediately observed stark differences in tree structure between those clonal 

lineages with or without the germline (Figure 3B). Surprisingly, this not only included 
differing branch lengths but also the topology of the maximum clade credibility (MCC) 

tree, as demonstrated by the presence of clades containing altered clonal 
relationships despite identical sequences between trees (Figure 3B). After visualizing 

these differences between trees either containing or excluding the reference 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.20.000521doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.20.000521
http://creativecommons.org/licenses/by-nc-nd/4.0/


germline, we decided to quantify how various output parameters from BEAST were 
impacted across the different rooting strategies. We first calculated how correlated 

the mean posterior probability was for each tree containing identical sequences 
excluding the reference germline for those clonal lineages grouped by V- and J-genes 

plus CDR3 length (Figure 3C). While there was high correlation between the mean 
posterior probability for all cohorts, cohort specific differences were observed for 

those trees arising from uninfected versus infected mice (Figure 3C). We finally asked 
if this trend was consistent across the four different rooting methods. To quantify this, 

we calculated the log2 ratio for multiple output parameters from BEAST, including the 
mean posterior probability, substitution rate, tree height and accompanying effective 

sampling size values (Figures 3D, 3E, S3). This analysis demonstrated effects arising 
from both infection status and clonal lineage assignment strategy across multiple 

parameters. The trend that acute and chronic trees had a higher posterior probability, 
decreased tree height, and increased ESS values when the reference germline was 

included as the monophyletic group was consistent across rooting strategies (Figure 
S3). A similar trend was observed when comparing the mean substitution rate for 

each tree, with the inclusion of the reference germline consistently resulting in a 
increased substitution rate and decreased tree height for the acutely and chronically 

infected cohorts (Figure 3D, 3E, S3). While the ESS values for identical MCMC chain 
lengths for the substitution rate and posterior probability were comparable between 
trees either with or without the reference germline included, the ESS values for tree 

height were consistently higher for those trees including the germline sequence 
(Figure S3). Indeed, the mean tree heights were on average closer to 70 days when 

the germline reference sequences were set as the monophyletic outgroup, which 
closely resembles the actual biological sampling and infection scheme (Figure 3E). 

Together these data show that incorporating germline information in a Bayesian 
phylogenetic framework alters tree topology and accompanying parameter 

estimates, in addition to improving tree height estimates.   
 

Different strategies impact the inferred public clonal lineages  

While the presence of identical B cell receptor sequences shared across multiple 

individuals (public clones) has been previously reported, how these public clones 
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evolve across multiple individuals has not been thoroughly studied. Cross-donor 
phylogenies are a useful approach to infer the evolutionary history from closely 

related clones across multiple individuals (Zhou et al., 2013). This involves performing 

the aforementioned clonal lineage assignment process on all sequences across all 
individuals and subsequently inferring the phylogenetic tree using the germline 

reference as the root. Therefore, we wanted to characterize how the various clonal 
lineage assignment methods dictated the biological conclusions regarding 

convergent selection of “public clonal lineages”, or clonal families containing 
sequences from multiple mice. After clustering sequences and inferring phylogenetic 

trees, we analyzed how many trees contained sequences from multiple cohorts 
(Figures 4A, 4B). We immediately observed that grouping sequences sharing V- and 

J-gene segments resulted with the majority of cross-donor phylogenies containing B 
cells from all three cohorts (Figure 4B). Indeed, we observed that this proportion of 

public lineages decreased upon implementing more stringent clonal assignment 
strategies, with more “cohort-private” lineages arising when requiring identical CDR3 
length, sequence homology or identical D-gene alignment. There was higher public 

lineage overlap between the chronic and acute cohorts, as one might expect due to 
their similar infection histories. Surprisingly, the rooting strategy influenced the 

proportion of trees containing either chronically and acutely infected mice or all three 
cohorts, even between those rooting strategies differing only by a homology 

requirement (Figure 4B). Similarly, differences between the VJ_CDR3 and 
VJ_CDR3_70 rooting strategies were observed when comparing the average 

representation of each mouse in the cross-donor phylogenies (Figure 4C). There was 
a small proportion of trees containing all mice from the given cohort when grouping 

by VJ_CDR3, but this was no longer observed after incorporating either a homology 
threshold or demanding matching D-gene alignments (Figure 4C).  

We next questioned if the four distinct clonal family assignment strategies impacted 
the mutational burden for the two infected cohorts. To answer this, we first computed 

the maximum number of mutations from the reference germline sequence for each 
clonal lineage containing both chronic and acute sequences (Figure 4D). Next, we 

calculated and plotted the difference of maximum mutational burden between the 
two cohorts for each of the previously selected cross-donor phylogenies. 
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Enumerating the number of trees with chronic-dominated or acute-dominated 
mutational load revealed that the clonal rooting strategy had little impact on the trend 

that both cohorts underwent similar degrees of somatic hypermutation (Figure 4E). 
Surprised by this finding, we finally investigated whether differences in temporal-

resolution were present in those cross-donor trees. We therefore quantified the 
proportion of sequences from each time point within the public clonal lineages shared 

between the acutely and chronically infected cohorts (Figure 4F). Our analysis 
revealed that the public clonal lineages, on average, contain a higher number of 

sequences from each time point before the terminal sacrifice (Figure 4F), consistent 
with previous findings (Kräutler et al., 2020).  

 

Biological sampling influences phylogenetic fingerprint 

Our previous analyses revealed that the computational processing pipeline 

dramatically influences the resulting repertoire phylogenetic snapshot. In our 
comparison, we employed multiple, time-resolved, biological samples for each 

mouse, including both blood and bone marrow B cell repertoires. However, peripheral 
immune organs are rarely available in the case of human antibody repertoire 

sequencing, prompting the question of how well does the phylogenetic fingerprint 
from the blood match that of lymphoid tissues. Furthermore, the impact of the rooting 
strategy may further exacerbate differences arising due to biological sampling 

limitations. To better characterize the interplay between the rooting strategy and 
biological sampling, we inferred the evolutionary history for clonal lineages containing 

sequences from either all blood repertoires for a given mouse (10, 20, 50, 60, 70 dpi), 
only blood repertoires 70 dpi, or only the PC repertoire 70 dpi (Figure 5A). While both 

pooling all blood repertoires or including solely PC repertoires again revealed a trend 
that chronically infected mice had a higher number of clonal lineages despite the 

same amount of starting biological material, when considering only repertoires at 70 
dpi the acutely infected animals actually contained the most clonal lineages per 

mouse (Figures 5A). The rooting strategy did not, however, largely impact the mouse- 
and cohort-specific effects excluding the VJ rooting strategy where all three cohorts 

had similar number of clonal lineages (Figure 5A). When quantifying the size of these 
clonal lineages, the acute cohort again showed, on average, clonal lineages 
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containing more sequences than the other two cohorts. This effect was not observed 
in the other two sampling schemes where only PC or pooled blood repertoires were 

included, possibly due to the lack of LCMV-specific B cells in circulation in the acute 
and naïve cohorts. Despite these differences in the quantity and size of the clonal 

lineages per each cohort, more subtle differences were observed when employing 
metrics that quantify tree imbalance, such as the Colless number and the Sackin 

index (Figure S4). Taken together, these data indicate potential drawbacks from 
sampling B cell repertoires at a single time point.   

 

Discussion 

Here we have systematically characterized the influence of the bioinformatics and 
phylogenetic pipeline on the interpretation of antibody repertoire sequencing data. 

The strategies discussed here have widely been incorporated in previous studies 
analyzing B cell data (Stern et al., 2014; Tsioris et al., 2015; Jackson et al., 2014; 

Heiden et al., 2017; Vollmers et al., 2013; Wu et al., 2015; Zhu, Ofek, et al., 2013). It 

remains unclear, however, just how robust these biological conclusions are to 
parameter and pipeline variation. We therefore utilized a time-resolved antibody 

repertoire sequencing data set where B cell repertoires from both blood and lymphoid 
organs were sequenced for multiple mice across three different cohorts. The three 

cohorts (uninfected, acutely infected, and chronically infected) represent three 
conditions in which differing selective pressures would be expected given the 

importance of B cells in the clearance of chronic LCMV virus (Battegay et al., 1993; 

Hangartner et al., 2003). We could thereby use identical B cell sequences as input to 

various clonal lineage assignment strategies and phylogenetic inference strategies 
and compare how the mouse- and cohort-specific phylogenetic fingerprint was 
impacted. Our results stress both the need for caution when interpreting evolutionary 

conclusions arising from bulk Ig-seq experiments and reveal certain pitfalls to be 
avoided when conducting such an analysis.  

One of the most apparent findings from our analyses is that the clonal lineage 
assignment strategy can dramatically alter metrics describing the size and number of 

clonal lineages (Figures 1, 5), the tree topology (Figures 2, 3), the mutational burden 
(Figures 3, 4) and the degree of convergent selection between cohorts (Figure 4). The 
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various clonal lineage assignment strategies all relied upon an initial alignment to the 
reference murine germline V-, D- and J-genes, a practice common to many Ig-seq 

studies. Certain heuristics were additionally applied to some groups, including a 
CDR3 length requirement due to the biological evidence for minor insertions and 

deletions during somatic hypermutation (Smith et al., 1996) or a certain degree of 

homology across the CDR3 region. While imposing a restriction upon the CDR3 
length has a biological basis and is minorly impacted by parameter fine-tuning, 

imposing homology requirements upon clonal lineages can vary the biological results 
compared to simply grouping by V- and J-gene germline alignment and CDR3 length 

alone. Recently, multiple tools have been specifically developed to perform clonal 
lineage assignment without the need to set arbitrary thresholds (Ralph and Matsen 

IV, 2016; Briney et al., 2016). The continued validation of such tools on both simulated 
and experimental data, in addition to increasing the user-accessibility, will hopefully 

move the field towards a consensus regarding rooting strategies.  
The goal of the phylogenetic analysis further dictates how necessary it is to 

benchmark multiple pipelines. For example, previous work has utilized Ig-seq data 
and phylogenetics to discover novel HIV-neutralizing antibodies by selecting B cell 

sequences closely related to a known antibody (Zhu, Ofek, et al., 2013). In this 

particular example, sequences were assigned to the tree if they contained the same 
V- and J-gene germline elements. This choice of rooting strategy would not 

necessarily alter which antibodies are closest to the known HIV-neutralizing antibody, 
and thereby would not have impacted candidate selection. Other work describing the 

evolution of HIV-specific antibodies grouped B cell sequences to the clonal family of 
a known neutralizing antibody in a similar method and subsequently calculated the 

mutation rate using BEAST (Wu et al., 2015). Our findings suggest that other methods 
of clonal lineage assignment would impact this inferred mutation rate and further 

stress the need for caution when interpreting such a metric.  
While the clonal lineage assignment strategy may not directly impact the 

aforementioned HIV-neutralizing candidate selection, our results suggest that the 
phylogenetic inference method would have substantial consequences (Figure 2). We 

observed extremely low convergence of phylogenetic tree topologies inferred using 
two different methods on identical input sequences (Figures 2A-2C). Increasing the 
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stringency of the rooting strategy resulted in high convergence between the inference 
methods, presumably because the sequences included in each clonal lineage are 

necessarily more similar than if one were to only group by V- and J-genes. Consistent 
with our findings that distinct topologies were produced by the two inference 

methods, we observed differences in the accompanying metrics quantifying tree 
structure when comparing clonal lineages with identical sequences (Figure 2D-F). 

While the Colless number remained highly correlated for all three cohorts when 
comparing trees produced using identical input sequences, we observed that the 

variation increased trees with larger normalized balance. This high degree of 
correlation suggests an irrelevance of the phylogenetic inference method when 

considering downstream conclusions; other metrics such as the Laplacian spectra 
were able to clearly separate the two methods, further highlighting the influence the 

tree inference method holds. It is worth mentioning, however, that our inference 
pipelines did not incorporate B cell specific substitution models or include clonal 

frequency information, both of which are crucial biological considerations to the 
humoral response. Further work validating and comparing the various tools 

incorporating these two considerations (Yaari et al., 2013; Hoehn et al., 2017; DeWitt 
et al., 2018) may reveal even more dramatic differences between inference methods. 

Future studies could additionally investigate how incorporating dependences 

between clonal lineages within a single repertoire influences the overarching 
evolutionary landscape (Hoehn et al., 2019).  

We have additionally demonstrated a potential benefit to including the reference 

germline as the monophyletic group when estimating tree heights and mutation rates 
in a Bayesian framework. This benefit seems to be particularly clear for the clonal 

lineages of acutely and chronically infected mice, indicated by both higher ESS values 
despite the same chain length of the MCMC algorithm and that the estimated tree 
heights more closely resembled the span of the experiment of 70 days (Figures 3E, 

S3). How to exactly use the reference germline as the monophyletic group in calendar 
time remains relatively unexplored, but has important repercussions for the 

aforementioned Bayesian analysis of HIV neutralizing antibodies (Wu et al., 2015). 

Here we set the sampling time (tip date in terms of BEAST) monophyletic group to 
one day after the start of the infection. This assumes that evolution of the given clonal 
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lineage begins upon infection, and implies that finding the initial precursor B cell at a 
later time point has low probability. This may partially account for why the naïve 

cohort behaved differently than the other two infection cohorts when the reference 
germline was included. More analysis is required to understand if incorporating a 

sliding window root height for the monophyletic group would benefit those clonal 
lineages that are later recruited into the B cell response or when the onset of clonal 

evolution is unknown. Furthermore, we have demonstrated that the inclusion of the 
germline reference sequence in BEAST can alone impact the tree topology, similarly 

holding important ramifications when incorporating B cell evolution into the Bayesian 
framework.  

Finally, we utilized cross-donor phylogenetic analysis to better characterize the 
interplay between clonal lineage assignment and convergent evolution. This style of 

analysis has been previously performed to discover HIV-neutralizing antibodies by 
creating phylogenetic trees from multiple patients, some of which contained known 

virus neutralizing antibodies (Zhu, Wu, et al., 2013). Our cohort-focused analysis 
revealed that the number and proportion of public lineages was dramatically 

influenced by clonal rooting strategy (Figure 4B). We additionally observed that the 
rooting strategy impacts the proportion of mice from each cohort that were 

represented in each clonal lineage (Figure 4C); a relevant finding when constructing 
cross-donor phylogenies for multiple patients exposed to the same pathogen. Those 

clonal families containing sequences from the most individuals could represent 
therapeutic candidates that are potentially broadly neutralizing. Therefore, 

understanding how the bioinformatics pipeline influences this read out if of crucial 
importance.  

Together, our data both demands increased caution when interpreting evolutionary 
conclusions from Ig-seq experiments and quantifies the influence of the 

bioinformatics pipeline on biological conclusions. Further scrutinizing how we 
quantify B cell evolution and selection in response to immunizations and pathogens 

is crucial for the development of therapeutics that are effective across a wide range 
of individuals.  In conclusion, we demonstrate the benefit of comparing multiple 

bioinformatics pipelines to ensure robust evolutionary results including antibody 
forest size and structure, mutation rate, and tree topology,  
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Methods 

Repertoire processing  

Ig-seq data from accession number E-MTAB-8585 (Kräutler et al., 2020) was aligned 
using MiXCR (v2.1.2) to the built in murine reference germline segments under default 

parameters (Bolotin et al., 2015). The alignments were subsequently clonotyped by 

the full length VDJ region on the nucleotide level and exported using exportClones 
function with presets set to full. The clonotypes that successfully aligned to both the 

IgG constant region and both a V, and J alignment were retained for phylogenetic 
analysis. In the case of trees arising from the VDJ_CDR3 rooting strategy, only those 

clones containing a D alignment were retained. Clonal lineage assignment was 
performed on the V, (D), and J gene segments with the highest alignment score for 

each clone. Only one unique sequence per full length VDJ clone was included in each 
root, thereby ignoring clonal abundance information. For those rooting strategies 

involving homology requirements (VJ_CDR3_70, VJ_CDR3_80, VJ_CDR3_90, 
VJ_full_70, VJ_full_90), homology was calculated by the edit distance normalized by 

sequence length (Levenshtein I, 1966) for either the CDR3 region (for VJ_CDR3_70, 
VJ_CDR3_80, VJ_CDR3_90) or the entire VDJ sequence (for VJ_full_70, VJ_full_90). 
Only those clonal lineages containing three or more sequences were included in the 

analysis. 
 

Phylogenetic inference 

For each clonal lineage, the corresponding V, (D), and J reference genes from IMGT 

were appended together and added to the list of sequences. If there were multiple 
alleles present for the given V, (D), or J reference gene, the first one was selected (*01 

in IMGT annotation).   
Neighbor joining trees were inferred by first computing the pairwise edit distance 

between each sequence using the stringdistmatrix function in the R package 
stringdist (Van der Loo, 2014). The resulting distance matrices were then used as 

input to the nj function in ape (Paradis et al., 2004). The germline reference sequence 

was set as the root using the reroot function from the R package phytools (Revell, 
2012). For ML phylogenies, a multiple string alignment was performed using 
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clustalw2 under default parameters for each clonal lineage to produce a nexus file. 
For ML trees, the nexus files were first converted to phylip files using readseq and 

then used as input to raxml using a GTRgamma model and with the reference 

germline set to outgroup. For Bayesian analysis, additional sub-sampling was 
performed due to computational demands. 50 clonal lineages containing sequences 

from at least two time points were randomly sampled from each cohort across the 
four rooting strategies (VJ, VJ_CDR3, VJ_CDR3_70, VDJ_CDR3). If a clonal lineage 

exceeded 100 members, 100 randomly sampled sequences were selected. Multiple 
string alignments were performed as previously mentioned twice for each clonal 

family, once with the reference germline sequence included and once without. 
Resulting nexus were first converted to xml files using a custom R script that 

incorporated the sampling time as the tip date and set the reference germline as the 
monophyletic group with the tip date set to one. BEAST (version 2.5) was used to 

infer phylogenetic trees for each of the 50 randomly sampled clonal lineages per 
cohort. The GTR substitution model was used with gamma-distributed site 
heterogeneity. Divergence times were estimated using a relaxed lognormal clock 

model with the clock rate set to 1 and the discrete rate count set to -1. A birth death 
prior was used with uniformly distributed prior probability distributions. The chain 

length of the MCMC algorithm was set to 8,000,000 and was logged every 5000 
iterations. The MCC tree was extracted using the program TreeAnnotator (Bouckaert 

et al., 2014) with a 10% burn-in as previously described (Yermanos et al., 2017). Mean 

parameter estimates and ESS values were summarized from the output log files using 
TreeLogAnalyser, part of the BEAST2 suite (Bouckaert et al., 2014).  

 

Topology metrics 

After inferring trees for each clonal lineage using the aforementioned inference 

pipeline (two trees for each clonal lineage, using either ML or NJ), the Robinson-
Foulds distance between  each pair of lineage trees was calculated using the R 

package phangorn (Schliep, 2011) and normalized by the number of sequences 
within in tree. Laplacian spectra were calculated for each pair of lineage trees using 
the spectR package Rpanda as suggested by the developers (Lewitus and Morlon, 

2016). The mean, maximum, minimum, and standard deviation of spectR’s output 
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parameters (principals, asymmetry, peakedness1, peakedness2, and eigengap) were 
calculated for all clonal lineages within each mouse. This matrix (parameter versus 

mouse) was used as input to the base R function prcomp to calculate the principal 
components. Colless number and Sackin index were calculated using the R package 

Phylotop and normalizing by the number of sequences within each tree.  
Cross-donor phylogenies were computed by first pooling all unique VDJ clones for 

all mice and all time points and then rooted based on the four aforementioned rooting 
strategies. The maximum distance from reference germline for each cohort was 

calculated based on the number of amino acid substitutions relative to the MiXCR 
determined reference germline sequence.   
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Figure legends 
 
Figure 1. Rooting strategy influences phylogenetic fingerprint of different 
infection cohorts. (A) Schema depicting the experimental and computational 
pipeline. (B) The number of clonal lineages per mouse based on different clonal 
assignment strategies following germline assignment. (C) The average number of 
unique, full-length, sequences per clonal lineage following different clonal lineage 
assignment strategies. (D) The distribution of the first time points per tree average 
across all mice within a given cohort.  
  
Figure 2. Clonal lineage assignment strategy and phylogenetic inference 
method alter evolutionary fingerprint across infection cohorts. (A) Representative 
phylogenetic trees inferred with identical sequences as input from a chronically 
infected mouse. (B) The percent of identical trees inferred by both maximum-
likelihood inference (ML) and neighbor-joining (NJ) algorithms separate by moues and 
cohort. (C) The Robinson-Foulds distance normalized by the number of sequences 
quantifying the distance between trees containing identical input antibody sequences 
but inferred using either ML or NJ methods. Circles indicate the mean RF distance 
for each cohort. (D) Example Laplacian spectra of two different phylogenetic trees 
inferred with identical input sequences from A. (E) Principal component analysis 
based on the output from Laplacian for all trees across all mice using the VJ_CDR3 
rooting strategy. Color indicates mouse and shape indicates infection cohort. 
Numbers correspond to individual mice within each cohort (N1=naïve mouse 1, 
A1=acute mouse 1, C1=chronic mouse 1). (F) Spearman correlation of the Colless 
number quantifying tree imbalance for each tree produced from identical sequences 
using either ML or NJ inference pipelines.  
 
Figure 3. Inclusion of reference germline in Bayesian inference impacts 
parameter and topology estimates. (A) Schematic depicting Bayesian 
reconstruction workflow comparing clonal lineages either with or without the 
reference germline V, (D), and J segments included. (B) Two example phylogenetic 
trees from the same clonal lineage from a single mouse, either with or without 
including a reference germline as a monophyletic taxon. Sequences with the same 
color correspond to identical sequences across trees. Star indicates an example 
clade that differs between trees due to including the reference germline as 
monophyletic taxon. (C) Correlation between posterior probabilities for identical 
clonal lineages either with or without the reference germline as monophyletic 
outgroup. (D) The log2 ratios of the mean substitution rate estimates from each of the 
sampled BEAST trees either with or without including the reference germline as the 
monophyletic outgroup for each cohort and rooting strategy. Color, shape, and line 
indicate the cohort, rooting strategy, and mean, respectively. (E) Estimated mean tree 
height for the various rooting conditions. The mean tree height either with or without 
germline sequence was calculated for all sampled clonal lineages for each cohort 
across the four indicated rooting methods. 
 
Figure 4.  Cross-donor clonal lineages reveal clonal convergence across mice 
and cohorts. (A) Example cross-donor phylogeny containing sequences from 
multiple mice and cohorts. Name indicates cohort and mouse (A, C, N for acute, 
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chronic, naïve cohort respectively) and time point post infection. Tip labels with “PC” 
in name correspond to sequences found in the bone marrow plasma cells (PC) at 70 
days post infection. (B) Number of cross-donor phylogenies containing sequences 
from the indicated cohort under different rooting combinations. (C) Percentage of 
cross-donor phylogenies containing the indicated number of mice from each cohort. 
(D) Mutational distance from the reference germline sequence for those cross-donor 
trees containing sequences from both acutely and chronically infected mice. For each 
tree, the difference in V gene mutations between the most mutated sequence of either 
cohort was calculated and plotted for the VJ_CDR3 rooting method. The dotted lines 
separate those trees where either the most mutated sequence from acute (y>5) or 
chronic (y<-5) contained more than 5 V gene mutations than the other cohort. (E) The 
number of cross-donor trees containing sequences from both chronically and acutely 
infected mice where the most mutated sequence of the indicated cohort contains at 
least five more substitutions than the most mutated sequence from the remaining 
infection cohort. (F) Number of sequences from indicated time points for those cross-
donor trees containing both chronic and acute sequences.  
 
Figure 5. Biological sampling of B cells influences repertoire phylogenetic 
fingerprint. (A) The number of clonal lineages per mouse and (B) the average 
number of sequences per clonal lineage obtained from all unique IgG blood-derived 
sequences from all repertoire at each time point (All blood), all sequences found in 
blood repertoires 70 days (D70) post infection, or only sequences found in bone 
marrow PC repertoires 70 days post infection (PCs). 
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Figure 1.
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Figure 2.  
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Figure 3.  
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Figure 4. 
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Figure 5.  
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