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Abstract

Understanding B cell evolution following vaccination or infection is crucial for
instructing targeted immunotherapies when searching for potential therapeutic or
virus-neutralizing antibodies. Antibody phylogenetics holds the potential to quantify
both clonal selection and somatic hypermutation, two key players shaping B cell
evolution. A wide range of bioinformatic pipelines and phylogenetic inference
methods have been utilized on antibody repertoire sequencing datasets to delineate
B cell evolution. Although the majority of B cell repertoire studies incorporate some
aspect of antibody evolution, how the chosen computational methods affect the
results is largely ignored. Therefore, we performed an extensive computational
analysis on time-resolved antibody repertoire sequencing data to better characterize
how commonly employed bioinformatic practices influence conclusions regarding
antibody selection and evolution. Our findings reveal that different combinations of
clonal lineage assignment strategies, phylogenetic inference methods, and biological
sampling affect the inferred size, mutation rates, and topologies of B cell lineages in

response to virus infection.

Introduction

B cells are important for the clearance and neutralization of various infectious
pathogens via interactions of their characteristic B cell receptor (BCR, or secreted
version: antibodies). Sophisticated molecular mechanisms generate an ensemble of

antibodies capable to interact with a vast number of foreign antigens. Part of this
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diversity is achieved through the initial somatic recombination of variable (V), diversity
(D), and joining (J) germline segments, which together encode for the antigen-binding
region of the antibody (Tonegawa, 1983). Further diversity is introduced via somatic
hypermutation (SHM), in which mutations are selectively introduced into the antibody
locus (Di Noia and Neuberger, 2007; Methot and Di Noia, 2017). These mutations can
increase the binding strength to a particular antigen (referred to as affinity maturation)
and occasionally confer a neutralizing phenotype against a particular pathogen.
Some HIV-neutralizing antibodies, for example, require multiple rounds of SHM over
long periods of time to induce neutralizing capabilities against a wide range of HIV
strains (Wu et al., 2015; LaBranche et al., 2018; Landais and Moore, 2018; Klein et
al., 2013). One can then compare these broadly neutralizing antibodies to the
unmutated germline common ancestor (i.e. the original V-D-J recombined ancestor
before SHM) to both identify critical mutations for pathogen neutralization and to
discover new pathogen-binding variants (LaBranche et al., 2018).

The advent of high-throughput sequencing has allowed an unprecedented resolution
with which B cell dynamics can be studied during infection. High-throughput
immunoglobulin repertoire sequencing (Ig-seq) experiments aim to isolate and
describe co-existing B cell populations within an organism, providing thousands to
millions of sequences for subsequent analyses (Georgiou et al., 2014; Miho et al.,
2018). While these sequencing reads contain the evolutionary histories of multiple,
independent monoclonal antibody lineages, how exactly this multitude of data should
be processed remains unclear. The general pipeline involves first assigning reads to
a single antibody lineage based on some similarity criteria (e.g., germline genes,
sequencing homology, CDRS3 lengths), with the goal of clustering all sequences
arising from a single V-D-J recombination event (Yermanos et al., 2018). The
sequences for each clonal lineage are then used as input to a phylogenetic inference
method, thereby producing a phylogenetic tree in which the recovered sequences
are the tips and the root is the unmutated germline ancestor. These phylogenetic
trees can then be compared using metrics such as branch lengths, number of
sequences per tree, or tree imbalance, both within and across individuals. Previous
work has demonstrated that phylogenetics can aid discovery of virus-specific

antibodies (Zhu, Wu, et al., 2013). However, extracting relevant biological information
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from the mass of phylogenetic trees co-evolving within a single host, which we refer
to as the “antibody forest”, remains less straightforward. While many different tools
and bioinformatics practices exist, specifically for clonal lineage analysis (Ralph and
Matsen IV, 2016; Briney et al., 2016; Schramm et al., 2016; Gupta et al., 2015, 2015),
it remains unclear how custom pipelines of clonal lineage assignment, phylogenetic
inference, and topological analysis impact our understanding and interpretation of B
cell evolution.

In the case of assigning reads to a given V-D-J recombination event, some
publications have relied solely upon V- and J-gene usage, whereas others have
implemented requirements pertaining to complementary determining region 3 (CDR3)
lengths or sequence homology (Bhiman et al., 2015; Bonsignori et al., 2016; Doria-
Rose et al., 2014; Jackson et al., 2014; Soto et al., 2016; Stern et al., 2014).
Furthermore, there exist several methods to construct phylogenetic trees, including
distance-based metrics, maximum likelihood (ML), maximum parsimony (MP), and
Bayesian inference (Stamatakis, 2006; Gascuel, 2006; Bouckaert et al., 2014). While
there exist multiple simulation tools capable of exploring how inference method
impacts the resulting phylogenetic trees derived from simulated B cell data
(Yermanos et al., 2017; Davidsen and Matsen IV, 2018; Safonova et al., 2015; Weber
et al., 2019), the extent of this influence on the evolutionary conclusions on
experimental data remains largely unexplored. It remains unknown, for example, the
extent of which the phylogenetic inference strategy impacts the biological
conclusions pertaining to the evolutionary landscape across various infection
cohorts.

Here, we explored how various bioinformatics pipelines shape evolutionary
conclusions arising from Ig-Seq experiments. Using previously published time-
resolved Ig-Seq experiments from blood-derived B cell and bone marrow (BM) PC
(PC) repertoires (Krautler et al., 2020), we analyzed the robustness of multiple
conclusions based on phylogenetic analyses for three cohorts: uninfected mice, mice
infected with low dose (acute) lymphocytic choriomeningitis virus (LCMV), and mice
infected with high dose (chronic) LCMV. This unique experimental model provides a
system in which a viral infection is either cleared within two weeks (in the case of the

low-dose, acute infection) in a primarily CD8 T+ cell dependent manner or over the
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course of months in the case of mice receiving the high dose infection. It was
expected that these three cohorts have distinct B cell evolutionary profiles given the
sustained presence of virus and germinal centers in the case of chronic infected mice
compared to the other two cohorts.

In particular, we investigated how (i) clonal lineage assignment strategies, (ii)
phylogenetic reconstruction strategies, and (iii) biological sample strategies impacted
results. First, we show that properties of the clonal lineages including size and
number of trees highly depend upon the initial rooting strategies. Second, the
resulting phylogenies depend upon the chosen inference method despite using the
same B cell sequences as input. Furthermore, we demonstrated that leveraging
known reference germline information improves Bayesian reconstruction of certain
parameters, such as tree height. Finally, we observed that clonal lineage strategies
and phylogenetic inference methods impact size and temporal resolution of public
clonal lineages. Our findings both suggest a degree of caution when interpreting Ig-
Seq data and highlight the importance of benchmarking pipelines commonly

employed in systems immunology.

Results

Rooting strategy influences number, size and time-resolution of clonal lineages
Assigning sequences from bulk Ig-seq data is typically one of the first steps in
reconstructing B cell clonal lineages (Yermanos et al., 2018). Although multiple tools
specifically tailored to clonal lineage assignment now exist (Ralph and Matsen IV,
2016; Briney et al., 2016; Schramm et al., 2016; Safonova and Pevzner, 2019), a vast
number of studies have performed some variation of first aligning the recovered
antibody sequences to the reference germline sequences and subsequently
clustering based on germline gene usage, edit distance sequence homology and/or
CDRS length (Stern et al., 2014; Doria-Rose et al., 2014; Bhiman et al., 2015; Tsioris
et al., 2015). While different germline aligner tools have been previously compared
(Marcou et al., 2018), how the aligner tools impact the repertoire fingerprint remains
less characterized. We therefore compared the influence of various clonal lineage
assignment pipelines following identical germline assignment of when analyzing
recently published time-resolved Ig-Seq data (Krautler et al., 2020). This sequencing

data set consists of bulk heavy chain sequencing from 15 mice of the three different
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previously mentioned cohorts (uninfected, acute LCMV and chronic LCMV infection)
and provides a unique opportunity to compare the influence of the bioinformatics
processing pipeline across both multiple individuals and cohorts (Figure 1A). Ten
mice were infected with either low- or high-dose LCMV (Nhigh-dose=5, Niow-dose=5),
resulting in acute (resolved within two weeks) and chronic infections (resolved after
months), respectively. Furthermore, five uninfected mice were included as a control.
For each mouse (excluding one acute mouse), blood samples at 10, 20, 50, 60 and
70 days post infection (dpi) and bone marrow PCs (a subset of antibody secreting B
cells) 70 dpi were collected, in all samples the heavy chain repertoires were subjected
to Ig-seq (Krautler et al., 2020).

We first aligned the sequencing reads for each repertoire to the murine reference
germline segments and subsequently defined clonotypes by the full-length VDJ
region using MiXCR (Bolotin et al., 2015). After grouping all unique full-length VDJ
nucleotide sequences for each mouse, we first asked how the quantity of clonal
lineages for each mouse was impacted by clonal lineage assignment. We thereby
assigned full-length VDJ sequences to a given clonal lineage if they shared the
following characteristics: i) identical V- and J-gene germline segments (VJ), ii)
identical V- and J-gene combination with the same CDRS3 length (VJ_CDR3), iii)
identical V- and J-gene combination with both the same CDRS3 length and at least
70% CDRB3 edit distance homology (VJ_CDR3_70), iv) and identical V-, D- and J-gene
assignment with the same CDR3 length (VDJ_CDRS3) (Figures 1B, S1A). Enumerating
the number of clonal lineages per mouse revealed major discrepancies when
comparing the size of the antibody forest for each of the aforementioned rooting
methods (Figure 1B). Indeed, some rooting strategies, such as grouping sequences
by V- and J-genes greatly reduced the number of clonal lineages for each mouse
(Figure 1B, S1A). Other more stringent strategies to assign sequences to a given
clonal family increased the number of clonal lineages as one may expect (Figure 1B).
For all strategies, excluding grouping solely by V- and J-gene usage, the trends for
both individual mice and cohort remained consistent despite the fact that the
absolute number of clonal lineages varied across the different parameter settings
(Figure 1B, S1A). This involved all mice infected with LCMV having more clonal

lineages than the uninfected counterpart. This pattern was similarly observed when
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looking at the number of sequences per clonal lineage across each cohort (Figure 1C,
S1B). We then quantified how the rooting strategy impacted the earliest time point
observed within each clonal family, indicative of the time a given B cell was recruited
into the immune response. Our analysis revealed that across all conditions the
chronic cohort revealed a large proportion (at least 10%) of lineages that were first
sampled at 20 dpi. While this continued recruitment of new clonal lineages during
chronic viral infection was seen across all rooting strategies, the pipeline largely
determined whether the majority of trees were seen already at 10 dpi or first at 70 dpi
(Figure 1D). Finally, we asked how the number of time points per clonal lineage was
impacted by the lineage assignment strategy. Similar to the earlier seen time point,
the trend that chronically infected mice had more unique time points represented in
each clonal lineage remained constant (Figure S2). Together, these results indicate
that the number and size of clonal lineages is influenced by the rooting strategy, but
after a certain threshold of stringency, for example, by forcing lineages to share
identical CDRS3 length or a high degree of homology, the trend across cohorts remains
relatively stable. However, the temporal resolution (i.e. number of time points and
earliest time point) of the clonal lineages produced partially contradicting
conclusions, pending on imposing a homology requirement upon sharing V- and J-

genes plus CDRS3 length or not.

Phylogenetic inference strategy alters tree topology

After observing the variability introduced solely due to the clonal lineage assignment
strategy, we next questioned whether this noise was compounded by the
phylogenetic inference method. Multiple inference methods and tools have been
applied to Ig-seq data, including neighbor joining, maximum parsimony, maximum
likelihood and Bayesian analysis (Jackson et al., 2014; Stern et al., 2014; Wu et al.,
2015; Zhou et al., 2013; de Bourcy et al., 2017). We initially quantified whether two
different inference methods resulted in identical tree topologies for the four
aforementioned rooting strategies. Surprisingly, there was only minor congruence
between tree topologies after inputting identical sequences into either neighbor
joining or maximum likelihood pipelines (Figures 2A-C). For example, two distinct

topologies were produced from identical sequences for a randomly selected clonal
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lineage from a chronically infected mouse (Figure 2A). Indeed, this phenomenon of
divergent topologies despite identical input sequences was observed for all rooting
strategies, with the V-J rooting strategy showing the highest divergence (Figure 2B).
The more stringent methods requiring either identical CDR3 length, D-gene
alignment, or a sequence homology threshold still resulted in merely ~30% of trees
possessing identical topologies (ignoring branch length differences) (Figure 2B). Next,
we questioned how similar the topology structure was for lineages containing
identical sequences yet produced using different inference methods. For this, we
calculated the normalized Robinson-Foulds (RF) distance, a commonly used metric
that quantifies the number of partitions unique to each tree (RF distance of 0 =
identical trees) (Robinson and Foulds, 1981). Similar to the percent of identical trees,
the normalized RF distance revealed that the rooting method dramatically impacts
how similar the topologies are despite identical input sequences, with the two most
stringent rooting methods (VJ_CDR3_70 and VDJ_CDR3) possessing the lowest RF
distances.

After observing such low agreement in tree topologies inferred using different
methods for each clonal lineage, we questioned whether these topological
differences alter metrics summarizing the trees. We first calculated the Laplacian
spectra, a recently described metric that infers phylogenetic properties based on the
underlying graph structure (Lewitus and Morlon, 2016), for all trees under the different
rooting conditions. Plotting the spectral density from the exemplary trees (Figure 2A)
revealed that, indeed, dramatic visual differences were distinguishable between the
two phylogenetic inference methods (Figure 2D). To quantify this across mice and
cohorts, we calculated the mean of multiple metrics describing the Laplacian spectra,
such as the asymmetry, skewness, peakedness and the number of modalities
(Lewitus and Morlon, 2016) and performed principal component analysis. A clear
separation between the two inference methods was observed (Figure 2E). While the
mouse-specific trend was somewhat constant for some mice (e.g. location of mouse
A4 relative to the other mice in both conditions), for others the relative position
dramatically shifted (e.g. C5 and N2 were much closer together for NJ trees and more
distant for ML trees) (Figure 2E). We finally asked if other metrics that quantify tree

imbalance produced similar discrepancies between the NJ and ML inference
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pipelines. To this end, we quantified the Colless number, a metric describing the
balance of all internal nodes within a clonal lineage (Colless, 1982), for each NJ and
ML tree across the three cohorts. Overall, the Colless number for trees containing
identical sequences and potentially different topologies was similarly correlated
across all three cohorts (r*=~0.6) (Figure 2F). Interestingly, those trees with higher
Colless numbers showed more variability between NJ and ML methods, with some
trees completely imbalanced (normalized Colless number = 1) in one method and not
in the other. Taken together, our data suggest that the phylogenetic inference method

influences tree topology and biological conclusions.

Incorporating reference germline into Bayesian phylogenetics

In order to produce a rooted tree in the context of B cell evolution, both ML and NJ
methods require setting the unmutated reference germline segments as the outgroup.
In contrast, the Bayesian phylogenetic inference program BEAST inherently produces
a rooted topology without the need to explicitly specify an outgroup. This strategy,
however, completely ignores any prior information regarding known reference
germline sequences and potentially worsens estimation of mutation rates and
evolutionary distance. While there is the option to specify the germline sequence as
a monophyletic taxon in BEAST, how this influences the resulting clonal lineage
remains unexplored. We therefore asked how either including or excluding the
reference germline gene segments impacted the clonal lineages for each of the
aforementioned rooting strategies while keeping all other parameters constant. To
answer this, we randomly sampled 50 time-resolved (containing sequences from
more than 1 time point) clonal families per cohort for the four different rooting
strategies and estimated the Bayesian phylogenetic trees. We assessed how
topology and parameters were impacted for the different settings (Figure 3A). We
immediately observed stark differences in tree structure between those clonal
lineages with or without the germline (Figure 3B). Surprisingly, this not only included
differing branch lengths but also the topology of the maximum clade credibility (MCC)
tree, as demonstrated by the presence of clades containing altered clonal
relationships despite identical sequences between trees (Figure 3B). After visualizing

these differences between trees either containing or excluding the reference
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germline, we decided to quantify how various output parameters from BEAST were
impacted across the different rooting strategies. We first calculated how correlated
the mean posterior probability was for each tree containing identical sequences
excluding the reference germline for those clonal lineages grouped by V- and J-genes
plus CDR3 length (Figure 3C). While there was high correlation between the mean
posterior probability for all cohorts, cohort specific differences were observed for
those trees arising from uninfected versus infected mice (Figure 3C). We finally asked
if this trend was consistent across the four different rooting methods. To quantify this,
we calculated the log. ratio for multiple output parameters from BEAST, including the
mean posterior probability, substitution rate, tree height and accompanying effective
sampling size values (Figures 3D, 3E, S3). This analysis demonstrated effects arising
from both infection status and clonal lineage assignment strategy across multiple
parameters. The trend that acute and chronic trees had a higher posterior probability,
decreased tree height, and increased ESS values when the reference germline was
included as the monophyletic group was consistent across rooting strategies (Figure
S3). A similar trend was observed when comparing the mean substitution rate for
each tree, with the inclusion of the reference germline consistently resulting in a
increased substitution rate and decreased tree height for the acutely and chronically
infected cohorts (Figure 3D, 3E, S3). While the ESS values for identical MCMC chain
lengths for the substitution rate and posterior probability were comparable between
trees either with or without the reference germline included, the ESS values for tree
height were consistently higher for those trees including the germline sequence
(Figure S3). Indeed, the mean tree heights were on average closer to 70 days when
the germline reference sequences were set as the monophyletic outgroup, which
closely resembles the actual biological sampling and infection scheme (Figure 3E).
Together these data show that incorporating germline information in a Bayesian
phylogenetic framework alters tree topology and accompanying parameter

estimates, in addition to improving tree height estimates.

Different strategies impact the inferred public clonal lineages
While the presence of identical B cell receptor sequences shared across multiple

individuals (public clones) has been previously reported, how these public clones
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evolve across multiple individuals has not been thoroughly studied. Cross-donor
phylogenies are a useful approach to infer the evolutionary history from closely
related clones across multiple individuals (Zhou et al., 2013). This involves performing
the aforementioned clonal lineage assignment process on all sequences across all
individuals and subsequently inferring the phylogenetic tree using the germline
reference as the root. Therefore, we wanted to characterize how the various clonal
lineage assignment methods dictated the biological conclusions regarding
convergent selection of “public clonal lineages”, or clonal families containing
sequences from multiple mice. After clustering sequences and inferring phylogenetic
trees, we analyzed how many trees contained sequences from multiple cohorts
(Figures 4A, 4B). We immediately observed that grouping sequences sharing V- and
J-gene segments resulted with the majority of cross-donor phylogenies containing B
cells from all three cohorts (Figure 4B). Indeed, we observed that this proportion of
public lineages decreased upon implementing more stringent clonal assignment
strategies, with more “cohort-private” lineages arising when requiring identical CDR3
length, sequence homology or identical D-gene alignment. There was higher public
lineage overlap between the chronic and acute cohorts, as one might expect due to
their similar infection histories. Surprisingly, the rooting strategy influenced the
proportion of trees containing either chronically and acutely infected mice or all three
cohorts, even between those rooting strategies differing only by a homology
requirement (Figure 4B). Similarly, differences between the VJ_CDR3 and
VJ_CDR3_70 rooting strategies were observed when comparing the average
representation of each mouse in the cross-donor phylogenies (Figure 4C). There was
a small proportion of trees containing all mice from the given cohort when grouping
by VJ_CDRS, but this was no longer observed after incorporating either a homology
threshold or demanding matching D-gene alignments (Figure 4C).

We next questioned if the four distinct clonal family assignment strategies impacted
the mutational burden for the two infected cohorts. To answer this, we first computed
the maximum number of mutations from the reference germline sequence for each
clonal lineage containing both chronic and acute sequences (Figure 4D). Next, we
calculated and plotted the difference of maximum mutational burden between the

two cohorts for each of the previously selected cross-donor phylogenies.
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Enumerating the number of trees with chronic-dominated or acute-dominated
mutational load revealed that the clonal rooting strategy had little impact on the trend
that both cohorts underwent similar degrees of somatic hypermutation (Figure 4E).
Surprised by this finding, we finally investigated whether differences in temporal-
resolution were present in those cross-donor trees. We therefore quantified the
proportion of sequences from each time point within the public clonal lineages shared
between the acutely and chronically infected cohorts (Figure 4F). Our analysis
revealed that the public clonal lineages, on average, contain a higher number of
sequences from each time point before the terminal sacrifice (Figure 4F), consistent

with previous findings (Krautler et al., 2020).

Biological sampling influences phylogenetic fingerprint

Our previous analyses revealed that the computational processing pipeline
dramatically influences the resulting repertoire phylogenetic snapshot. In our
comparison, we employed multiple, time-resolved, biological samples for each
mouse, including both blood and bone marrow B cell repertoires. However, peripheral
immune organs are rarely available in the case of human antibody repertoire
sequencing, prompting the question of how well does the phylogenetic fingerprint
from the blood match that of lymphoid tissues. Furthermore, the impact of the rooting
strategy may further exacerbate differences arising due to biological sampling
limitations. To better characterize the interplay between the rooting strategy and
biological sampling, we inferred the evolutionary history for clonal lineages containing
sequences from either all blood repertoires for a given mouse (10, 20, 50, 60, 70 dpi),
only blood repertoires 70 dpi, or only the PC repertoire 70 dpi (Figure 5A). While both
pooling all blood repertoires or including solely PC repertoires again revealed a trend
that chronically infected mice had a higher number of clonal lineages despite the
same amount of starting biological material, when considering only repertoires at 70
dpi the acutely infected animals actually contained the most clonal lineages per
mouse (Figures 5A). The rooting strategy did not, however, largely impact the mouse-
and cohort-specific effects excluding the VJ rooting strategy where all three cohorts
had similar number of clonal lineages (Figure 5A). When quantifying the size of these

clonal lineages, the acute cohort again showed, on average, clonal lineages
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containing more sequences than the other two cohorts. This effect was not observed
in the other two sampling schemes where only PC or pooled blood repertoires were
included, possibly due to the lack of LCMV-specific B cells in circulation in the acute
and naive cohorts. Despite these differences in the quantity and size of the clonal
lineages per each cohort, more subtle differences were observed when employing
metrics that quantify tree imbalance, such as the Colless number and the Sackin
index (Figure S4). Taken together, these data indicate potential drawbacks from

sampling B cell repertoires at a single time point.

Discussion

Here we have systematically characterized the influence of the bioinformatics and
phylogenetic pipeline on the interpretation of antibody repertoire sequencing data.
The strategies discussed here have widely been incorporated in previous studies
analyzing B cell data (Stern et al., 2014; Tsioris et al., 2015; Jackson et al., 2014;
Heiden et al., 2017; Vollmers et al., 2013; Wu et al., 2015; Zhu, Ofek, et al., 2013). It
remains unclear, however, just how robust these biological conclusions are to
parameter and pipeline variation. We therefore utilized a time-resolved antibody
repertoire sequencing data set where B cell repertoires from both blood and lymphoid
organs were sequenced for multiple mice across three different cohorts. The three
cohorts (uninfected, acutely infected, and chronically infected) represent three
conditions in which differing selective pressures would be expected given the
importance of B cells in the clearance of chronic LCMV virus (Battegay et al., 1993;
Hangartner et al., 2003). We could thereby use identical B cell sequences as input to
various clonal lineage assignment strategies and phylogenetic inference strategies
and compare how the mouse- and cohort-specific phylogenetic fingerprint was
impacted. Our results stress both the need for caution when interpreting evolutionary
conclusions arising from bulk Ig-seq experiments and reveal certain pitfalls to be
avoided when conducting such an analysis.

One of the most apparent findings from our analyses is that the clonal lineage
assignment strategy can dramatically alter metrics describing the size and number of
clonal lineages (Figures 1, 5), the tree topology (Figures 2, 3), the mutational burden

(Figures 3, 4) and the degree of convergent selection between cohorts (Figure 4). The
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various clonal lineage assignment strategies all relied upon an initial alignment to the
reference murine germline V-, D- and J-genes, a practice common to many Ig-seq
studies. Certain heuristics were additionally applied to some groups, including a
CDR3 length requirement due to the biological evidence for minor insertions and
deletions during somatic hypermutation (Smith et al., 1996) or a certain degree of
homology across the CDR3 region. While imposing a restriction upon the CDR3
length has a biological basis and is minorly impacted by parameter fine-tuning,
imposing homology requirements upon clonal lineages can vary the biological results
compared to simply grouping by V- and J-gene germline alignment and CDR3 length
alone. Recently, multiple tools have been specifically developed to perform clonal
lineage assignment without the need to set arbitrary thresholds (Ralph and Matsen
IV, 2016; Briney et al., 2016). The continued validation of such tools on both simulated
and experimental data, in addition to increasing the user-accessibility, will hopefully
move the field towards a consensus regarding rooting strategies.

The goal of the phylogenetic analysis further dictates how necessary it is to
benchmark multiple pipelines. For example, previous work has utilized Ig-seq data
and phylogenetics to discover novel HIV-neutralizing antibodies by selecting B cell
sequences closely related to a known antibody (Zhu, Ofek, et al., 2013). In this
particular example, sequences were assigned to the tree if they contained the same
V- and J-gene germline elements. This choice of rooting strategy would not
necessarily alter which antibodies are closest to the known HIV-neutralizing antibody,
and thereby would not have impacted candidate selection. Other work describing the
evolution of HIV-specific antibodies grouped B cell sequences to the clonal family of
a known neutralizing antibody in a similar method and subsequently calculated the
mutation rate using BEAST (Wu et al., 2015). Our findings suggest that other methods
of clonal lineage assignment would impact this inferred mutation rate and further
stress the need for caution when interpreting such a metric.

While the clonal lineage assignment strategy may not directly impact the
aforementioned HIV-neutralizing candidate selection, our results suggest that the
phylogenetic inference method would have substantial consequences (Figure 2). We
observed extremely low convergence of phylogenetic tree topologies inferred using

two different methods on identical input sequences (Figures 2A-2C). Increasing the
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stringency of the rooting strategy resulted in high convergence between the inference
methods, presumably because the sequences included in each clonal lineage are
necessarily more similar than if one were to only group by V- and J-genes. Consistent
with our findings that distinct topologies were produced by the two inference
methods, we observed differences in the accompanying metrics quantifying tree
structure when comparing clonal lineages with identical sequences (Figure 2D-F).
While the Colless number remained highly correlated for all three cohorts when
comparing trees produced using identical input sequences, we observed that the
variation increased trees with larger normalized balance. This high degree of
correlation suggests an irrelevance of the phylogenetic inference method when
considering downstream conclusions; other metrics such as the Laplacian spectra
were able to clearly separate the two methods, further highlighting the influence the
tree inference method holds. It is worth mentioning, however, that our inference
pipelines did not incorporate B cell specific substitution models or include clonal
frequency information, both of which are crucial biological considerations to the
humoral response. Further work validating and comparing the various tools
incorporating these two considerations (Yaari et al., 2013; Hoehn et al., 2017; DeWitt
et al., 2018) may reveal even more dramatic differences between inference methods.
Future studies could additionally investigate how incorporating dependences
between clonal lineages within a single repertoire influences the overarching
evolutionary landscape (Hoehn et al., 2019).

We have additionally demonstrated a potential benefit to including the reference
germline as the monophyletic group when estimating tree heights and mutation rates
in a Bayesian framework. This benefit seems to be particularly clear for the clonal
lineages of acutely and chronically infected mice, indicated by both higher ESS values
despite the same chain length of the MCMC algorithm and that the estimated tree
heights more closely resembled the span of the experiment of 70 days (Figures 3E,
S3). How to exactly use the reference germline as the monophyletic group in calendar
time remains relatively unexplored, but has important repercussions for the
aforementioned Bayesian analysis of HIV neutralizing antibodies (Wu et al., 2015).
Here we set the sampling time (tip date in terms of BEAST) monophyletic group to

one day after the start of the infection. This assumes that evolution of the given clonal
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lineage begins upon infection, and implies that finding the initial precursor B cell at a
later time point has low probability. This may partially account for why the naive
cohort behaved differently than the other two infection cohorts when the reference
germline was included. More analysis is required to understand if incorporating a
sliding window root height for the monophyletic group would benefit those clonal
lineages that are later recruited into the B cell response or when the onset of clonal
evolution is unknown. Furthermore, we have demonstrated that the inclusion of the
germline reference sequence in BEAST can alone impact the tree topology, similarly
holding important ramifications when incorporating B cell evolution into the Bayesian
framework.

Finally, we utilized cross-donor phylogenetic analysis to better characterize the
interplay between clonal lineage assignment and convergent evolution. This style of
analysis has been previously performed to discover HIV-neutralizing antibodies by
creating phylogenetic trees from multiple patients, some of which contained known
virus neutralizing antibodies (Zhu, Wu, et al., 2013). Our cohort-focused analysis
revealed that the number and proportion of public lineages was dramatically
influenced by clonal rooting strategy (Figure 4B). We additionally observed that the
rooting strategy impacts the proportion of mice from each cohort that were
represented in each clonal lineage (Figure 4C); a relevant finding when constructing
cross-donor phylogenies for multiple patients exposed to the same pathogen. Those
clonal families containing sequences from the most individuals could represent
therapeutic candidates that are potentially broadly neutralizing. Therefore,
understanding how the bioinformatics pipeline influences this read out if of crucial
importance.

Together, our data both demands increased caution when interpreting evolutionary
conclusions from Ig-seq experiments and quantifies the influence of the
bioinformatics pipeline on biological conclusions. Further scrutinizing how we
quantify B cell evolution and selection in response to immunizations and pathogens
is crucial for the development of therapeutics that are effective across a wide range
of individuals. In conclusion, we demonstrate the benefit of comparing multiple
bioinformatics pipelines to ensure robust evolutionary results including antibody

forest size and structure, mutation rate, and tree topology,
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Methods

Repertoire processing

Ig-seq data from accession number E-MTAB-8585 (Krautler et al., 2020) was aligned
using MiXCR (v2.1.2) to the built in murine reference germline segments under default
parameters (Bolotin et al., 2015). The alignments were subsequently clonotyped by
the full length VDJ region on the nucleotide level and exported using exportClones
function with presets set to full. The clonotypes that successfully aligned to both the
IgG constant region and both a V, and J alignment were retained for phylogenetic
analysis. In the case of trees arising from the VDJ_CDRS3 rooting strategy, only those
clones containing a D alignment were retained. Clonal lineage assignment was
performed on the V, (D), and J gene segments with the highest alignment score for
each clone. Only one unique sequence per full length VDJ clone was included in each
root, thereby ignoring clonal abundance information. For those rooting strategies
involving homology requirements (VJ_CDR3_70, VJ_CDR3_80, VJ_CDR3_90,
VJ_full_70, VJ_full_90), homology was calculated by the edit distance normalized by
sequence length (Levenshtein I, 1966) for either the CDR3 region (for VJ_CDR3_70,
VJ_CDR3_80, VJ_CDR3_90) or the entire VDJ sequence (for VJ_full_70, VJ_full_90).
Only those clonal lineages containing three or more sequences were included in the

analysis.

Phylogenetic inference

For each clonal lineage, the corresponding V, (D), and J reference genes from IMGT
were appended together and added to the list of sequences. If there were multiple
alleles present for the given V, (D), or J reference gene, the first one was selected (*01
in IMGT annotation).

Neighbor joining trees were inferred by first computing the pairwise edit distance
between each sequence using the stringdistmatrix function in the R package
stringdist (Van der Loo, 2014). The resulting distance matrices were then used as
input to the nj function in ape (Paradis et al., 2004). The germline reference sequence
was set as the root using the reroot function from the R package phytools (Revell,

2012). For ML phylogenies, a multiple string alignment was performed using
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clustalw2 under default parameters for each clonal lineage to produce a nexus file.
For ML trees, the nexus files were first converted to phylip files using readseq and
then used as input to raxml using a GTRgamma model and with the reference
germline set to outgroup. For Bayesian analysis, additional sub-sampling was
performed due to computational demands. 50 clonal lineages containing sequences
from at least two time points were randomly sampled from each cohort across the
four rooting strategies (VJ, VJ_CDR3, VJ_CDR3_70, VDJ_CDRB3). If a clonal lineage
exceeded 100 members, 100 randomly sampled sequences were selected. Multiple
string alignments were performed as previously mentioned twice for each clonal
family, once with the reference germline sequence included and once without.
Resulting nexus were first converted to xml files using a custom R script that
incorporated the sampling time as the tip date and set the reference germline as the
monophyletic group with the tip date set to one. BEAST (version 2.5) was used to
infer phylogenetic trees for each of the 50 randomly sampled clonal lineages per
cohort. The GTR substitution model was used with gamma-distributed site
heterogeneity. Divergence times were estimated using a relaxed lognormal clock
model with the clock rate set to 1 and the discrete rate count set to -1. A birth death
prior was used with uniformly distributed prior probability distributions. The chain
length of the MCMC algorithm was set to 8,000,000 and was logged every 5000
iterations. The MCC tree was extracted using the program TreeAnnotator (Bouckaert
etal., 2014) with a 10% burn-in as previously described (Yermanos et al., 2017). Mean
parameter estimates and ESS values were summarized from the output log files using
TreeLogAnalyser, part of the BEAST2 suite (Bouckaert et al., 2014).

Topology metrics

After inferring trees for each clonal lineage using the aforementioned inference
pipeline (two trees for each clonal lineage, using either ML or NJ), the Robinson-
Foulds distance between each pair of lineage trees was calculated using the R
package phangorn (Schliep, 2011) and normalized by the number of sequences
within in tree. Laplacian spectra were calculated for each pair of lineage trees using
the spectR package Rpanda as suggested by the developers (Lewitus and Morlon,

2016). The mean, maximum, minimum, and standard deviation of spectR’s output
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parameters (principals, asymmetry, peakedness1, peakedness2, and eigengap) were
calculated for all clonal lineages within each mouse. This matrix (parameter versus
mouse) was used as input to the base R function prcomp to calculate the principal
components. Colless number and Sackin index were calculated using the R package
Phylotop and normalizing by the number of sequences within each tree.

Cross-donor phylogenies were computed by first pooling all unique VDJ clones for
all mice and all time points and then rooted based on the four aforementioned rooting
strategies. The maximum distance from reference germline for each cohort was
calculated based on the number of amino acid substitutions relative to the MiXCR

determined reference germline sequence.
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Figure legends

Figure 1. Rooting strategy influences phylogenetic fingerprint of different
infection cohorts. (A) Schema depicting the experimental and computational
pipeline. (B) The number of clonal lineages per mouse based on different clonal
assignment strategies following germline assignment. (C) The average number of
unique, full-length, sequences per clonal lineage following different clonal lineage
assignment strategies. (D) The distribution of the first time points per tree average
across all mice within a given cohort.

Figure 2. Clonal lineage assignment strategy and phylogenetic inference
method alter evolutionary fingerprint across infection cohorts. (A) Representative
phylogenetic trees inferred with identical sequences as input from a chronically
infected mouse. (B) The percent of identical trees inferred by both maximum-
likelihood inference (ML) and neighbor-joining (NJ) algorithms separate by moues and
cohort. (C) The Robinson-Foulds distance normalized by the number of sequences
quantifying the distance between trees containing identical input antibody sequences
but inferred using either ML or NJ methods. Circles indicate the mean RF distance
for each cohort. (D) Example Laplacian spectra of two different phylogenetic trees
inferred with identical input sequences from A. (E) Principal component analysis
based on the output from Laplacian for all trees across all mice using the VJ_CDRS3
rooting strategy. Color indicates mouse and shape indicates infection cohort.
Numbers correspond to individual mice within each cohort (N1=naive mouse 1,
A1=acute mouse 1, C1=chronic mouse 1). (F) Spearman correlation of the Colless
number quantifying tree imbalance for each tree produced from identical sequences
using either ML or NJ inference pipelines.

Figure 3. Inclusion of reference germline in Bayesian inference impacts
parameter and topology estimates. (A) Schematic depicting Bayesian
reconstruction workflow comparing clonal lineages either with or without the
reference germline V, (D), and J segments included. (B) Two example phylogenetic
trees from the same clonal lineage from a single mouse, either with or without
including a reference germline as a monophyletic taxon. Sequences with the same
color correspond to identical sequences across trees. Star indicates an example
clade that differs between trees due to including the reference germline as
monophyletic taxon. (C) Correlation between posterior probabilities for identical
clonal lineages either with or without the reference germline as monophyletic
outgroup. (D) The log. ratios of the mean substitution rate estimates from each of the
sampled BEAST trees either with or without including the reference germline as the
monophyletic outgroup for each cohort and rooting strategy. Color, shape, and line
indicate the cohort, rooting strategy, and mean, respectively. (E) Estimated mean tree
height for the various rooting conditions. The mean tree height either with or without
germline sequence was calculated for all sampled clonal lineages for each cohort
across the four indicated rooting methods.

Figure 4. Cross-donor clonal lineages reveal clonal convergence across mice
and cohorts. (A) Example cross-donor phylogeny containing sequences from
multiple mice and cohorts. Name indicates cohort and mouse (A, C, N for acute,
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chronic, naive cohort respectively) and time point post infection. Tip labels with “PC”
in name correspond to sequences found in the bone marrow plasma cells (PC) at 70
days post infection. (B) Number of cross-donor phylogenies containing sequences
from the indicated cohort under different rooting combinations. (C) Percentage of
cross-donor phylogenies containing the indicated nhumber of mice from each cohort.
(D) Mutational distance from the reference germline sequence for those cross-donor
trees containing sequences from both acutely and chronically infected mice. For each
tree, the difference in V gene mutations between the most mutated sequence of either
cohort was calculated and plotted for the VJ_CDR3 rooting method. The dotted lines
separate those trees where either the most mutated sequence from acute (y>5) or
chronic (y<-5) contained more than 5 V gene mutations than the other cohort. (E) The
number of cross-donor trees containing sequences from both chronically and acutely
infected mice where the most mutated sequence of the indicated cohort contains at
least five more substitutions than the most mutated sequence from the remaining
infection cohort. (F) Number of sequences from indicated time points for those cross-
donor trees containing both chronic and acute sequences.

Figure 5. Biological sampling of B cells influences repertoire phylogenetic
fingerprint. (A) The number of clonal lineages per mouse and (B) the average
number of sequences per clonal lineage obtained from all unique IgG blood-derived
sequences from all repertoire at each time point (All blood), all sequences found in
blood repertoires 70 days (D70) post infection, or only sequences found in bone
marrow PC repertoires 70 days post infection (PCs).
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