

1 **The Irish potato famine pathogen subverts host vesicle trafficking to channel
2 starvation-induced autophagy to the pathogen interface**

3

4 **Authors:**

5 Pooja Pandey^{1†}, Alexandre Y Leary^{1†}, Yasin Tümtas¹, Zachary Savage¹, Bayantes Dagvadorj¹,
6 Emily Tan¹, Virendrasinh Khandare¹, Cian Duggan¹, Temur Yusunov², Mathias Madalinski³,
7 Federico Gabriel Mirkin⁴, Sebastian Schornack², Yasin Dagdas³, Sophien Kamoun⁵, Tolga O.
8 Bozkurt¹.

9

10 [†]These authors contributed equally to this work

11 ¹ Imperial College London, Exhibition Road SW7 2AZ London UK.

12 ² Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK.

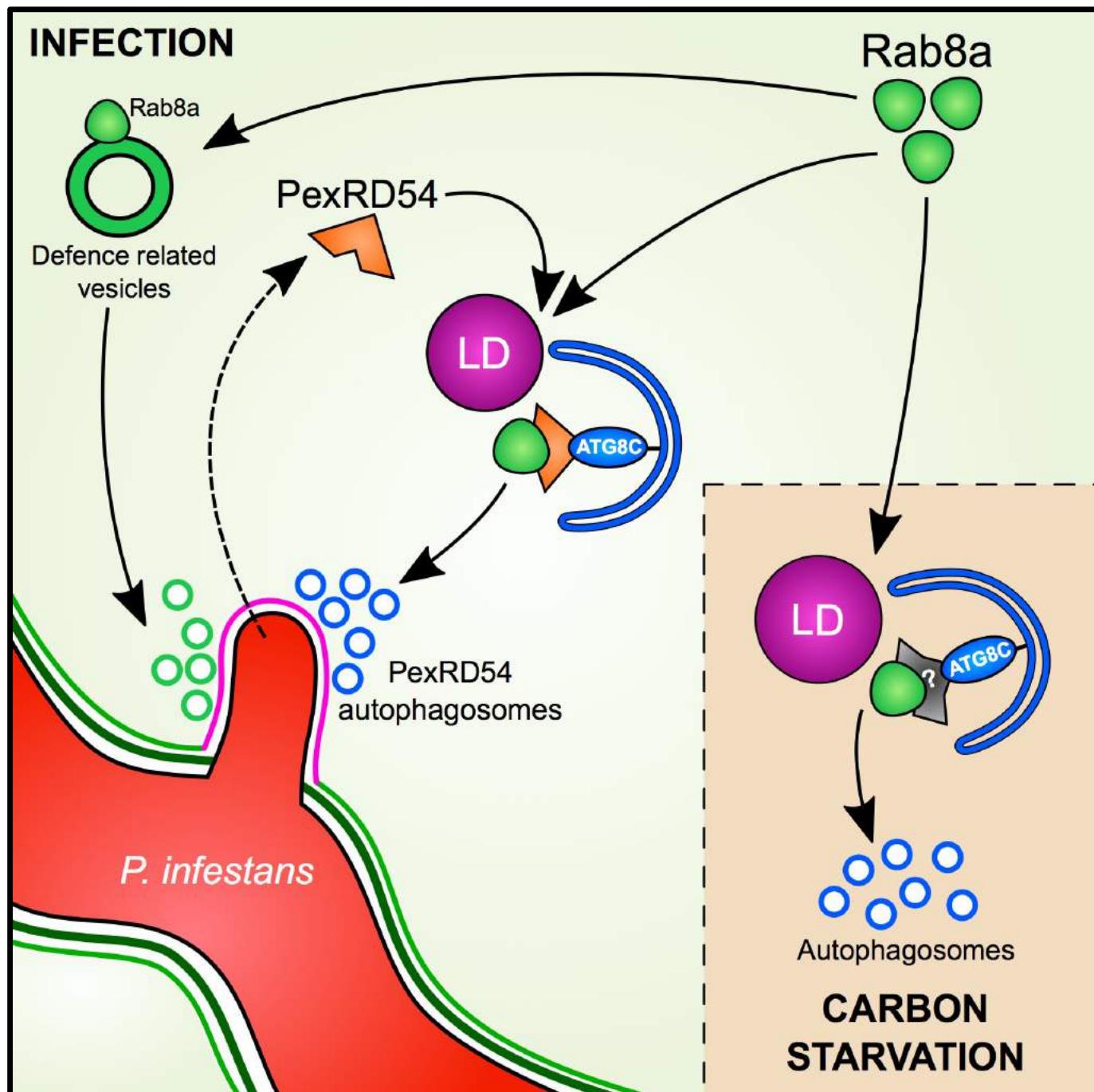
13 ³ Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse
14 3, 1030 Vienna, Austria.

15 ⁴ INGEBI-CONICET, Ciudad Autonoma de Buenos Aires, Argentina

16 ⁵ The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United
17 Kingdom.

18

19 Corresponding author: o.bozkurt@imperial.ac.uk


20

21 **Summary:**

22 Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved
23 effector proteins to counteract antimicrobial autophagy. How and why adapted pathogens co-opt
24 autophagy for their own benefit is poorly understood. The Irish famine pathogen *Phytophthora*
25 *infestans* secretes the effector protein PexRD54 that selectively activates an unknown plant
26 autophagy pathway, while antagonizing antimicrobial autophagy. Here we show that PexRD54
27 induces autophagosome formation by bridging small GTPase Rab8a-decorated vesicles with
28 autophagic compartments labelled by the core autophagy protein ATG8CL. Rab8a is required for
29 pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing that specific
30 trafficking pathways underpin selective autophagy. We discovered that Rab8a contributes to basal
31 immunity against *P. infestans*, but PexRD54 diverts a sub-population of Rab8a vesicles to lipid
32 droplets that associate with autophagosomes. These are then diverted towards pathogen feeding
33 structures that are accommodated within the host cells. We propose that PexRD54 mimics starvation-
34 induced autophagy by channeling host endomembrane trafficking towards the pathogen interface
35 possibly to acquire nutrients. This work reveals that effectors can interconnect independent host
36 compartments to stimulate complex cellular processes that benefit the pathogen.

37

Graphical abstract:

38

39

40

41

42

43

44

45

46 **Introduction:**

47

48 Autophagy is a conserved eukaryotic cellular process that mediates the lysosomal degradation and
49 relocation of cellular cargoes within double-membraned vesicles called autophagosomes (He and
50 Klionsky, 2009; Leidal et al., 2020). Although autophagy is historically considered to be a bulk
51 catabolic pathway tasked with maintaining cellular homeostasis under normal or stress conditions, it
52 is now clear that autophagy can be highly selective in cargo choice (Zaffagnini and Martens, 2016).
53 Autophagic cargoes are typically captured during autophagosome formation, a complex process that
54 is regulated by the concerted action of a set of conserved autophagy related proteins (ATG) as well
55 as specialized autophagy adaptors and cargo receptors (Mizushima et al., 2011). These captured
56 cargoes are sorted within the autophagosome during maturation of the isolation membrane (also
57 known as the phagophore) via the specific interactions between cargo receptors and a lipidated form
58 of ATG8, which decorates the phagophore to serve as a docking platform for cargo receptors
59 (Ryabovol and Minibayeva, 2016; Slobodkin and Elazar, 2013).

60

61 The source of the phagophore is still under debate, but its primary source is considered to be the
62 endoplasmic reticulum (ER) (Bernard and Klionsky, 2013; Hamasaki et al., 2013). As the cargo is
63 being captured, the phagophore undergoes massive expansion and finally gets sealed to form a
64 mature autophagosome. Therefore, formation of the autophagosome requires additional lipid supplies
65 that are needed for elongation and final sealing of the phagophore. Supporting this view, the essential
66 autophagy protein ATG2 was recently discovered to have lipid transfer activity (Maeda et al., 2019;
67 Osawa et al., 2019; Valverde et al., 2019). To cope with cellular starvation, cells can rapidly generate
68 hundreds of autophagosomes that conceivably require an efficient supply of lipids. Remarkably, in
69 yeast, lipids mobilized from lipid droplets (LDs) were found to fuel autophagosome biogenesis during
70 starvation-induced autophagy, which employs relatively larger autophagosomes. In contrast, smaller
71 autophagosomes of the cytosol-to-vacuole transport (Cvt) pathway do not rely on LDs, suggesting
72 that LDs are specifically recruited for starvation-induced autophagy in order to meet the increased
73 demand of lipids required for the biogenesis of larger sized autophagosomes (Dupont et al., 2014;
74 Shpilka et al., 2015). Although poorly characterized, there is accumulating evidence for
75 autophagosome maturation relying on vesicle transport and membrane expansion events which are
76 regulated by secretory pathways involving Rab GTPases (Ao et al., 2014). However, the molecular
77 mechanisms governing autophagosome biogenesis, including the sources of membrane precursors
78 required for autophagosome elongation and the transport routes to position these lipid supplies at
79 autophagosome assembly sites remain poorly understood.

80 Discovery of an increasing number of autophagy cargo receptors uncovered a multitude of selective
81 autophagy pathways implicated in crucial cellular functions ranging from development to immunity in
82 both plants and animals (Zaffagnini and Martens, 2016). For instance, the plant selective autophagy

83 (aggregophagy) cargo receptor Joka2/NBR1 mediates antiviral immunity by eliminating viral
84 components through autophagy (Hafrén et al., 2017a, 2017b; Jung et al., 2020). Joka2/NBR1 is also
85 required for immunity against bacteria and oomycete pathogens, however, the extent to which
86 defense-related autophagy acts against these pathogens is unknown (Dagdas et al., 2018; Hofius et
87 al., 2018). Consistent with the important role of autophagy in plant immunity, adapted pathogens
88 appear to have evolved strategies to manipulate the host autophagy machinery to support their
89 virulence (Hofius et al., 2018; Leary et al., 2017, 2019).

90

91 Pathogens typically secrete an arsenal of effector proteins to modulate host processes to support
92 their virulence. Effectors function not only to evade and suppress host immunity but also to mediate
93 nutrient acquisition (Win et al., 2012). Some filamentous plant pathogens, including the Irish potato
94 famine pathogen *Phytophthora infestans*, project hyphal extensions called haustoria that grow into
95 the host cells to facilitate effector delivery and gain access to host nutrients (Panstruga and Dodds,
96 2009). A haustorium is a specialized infection structure that remains enveloped by an enigmatic host-
97 derived membrane known as the extra-haustorial membrane (EHM), whose functions and biogenesis
98 are poorly understood (Whisson et al., 2016). Notably, we previously showed that Joka2-mediated
99 defense-related autophagy is diverted to the EHM during *P. infestans* infection (Dagdas et al., 2018).

100 The pathogen counteracts this by deploying PexRD54, a host-translocated RXLR class of effector
101 with five consecutive WY motifs, that targets plant autophagy (Dagdas et al., 2016). PexRD54 carries
102 a canonical C-terminal ATG8 interacting motif (AIM) that is typically found on autophagy cargo
103 receptors to bind ATG8 (Maqbool et al., 2016). Among the diverse set of potato ATG8 members
104 (Kellner et al., 2017; Zess et al., 2019), PexRD54 preferentially binds the ATG8CL isoform and
105 outcompetes Joka2/NBR1 from ATG8CL complexes, thereby disarming defense-related autophagy
106 at the pathogen interface. Intriguingly, PexRD54 does not fully shutdown autophagy as has been
107 shown for animal pathogens that suppress autophagy (Choy et al., 2012; Kimmey and Stallings, 2016;
108 Real et al., 2017; Xu et al., 2019). Instead, it stimulates formation of autophagosomes that accumulate
109 around the pathogen interface. However, how PexRD54 stimulates autophagy and in what way the
110 pathogen benefits from this remains unknown.

111

112 Here, we show that PexRD54 mimics carbon starvation induced autophagy by coupling the host
113 vesicle transport regulator Rab8a to autophagosome biogenesis at the pathogen interface. While
114 Rab8a contributes to basal immunity against *P. infestans*, PexRD54 diverts a sub-population of the
115 Rab8a pool to trigger autophagosome formation. Thus, using an effector protein as a molecular tool,
116 we provide insights into not only how vesicle transport processes selectively support autophagosome
117 formation, but also how the pathogen exploits these pathways to undermine plant immunity.

118

119

120 **Results**

121

122 **PexRD54-ATG8 binding is not sufficient for stimulation of autophagosome formation.**

123

124 We have previously shown that AIM mediated binding of PexRD54 to ATG8CL is essential for the
125 activation of autophagosome formation (Dagdas et al., 2016; Maqbool et al., 2016). Therefore, we
126 reasoned that PexRD54 could stimulate autophagosome formation by either releasing the negative
127 regulation of ATG8CL by host autophagy suppressors or through recruiting essential host
128 components to the autophagosome biogenesis sites. To first address whether ATG8 binding is
129 sufficient to trigger autophagosome induction, we generated a PexRD54 truncate comprising only the
130 C terminal AIM peptide (amino acids 350-381, hereafter AIMp), and compared its potency to stimulate
131 autophagosome formation to the full length protein. Strikingly, instead of stimulating autophagosome
132 formation, AIMp fused to RFP (RFP:AIMp) significantly reduced the number of ATG8CL-
133 autophagosomes in leaf epidermal cells (Figure 1A-B). Compared to RFP:GUS control, expression
134 of RFP:AIMp reduced the number of GFP:ATG8CL-autophagosomes by ~6 fold, whereas cells
135 expressing RFP:PexRD54 had a ~4 fold increase in GFP:ATG8CL-autophagosome numbers as has
136 been shown before (Figure 1A-B) (Dagdas et al., 2016). The AIMp interacted with ATG8CL *in planta*
137 (Figure S1), as was previously shown through *in vitro* studies (Dagdas et al., 2016; Maqbool et al.,
138 2016). However, this association appears to take place mainly in the cytoplasm as the suppression
139 of autophagosome formation by AIMp is such that we hardly observe any GFP:ATG8CL
140 autophagosomes (Figure 1B). In contrast, RFP:PexRD54 and GFP:ATG8CL produced strong
141 overlapping fluorescence signals that peak at mobile ring-like PexRD54-ATG8CL-autophagosome
142 clusters as described previously (Dagdas et al., 2016), in contrast to cells expressing RFP:GUS
143 (Figure 1B, S2). Taken together these results show that binding of PexRD54 to ATG8CL, although
144 necessary, is not sufficient to activate autophagosome biogenesis. This suggests while the full-length
145 protein stimulates autophagy, PexRD54's AIM peptide functions as an autophagy suppressor.

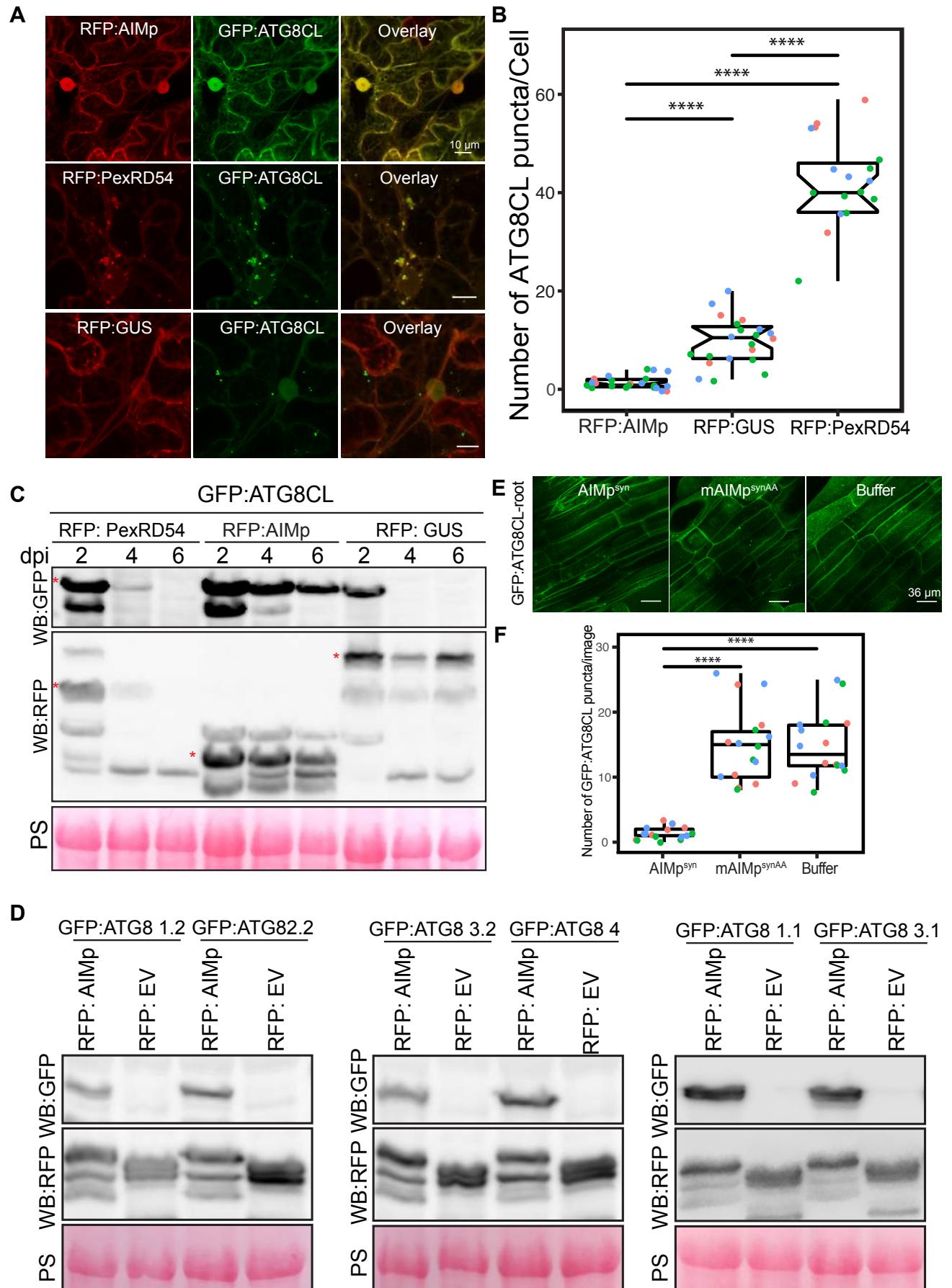
146

147 **The AIM peptide of PexRD54 suppresses autophagy.**

148

149 To determine whether AIMp negatively regulates autophagy, we investigated its impact on autophagic
150 flux by monitoring GFP:ATG8CL depletion over time. Consistent with the AIMp triggered decrease in
151 ATG8CL-autophagosome numbers (Figure 1A-B), RFP:AIMp stabilized GFP:ATG8CL compared to
152 RFP:PexRD54 or RFP:GUS control (Figure 1C, S3). Western blotting showed that in the presence of
153 RFP:AIMp, GFP:ATG8CL was still able to produce a strong protein band even after six days post
154 transient expression. On the other hand, GFP:ATG8CL was hardly detectable just four days in
155 presence of RFP:PexRD54 or RFP:GUS, indicating that the AIMp hampers autophagic flux (Figure
156 1C). However, we did not observe any stabilization of the GFP control by RFP:AIMp, RFP:PexRD54

157 or RFP:GUS, indicating that reduced turnover of GFP:ATG8CL by RFP:AIMp is specific and is not
158 due to altered Agrobacterium-mediated expression efficiency (Figure S3).


159

160 We next investigated the extent to which AIMp acts on other potato ATG8 isoforms. RFP:AIMp
161 showed a robust stabilization effect on all six potato ATG8 isoforms (Figure 1D), indicating that it acts
162 as a broad spectrum autophagy suppressor. To further validate these results, we measured the
163 endogenous NBR1/Joka2 and ATG8 protein levels in *N. benthamiana* in the presence or absence of
164 the AIMp. Consistently, ectopic expression of RFP:AIMp led to marked increase in both native
165 NbJoka2 and NbATG8(s) levels compared to RFP:GUS expression, whereas RFP:PexRD54 mildly
166 increased levels of only native NbJoka2 but not NbATG8s (Figure S4). These results further support
167 the view that PexRD54's AIMp suppresses autophagy non-selectively, whereas PexRD54 activates
168 ATG8CL-autophagy while neutralizing Joka2-mediated autophagy as shown before (Dagdas et al.,
169 2016).

170

171 We then explored the potency of the AIMp in autophagy suppression when applied exogenously. For
172 this we custom synthesized PexRD54's AIM peptide (AIMp^{syn}, 10 amino acids at the C terminus)
173 along with the AIM peptide mutant (mAIMp^{syn}) fused to cell penetrating peptides and tested their
174 activities in plant roots that stably express GFP:ATG8CL. Although both AIMp^{syn} and mAIMp^{syn} fused
175 to 5-Carboxyfluorescein (CF-AIMp^{syn} and CF-mAIMp^{syn}) were effectively taken up by the root cells
176 (Figure S5), only the wild type AIMp^{syn} reduced the frequency of GFP:ATG8CL-puncta (by ~10-fold)
177 compared to mAIMp^{syn} or water control (Figure 1E-F). We also repeated these assays in leaf
178 epidermal cells successfully, however, peptide translocation efficiency and thus autophagosome
179 reduction AIMp^{syn} were much lower in leaves compared to root cells (Figure 1E-F, S6). These findings
180 demonstrate that PexRD54's AIM peptide suppresses autophagy, likely through binding to plant
181 ATG8 isoforms with a high affinity and limiting their access to the autophagy adaptors that are
182 essential for induction of autophagy. This hints that full-length PexRD54 carries additional features to
183 stimulate autophagosome formation, by for instance, recruiting and/or manipulating other host
184 components.

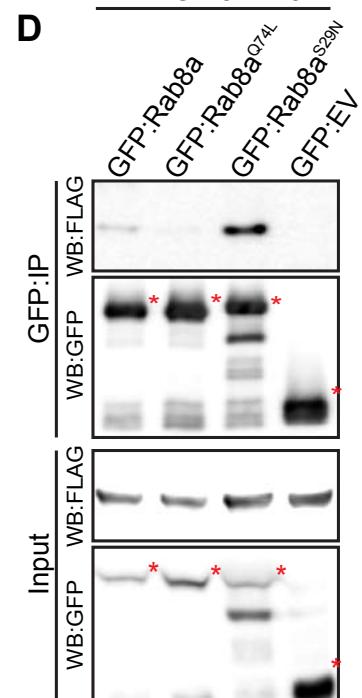
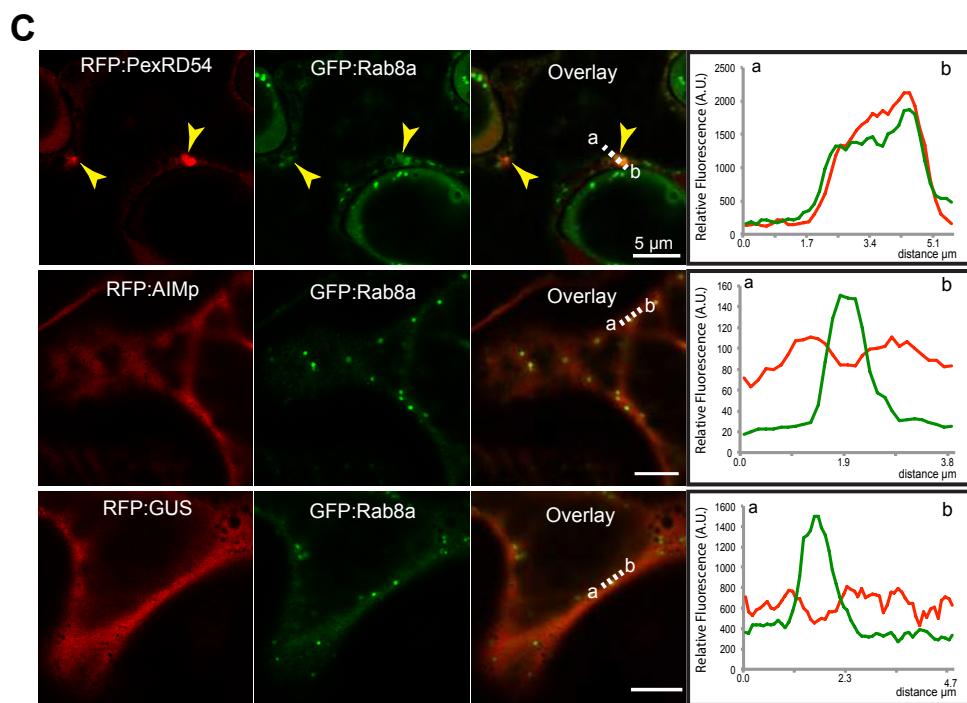
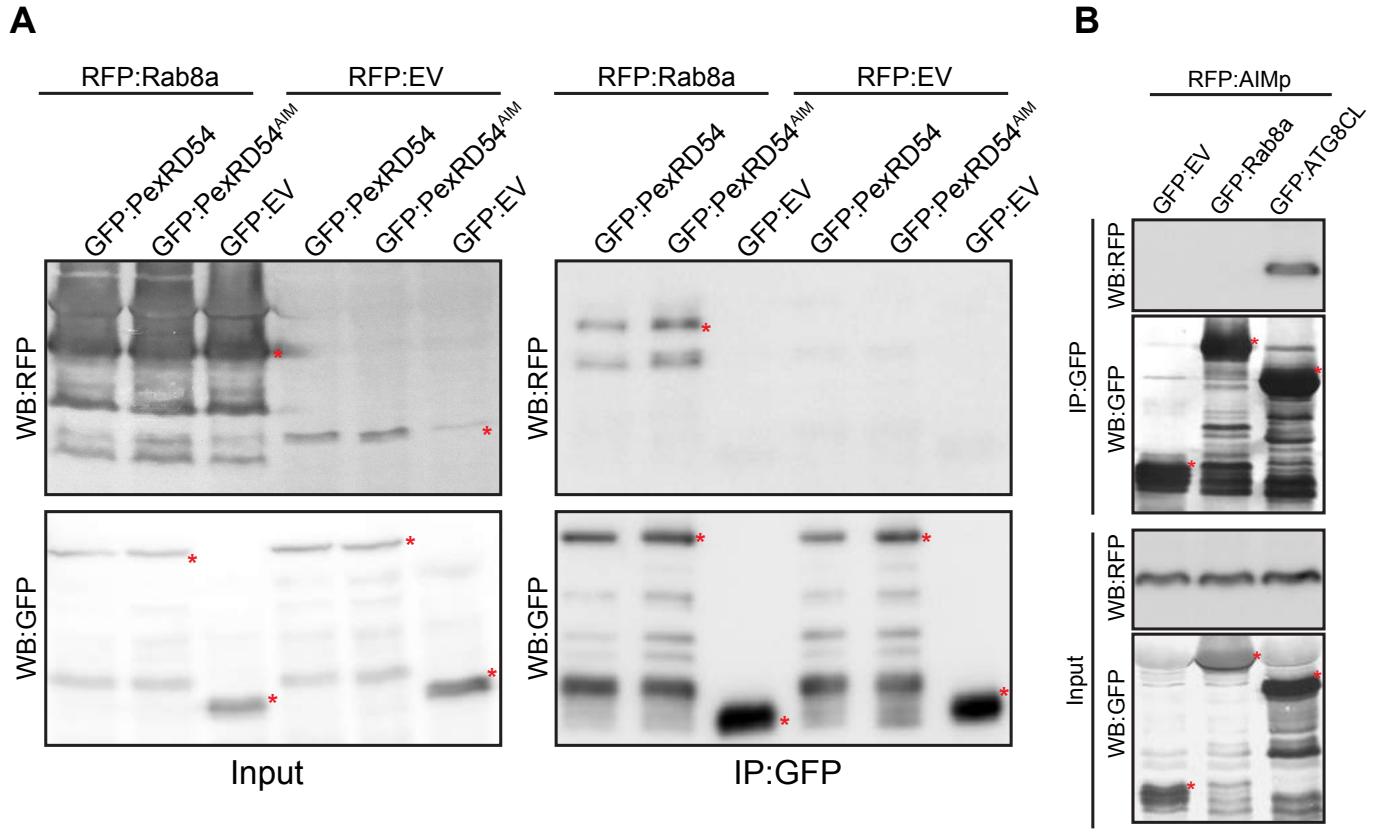
185

187 **Figure 1. PexRD54-ATG8 binding is not sufficient for stimulation of autophagosome formation.** (A)
188 Maximum projection confocal micrographs of *Nicotiana benthamiana* leaf epidermal cells transiently expressing
189 either RFP:AIMp (top), RFP:PexRD54 (middle), or RFP:GUS (bottom), with GFP:ATG8CL. Scale bars = 10 μ m.
190 (B) Quantification of autophagosome numbers from A shows RFP:PexRD54 expression significantly increases
191 ATG8CL autophagosomes per cell (40, N = 19 images quantified) compared to RFP:GUS control (10, N = 22
192 images quantified), while RFP:AIMp significantly decreases ATG8CL autophagosome numbers (2, N = 23
193 images quantified). Scattered points show individual data points, colour indicates biological repeats. (C)
194 Western blots show Agrobacterium mediated expression of GFP:ATG8CL is stabilized by RFP:AIMp and
195 RFP:PexRD54 beyond two days post infiltration. Red asterisks show bands of expected sizes. (D) Western
196 blots show Agrobacterium mediated expression of various GFP:ATG8 isoforms is stabilized by RFP:AIMp. (E)
197 Maximum projection confocal micrographs of transgenic *N. benthamiana* leaf cells stably expressing GFP-
198 ATG8CL infiltrated with cell penetrating peptides or buffer. (F) Compared to a buffer control (15, N = 16 images
199 quantified), synthesized AIM peptide fused to a cell penetrating peptide (AIMpsyn) suppresses ATG8CL
200 autophagosomes in roots (1, N = 18 images quantified), while the AIM peptide mutant mAIMp^{synAA} does not (15,
201 N = 17 images quantified).

202
203 **PexRD54 associates with the host vesicle transport regulator Rab8a independent of ATG8CL**
204 **binding**

205
206 As our previous findings revealed that host autophagy function is important for *P. infestans* infection
207 (Dagdas et al., 2016, 2018), we next set out to investigate the mechanism of autophagy activation by
208 PexRD54. Although the underlying molecular mechanisms are largely unknown, autophagosome
209 biogenesis relies on vesicle trafficking and fusion events in yeast and animals (Nair et al., 2011; Singh
210 et al., 2019). We therefore reasoned that in addition to binding ATG8CL, PexRD54 could possibly
211 hijack host vesicle transport machinery to stimulate autophagosome biogenesis. Interestingly, our
212 previous proteomics survey identified Rab8a, a member of the small ras-related GTPases that
213 mediate vesicle transport and fusion events, as a candidate PexRD54 interactor (Dagdas et al., 2016).
214 We first validated PexRD54-Rab8a association through co-immunoprecipitation assays by co-
215 expressing the potato Rab8a (herein Rab8a) with PexRD54 *in planta*. Notably, the AIM mutant of
216 PexRD54 (PexRD54^{AIM}) that cannot bind ATG8CL still interacted with Rab8a to a similar degree as
217 PexRD54 (Figure 2A), indicating that PexRD54 associates with Rab8a independent of its ATG8CL
218 binding activity. Consistent with this, the AIMp failed to associate with Rab8a in pull down assays,
219 although it still strongly interacted with ATG8CL (Figure 2B). These results suggest that PexRD54's
220 N-terminal region preceding the C-terminal AIM mediates Rab8a association.

221
222 To gain insights into association of PexRD54 with Rab8a, we investigated their subcellular distribution
223 through confocal microscopy in leaf epidermal cells. Both stably and transiently expressed Rab8a
224 fused to GFP (GFP:Rab8a) produced fluorescent signals at both the plasma membrane and the




225 vacuolar membrane (tonoplast) (Figure S7). In addition, GFP:Rab8a localized to mobile puncta (0.2-
226 0.5 μ m in diameter) as well as to larger ring shaped structures (Figure S7, Video S1), indicating that
227 Rab8a could regulate multiple cellular trafficking events. To determine the subcellular compartment(s)
228 where PexRD54 associates with Rab8a, we examined GFP:Rab8a expressed with RFP:PexRD54,
229 RFP:AIMp or RFP:GUS using confocal microscopy. In line with the pull-down assays (Figure 2A-B),
230 a subset of punctate structures labelled by GFP:Rab8a showed a clear overlap with RFP:PexRD54-
231 puncta, whereas we did not detect any RFP signal peaking at GFP:Rab8a puncta in cells expressing
232 RFP:AIMp or RFP:GUS (Figure 2C). Together, these results demonstrate that PexRD54 associates
233 with Rab8a in an AIM independent manner and raise the possibility that Rab8a could be an important
234 component of PexRD54 driven autophagy.

235
236 **PexRD54 shows a higher affinity towards Rab8a-S29N mutant**
237

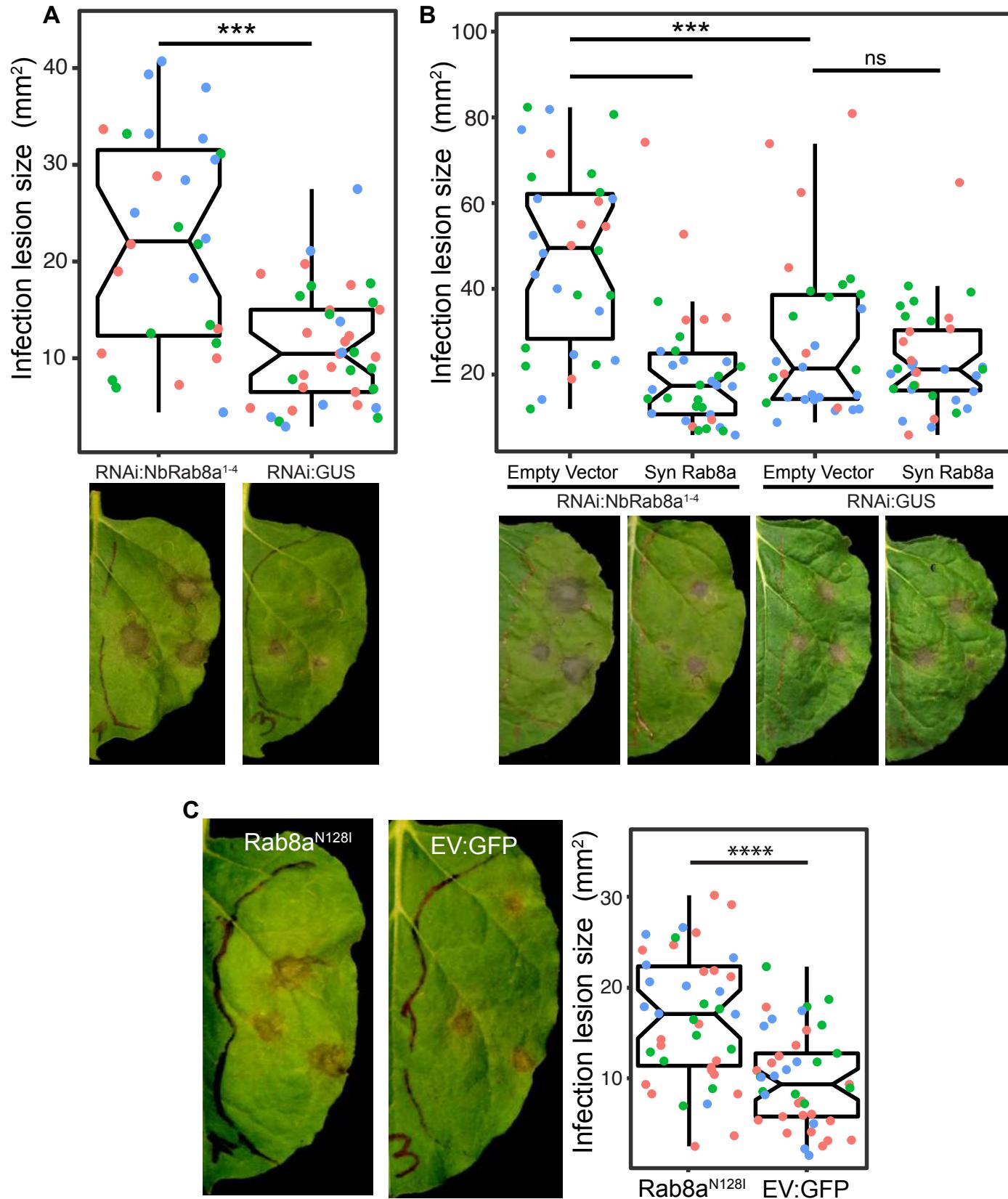
238 Because Rab GTPases function by converting between GTP and GDP bound states, we decided to
239 generate Rab mutants that mimic the active (GTP) and inactive (GDP bound) conformations, which
240 are helpful for characterization of the Rab GTPase functions. Although recent work challenged the
241 applicability of these mutations (Langemeyer et al., 2014; Pfeffer et al., 2014), we reasoned that
242 Rab8a mutants could still be useful to dissect the role of Rab8a in PexRD54 activated autophagy. To
243 determine whether PexRD54 favors a particular form of Rab8a, we produced Rab8a point mutants
244 that we presume to mimic the GTP (Rab8a^{Q74L}) or GDP (Rab8a^{S29N}) bound states (Figure S8A) and
245 investigated their subcellular distribution (Figure S8B-D). Unlike GFP:Rab8a, which predominantly
246 labelled the plasma membrane, GFP:Rab8a^{S29N} mutant showed an even distribution at the plasma
247 membrane and the tonoplast (Figure S8B-C). In addition, both GFP:Rab8a^{S29N} and GFP:Rab8a
248 marked punctate structures with varying size and shape (Figure S8B-C). In contrast, GFP:Rab8a^{Q74L}
249 was mainly trapped in the tonoplast and showed reduced punctate distribution compared to
250 GFP:Rab8a or GFP:Rab8a^{S29N} (Figure S8B, D), indicating that the Q74L mutant may not be
251 representing the fully active form of Rab8a as previously reported for other Rab GTPases
252 (Langemeyer et al., 2014; Pfeffer et al., 2014).

253
254 We next examined the extent to which Rab8a mutants colocalize with PexRD54. When co-expressed
255 with BFP:PexRD54, both GFP:Rab8a and GFP:Rab8a^{S29N} consistently produced sharp fluorescence
256 signals that overlap with the typical ring-like autophagosomes marked by PexRD54 (Figure S9A-B).
257 However, GFP:Rab8a^{Q74L} showed a similar localization pattern to the GFP control, and mostly did not
258 produce fluorescence signals that peak at BFP:PexRD54-puncta (Figure S9C-D). We quantified these
259 observations in multiple independent experiments where GFP:Rab8a and GFP:Rab8a^{S29N} frequently
260 (68%, N = 23) labeled BFP:PexRD54-puncta, whereas GFP:Rab8a^{Q74L} only did so much less often
261 (25%, N = 20) (Figure S9E). As an additional control, we also checked for colocalization between

262 Rab8a mutants and PexRD54's AIM peptide. However, we did not observe any puncta co-labeled by
263 RFP:AIMp and GFP:Rab8a or any of the Rab8a mutants we tested (Figure S10). These observations
264 are consistent with the results obtained in Figure 2B and 1A-B which revealed that PexRD54's AIM
265 peptide fails to associate with Rab8a and suppresses autophagosome formation. Finally, we tested
266 the affinity of PexRD54 to Rab8a and its mutants. Rab8a^{S29N} pulled-down PexRD54 more than wild
267 type GFP:Rab8a or GFP:Rab8a^{Q74L} *in planta* (Figure 2D). This suggests that PexRD54 preferentially
268 associates with the GDP (S29N) bound state of Rab8a.

272 **Figure 2. PexRD54 associates with the host vesicle transport regulator Rab8a independently of its**
273 **ATG8CL binding.** (A) *In planta* co-immunoprecipitation between Rab8a and PexRD54 or PexRD54^{AIM}.
274 RFP:Rab8a was transiently co-expressed with either GFP:EV, GFP:PexRD54 or GFP:PexRD54^{AIM}. Red
275 asterisks indicate expected band sizes. (B) *In planta* co-immunoprecipitation between the AIMp and AT8CL or
276 Rab8a. RFP:AIMp was transiently co-expressed with either GFP:EV, GFP:AT8CL or GFP:Rab8a. IPs were
277 obtained with anti-GFP antiserum. Total protein extracts were immunoblotted. Red asterisks indicate expected
278 band sizes. (C) Maximum projection confocal micrographs of *N. benthamiana* leaf epidermal cells transiently
279 expressing either RFP:PexRD54 (top), RFP:AIMp (middle), or RFP:GUS (bottom), with GFP:Rab8a. Yellow
280 arrows show colocalization between constructs. Transects in overlay panel correspond to plot of relative
281 fluorescence over the labelled distance. RFP:PexRD54 co-localises in discrete punctate structures with
282 GFP:Rab8a while RFP:AIMp and RFP:GUS show diffuse expression. (D) *In planta* co-immunoprecipitation of
283 PexRD54 with Rab8a, Rab8a^{Q74L}, Rab8a^{S29N}, or GFP. FLAG:PexRD54 was transiently co-expressed with
284 GFP:Rab8a, GFP:Rab8a^{Q74L}, GFP:Rab8a^{S29N}, or GFP:EV. IPs were obtained with anti-GFP antiserum and total
285 protein extracts were immunoblotted with GFP and FLAG antisera. Red asterisks indicate expected band sizes.
286

287 **Rab8 family contributes to immunity against *P. infestans*.**


288

289 We next investigated the potential role of Rab8a in immunity against *P. infestans*. First, we tested
290 whether silencing of Rab8a gene expression interferes with the pathogen growth. In the *N.*
291 *benthamiana* genome, we identified at least four genes encoding full-length Rab8a like proteins
292 (NbRab8a1-4). An RNA interference (RNAi) silencing construct (RNAi:NbRab8a¹⁻² hereafter)
293 targeting the 3 prime untranslated regions (UTR) of *NbRab8a1* and *NbRab8a2*, the two closest
294 homologs of the potato *Rab8a* in *N. benthamiana*, showed efficient silencing of the two genes but not
295 *NbRab8a3* and *NbRab8a4*, compared to the control silencing construct RNAi:GUS (Fig S11). In three
296 independent experiments RNAi mediated silencing of two out of four Rab8a homologs did not alter *P.*
297 *infestans* virulence (Figure S12). We reasoned that this could be due to redundancy among Rab8a
298 homologues that are potentially upregulated during infection. To overcome this limitation, we
299 generated a hairpin-silencing construct (RNAi:NbRab8a¹⁻⁴) that targets all four Rab8a members in *N.*
300 *benthamiana*. The RNAi:NbRab8a¹⁻⁴ construct effectively silenced all four Rab8a members but not
301 an unrelated Rab GTPase family member Rab11 (Figure S13). Simultaneous silencing of all four
302 Rab8a members led to a consistent increase in disease symptoms caused by *P. infestans* (Figure
303 3A), supporting the view that the Rab8a family contributes to immunity. To determine the role of the
304 Rab8a family in immunity, we conducted a silencing complementation assays using a codon shuffled
305 Rab8a-1 construct fused to GFP (GFP:Rab8a-1^{syn}) that can evade RNAi. As expected, the
306 GFP:Rab8a^{syn} construct was resistant to RNAi mediated silencing, as it produced a clear protein band
307 in western blots, unlike the wild type Rab8a that was undetectable upon co-delivery of the
308 RNAi:NbRab8a¹⁻⁴ silencing construct (Figure S14). The enhanced susceptibility caused by
309 RNAi:NbRab8a¹⁻⁴ silencing was rescued by simultaneous overexpression of GFP:Rab8a-1^{syn} but not

310 the GFP control, providing further evidence that Rab8a is required for basal resistance against *P.*
311 *infestans* (Figure 3B). Finally to gain supporting evidence of the positive role of Rab8a in immunity,
312 we used a dominant negative form of potato Rab8a (Rab8a^{N128I}) to assay for immune phenotypes.
313 Consistent with prior experiments, overexpression of GFP:Rab8a^{N128I}, but not a GFP control,
314 enhanced plant susceptibility to *P. infestans*, supporting that the Rab8a family contributes to plant
315 immunity (Figure 3C). Taken together, these results show that Rab8a members redundantly
316 contribute to plant immunity.

317

318

321 **Figure 3. Rab8a positively contributes to immunity to *P. infestans*.** (A) Silencing endogenous Rab8a 1-4
322 significantly increases *P. infestans* infection lesion size (22, $N = 28$ infected leaves) compared to a silencing
323 control (11, $N = 37$ infected leaves). *N. benthamiana* leaves expressing RNAi:NbRab8a¹⁻⁴ or RNAi:GUS were
324 infected with *P. infestans* and pathogen growth was determined by measuring infection lesion size 7 days post-
325 inoculation. (B) Complementing *Rab8a* 1-4 silencing with a silencing resistant GFP:Rab8a recovers resistance
326 to *P. infestans*. When *Rab8a* 1-4 is silenced, expression of SynGFP:Rab8a significantly reduces *P. infestans*
327 infection lesion size (20, $N = 30$ infected leaves) compared to an empty vector control (61, $N = 30$ infected
328 leaves). When a silencing control is expressed, expression of SynGFP:Rab8a does not affect *P. infestans*
329 infection lesion size (23, $N = 28$ infected leaves) compared to an empty vector (28, $N = 31$ infected leaves). (C)
330 Expression of Rab8a^{N128I} (36, $N = 42$ infected leaves) significantly increases *P. infestans* necrotic lesion size
331 compared to an empty vector control (20, $N = 41$ infected leaves). (A-C) *N. benthamiana* leaves
332 expressing RNAi:NbRab8a¹⁻⁴ or RNAi:GUS, SynGFP:Rab8a or GFP:EV, GFP:Rab8a^{N128I} or GFP:EV were
333 infected with *P. infestans* and pathogen growth was determined by measuring infection lesion size 7 days post-
334 inoculation.

335

336 **PexRD54 recruits Rab8a to autophagosome biogenesis sites**

337

338 As PexRD54 activates autophagy, we next explored the potential role of Rab8a in PexRD54 triggered
339 autophagy. To this end, we investigated the extent to which PexRD54 associates with its two host
340 interactors, Rab8a and ATG8CL. We first employed live-cell imaging of GFP:Rab8a and
341 RFP:ATG8CL co-expressed in combination with either BFP:PexRD54, BFP:AIMp or BFP control.
342 These assays revealed that BFP:PexRD54, but not free BFP or BFP:AIMp, localizes to RFP:ATG8CL
343 puncta that are also positively labeled by GFP:Rab8a (Figure 4A-C). Furthermore, GFP:Rab8a
344 localized to ring-shaped RFP:ATG8CL clusters triggered by BFP:PexRD54, whereas no such
345 structures occurred in cells expressing BFP control or BFP:AIMp (Figure 4A-C). Notably, our
346 quantitative image analysis revealed that, even in the absence of PexRD54, more than half of
347 RFP:ATG8CL-puncta (60%, $N = 18$) are positively labelled by GFP:Rab8a (Figure 4A-D). However,
348 BFP:PexRD54 expression significantly increased the frequency of GFP:Rab8a positive
349 RFP:ATG8CL-puncta (85%, $N = 18$) (Figure 4A-D). Conversely, we rarely detected any fluorescent
350 puncta that were co-labeled by GFP:Rab8a and RFP:ATG8CL in the presence of BFP:AIMp (6%, N
351 = 18), which strongly suppresses autophagosome formation (Fig 4C). These results indicate that
352 Rab8a localizes to a subset of autophagy compartments marked by ATG8CL and this is further
353 enhanced by PexRD54. Consistently, in plants stably expressing GFP:Rab8a, we observed a similar
354 degree of PexRD54-triggered increase in ATG8CL-Rab8a colocalization in ring-shaped ATG8CL-
355 clusters (Fig S15), suggesting that PexRD54 might boost Rab8a recruitment to autophagic
356 compartments. To gain biochemical evidence for PexRD54 mediated recruitment of Rab8a to
357 ATG8CL compartments, we conducted *in planta* co-immunoprecipitation assays. Notably, the
358 association between GFP:Rab8a and RFP:ATG8CL markedly increased in the presence of

359 HA:PexRD54 (85%, $N = 18$) compared to HA-vector control (26%, $N = 18$), whereas GFP:Rab8a-
360 RFP:ATG8CL interaction is slightly reduced when the two proteins are co-expressed with the
361 HA:AIMp construct (60%, $N = 18$) (Figure S15). Altogether, these results show that PexRD54
362 enhances Rab8a accumulation at ATG8CL-autophagosomes.

363

364 To further ascertain the functional relationship between PexRD54 and Rab8a, we investigated the
365 degree to which Rab8a associates with autophagy machinery. We monitored the co-localization of
366 RFP:Rab8a with the early autophagosome biogenesis marker protein ATG9:GFP in combination with
367 BFP:PexRD54, BFP:AIMp or BFP. Our confocal microscopy analyses revealed that ATG9:GFP
368 puncta are frequently accompanied by RFP:Rab8a labelled vesicles. However, we detected an
369 increased incidence of RFP:Rab8a puncta that associate with the mobile ATG9:GFP compartments
370 in the presence of BFP:PexRD54 (68%, $N = 44$) compared to free BFP (38%, $N = 31$) or BFP:AIMp
371 (31%, $N = 58$) (Figure S16), indicating that PexRD54 stimulates association of Rab8a with the
372 autophagosome biogenesis machinery. Notably, only in the presence of BFP:PexRD54 but not
373 BFP:AIMp or BFP:EV, ATG9:GFP signal overlapped with RFP:Rab8a fluorescence (Figure S16).
374 Furthermore, time-lapse microscopy revealed that these mobile ATG9:GFP compartments co-migrate
375 with BFP:PexRD54/RFP:Rab8a positive puncta (Video S2). These results implicate Rab8a in plant
376 autophagy and indicate that PexRD54 promotes Rab8a recruitment to autophagosome biogenesis
377 sites.

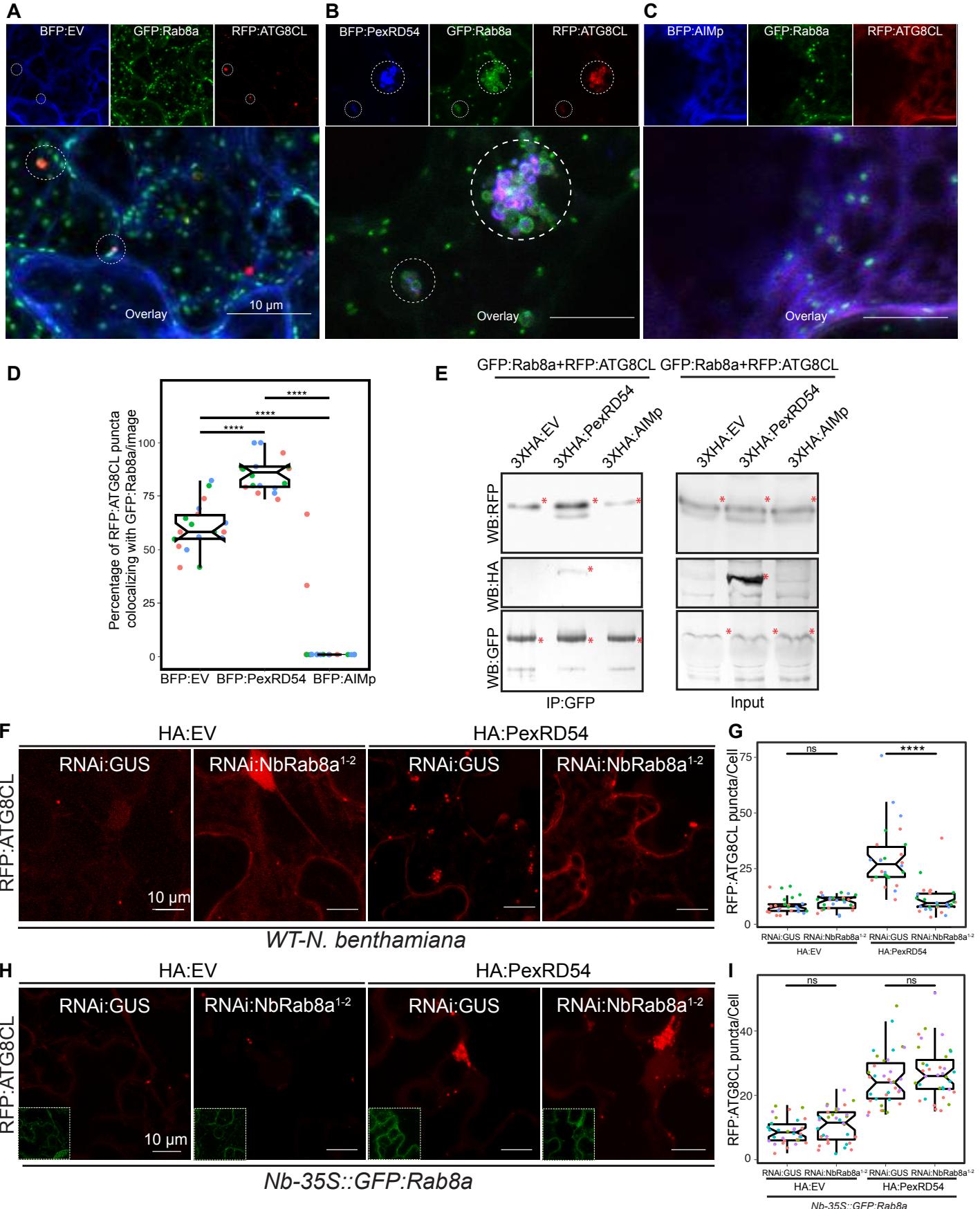
378

379 **Rab8a is required for PexRD54 triggered autophagy**

380

381 We next investigated whether Rab8a is required for PexRD54 mediated autophagy. We measured
382 the impact of *NbRab8a* silencing in autophagy by quantifying the RFP:ATG8CL-autophagosome
383 numbers. For this we used the RNAi:NbRab8a¹⁻² silencing construct in order to specifically silence the
384 *NbRab8a* 1-2. In the absence of PexRD54, silencing of *NbRab8a* 1-2 did not alter the number of
385 RFP:ATG8CL puncta (Figure S17). However, following stimulation of autophagy by transient
386 expression of GFP:PexRD54, the number of RFP:ATG8CL-puncta/cell in RNAi:NbRab8a¹⁻²
387 background reduced by half compared to a RNAi:GUS control (Figure S17). This suggests that
388 simultaneous knockdown of *NbRab8a*1 and *NbRab8a*2 does not affect basal autophagy, but
389 negatively impacts PexRD54 triggered autophagy. To validate these results, we set up a
390 complementation assay in which we silenced *NbRab8a*1-2 in transgenic *N. benthamiana* lines stably
391 expressing the GFP tagged potato Rab8a, which evades RNA silencing because it lacks the 3 prime
392 UTR targeted by the RNAi:NbRab8a¹⁻² construct. Consistent with the results obtained in Figure S17,
393 upon delivery of RNAi:NbRab8a¹⁻² construct in wild type plants, we detected greater than two fold
394 decrease in the number of HA:PexRD54 triggered RFP:ATG8CL-puncta compared to RNAi:GUS. On
395 the other hand, the frequency of RFP:ATG8CL-puncta is not altered by RNAi:NbRab8a¹⁻² in cells

396 expressing the HA vector control (Figure 4F-G). In contrast, stable transgenic plants expressing the
397 silencing resistant potato GFP:Rab8a protein, RNAi:NbRab8a¹⁻² did not change the number of
398 RFP:ATG8CL puncta with or without HA:PexRD54, compared to cells that express RNAi:GUS control
399 (Figure 4H-I). These results suggest that Rab8a positively regulates PexRD54 mediated autophagy.


400

401 Finally, to gain further genetic evidence for Rab8a's positive role in PexRD54 triggered
402 autophagosome formation, we employed the dominant negative Rab8a mutant (N128I) (Essid et al.,
403 2012) and measured its impact on formation of RFP:ATG8CL-autophagosomes in the presence or
404 absence of HA:PexRD54. Consistent with the silencing assays (Figure 4F-G), GFP:Rab8a^{N128I} led to
405 a greater than 2 fold decrease in PexRD54 triggered ATG8CL-autophagosome numbers compared
406 to wild type GFP:Rab8a (Figure S20).

407

408 As we previously describe that PexRD54 has varying binding affinity for Rab8a and its mutants (Figure
409 2D), we next checked whether ectopic expression of Rab8a and its mutants (S29N and Q74L) have
410 any effect on the formation of PexRD54-autophagosomes. Compared to GFP control, GFP:Rab8a
411 expression led to a slight increase (~1.5 fold) in the number of BFP:PexRD54 puncta (Figure S21),
412 suggesting that Rab8a could positively regulate autophagosome formation. Expression of GDP bound
413 GFP:Rab8a^{S29N} substantially boosted (~3 times) the frequency of BFP:PexRD54 puncta compared
414 to a GFP control, whereas GTP bound GFP:Rab8a^{Q74L} did not lead to any significant changes in the
415 number of BFP:PexRD54 puncta compared to the GFP control (Figure S21). These results are
416 consistent with the pulldown assays, which revealed stronger interaction between PexRD54 and
417 Rab8a^{S29N}. Together with the data presented in Figure 2D, these findings demonstrate that PexRD54
418 driven autophagy requires Rab8a.

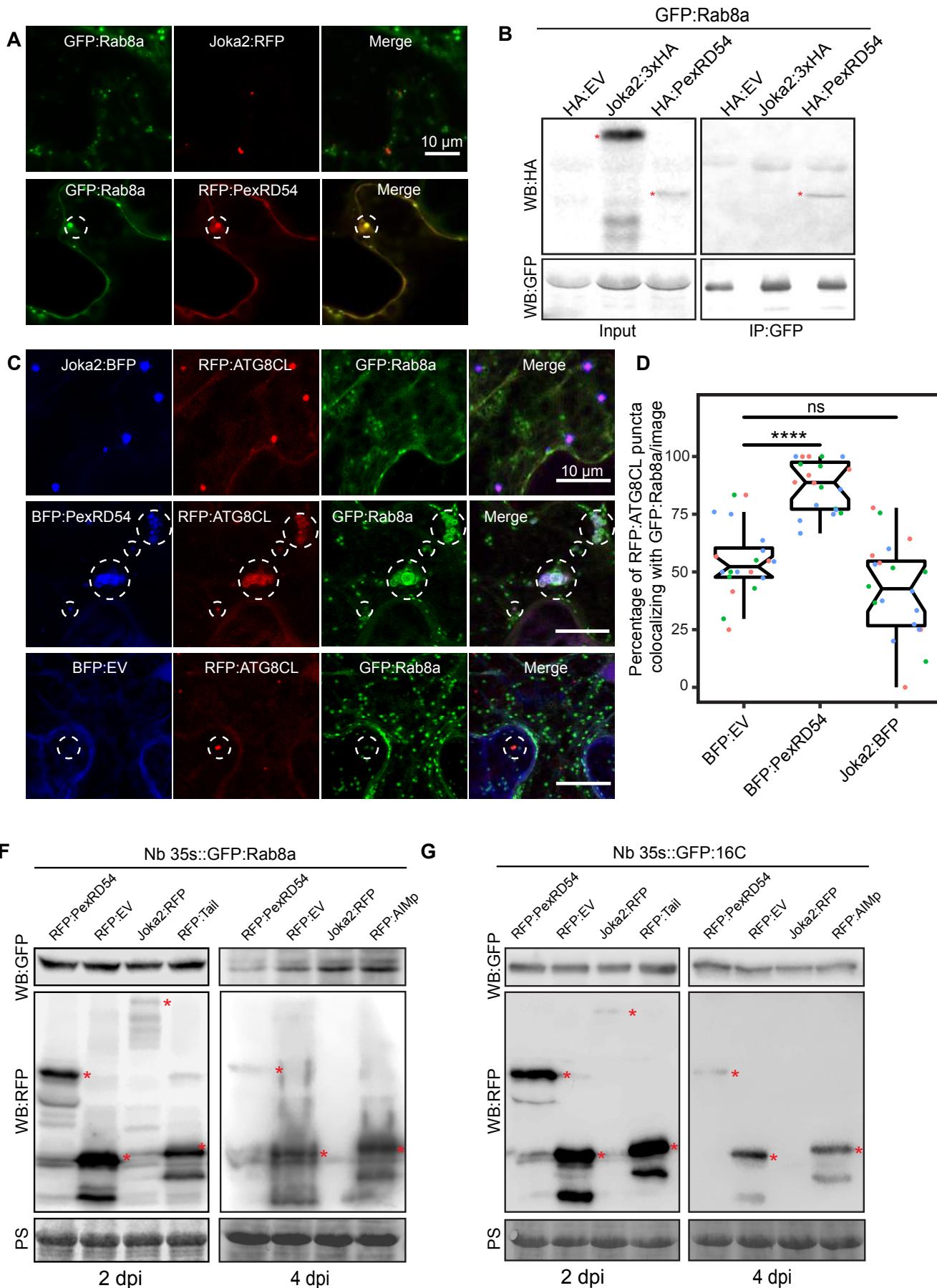
419

421 **Figure 4. PexRD54 recruits Rab8A to ATG8CL labelled autophagosomes.** (A-C) Maximum projection
422 confocal micrographs of *N. benthamiana* leaf epidermal cells transiently expressing either BFP:EV (A),
423 BFP:PexRD54 (B), or BFP:AIMp (C), with GFP:Rab8a and RFP:ATG8CL. Dashed white circles show variable
424 colocalization between RFP:ATG8CL and GFP:Rab8a. (D) BFP:PexRD54 expression significantly increases
425 punctate colocalization between RFP:ATG8CL and GFP:Rab8 (85%, $N = 18$ images quantified), while
426 BFP:AIMp significantly reduces colocalization between RFP:ATG8CL and GFP:Rab8 (6%, $N = 18$ images
427 quantified) compared to the BFP:EV control (60%, $N = 18$ images quantified). Scattered points show individual
428 data points, colours indicate biological repeats. (E) *In planta* co-immunoprecipitation between Rab8A and
429 ATG8CL, and PexRD54 or AIMp. GFP:Rab8A and RFP:ATG8CL were transiently co-expressed with either
430 3xHA:EV, 3xHA:PexRD54 or 3xHA:AIMp. IPs were obtained with anti-GFP antiserum. Total protein extracts
431 were immunoblotted. Red asterisks indicate expected band sizes. (F) Confocal micrographs of *N. benthamiana*
432 leaf epidermal cells transiently expressing RFP:ATG8CL with HA:EV or HA:PexRD54 either combined with
433 RNAi:GUS or RNAi:NbRab8a¹⁻². (G) Silencing *N. benthamiana* Rab8a¹⁻² significantly suppresses the
434 autophagosome formation induced by PexRD54 (11, $N = 26$ images quantified) compared to GUS silencing
435 control (30, $N = 26$ images quantified), but in the absence of PexRD54 silencing Rab8a¹⁻² has no effect on
436 endogenous autophagosome number (10, $N = 27$ images quantified) compared to silencing control (9, $N = 24$
437 images quantified). (H) Confocal micrographs of GFP:NbRab8a leaf epidermal cells transiently expressing
438 RFP:ATG8CL with HA:EV or HA:PexRD54 either combined with RNAi:GUS or RNAi:NbRab8a¹⁻². Dashed white
439 squares show GFP signal of complemented GFP:NbRab8a. (I) Complementing endogenous Rab8a¹⁻²
440 silencing in the silencing resistant Nb-35S::GFP:Rab8a transgenics recovered PexRD54 induced
441 autophagosome formation (24, $N = 35$ images quantified), to similar levels to the silencing control RNAi:GUS
442 (28, $N = 35$ images quantified).

443

444 **Rab8a is specifically recruited to PexRD54-autophagosomes and is dispensable for Joka2
445 mediated autophagy.**

446


447 To better characterize the autophagy stimulated by PexRD54, we decided to further investigate the
448 interplay between Rab8a and ATG8CL. The weak interaction of ATG8CL and Rab8a in the absence
449 of PexRD54 (Figure 4E) suggests for an indirect association potentially mediated through a host
450 autophagy adaptor. Therefore, we explored whether increased ATG8CL and Rab8a association
451 triggered by PexRD54 is a general hallmark of autophagy activation or is a process that is stimulated
452 through plant selective autophagy adaptors. Because the plant autophagy cargo receptor Joka2 also
453 binds ATG8CL and stimulates autophagosome formation (Dagdas et al., 2016), we tested if Joka2
454 can also stimulate Rab8a-ATG8CL association. Remarkably, unlike PexRD54, Joka2 did not interact
455 or colocalize with Rab8a (Figure 5A, B). Moreover, our quantitative image analyses revealed that
456 Joka2 overexpression leads to a reduction of RFP:ATG8CL puncta positively labeled by GFP:Rab8a
457 (Figure 5C, D). This sharply contrasts with the positive impact of PexRD54 on ATG8CL-Rab8a
458 association (Figure 5C, D), indicating that the autophagy pathway mediated by Joka2 is different from
459 the PexRD54 triggered autophagy, and possibly does not require Rab8a function. Supporting this, we

460 did not detect any difference in formation of Joka2 triggered autophagosomes upon *NbRab8a-1/2*
461 silencing compared to *GUS* silencing (Fig S22).

462

463 Intriguingly, in stable transgenic GFP-Rab8a plants, overexpression of Joka2 led to enhanced
464 GFP:Rab8a protein levels, in contrast to decreased GFP:Rab8a levels in presence of PexRD54
465 (Figure 5F). However, we did not observe any differences in GFP:EV protein levels in GFP:EV stable
466 transgenics following ectopic expression of Joka2 or PexRD54 (Figure 5G). These findings suggest
467 that a subset of Rab8a vesicles could be degraded by autophagy, a process that is further stimulated
468 by PexRD54 but antagonized by Joka2. Consistent with this view, overexpression of the AIMp also
469 led to enhanced levels of GFP:Rab8a but not GFP:EV (Figure 5F, G). Of note, the differences in
470 GFP:Rab8a levels were only visible at later stages of ectopic expression (4 days as opposed to 2
471 days after transient expression) of the RFP:AIMp, RFP:PexRD54, RFP:GUS and Joka2:RFP
472 constructs (Figure 5F-G). Collectively, these results indicate that Joka2 mediated autophagy pathway
473 does not involve Rab8a and the weak association between ATG8CL and Rab8a observed in the
474 absence of PexRD54 is not mediated by Joka2 but potentially through an unknown autophagy
475 adaptor.

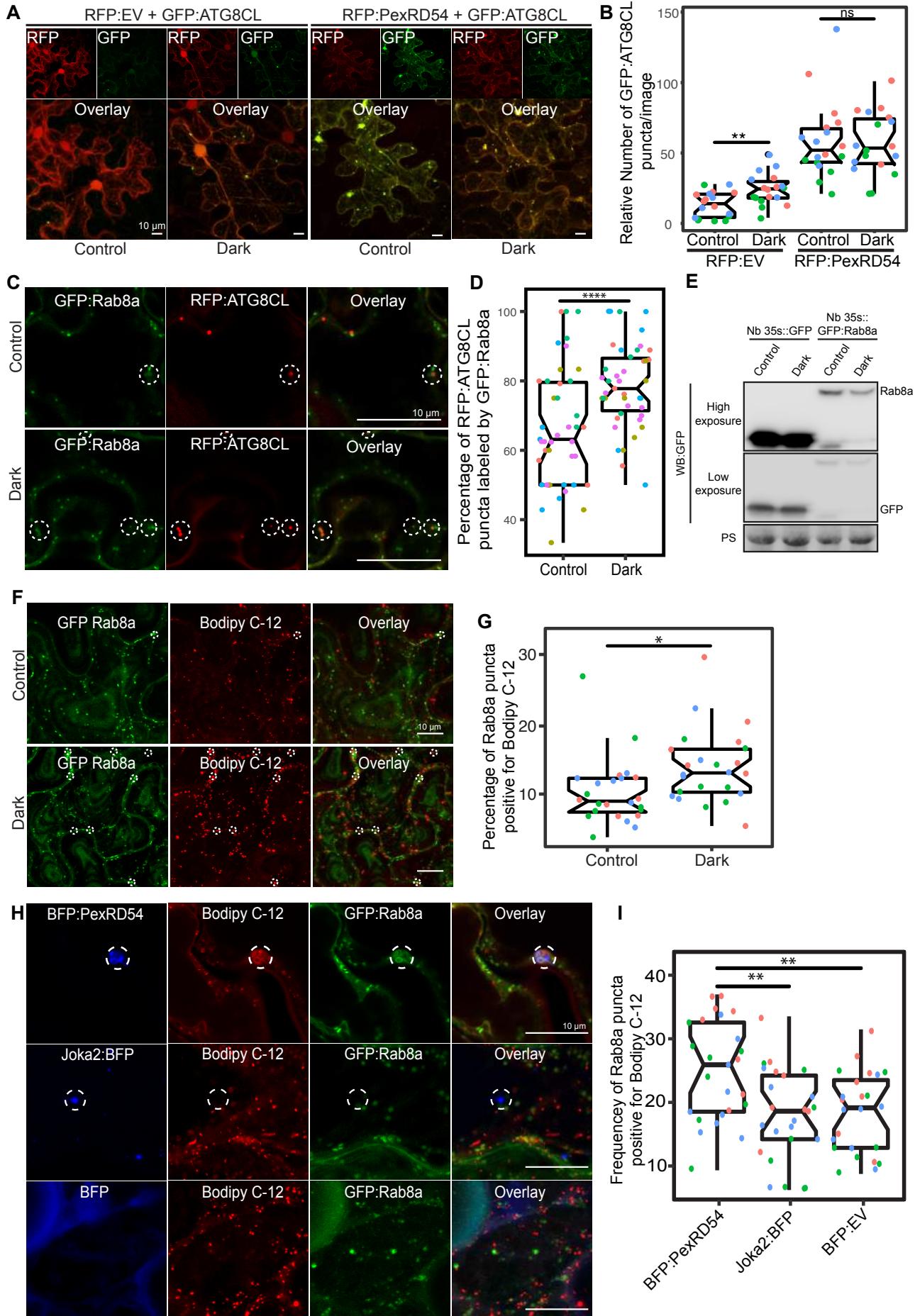
476

477 **Figure 5. Rab8a is dispensable for Joka2-mediated autophagy.** (A) Maximum projection confocal
478 micrographs of *Nicotiana benthamiana* leaf epidermal cells transiently expressing either Joka2:RFP (top) or
479 RFP:PexRD54 (bottom), with GFP:Rab8a. Dashed circle shows co-localized PexRD54 and Rab8a puncta. (B)
480 *In planta* co-immunoprecipitation between GFP:Rab8a and HA:EV, Joka2:HA or HA:PexRD54. GFP:Rab8a
481 was transiently co-expressed with HA:EV, Joka2:HA or HA:PexRD54 and immunoprecipitation was obtained
482 with anti-GFP antiserum. Total protein extracts were immunoblotted. Red asterisks indicate expected band
483 sizes. (C) Maximum projection confocal micrographs of *N. benthamiana* leaf epidermal cells transiently
484 expressing either Joka2:BFP (top), BFP:PexRD54 (middle) and BFP:EV (bottom), with RFP:ATG8CL and
485 GFP:Rab8a. (D) BFP:PexRD54 expression significantly increases colocalization of RFP:ATG8CL and
486 GFP:Rab8a puncta (88%, $N = 20$ images quantified) compared to Joka2:BFP (42%, $N = 20$ images quantified)
487 and BFP:EV control (55% $N = 20$ images quantified), whereas, Joka2:BFP slightly induces ATG8CL-Rab8a
488 colocalization. Scattered points show individual data points, colour indicates biological repeat. (F) Western
489 blotting shows that GFP:Rab8a is destabilised by expression of RFP:PexRD54 compared to RFP:EV but is
490 stabilised by expression of Joka2:RFP or RFP:AIMp at 4dpi on *N. benthamiana* lines stably expressing the GFP
491 tagged Rab8a. (G) Western blotting shows that GFP:EV stability is not effected by expression of RFP:PexRD54,
492 Joka2:RFP or RFP:AIMp compared to RFP:EV at 2 or 4dpi on *N. benthamiana* lines stably expressing GFP:16C.
493 (F-G) Proteins samples were extracted at 2 and 4 dpi and immunoblotted with GFP and RFP antisera. Red
494 asterisks indicate expected band sizes.

495

496 **PexRD54 triggers autophagy that is reminiscent of carbon starvation induced autophagy**

497


498 Because autophagy can be provoked through carbon starvation, we tested whether Rab8a-ATG8CL
499 association is altered during autophagy activation following light restriction. We detected a slight
500 increase in the number of RFP:ATG8CL puncta upon incubation of plants for 24 hours in the dark
501 compared to normal light conditions (Figure 6A-B). However, when GFP:PexRD54 is present, we did
502 not measure any further enhancement of RFP:ATG8CL puncta following 24 hours in the dark,
503 suggesting that PexRD54 mediated autophagy can override or mask starvation induced autophagy
504 (Figure 6A-B). Furthermore, in plants stably expressing GFP:Rab8a that are exposed to 24 hours
505 dark period, we detected an increased degree of colocalization between RFP:ATG8CL and
506 GFP:Rab8a (Figure 6C-D, S23), in a similar fashion to enhanced ATG8CL-Rab8a association
507 mediated by PexRD54 (Figure 4A-D). Furthermore, similar to PexRD54-mediated decrease in Rab8a
508 levels (Figure 5F-G), we noted a reduction in GFP:Rab8a levels but not free GFP protein levels
509 following 24 hour dark treatment of stable transgenic 35s::GFP:Rab8a plants (Figure 6E). Collectively,
510 these data suggest that PexRD54 mimics carbon starvation induced autophagy.

511

512 Recent studies have revealed that lipid droplets (LDs) contribute to carbon starvation-induced
513 autophagy during light restriction (Fan et al., 2019; Shpilka et al., 2015). In addition, the GDP-bound
514 mutant form of the mammalian Rab8a is enriched at LD contact sites to regulate their fusion (Wu et

515 al., 2014). Therefore, we decided to investigate the extent to which Rab8a and PexRD54 associate
516 with LDs under normal or starvation conditions. We first checked co-localization between GFP:Rab8a
517 and LDs marked by the orange-red fluorescent fatty acid (FA), BODIPY® 558/568 C12 (BODIPY-
518 C₁₂). Confocal microscopy revealed that a small fraction of GFP:Rab8a puncta are labelled by the LD
519 marker BODIPY-C₁₂ under normal light conditions, whereas the frequency of this colocalization
520 increased by ~1.4 fold when plants are maintained for 24 hours in the dark (Figure 6F-G). The stronger
521 association of Rab8a and LDs upon light restriction, combined with the finding that LDs are recruited
522 towards autophagosomes during carbon starvation (Fan et al., 2019), indicate that Rab8a-LD
523 association could be a hallmark of starvation induced autophagy. Consistent with this view,
524 GFP:Rab8a puncta positive for BODIPY-C₁₂ are also marked by BFP:ATG8CL (Figure S24).
525
526 Strikingly, stimulation of autophagy by BFP:PexRD54, but not Joka2:BFP, led to enhanced
527 association of BODIPY-C₁₂ and GFP:Rab8a labeled puncta, supporting the hypothesis that PexRD54
528 mimics autophagy induced during carbon starvation (Figure 6 H-I, S25). However, we did not detect
529 BODIPY-C₁₂ fluorescence signal filling the lumen of the PexRD54 labeled compartments (Figure 6H,
530 S27), indicating that fatty acids are likely not the autophagic cargoes of PexRD54. Rather, we
531 detected a BODIPY-C₁₂ signal at the periphery of autophagosomes marked by PexRD54, which also
532 overlaps with GFP:Rab8a fluorescence signals (Figure 6H, S27). Moreover, these PexRD54/Rab8a-
533 clusters are also accompanied by LDs densely labeled with only BODIPY-C₁₂ as they navigate
534 through the cytoplasm (Video S3), indicating that LDs are tightly connected to PexRD54 foci. These
535 findings suggest that fatty acids could be one of the potential membrane sources of the
536 autophagosomes stimulated by PexRD54 as observed during carbon starvation induced autophagy
537 in other systems (Shpilka et al., 2015). To gain further evidence for this, we investigated the
538 colocalization of PexRD54 and Rab8a with the LD structural membrane protein Oleosin (Fan et al.,
539 2019; Siloto et al., 2006; Singh et al., 2009). Similar to BODIPY-C₁₂ labelled puncta (Figure 6H),
540 Oleosin labeled LDs clustered around PexRD54/Rab8a positive ring-like autophagosomes (Figure
541 S26). Although Oleosin positive LDs were adjacent to PexRD54 autophagosomes, in contrast to
542 BODIPY-C₁₂, Oleosin-YFP did not produce fluorescent signal that overlaps with PexRD54/Rab8a
543 ring-like autophagosomes (Figure S27), suggesting that FAs but not LD membrane proteins are
544 transferred to PexRD54 triggered autophagosomes. Interestingly, Oleosin labeled LDs also clustered
545 around Joka2 autophagosomes (Figure S26). However, these Oleosin clusters were not labeled with
546 Rab8a, supporting the existence of two distinct pathways for PexRD54 and Joka2 triggered
547 autophagy. Together these results show that PexRD54 triggers responses similar to carbon
548 starvation-induced autophagy, including induction of autophagosomes and enhanced association of
549 ATG8CL-autophagosomes with Rab8a and LDs.

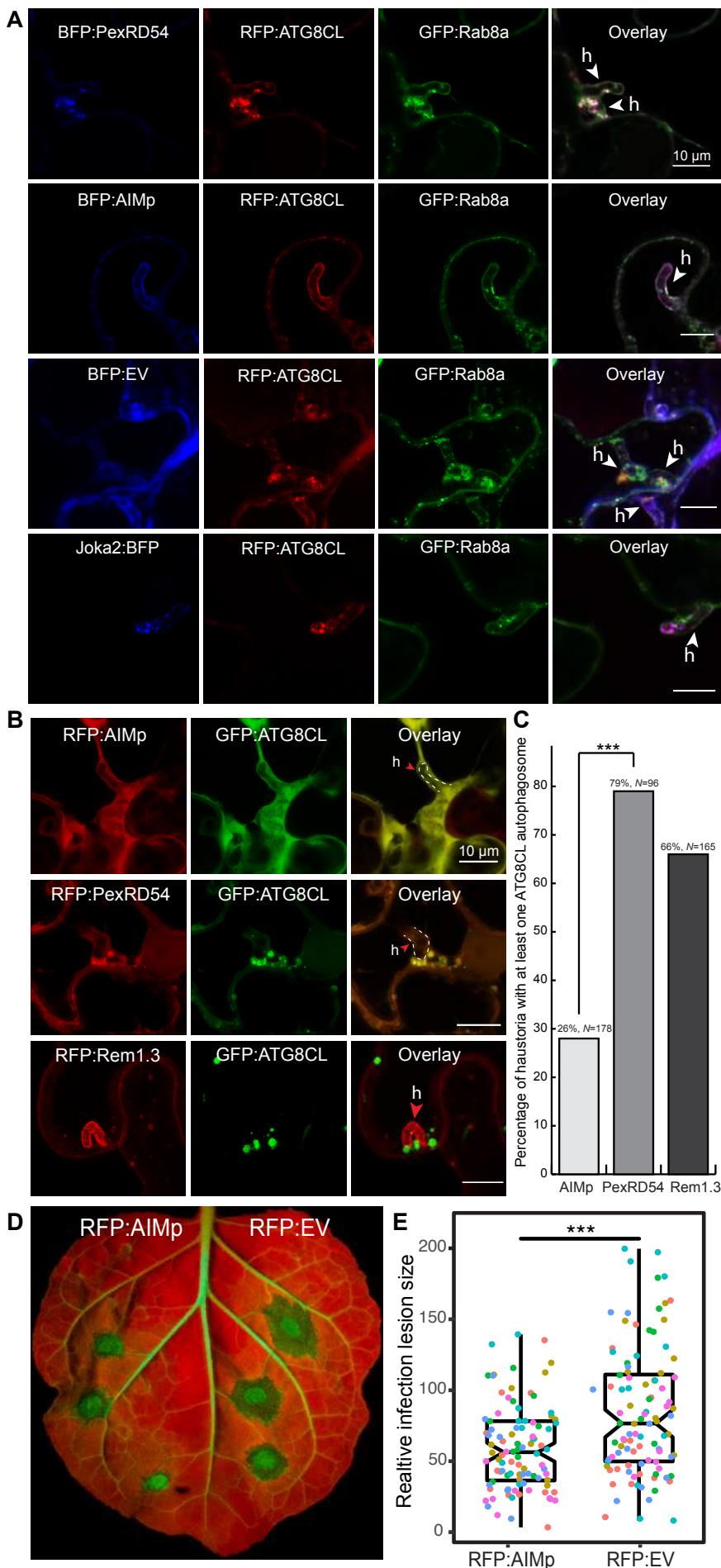
550

551 **Figure 6. PexRD54 triggered autophagy is reminiscent of autophagy induced during carbon starvation.**
552 (A) Maximum projection confocal micrographs of *Nicotiana benthamiana* leaf epidermal cells transiently
553 expressing either RFP:EV or RFP:PexRD54, with GFP:ATG8CL under normal light or 24-hour-dark conditions.
554 (B) Scatter-boxplot shows that dark treatment (24, $N = 18$ images quantified) significantly increases
555 RFP:ATG8CL-labelled puncta compared to control conditions (13, $N = 18$ images quantified), however when
556 RFP:PexRD54 is present (59, $N = 18$ images quantified), dark treatment does not further enhance puncta
557 formation (57, $N = 18$ images quantified). Images shown are maximal projections of 25 frames with 1 μm steps.
558 Scale bars, 10 μm . (C) Maximum projection confocal micrographs of *N. benthamiana* leaf epidermal cells
559 transiently expressing either GFP:Rab8a or RFP:ATG8CL under normal light (top) and 24-hour-dark (bottom)
560 conditions. Dashed circle shows co-localized ATG8CL and Rab8a puncta. (D) Dark treatment significantly
561 increases percentage of RFP:ATG8CL puncta labelled by GFP:Rab8 (79%, $N = 44$ images quantified)
562 compared to control conditions (66%, $N = 44$ images quantified). Scattered points show individual data points,
563 color indicates biological repeat. (E) Western blotting shows GFP:Rab8a stability is reduced by 24 hours dark
564 unlike GFP:EV. (F) Maximum projection confocal micrographs of *N. benthamiana* leaf epidermal cells transiently
565 expressing GFP:Rab8a and labelled by BODIPY C₁₂ under normal light (top) and 24-hour-dark (bottom)
566 conditions. Dashed circle shows co-localized Rab8a and BODIPY C₁₂-positive puncta. (G) 24-hour-dark
567 treatment increases the percentage of Rab8a puncta positive for BODIPY C₁₂ (14%, $N = 24$ images quantified)
568 compared to control conditions (10%, $N = 24$ images quantified) (H) Maximum projection confocal micrographs
569 of *N. benthamiana* leaf epidermal cells transiently expressing either BFP:PexRD54 (top), Joka2:BFP (middle)
570 or BFP:EV, with GFP:Rab8a and BODIPY C₁₂. Dashed circle shows co-localized Rab8a, GFP-tagged PexRD54
571 or Joka2, and BODIPY C₁₂-positive puncta. (I) Quantification of the puncta positive for both Rab8a and BODIPY
572 C₁₂ shows enhanced frequency of colocalization by BFP:PexRD54 (25%, $N = 25$ images quantified) but not by
573 Joka2:BFP (18%, $N = 24$ images quantified) or BFP:EV (18%, $N = 24$ images quantified). Scattered points show
574 individual data points, colour indicates biological repeat. Scale bars = 10 μm
575

576 **PexRD54 subverts Rab8a to autophagosomes at the pathogen interface**

577
578 Our recent work revealed that the perihaustral niche is a hot spot for the formation of ATG8CL
579 autophagosomes stimulated by PexRD54 (Dagdas et al., 2016, 2018). Therefore, we next examined
580 whether Rab8a-PexRD54 association occurs at perihaustral ATG8CL-autophagosomes. We first
581 checked GFP:Rab8a localization alone in the haustoriated cells. In infected leaf epidermal cells
582 transiently or stably expressing GFP:Rab8a, we detected varying sizes of GFP:Rab8a puncta around
583 the *P. infestans* haustoria (Figure S28). These structures included ring shaped compartments that
584 are reminiscent of PexRD54-autophagosomes as well as smaller densely packed GFP-positive
585 puncta and large vacuole like structures, indicating that Rab8a could regulate diverse trafficking
586 pathways during infection (Figure S28, Video S4, S5). To verify that the perihaustral Rab8a puncta
587 represent the PexRD54-autophagosomes, we imaged infected plant cells which co-express
588 GFP:Rab8a and the autophagosome marker protein RFP:ATG8CL in combination with
589 BFP:PexRD54, BFP:AIMp, BFP or Joka2:BFP. Confocal micrographs of haustoriated plant cells

590 showed accumulation of RFP:ATG8CL-autophagosomes around the haustoria which are co-labeled
591 with GFP:Rab8a, and are positive for BFP:PexRD54 but not BFP control (Figure 7A). However,
592 formation of perihaustorial puncta co-labeled by RFP:ATG8CL and GFP:Rab8a was suppressed by
593 arresting autophagosome formation through expression of BFP:AIMp (Figure 7A). Notably, when
594 autophagy is suppressed by BFP:AIMp or activated through BFP:PexRD54 expression, we detected
595 a subset of perihaustorial GFP:Rab8a puncta that are not labeled by BFP:PexRD54 or RFP:ATG8CL,
596 further supporting the view that Rab8a can mediate disparate haustorial trafficking routes (Figure 7A).
597 We also observed that Rab8a and PexRD54 co-localize with both Bodipy C-12 and oleosin in clusters
598 of vesicles around haustoria, linking Rab8a's emerging role in lipid trafficking with the pathogen
599 effector and haustorial interface (Figure S29). On the other hand, in line with our findings that the
600 Joka2 pathway does not employ Rab8a (Figure 5), perihaustorial Joka2:BFP/RFP:ATG8CL puncta
601 and GFP:Rab8a puncta were exclusive to each other (Figure 7A). Finally, consistent with our pull
602 down assays (Figure 4E), we did not detect any sharp GFP:Rab8a^{Q74L} signal at the perihaustorial
603 BFP:PexRD54 puncta (Figure S30). In contrast, GFP:Rab8a, and particularly GFP:Rab8a^{S29N},
604 produced strong fluorescence signals peaking at perihaustorial BFP:PexRD54 puncta (Figure S30),
605 indicating that both wild type Rab8a and Rab8a^{S29N} are enriched at the perihaustorial PexRD54
606 autophagosomes. These results indicate the PexRD54 stimulates diversion of Rab8a positive LDs to
607 perihaustorial autophagosomes.


608

609 **AIM peptide mediated autophagy arrest leads to reduced pathogen growth**

610

611 Induction of autophagosomes by PexRD54 that are targeted to the perihaustorial interface prompted
612 the hypothesis that *P. infestans* could benefit by co-opting host autophagy to support its own growth.
613 Thus, we explored the impact of autophagy activation by PexRD54 on *P. infestans* host colonization.
614 We decided to transiently interfere with pathogen induced autophagy by expressing the AIMp. Our
615 quantitative image analysis revealed that compared to RFP:PexRD54 expression, transient
616 expression of RFP:AIMp led to ~3 fold decrease in the number of haustoria that are associated with
617 autophagosomes marked by GFP:ATG8CL (Figure 7B-C). We then measured how autophagy
618 suppression by the AIMp affects *P. infestans* infection. In multiple independent experiments (6
619 biological replicates), *N. benthamiana* leaf patches expressing RFP:AIMp showed a consistent
620 reduction of quantitative disease symptoms compared to an RFP vector control (Figure 7D-E). This
621 indicated that AIMp mediated arrest of host autophagy negatively impacts *P. infestans* virulence,
622 supporting the hypothesis that PexRD54 triggered autophagy is beneficial to the pathogen.
623 Collectively, these results suggest that *P. infestans* relies on host autophagy function to support its
624 virulence. This could explain why the pathogen deploys full length PexRD54 that can activate specific
625 host autophagy pathways while subverting defense-related autophagy, instead of just the AIM
626 peptide.

627

628 **Figure 7. AIM peptide mediated arrest of ATG8 autophagy negatively affect *P. infestans* infection.** (A)
629 Maximum projection confocal micrographs of *P. infestans*-infected *N. benthamiana* leaf epidermal cells
630 transiently expressing either BFP:PexRD54, BFP:EV, BFP:AIMp or Joka2:BFP, with both RFP:ATG8CL and
631 GFP:Rab8a. BFP:PexRD54 co-localizes with RFP:ATG8CL and GFP:Rab8a at perihaustral region, whereas,
632 Joka2:BFP-labelled ATG8CL puncta are exclusive to GFP:Rab8a puncta. Haustoria are pointed by white
633 arrowheads. (B) Maximum projection confocal micrographs of *P. infestans*-infected *N. benthamiana* leaf
634 epidermal cells transiently expressing either RFP:AIMp (top), RFP:PexRD54 (middle), or PM-haustorial marker
635 RFP:Rem1.3 (bottom), with GFP:ATG8CL. Haustoria are labelled with white dashed lines and indicated by red
636 arrow. (C) Co-expressing RFP:PexRD54 with GFP:ATG8CL increases the percentage of haustoria associated
637 with ATG8CL-labelled puncta (79%, $N = 96$ haustoria), compared to haustorial marker control RFP:Rem1.3
638 (66%, $N = 165$ haustoria) and autophagy inhibitor RFP:AIMp (26%, $N = 178$ haustoria). (D) AIMp reduces
639 disease symptoms of *P. infestans* (65, $N = 84$ infected leaves) compared to empty vector control (87, $N = 85$
640 infected leaves). *N. benthamiana* leaves expressing RFP:AIMp and RFP:EV were infected with *P. infestans* and
641 pathogen growth was determined by measuring infection lesion size 7 days post-inoculation. (E) Box plot shows
642 relative infection lesion size of 84 and 85 infection sites, respectively from 5 biological replicates. Scattered
643 points indicate individual data points and different colours represent various biological repeats.
644
645
646
647
648
649
650
651
652

653 **Discussion**

654

655 Dissecting the specialized functions and mechanisms of autophagy in host-microbe interactions has
656 been challenging. This is mainly due to prolonged stress accumulation in autophagy mutants and
657 non-autophagy related roles of the targeted genes (Munch et al., 2014). Pathogen effectors that target
658 specific components of the host autophagy machinery have emerged as alternative tools to unravel
659 the underlying mechanisms of defense-related autophagy (Dagdas et al., 2016; Hafrén et al., 2017b;
660 Hofius et al., 2018). Here, by studying the *P. infestans* effector protein PexRD54, we shed light on
661 the poorly understood mechanism of pathogen-induced autophagy in plants. We unveil a distinct
662 pathogen virulence mechanism in which the effector protein couples host vesicle transport machinery
663 to autophagosome biogenesis. Through its modular domain architecture, PexRD54 employs a diverse
664 set of host proteins such as Rab8a and ATG8CL to stimulate autophagy that is reminiscent of
665 starvation-induced autophagy. We propose a model in which PexRD54 mimics host carbon starvation
666 conditions to divert a sub fraction of Rab8a from defense-related vesicles to stimulate autophagosome
667 formation. Both PexRD54 and carbon starvation drive association of Rab8a and LDs that are
668 positioned at autophagy compartments marked by ATG8CL. Thereby, the pathogen benefits from this
669 process through subverting the immune function of Rab8a and gaining access to plant resources
670 carried in autophagosomes diverted to haustoria.

671

672 **AIM peptide suppressor of autophagy**

673 Effectors have been excellent tools to dissect complex biological processes such as autophagy as
674 effectors often have more specificity towards their targets compared to their chemical alternatives.
675 Here, we expanded our knowledge of PexRD54 triggered autophagy and discovered an effector
676 derived peptide that can specifically block autophagy. Chemical inhibitors of autophagy are often used
677 to measure autophagy flux and to overcome the limitations of standard genetic approaches. However,
678 these inhibitors are mostly inefficient and lack the required specificity. We discovered that PexRD54's
679 AIM peptide is a strong autophagy suppressor effective against all potato ATG8 isoforms.
680 Conceivably, the AIM peptide competitively inhibits autophagosome biogenesis by occupying the W
681 and L pockets on ATG8 that mediate docking of host autophagy adaptors and regulators required for
682 autophagy activation (Noda et al., 2008). The AIM peptide is a genetically encodable tool, which can
683 enable spatio-temporal arrest of autophagy when expressed under inducible or tissue specific
684 promoters. Thus, this should be of great interest for autophagy studies in plants and other systems,
685 which can overcome the limitations of chemical autophagy inhibitors and autophagy mutants.
686 Furthermore, we developed AIM peptide derivatives with cell penetrating features, which allow
687 studying the tissue specific functions of autophagy. The cell penetrating AIM peptide can be employed
688 to study autophagy in plants and other eukaryotic systems, which are not amenable to genetic

689 manipulation.

690

691 **How does PexRD54 activate autophagy?**

692 Autophagosome biogenesis is a complex multi-step process. But how does PexRD54 activate such
693 an intricate process? We uncovered that PexRD54 either directly or indirectly recruits Rab8a to
694 autophagosome biogenesis sites (Figure 2-4). Similar channeling of Rab8a to ATG8CL-
695 autophagosomes occurs during carbon starvation (Figure 4), suggesting that PexRD54 could mimic
696 a host autophagy adaptor that regulates autophagy under nutrient deprivation. Interestingly, the
697 mammalian autophagy cargo receptor Optineurin also interacts with both LC3 (mammalian ATG8
698 isoform) and Rab8a in mice (Bansal et al., 2018; Vaibhava et al., 2012). Although the functional
699 implications of these interactions are unclear, a proposed model suggests that Optineurin mediates
700 pre-autophagosomal membrane elongation through anchoring Rab8a to autophagosome assembly
701 sites. Our data shows that PexRD54-ATG8CL binding is not sufficient for stimulation of autophagy
702 (Figure 1). Therefore, it is likely that PexRD54 associates with various host components including
703 Rab8a to drive autophagosome formation.

704

705 **The role of Rab8a in autophagy**

706 The membrane elongation step of autophagosome formation relies on direct transport of lipids from
707 various donor compartments. For instance, LDs provide a membrane source for autophagosome
708 biogenesis specifically during starvation-induced autophagy (Shpilka et al., 2015). More recently, a
709 conserved acyl-CoA synthetase (ACS) from yeast was shown to be mobilized on nucleated
710 phagophores where it locally mediates transport of fatty acids (FAs) required for phagophore
711 elongation (Schütter et al., 2020). But how these lipid sources such as LDs and ACS are mobilized to
712 autophagosome biogenesis sites at first? Intriguingly, the GDP bound form of the mammalian Rab8a
713 was found to mediate LDs fusion events (Wu et al., 2014). Furthermore, PexRD54 recruits Rab8a to
714 autophagosome biogenesis sites and enhances Rab8a-LD localization around the ATG8CL-foci
715 (Figure 4, 6). This suggests that PexRD54 could employ Rab8a to position LDs at ATG8CL nucleation
716 sites to facilitate lipid transfer for autophagosome biogenesis. Interestingly, PexRD54 triggered
717 association of Rab8a and LDs is also enhanced by carbon starvation but not by Joka2 (Figure 5, 6).
718 We propose that upon carbon deprivation, the plant uses LDs as an alternative membrane source to
719 accommodate for an increase in autophagosome biogenesis, and PexRD54 exploits this process to
720 stimulate autophagy. However, Rab8a does not appear to be engaged in all autophagy routes, as it
721 is dispensable for Joka2 mediated autophagy (Figure 6). This is consistent with the finding that
722 *Arabidopsis NBR1* (Joka2) mutants are sensitive to a variety of abiotic stress conditions but not to
723 carbon starvation (Zhou et al., 2013). Our results are also in line with the recent findings in yeast,
724 where LDs specifically contribute to starvation induced autophagy (Shpilka et al., 2015). Altogether,
725 combined with previous findings, our results indicate that distinct cellular transport pathways feed

726 autophagosome formation during diverse selective autophagy pathways in plants.

727

728 **The role of Rab8a in immunity**

729 Our data revealed that the Rab8a family contributes to basal resistance against *P. infestans* (Figure
730 3). Rab8a belongs to the Rab8 family of small GTPases that are implicated in polarized secretion
731 events in eukaryotes (Pfeffer, 2017). Another Rab8 member known as RabE1D was found to
732 contribute to bacterial resistance and regulate membrane trafficking in the model plant *Arabidopsis*
733 (Speth et al., 2009; Zheng et al., 2005). However, the extent to which Rab8 family members function
734 in immunity remains unknown. Our findings revealed that Rab8a is most likely involved in a diverse
735 range of cellular transport pathways including autophagy. Consistent with the evolutionarily conserved
736 role of Rab8 family members in polarized secretion, we detected Rab8a labeling of the EHM as well
737 as Rab8a positive vesicles around the haustorium. Interestingly, some perihaustral Rab8a puncta
738 were not labeled by ATG8CL or PexRD54, further supporting the view that Rab8a is engaged in
739 diverse trafficking pathways. However, further research is required to determine the cargoes and the
740 potential defense-related functions of the Rab8a labeled vesicles.

741

742 **Why does *P. infestans* activate autophagy?**

743 Suppression of host autophagy by the AIM peptide leads to reduced pathogen virulence (Figure 7),
744 indicating that suppressing host autophagy is not favorable to *P. infestans*. This could explain why
745 the pathogen deploys PexRD54, which can neutralize defense-related autophagy mediated by Joka2,
746 while enabling other autophagy pathways that are somewhat beneficial to the pathogen. Intriguingly,
747 the autophagy pathway primed by PexRD54 resembles autophagy induced under carbon starvation.
748 This hints at the possibility that PexRD54 could facilitate nutrient uptake from the host cells by
749 mimicking starvation to stimulate the host autophagy machinery. This is further supported by our
750 earlier finding that PexRD54-autophagosomes are diverted to the haustorial interface (Dagdas et al.,
751 2018). PexRD54 likely remodels the autophagic cargoes engulfed in ATG8CL-autophagosomes
752 targeted to pathogen interface, which are subsequently assimilated by the parasite. Alternatively, but
753 not mutually exclusively, PexRD54 could also help neutralize defense-related host components by
754 engulfing them in secure membrane-bound autophagy compartments. For instance, PexRD54 could
755 promote diversion of Rab8a to the autophagy pathway to pacify the non-autophagy related immune
756 functions of Rab8a.

757

758 In sum, our findings demonstrate that to support its virulence, *P. infestans* manipulates plant cellular
759 degradative and transport systems by deploying an effector protein that imitates carbon starvation
760 conditions. It also demonstrates effectors can act as adaptors to bridge multiple host components to
761 modulate complex cellular processes for the benefit the pathogen. Further research is needed (i) to
762 determine the cargo of these autophagosomes, (ii) whether they are secreted to the pathogen

763 interface and subsequently absorbed by the pathogen, and (iii) the molecular players involved in
764 pathogen subverted autophagy.

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800 **Acknowledgments**

801
802 We would like to thank all members of the Bozkurt Lab for their helpful discussion and suggestions.
803 We also are grateful to the Imperial College Facility for Imaging by Light Microscopy (FILM) at Imperial
804 College London for their imaging expertise and technical assistance. FILM is part-supported by
805 funding from the Wellcome Trust (104931/Z/14/Z) and BBSRC (BB/L015129/1). This project was
806 funded by the Biotechnology Biological Sciences Research Council (BBSRC) (BB/M002462/1 and
807 BB/M011224/1), the Gatsby Charitable Foundation (GAT3395/GLD), the European Research
808 Council, the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina), the
809 Royal Society (UF160413) and the Austrian Academy of Sciences.

810

811 **Methods**

812

813 **Plant Material and Growth Conditions**

814 *N. benthamiana* WT and transgenic plants (35S::GFP:Rab8a and 35S::GFP:ATG8CL) were grown
815 and maintained in a greenhouse with high light intensity (16 hours light/8 hours dark photoperiod) at
816 22-24°C. To apply carbon stress, plants were kept under a dark period of 24 hours before images
817 were acquired. Images were acquired 3 days after infiltration (dpi). 35S::GFP:Rab8a and
818 35S::GFP:ATG8CL lines were produced as described elsewhere (1985) with the pK7WGF2::Rab8a
819 and pK7WGF2::ATG8CL constructs, respectively.

820

821 **Pathogenicity Assays**

822 *P. infestans* 88069 strain was used in this study. Cultures were grown and maintained by routine
823 passing on rye sucrose agar medium at 18°C in the dark (van West et al, 1998). Zoospores were
824 collected from 10-14 days old culture by flooding with cold water and incubation at 4°C for 90-120
825 minutes. Infection of agroinfiltrated leaves was carried out by addition of 10-mL droplets of zoospore
826 solution at 50,000 spores/ml on detached *N. benthamiana* leaves (Chaparro-Garcia et al., 2011).
827 Infection for microscopic experiments carried out on attached leaves. Inoculated detached leaves or
828 plants were kept in humid conditions. Day light/UV images were taken at 7 days post infection and
829 lesion areas were measured in ImageJ.

830

831 **Virus Induced Gene Silencing (VIGS)**

832 Virus induced gene silencing of Joka2 was performed in *N. benthamiana* as described previously
833 (Dagdas et al., 2016). Suspensions of *Agrobacterium tumefaciens* was prepared carrying TRV1 and
834 the TRV2:JOKA2 and mixed to a final OD600 of 0.4 and 0.2 respectively, in agroinfiltration buffer
835 supplemented with 100 µM acetosyringone (Sigma). The suspension of agrobacterium was left in the

836 dark for 2 h prior to agroinfiltration to stimulate virulence. TRV2:EV was used as a control. 12 days
837 old *N. benthamiana* seedlings were infiltrated in cotyledons and any true leaves that had appeared.
838 TRV2 containing the *N. benthamiana* sulphur (Su) gene fragment (TRV2-NbSU) was used as a
839 positive control to indicate viral spread. Plants were used 4 weeks later for the *P. infestans* infection.
840

841 **Molecular Cloning and Plasmid Constructs**

842 Various constructs used in this study were published previously. GFP:ATG8CL, GFP:PexRD54,
843 GFP:PexRD54aim, RFP:Rem1.3 constructs were previously described in (Bozkurt et al., 2015).
844 JOKA2:BFP, BFP:EV, BFP:PexD54, BFP:ATG8CL, ATG9:GFP, 3xHA:EV, JOKA2:3xHA constructs
845 were described in (Dagdas et al., 2016). GFP:ATG8 1.1, GFP:ATG81.2, GFP:ATG8 2.2, GFP:ATG8
846 3.1, GFP:ATG8 3.2, GFP:ATG8 4 were described in (Zess et al., 2019).
847 RFP:PexRD54, RFP:AIMp, RFP:ATG8CL, RFP:Rab8a, Joka2:RFP, BFP:AIMp, 3xHA:PexRD54,
848 3xHA:PexRD54aim and 3xHA:Rd54AIMp constructs were generated by Gibson assembly of each
849 gene PCR fragment into EcoRV digested RFP/BFP/HA vectors (N-terminal fusion for PexRD54,
850 PexRD54aim, PexRD54AIMp and ATG8CL, C-terminal fusion for Joka2). For YFP:Oleosin, the eYFP
851 fluorophore was split into N-terminal (residue M1- A155) and C-terminal half (residue D156 - K239).
852 The N-terminal split YFP half was used via a linker peptide RPACKIPNDLKQKVMNH and the C-
853 terminal split YFP half via a linker peptide HNMVKQKLDNPIKCAPR. EcoRV restriction site was
854 added at the end of each linker to allow linearization of the vector and provide an insertion site for
855 subsequent cloning. The DNA fragment encoding Oleosin, together with the linker peptides and
856 restriction sites were amplified from *N. benthamiana* cDNA using primers NYFP-Oleosin F and
857 Oleosin-CYFP R then assembled into pK7WGF2 vector backbone by Gibson assembly. GFP:Rab8a
858 and RFP:Rab8a constructs were generated by PCR amplification from *Solanum tuberosum* cDNA
859 using primers GW_StRab8a-1_F GW_StRab8a-1_R followed by Gateway cloning into the entry
860 vector pENTR/D/TOPO (Invitrogen) then into the pK7WGF2 (GFP) and pH7WGR2 (RFP) vectors,
861 respectively. RFP:GUS was created from the pENTR™-GUS control plasmid provided in the
862 GATEWAY cloning kit and inserted into pH7WGR2 (RFP) via LR reaction. Single residue mutations
863 of Rab8aS29N, Rab8aQ74L and Rab8aN128I were obtained by inverse polymerase chain reaction
864 (PCR) amplification of the StRab8a entry clone with the primer pairs (phosphorylated at 5 prime ends)
865 carrying desired mutations; (i) Rab8aS29N_F and Rab8aS29N_R; (ii) Rab8aQ74L_F and
866 Rab8aQ74L_R; (iii) Rab8aN128I_F and Rab8aN128I_R. Templates were then eliminated by one-
867 hour Dpn-I (New England Biolabs) restriction digestion at 37°C and the PCR products of mutants
868 were ligated using standard protocols to obtain circular Gateway entry clones carrying desired
869 mutations. Next, the entry clones of Rab8a mutants were recombined into destination vectors
870 pK7WGF2 or pB7RWG2 by Gateway LR reaction. All remaining constructs were amplified from
871 existing constructs previously described (Bozkurt et al., 2015; Dagdas et al., 2016, 2018), using
872 primer pairs GA_RD54_F with GA_RD54_R for PexRD54, GA_RD54_F with GA_LIR2_R for

873 PexRD54aim, GA_AIMp_F with GA_LIR2_R for PexRD54AIMp, GA_ATG8C_F with GA_ATG8C_R
874 for ATG8CL and GA_NbJoka2_1_Fr with GA_NbJoka2_1_Rv. Silencing constructs for Rab8a were
875 amplified using primer combinations NbRab8A_silF1 and NbRab8A_silR1, Rab8a1-4^{RNAi}_F1,
876 Rab8a1-4^{RNAi}_F2, Rab8a1-4^{RNAi}_F3, Rab8a1-4^{RNAi}_R1, Rab8a1-4^{RNAi}_R2 and Rab8a1-4^{RNAi}_R3, and
877 cloned into the pRNAiGG vector as described in Yan et al., 2012. Silencing of Rab8a was verified
878 using RT-PCR. All primers used in this study are listed in Table 1.
879

Name	Sequence (5' - 3')
GA_RD54_F	CTGGATCTGGAGAATTGATGTTGGTCCCTTGGCT
GA_RD54_R	TAGCATGGCCGCGGGATTACACAATTCCAGTCG
GA_LIR2_R	TAGCATGGCCGCGGGATTAAAGCAATTCCGCGTCG
GA_AIMp_F	CTGGATCTGGAGAATTGATCGGGACAAAATTGACAAGA
GA_ATG8C_F	CTGGATCTGGAGAATTGATGCCAAAAGCTCCTCAAA
GA_ATG8C_R	TAGCATGGCCGCGGGATTCAAAAGGATCCGAAGGTAT
GAJoka2BFPF	CAGGCGGCCGCACTAGTGATATGGCTATGGAGTCATCTATTGTGATCAAGG
GAJoka2BFPR	GCAGATCCAGCAGATCCGATCTGCTCTCCAGCAATAAGATCCATCACAAAC
NbRab8A_silF1	ACCAGGTCTCAGGAGGGTTATATAAATGAAGCGAC
NbRab8A_silR1	ACCAGGTCTCATCGTACTCTGCAATCGCGTGCCTG
GW_StRab8a-1_F	CACCATGGCCGCTCCACCCGCTAGAGCTCGAGCT
GW_StRab8a-1_R	TTAAGAACACAGCAAGCTGATTTTGGCG
Rab8a ^{S29N} _F	GTTCTTACCCACACCGCTGTCGCCG
Rab8a ^{S29N} _R	TGCCTTCTTTACGTTCTCAGATG
Rab8a ^{Q74L} _F	AAACCGGCCGTATCCCAGATTGCAG
Rab8a ^{Q74L} _R	GGAGCGGTTCCGAACAATTACAAC
Rab8a ^{N128I} _F	ATGCCGACCAGAATTGTTGACATTG
Rab8a ^{N128I} _R	CAAGGCTGACATGGATGAAAGCAAAAGG
Rab8a1-4 ^{RNAi} _F1	ACCAGGTCTCAGGAGGGCAGCTCCACCAAGCTAGG
Rab8a1-4 ^{RNAi} _R1	ACCAGGTCTCAGTGAAGGAACCATCTGAGAAC
Rab8a1-4 ^{RNAi} _F2	ACCAGGTCTCATCACACCACTATTGGTATTGAT
Rab8a1-4 ^{RNAi} _R2	ACCAGGTCTCAATTGTTGGAAACGCTCCTGG
Rab8a1-4 ^{RNAi} _F3	ACCAGGTCTCACAAATCAAGATAAGGACCATTGAGT
Rab8a1-4 ^{RNAi} _R3	ACCAGGTCTCATCGT CATGTCAGCCTTGGCCG
NYFP-Oleosin F	GCAGAAGGTTATGAACCACGATGCAGATTACTATGGCAGCAACATAC
Oleosin-CYFP R	TCTGCTTAACCATGTTGGATACTCTGCTGGTTCCAGTGACATG

880
881 **Table 1. Primers used in this study.**

882
883 **Co-Immunoprecipitation experiments and Immunoblot Analysis**

884 Proteins were transiently expressed by agroinfiltration in *N. benthamiana* leaves and harvested 2

885 days post agroinfiltration. Protein extraction, purification and western blot analysis steps were
886 performed as described previously (Bozkurt et al., 2011; Dagdas et al., 2016). Polyclonal anti-GFP
887 and anti-BFP (tRFP) antibody produced in rabbit (Chromotek, UK), monoclonal antibody anti-RFP
888 produced in mouse and monoclonal antibodies anti-GFP, anti-HA and anti-FLAG antibodies produced
889 in rat (Chromotek, UK) were used as primary antibodies. For secondary antibodies anti-mouse
890 antibody (Sigma-Aldrich, UK), anti-rabbit (Sigma-Aldrich, UK) and anti-rat (Sigma-Aldrich, UK)
891 antibodies were used.

892 **RNA isolation, cDNA synthesis and RT-PCR**

893 For total RNA extraction 100mg of leaf tissue excised from 3/4 days after silencing and frozen in liquid
894 nitrogen. RNA was then extracted from the plant using GeneJET Plant RNA Purification Kit (Thermo
895 Scientific). RNA concentration was measured using NanoDrop™ Lite Spectrophotometer (Thermo
896 Scientific). 1 µg of RNA was used for cDNA synthesis using SuperScript IV Reverse Transcriptase
897 (Invitrogen).

898

899 **Confocal Microscopy and Image Processing**

900 Microscopy analyses were carried out on live leaf tissue 3-4 days post agroinfiltration. To minimize
901 the damage of live tissue, leaf discs of *N. benthamiana* were cut using a cork borer and mounted onto
902 Carolina observation gel (Carolina Biological Supply Company). For BODIPY-dodecanoic acid
903 (BODIPY-C12, Invitrogen) staining, 10 µM was infiltrated into the leaf tissue 5 hours prior to
904 observation. For PexRD54 AIM peptide experiments in leaf tissue, a solution of 10 µM of peptide in
905 agroinfiltration buffer or buffer alone was infiltrated in leaves 3 hours prior to observation. For imaging
906 in roots, seedlings were collected at 3 weeks old and the roots placed in 2 mL tubes containing 5 µM
907 peptide solution in agroinfiltration buffer or buffer alone for 3 hours prior to observation.

908 Confocal fluorescence microscopy was performed using Leica SP5 and SP8 resonant inverted
909 confocal microscope (Leica Microsystems) using 63x and 40x water immersion objective,
910 respectively. In order to excite fluorescent tagged proteins, Diode laser excitation was set to 405 nm,
911 Argon laser to 488 nm and the Helium-Neon laser to 561 nm and their fluorescent emissions detected
912 at 450-480, 495-550 and 570-620 nm to visualize BFP, GFP and RFP fluorescence, respectively.
913 Sequential scanning between lines was done to avoid spectral mixing from different fluorophores and
914 images acquired using multichannel. Maximum intensity projections of Z-stack images were
915 processed using ImageJ (2.0) to enhance image clarity.

916

917 **Data analysis and statistics**

918 Images for quantification of autophagosome numbers were obtained from Z stacks consisting of 1.3
919 mm depth field multi-layered images with similar settings for all samples. To detect and quantify
920 punctate structures in one channel (green channel or red channel or blue channel) and to validate
921 colocalization an overlay of two or three channel, where applicable, was acquired (green channel

922 and/or red channel and/or blue channel). Z stacks were separated into individual images with the
923 ImageJ (2.0) program and analysed. To avoid possible bias of manual count, the quantification of
924 puncta and colocalization of puncta was done using MATLAB (2017b) and ImageJ (2.0). Boxplots
925 were generated with mean of punctate numbers generated from stacks obtained in 3-6 independent
926 biological experiments. Statistical differences were analysed by Welch Two Sample t-test in R.
927 Measurements were significant when $p<0.05$ (*) and highly significant when $p<0.001$ (***).

928

929 **Automated puncta counting algorithm through image processing**

930 The image processing algorithm calculates the gradient of the image to identify the boundaries of the
931 puncta. We then algorithmically identify the enclosed regions formed by the boundaries and counted
932 the number of puncta in each figure. For the case of co-localisation, the co-ordinates of the centres
933 of the punctas/clusters from each channel were calculated and compared to see if they lie within a
934 small tolerance for each puncta and channel. The puncta/clusters satisfying the abovementioned
935 conditions were considered to be co-localised and were counted.

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959 **References**

960

961 Ao, X., Zou, L., and Wu, Y. (2014). Regulation of autophagy by the Rab GTPase network. *Cell*
962 *Death Differ.*

963 Bansal, M., Moharir, S.C., Sailasree, S.P., Sirohi, K., Sudhakar, C., Sarathi, D.P., Lakshmi, B.J.,
964 Buono, M., Kumar, S., and Swarup, G. (2018). Optineurin promotes autophagosome formation by
965 recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2
966 protein. *J. Biol. Chem.*

967 Bernard, A., and Klionsky, D.J. (2013). Autophagosome Formation: Tracing the Source. *Dev. Cell.*
968 Bozkurt, T.O., Schornack, S., Win, J., Shindo, T., Ilyas, M., Oliva, R., Cano, L.M., Jones, A.M.E.,
969 Huitema, E., van der Hoorn, R.A.L., et al. (2011). Phytophthora infestans effector AVRblb2 prevents
970 secretion of a plant immune protease at the haustorial interface. *Proc. Natl. Acad. Sci. U. S. A.* **108**,
971 20832–20837.

972 Bozkurt, T.O., Belhaj, K., Dagdas, Y.F., Chaparro-Garcia, A., Wu, C.-H., Cano, L.M., and Kamoun,
973 S. (2015). Rerouting of Plant Late Endocytic Trafficking Toward a Pathogen Interface. *Traffic* **16**,
974 204–226.

975 Chaparro-Garcia, A., Wilkinson, R.C., Gimenez-Ibanez, S., Findlay, K., Coffey, M.D., Zipfel, C.,
976 Rathjen, J.P., Kamoun, S., and Schornack, S. (2011). The receptor-like kinase serk3/bak1 is
977 required for basal resistance against the late blight pathogen *Phytophthora infestans* in *Nicotiana*
978 *benthamiana*. *PLoS One*.

979 Choy, A., Dancourt, J., Mugo, B., O'Connor, T.J., Isberg, R.R., Melia, T.J., and Roy, C.R. (2012).
980 The *Legionella* effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation.
981 *Science* (80-.).

982 Dagdas, Y.F., Belhaj, K., Maqbool, A., Chaparro-Garcia, A., Pandey, P., Petre, B., Tabassum, N.,
983 Cruz-Mireles, N., Hughes, R.K., Sklenar, J., et al. (2016). An effector of the Irish potato famine
984 pathogen antagonizes a host autophagy cargo receptor. *Elife* **5**.

985 Dagdas, Y.F., Pandey, P., Tumtas, Y., Sanguankiattichai, N., Belhaj, K., Duggan, C., Leary, A.Y.,
986 Segretin, M.E., Contreras, M.P., Savage, Z., et al. (2018a). Host autophagy machinery is diverted to
987 the pathogen interface to mediate focal defense responses against the Irish potato famine
988 pathogen. *Elife* **7**.

989 Dagdas, Y.F., Pandey, P., Tumtas, Y., Sanguankiattichai, N., Belhaj, K., Duggan, C., Leary, A.Y.,
990 Segretin, M.E., Contreras, M.P., Savage, Z., et al. (2018b). Host autophagy machinery is diverted to
991 the pathogen interface to mediate focal defense responses against the Irish potato famine
992 pathogen. *Elife* **7**.

993 Dupont, N., Chauhan, S., Arko-Mensah, J., Castillo, E.F., Masedunskas, A., Weigert, R., Robenek,
994 H., Proikas-Cezanne, T., and Deretic, V. (2014). Neutral lipid stores and lipase PNPLA5 contribute
995 to autophagosome biogenesis. *Curr. Biol.*

996 Essid, M., Gopaldass, N., Yoshida, K., Soldati, C.M.T., and Brennwald, P. (2012). Rab8a regulates
997 the exocyst-mediated kiss-and-run discharge of the *Dictyostelium* contractile vacuole. *Mol. Biol.*
998 *Cell.*

999 Fan, J., Yu, L., and Xu, C. (2019). Dual Role for Autophagy in Lipid Metabolism in *Arabidopsis*.
L000 *Plant Cell.*

L001 Hafrén, A., Macia, J.-L., Love, A.J., Milner, J.J., Drucker, M., and Hofius, D. (2017a). Selective
L002 autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid
L003 protein and particles. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E2026–E2035.

L004 Hafrén, A., Üstün, S., Hochmuth, A., Svenning, S., Johansen, T., and Hofius, D. (2017b). Turnip
L005 mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. *Plant Physiol.*
L006 Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T.,
L007 Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites.
L008 *Nature.*

L009 He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy.
L010 *Annu. Rev. Genet.*

L011 Hofius, D., Hafrén, A., Marshall, R.S., Bozhkov, P. V., Minina, E.A., Liu, Q., Vierstra, R.D., and
L012 Üstün, S. (2018). Bacteria Exploit Autophagy for Proteasome Degradation and Enhanced Virulence
L013 in Plants. *Plant Cell.*

L014 Jung, H., Lee, H.N., Marshall, R.S., Lomax, A.W., Yoon, M.J., Kim, J., Kim, J.H., Vierstra, R.D., and
L015 Chung, T. (2020). *Arabidopsis* cargo receptor NBR1 mediates selective autophagy of defective
L016 proteins. *J. Exp. Bot.*

L017 Kellner, R., De la Concepcion, J.C., Maqbool, A., Kamoun, S., and Dagdas, Y.F. (2017). ATG8
L018 Expansion: A Driver of Selective Autophagy Diversification? *Trends Plant Sci.*

L019 Kimmey, J.M., and Stallings, C.L. (2016). Bacterial Pathogens versus Autophagy: Implications for
L020 Therapeutic Interventions. *Trends Mol. Med.*

L021 Langemeyer, L., Bastos, R.N., Cai, Y., Itzen, A., Reinisch, K.M., and Barr, F.A. (2014). Diversity and
L022 plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and
L023 inactivation. *Elife.*

L024 Leary, A.Y., Sanguankiatthai, N., Duggan, C., Tumtas, Y., Pandey, P., Segretn, M.E., Linares,
L025 J.S., Savage, Z.D., Yow, R.J., and Bozkurt, T.O. (2017). Modulation of plant autophagy during
L026 pathogen attack. *J. Exp. Bot.*

L027 Leary, A.Y., Savage, Z., Tumtas, Y., and Bozkurt, T.O. (2019). Contrasting and emerging roles of
L028 autophagy in plant immunity. *Curr. Opin. Plant Biol.* **52**, 46–53.

L029 Leidal, A.M., Huang, H.H., Marsh, T., Solvik, T., Zhang, D., Ye, J., Kai, F.B., Goldsmith, J., Liu, J.Y.,
L030 Huang, Y.H., et al. (2020). The LC3-conjugation machinery specifies the loading of RNA-binding
L031 proteins into extracellular vesicles. *Nat. Cell Biol.*

L032 Maeda, S., Otomo, C., and Otomo, T. (2019). The autophagic membrane tether ATG2A transfers

l033 lipids between membranes. *Elife*.

l034 Maqbool, A., Hughes, R.K., Dagdas, Y.F., Tregidgo, N., Zess, E., Belhaj, K., Round, A., Bozkurt,
l035 T.O., Kamoun, S., and Banfield, M.J. (2016). Structural basis of host autophagy-related protein 8
l036 (ATG8) Binding by the irish potato famine pathogen effector protein PexRD54. *J. Biol. Chem.*

l037 Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The Role of Atg Proteins in Autophagosome
l038 Formation. *Annu. Rev. Cell Dev. Biol.*

l039 Munch, D., Rodriguez, E., Bressendorff, S., Park, O.K., Hofius, D., and Petersen, M. (2014).
l040 Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in
l041 *Arabidopsis*. *Autophagy* 10, 1579–1587.

l042 Nair, U., Jotwani, A., Geng, J., Gammoh, N., Richerson, D., Yen, W.L., Griffith, J., Nag, S., Wang,
l043 K., Moss, T., et al. (2011). SNARE proteins are required for macroautophagy. *Cell*.

l044 Noda, N.N., Kumeta, H., Nakatogawa, H., Satoo, K., Adachi, W., Ishii, J., Fujioka, Y., Ohsumi, Y.,
l045 and Inagaki, F. (2008). Structural basis of target recognition by Atg8/LC3 during selective
l046 autophagy. *Genes to Cells*.

l047 Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y., and Noda,
l048 N.N. (2019). Atg2 mediates direct lipid transfer between membranes for autophagosome formation.
l049 *Nat. Struct. Mol. Biol.*

l050 Panstruga, R., and Dodds, P.N. (2009). Terrific protein traffic: The mystery of effector protein
l051 delivery by filamentous plant pathogens. *Science* (80-).

l052 Pfeffer, S.R. (2017). Rab GTPases: Master regulators that establish the secretory and endocytic
l053 pathways. *Mol. Biol. Cell*.

l054 PFEFFER, R.M.N.A.S.R., and Copyright (2014). Mutant enzymes challenge all assumptions. *Elife*.

l055 Real, E., Rodrigues, L., Cabal, G.G., Enguita, F.J., Mancio-Silva, L., Mello-Vieira, J., Beatty, W.,
l056 Vera, I.M., Zuzarte-Luís, V., Figueira, T.N., et al. (2017). Plasmodium UIS3 sequesters host LC3 to
l057 avoid elimination by autophagy in hepatocytes. *Nat. Microbiol.*

l058 Ryabovol, V. V., and Minibayeva, F. V (2016). Molecular mechanisms of autophagy in plants: Role
l059 of ATG8 proteins in formation and functioning of autophagosomes. *Biochem.* 81, 348–363.

l060 Schütter, M., Giavalisco, P., Brodesser, S., and Graef, M. (2020). Local Fatty Acid Channeling into
l061 Phospholipid Synthesis Drives Phagophore Expansion during Autophagy. *Cell*.

l062 Shpilka, T., Welter, E., Borovsky, N., Amar, N., Mari, M., Reggiori, F., and Elazar, Z. (2015). Lipid
l063 droplets and their component triglycerides and sterol esters regulate autophagosome biogenesis.
l064 *EMBO J.*

l065 Siloto, R.M.P., Findlay, K., Lopez-Villalobos, A., Yeung, E.C., Nykiforuk, C.L., and Moloney, M.M.
l066 (2006). The accumulation of oleosins determines the size of seed oilbodies in *Arabidopsis*. *Plant*
l067 *Cell*.

l068 Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and
l069 Czaja, M.J. (2009). Autophagy regulates lipid metabolism. *Nature*.

l070 Singh, S., Kumari, R., Chinchwadkar, S., Aher, A., Matheshwaran, S., and Manjithaya, R. (2019).
l071 Exocyst Subcomplex Functions in Autophagosome Biogenesis by Regulating Atg9 Trafficking. *J.*
l072 *Mol. Biol.*
l073 Slobodkin, M.R., and Elazar, Z. (2013). The Atg8 family: multifunctional ubiquitin-like key regulators
l074 of autophagy. *Essays Biochem.*
l075 Speth, E.B., Imboden, L., Hauck, P., and He, S.Y. (2009). Subcellular localization and functional
l076 analysis of the arabidopsis GTPase RabE 1[W][OA]. *Plant Physiol.*
l077 Vaibhava, V., Nagabhushana, A., Chalasani, M.L.S., Sudhakar, C., Kumari, A., and Swarup, G.
l078 (2012). Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein
l079 TBC1D17. *J. Cell Sci.*
l080 Valverde, D.P., Yu, S., Boggavarapu, V., Kumar, N., Lees, J.A., Walz, T., Reinisch, K.M., and Melia,
l081 T.J. (2019). ATG2 transports lipids to promote autophagosome biogenesis. *J. Cell Biol.*
l082 Whisson, S.C., Boevink, P.C., Wang, S., and Birch, P.R. (2016). The cell biology of late blight
l083 disease. *Curr. Opin. Microbiol.*
l084 Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D.G.O., Yoshida, K., Dong, S., Schornack, S.,
l085 Zipfel, C., Robatzek, S., Hogenhout, S.A., et al. (2012). Effector biology of plant-associated
l086 organisms: Concepts and perspectives. *Cold Spring Harb. Symp. Quant. Biol.*
l087 Wu, L., Xu, D., Zhou, L., Xie, B., Yu, L., Yang, H., Huang, L., Ye, J., Deng, H., Yuan, Y.A., et al.
l088 (2014). Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. *Dev. Cell.*
l089 Xu, Y., Zhou, P., Cheng, S., Lu, Q., Nowak, K., Hopp, A.K., Li, L., Shi, X., Zhou, Z., Gao, W., et al.
l090 (2019). A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. *Cell.*
l091 Zaffagnini, G., and Martens, S. (2016). Mechanisms of Selective Autophagy. *J. Mol. Biol.*
l092 Zess, E.K., Jensen, C., Cruz-Mireles, N., De la Concepcion, J.C., Sklenar, J., Stephani, M., Imre,
l093 R., Roitinger, E., Hughes, R., Belhaj, K., et al. (2019). N-terminal β -strand underpins biochemical
l094 specialization of an ATG8 isoform. *PLOS Biol.*
l095 Zheng, H., Camacho, L., Wee, E., Batoko, H., Legen, J., Leaver, C.J., Malhó, R., Hussey, P.J., and
l096 Moore, I. (2005). A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic
l097 membrane traffic to the plasma membrane in tobacco leaf epidermis. *Plant Cell.*
l098 Zhou, J., Wang, J., Cheng, Y., Chi, Y.J., Fan, B., Yu, J.Q., and Chen, Z. (2013). NBR1-Mediated
l099 Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress
l100 Responses. *PLoS Genet.*
l101 (1985). A Simple and General Method for Transferring Genes into Plants. *Science* (80-.).
l102
l103
l104
l105
l106