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ABSTRACT (201 words)

Metastatic castration resistant prostate cancer (mCRPC) is primarily treated with
therapies that prevent transcriptional activity of the androgen receptor (AR), cause DNA damage,
or prevent cell division. Clinical resistance to these therapies, including second-generation
androgen-targeting compounds such as enzalutamide and abiraterone, is nearly universal. Other
treatment modalities, including immune checkpoint inhibitors, have provided minimal benefit
except in rare subsets of patients?. Both tumour intrinsic and extrinsic cellular programs
contributing to therapeutic resistance remain areas of active investigation. Here we use full-
length single-cell RNA-sequencing (scRNA-seq) to identify the transcriptional states of cancer
and immune cells in the mCRPC microenvironment. Within cancer cells, we identified
transcriptional patterns that mediate a significant proportion of inherited risk for prostate cancer,
extensive heterogeneity in AR splicing within and between tumours, and vastly divergent
regulatory programs between adenocarcinoma and small cell carcinoma. Moreover, upregulation
of TGF-p signalling and epithelial-mesenchymal transition (EMT) were both associated with
resistance to enzalutamide. We found that some lymph node metastases, but no bone metastases,
were heavily infiltrated by dysfunctional CD8" T cells, including cells undergoing dramatic
clonal expansion during enzalutamide treatment. Our findings suggest avenues for rational
therapeutic approaches targeting both tumour-intrinsic and immunological pathways to combat
resistance to current treatment options.

MAIN (2,745 words)

Despite advances in targeting androgen receptor signalling and other drivers, mCRPC is

typically lethal®. The identities and proportions of cells within human mCRPC niches is largely

unknown. By defining treatment resistant states in human mCRPC, we may reveal biological
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drivers that inform new treatment strategies. Thus, we collected fresh biopsies from mCRPC
patients from representative metastatic sites for whole exome sequencing, bulk RNA-seq, and
scRNA-seq using the Smart-seq2 protocol, which generates full-length transcript sequences®. At
time of biopsy, patients had experienced varied treatment histories, with approximately even
representation before and after treatment with enzalutamide. Smaller proportions of patients had
experienced abiraterone, taxanes, and other therapies (Fig. 1a). In addition to adenocarcinomas,
one biopsied tumour (09171135) had a small cell carcinoma histology.

After quality control, our cohort consisted of 2,170 deeply sequenced cells from 14
patients and 15 biopsies, including cells from both before and after enzalutamide treatment for
one patient (01115655) (Methods; Supplementary Fig. 1a). Following clustering of the single-
cell transcriptomes, we manually labelled cell clusters for dominant cell type based on cluster-
specific expression of marker genes (Fig. 1b; Methods; Supplementary Table 2). Cancer cells,
represented in multiple clusters marked by expression of the adenocarcinoma markers AR and
KLK3 (which encodes prostate-specific antigen) or the neuroendocrine marker CHGA, were
recovered from 12 biopsies, comprising over a third of the cells (n=836). The remainder included
cells from the B cell lineage, natural killer (NK) and T cells, monocytes and macrophages,
erythroid cells, and neutrophils.

Prostate cancer is highly heritable, with an estimated 57% of variation in risk attributed to
inherited variants*. Genome wide association studies (GWAS) have not only identified
significant risk alleles but also generated results that allow the analysis of even non-significantly
associated variants in aggregate to link risk to subsets of the genome. We sought to identify cell
types relevant to prostate cancer development by integrating cell-type specific expression

patterns from our scRNA-seq data with results from a recent large-scale GWAS of prostate
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cancer risk®. Using LD score regression applied to specifically expressed genes (LDSC-SEG),
we identified significant enrichment of germline heritability for prostate cancer in genomic
intervals near genes that were specifically expressed in cancer cells (¢ = 0.031, Benjamini-
Hochberg) (Fig. 1¢; Methods)®. No significant enrichment was observed for any other cell type,
indicating that when assessed during advanced disease, inherited risk for prostate cancer is
primarily mediated through tumour-intrinsic mechanisms.
Complex androgen receptor splicing

We therefore assessed transcriptional programs in cancer cells across metastatic niches
and clinical contexts. As prostate adenocarcinomas are dependent on androgen signalling for
survival, significant attention has been focused on the description and detection of a diverse set
of AR splice variants. The AR protein contains a DNA-binding domain with transcriptional
regulatory activity and a ligand-binding domain required for control of its activity by androgens.
Splice variants that omit the ligand-binding domain, particularly AR-V7, have been hypothesized
to constitutively activate downstream transcriptional programs independent of androgen binding,
providing a resistance mechanism to second generation androgen-targeting therapies’®. Taking
advantage of our dataset’s even sequencing coverage along transcripts, we detected the presence
of specific AR splice variants. First, we curated a transcriptome annotation of literature described
isoforms (Methods). Then, we remapped all reads from individual cancer cells initially mapping
to the AR locus, counting the number of reads that uniquely map to individual isoforms (Fig. 2a;
Methods). We detected isoform-informative reads indicating the presence of many previously
described splice variants within our clinical biopsies, with AR-45, AR-V7, and AR-V12 being
uniquely identified in the most cells. AR-45 was detected in every biopsy with any isoform-

specific reads. AR-V7 was present in biopsies from both before and after enzalutamide exposure.
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97  Strikingly, we detected multiple AR splice variants within the same biopsy and even within the

98  same cell, highlighting the complexity of AR splicing in mCRPC.

99 Isoform-informative reads comprise only a small fraction of reads mapping to any gene,
100 and AR splice variants described in literature may not represent a complete census of all isoforms
101  expressed in vivo (Supplementary Fig. 2). Therefore, we defined two alternative summary
102  measures of AR splicing that permitted characterization within more of the individual cancer
103  cells. AR intron 3 contains many of the terminal cryptic/alternative exons included in truncated
104 AR isoforms lacking the ligand-binding domain, including AR-V7’. We quantified the proportion
105  oftotal AR coverage that lies in intron 3 or in a larger interval that includes intron 3 and upstream
106  exons, which encode the DNA-binding domain (Fig. 2b). Again, we detected significant
107  variation between cancer cells within the same biopsy. Moreover, we detected a clear increase in
108  both measures after enzalutamide treatment for patient 01115655, suggesting decreased
109 transcription of full-length AR compared to truncating variants after treatment (Fig. 2¢,d).

110  Overall, AR splicing patterns in mCRPC cells were highly heterogeneous between and within
111 tumours regardless of treatment resistance state.

112 Enzalutamide resistance programs

113 Resistance to second generation androgen-targeting therapies poses a major clinical

114  challenge, and previous work based on bulk whole exome and transcriptome sequencing have
115  identified alterations in RBI, TP53, and AR as associated with poor outcomes®. Taking advantage
116  of the single-cell resolution of our data, we examined cancer cells in our cohort to identify

117  changes in expression in cells naive and exposed to enzalutamide, which functions as a

118  competitive inhibitor of AR that prevents nuclear localization and downstream transcriptional

119  regulatory activity within cancer cells'®. We scored cancer cells for expression of the MSigDB
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120  hallmark gene sets and select literature-derived gene sets, including several reported as

121  mediating resistance mechanisms, such as genes regulated by the glucocorticoid receptor or AR-
122 V7 and genes associated with a neuroendocrine phenotype?? (Methods). Compared to

123  enzalutamide-naive cells, exposed cells upregulated several MSigDB hallmark gene sets,

124  including for EMT and TGF-P signalling (Fig. 3a,b; Supplementary Table 1). We sought to

125  corroborate these findings in a published cohort of bulk-sequenced mCRPC transcriptomes and
126  found a similar effect for TGF-f signalling upregulation in enzalutamide-exposed lymph node
127  biopsies, although the number of exposed biopsies was small, and the effect was not statistically
128  significant (Fig. 3c)°. We could not analyse bone biopsies due to scarcity of post-enzalutamide
129  samples, and EMT scores were confounded with tumour purity, limiting our ability to draw

130  conclusions from bulk sequencing for this specific finding (Supplementary Fig. 3).

131 Small cell carcinoma regulatory programs

132 One patient sample within our cohort derived from a small cell carcinoma, a rare

133 aggressive form of prostate cancer that is not responsive to androgen-targeting therapies?®. As
134  expected, cancer cells from this biopsy differed drastically in their expression programs, with no
135  detectable AR expression, strong downregulation of an AR regulated gene set, and marked

136  upregulation of a gene set associated with neuroendocrine prostate cancer (Fig. 4a,b; Extended
137  Data Fig. 1)!2%4,

138 To mitigate overestimating the importance of idiosyncratic gene expression patterns from
139  asingle biopsy, we inferred transcriptional regulatory factor regulons using all cancer cells from
140  our cohort and compared the inferred regulon activities between small cell carcinoma and

141  adenocarcinoma cells®*. Additionally, we scored small cell carcinoma and adenocarcinoma bulk

142 transcriptomes from a published cohort for expression of the gene lists inferred to comprise each
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143 regulatory factor’s regulon®?? (Methods). Comparing our data and the published cohort, we

144  observed concordant patterns of differential regulon activity between adenocarcinoma and small
145  cell carcinoma (Fig. 4c). Among the transcriptional regulators with decreased activity in small
146  cell carcinoma are HOXB13, which mediates AR regulatory activity and response to androgens,
147  and BHLHE40, previously reported to be regulated by AR?>?". Several ETS family transcription
148  factors showed reduced activity in small cell carcinoma, including ETV1, which increases

149  prostate adenocarcinoma invasiveness, EHF, whose loss confers stem-like features, and SPDEF’,
150  an AR-regulated transcription factor whose downregulation promotes EMT?3°. On the other
151  hand, considering transcriptional regulators with increased regulon expression in small cell

152 carcinoma, we noted the stemness-promoting factors NANOG and SOX2 and the epigenetic

153  regulator EZH?2, all of which have been reported to promote lineage plasticity and resistance to
154  androgen-targeting therapies?>>133. Among the transcriptional regulators with the most increased
155  activity in small cell carcinoma cells are E2F1, which promotes cell cycle progression upon

156  release from RB1 inhibition and is overexpressed in treatment-emergent small cell

157  neuroendocrine prostate cancer and LHX2, previously reported in an expression signature of N-
158  myc driven neuroendocrine prostate cancer** 3%, We also observed increased activity of three
159 transcriptional regulators whose role in small cell carcinoma has not been previously reported:
160 HOXB)5 and HOXB6, two homeobox containing transcription factors, and NR1D2, a circadian
161  rhythm regulator (Fig. 4c,d)®’. Thus, even from a single small cell carcinoma case, we recover
162  generalizable patterns of tumour-intrinsic expression differences, implicating both novel

163  regulons and known transcription regulators mediating treatment resistance.

164  Cytotoxic cell states and dynamics
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165 To provide a therapeutic axis independent of AR signalling and complementing tumour-
166  intrinsic targeting modalities, clinical trials have tested immune checkpoint inhibitors in prostate
167  cancer. While such therapies have yielded major improvements in a variety of solid tumours,

168  responses in advanced prostate cancer have been muted*?. To improve our understanding of the
169  biology underlying this gap, we characterized infiltrating cytotoxic cells in the mCRPC

170  microenvironment. We sub-clustered T and NK cells identified from initial clustering into 6

171  clusters, including 2 CD4" T cell populations, 3 largely CD8" T cell populations, and a

172 population of strongly CD16" and largely CD3" cells dominated by NK cells (Fig. 5a; Extended
173 Data Fig. 2a). One population of CD8" T cells chiefly derived from bone biopsies was marked by
174  expression of CXCR4, consistent with reports in mice that CXCR4 is necessary for localization of
175  CDS8" T cells to the bone marrow and their subsequent survival® (Fig. 5b; Extended Data Fig. 2a,
176  3a). This cluster had minimal expression of the effector molecule GZMB, while all three other
177  cytotoxic clusters exhibited GZMB expression, albeit to varying degrees (Fig. 5b; Extended Data
178  Fig. 2b). Another CD8" T cell population, largely derived from lymph node biopsies, was marked
179 by expression of co-inhibitory receptors PDCD1, which encodes PD-1, and HAVCR2, which

180  encodes TIM-3, along with elevated expression of TOX, TIGIT, ICOS, FASLG, and LAG3 and
181  minimal 7CF7 expression, suggestive of a dysfunctional effector phenotype (Fig. 5b; Extended
182  Data Fig. 2b,e,f). This population exhibited elevated expression of both ENTPD]I (encoding

183  CD39, a marker of terminally exhausted CD8" T cells) and ITGAE (encoding CD103), whose co-
184  expression identifies infiltrating cytotoxic cells reactive to cancer cells in other human

185  cancers>®“? (Extended Data Fig. 2c). Both the NK cell-dominant cluster and the remaining

186  cytotoxic T cell cluster, which included CD8" T cells and likely y8 T cells, were marked by

187  expression of GNLY and substantial fractions of cells expressing CX3CR1 (Fig. 5b; Extended


https://doi.org/10.1101/2020.03.19.998450
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.998450; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

188  Data Fig. 2d). Cells expressing CX3CR1 also highly expressed GZMB and PRF1, consistent with
189  previous reports that CXY3CRI marks a CD8" T cell population with superior cytolytic function
190 corresponding to a more differentiated effector phenotype that has been observed in models of
191  chronic infection and other cancers**3. We did not observe a distinct cluster of TCF7 and

192  SLAMF6 dual-expressing progenitor cells previously reported to mediate response to anti-PD-1
193  therapy in melanoma (Extended Data Fig. 2e,f)*. Broadly, these findings demonstrate that

194  prostate cancer metastases are infiltrated by cytotoxic cells with distinct phenotypes, including
195  dysfunctional and effector states relevant to therapy, that may vary based on metastatic site.

196 Next, we reconstructed T cell receptor (TCR) complementarity-determining region 3

197  (CDR3) sequences in our scRNA-seq and corresponding bulk RNA-seq data to better understand
198  the clonal dynamics of infiltrating T cells that expand in response to antigen stimulation. Groups
199  of T cells forming part of an expanded clonotype group, indicated by a shared productive CDR3
200  sequence, were detected in 6 patients. Clonotype groups detected in lymph node metastases were
201 largely comprised of cells from the CD8" T cell cluster with elevated co-inhibitory receptor

202 expression, while clonotype groups detected in bone metastases were largely comprised of cells
203  from the CXCR4-expressing CD8" T cell cluster with low GZMB expression (Fig. 5d). In one
204  bone biopsy (09171144), a large clonotype group was detected that included both cells from the
205  CXCR4-expressing cluster and cells with high CX3CRI expression, indicating that cells derived
206  from the same progenitor could take on both phenotypes.

207 From patient 01115655, we collected cells from biopsies taken both before and after

208 treatment with enzalutamide and noted marked changes in the infiltrating T cell populations (Fig.
209  5c,e). Before treatment, cytotoxic cells formed a minority of infiltrating T cells, which were

210  dominated by a SELL-expressing CD4" T cell population and cells from a CD4" T regulatory

10
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211 cell-enriched cluster with elevated FOXP3 and CTLA4 expression (Fig. 5c; Extended Data Fig.
212 2a). Following treatment, the majority of infiltrating T cells were dysfunctional PDCD -

213 expressing CD8" T cells (Fig. 5¢,e). Of note, for the clonotype group with the most cells

214 recovered from this patient, we detected both the corresponding TCRa and TCR CDR3

215  sequences in bulk RNA-seq of biopsies from both timepoints. As inferred from the bulk

216  sequencing data, the clonal fraction increased sharply from ~5% before treatment to ~25% after
217  treatment, making it the largest detected clone (Fig. 5f). All cells of this clonotype group detected
218  in scRNA-seq were part of the PDCD-expressing dysfunctional cluster. Collectively, these
219  observations suggest that CD8" T cells can mount an aggressive response against cancer cells
220  during enzalutamide treatment but also that they take on a dysfunctional phenotype that may
221  limit sustained efficacy.

222 Discussion

223 To overcome limitations in bulk genomic characterization in uncovering cell-type

224 specific contributions to therapeutic resistance in mCRPC, we describe the transcriptomes of
225 individual cells collected from 15 biopsies covering diverse treatment histories, metastatic sites,
226  and histological types. We find that only cancer cell expression significantly explains the

227  sizeable inherited component of prostate cancer risk. Within small cell carcinoma, in addition to
228  recapitulating expression programs promoting lineage plasticity, we identify novel regulators
229  such as HOXBS5, HOBX6, and NR1D2, which show dramatically increased activity both in our
230  study and in an external cohort®32*%, For adenocarcinomas, where resistance to second-

231 generation androgen targeting therapies poses a major clinical challenge, significant attention is
232 devoted to 4R splice variants encoding constitutively active truncated proteins that promote

233 resistance’®. We find that 4R splicing varies widely across cells within a single biopsy, with

11
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234 multiple isoforms detectable in individual cells, including those naive to second-generation

235  androgen targeting therapies. These findings suggest that focused mechanistic understanding of
236  individual isoforms may be insufficient and that additional studies on the overlapping regulatory
237  activity of co-expressed AR splice variants are necessary to fully understand their role in

238  therapeutic resistance. More broadly, we identify upregulation of expression programs associated
239  with TGF-p signalling and EMT following exposure to enzalutamide. This is consistent with

240  evidence from pre-clinical models that inhibition of TGF-f signalling promotes reversion of

241  EMT and may sensitize cancer cells to enzalutamide***. Recent work focused on human

242 mCRPC bone metastases identify tumour associated macrophages as a source of TGFBI

243 expression, providing a target cell population for further study and possible therapeutic targeting
244 (Baryawno, N. et al. manuscript submitted). Further studies of mCRPC shortly after initiation of
245  enzalutamide may elucidate earlier cellular responses that ultimately precipitate EMT.

246 Within infiltrating CD8" T cells, a subset expressed dysfunction markers such as PDCD],
247  and this population included cells that underwent a dramatic clonal expansion within a patient
248  after enzalutamide treatment, suggestive of tumour reactivity. The presence of this cell

249  population may explain why some patients with advanced prostate cancer respond to immune
250  checkpoint inhibition in combination with androgen-targeting therapies*’. ENTPDI (CD39)

251  expression in this population suggests that targeting immunosuppressive adenosine signalling
252  may provide benefit in addition to targeting the PD-1 axis*®. This population was uncommon in
253 bone biopsies, which instead contained clonally expanded CD8" T cells with high effector

254  molecule, low exhaustion marker, and CX3CRI expression. This cell state has previously been
255  linked in model systems and other cancers to high cytolytic activity but poor proliferative

256  potential and a requirement for CD4 help* . Similar cells have been reported as being

12
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257  unresponsive to PD-L1 blockade, potentially explaining the poor performance of immune

258  checkpoint inhibition in mCRPC bone metastases'*°. These results highlight the need for

259  additional immunological dissection of mCRPC, where immune checkpoint inhibition has only
260  been indicated for patients with tumour microsatellite instability>2. Importantly, additional

261  investigation should focus on systematic comparisons of bone and lymph node metastases to
262  confirm whether the observed differences in cytotoxic cell infiltration are generalizable.

263  Intriguingly, TGF-B blockade was recently shown to promote response to immune checkpoint
264  inhibition in prostate bone metastases in mice, potentially enabling rational therapeutic

265  combinations to simultaneously act along both androgen and immune axes>’. Taken together, we
266  report multiple tumour and immune mechanisms across diverse mCRPC metastatic niches that

267  contribute to treatment resistance and provide therapeutic opportunities for this lethal disease.

13
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378  Figure 1. Cellular atlas of mCRPC, identifying heritability for prostate cancer enriched near
379  genes specifically expressed in prostate cancer cells.
380 a) Summary of clinical and select genomics features of patients and biopsies forming the study
381  cohort. Each column represents a single biopsy. Where available, multiple biopsies from the
382  same patient are displayed in adjacent columns. Patients are identified by numerical prefix, while
383  suffixes after a dash, when present, identify biopsies from the same patient. Boxes with diagonal
384  slashes indicate missing data, e.g. for genes not included in OncoPanel.
385  b) Projection of single-cell expression onto the first two dimensions of UMAP space. Each dot
386  represents a single cell, and colours correspond to clusters identified by the Louvain algorithm.
387  Clusters are manually labelled with dominant cell type(s) inferred from cluster-specific
388  expression of marker genes.
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389 ¢) Enrichment of heritability for prostate cancer near genes specifically expressed in each cell

390 type (compared to cell types in other cell type groups). *: Benjamini-Hochberg FDR < 0.05
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391

392  Figure 2. AR splicing varies widely across cells within the same tumour and across treatment
393  resistance states.

394  a) Heatmap displaying number of isoform-informative reads mapping to AR variants from single
395  cells. Each column represents AR variants detected in a single cell, with only cells that had at
396 least one isoform-informative read shown.

397  b) Schematic representation of AR locus. Rectangles indicate exons. Exons corresponding to the
398  full-length AR transcript are numbered, with exons comprising different functional domains

399  coloured. Select alternative exons included in AR splice variants are indicated.
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400 ) Fraction of total AR coverage upstream of exon 4 (including the DNA-binding domain but
401  excluding the ligand-binding domain) in single cells.

402  d) Fraction of total AR coverage in intron 3 (including multiple cryptic/alternative exons

403  included in truncated splice variants) in single cells.

404  e) Total AR expression in single cells.

405 ¢, d, e) P value compares cells before (n = 112) and after (n = 83) enzalutamide treatment for

406  patient 01115655 (two-sided Mann-Whitney U test).
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408  Figure 3. Enzalutamide-exposed adenocarcinoma cells upregulate expression programs

409  associated with epithelial-mesenchymal transition and TGF- signalling.

410  a, b) Hallmark epithelial-mesenchymal transition and TGF-f signalling gene set expression

411  scores for individual cells collected before and after enzalutamide treatment. Each dot represents
412  asingle cell and is coloured corresponding to biopsy. P values from two-sided Mann-Whitney U
413 test.

414  ¢) Hallmark TGF-P signalling gene set expression scores for bulk RNA-seq of prostate

415  adenocarcinoma lymph node biopsies® collected before and after enzalutamide treatment. Each
416  dot represents a single tumour. P value from one-sided Mann-Whitney U test.

417  Boxplots: centre line: median; box limits: upper and lower quartiles; whiskers extend at most

418  1.5x interquartile range past upper and lower quartiles.
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Figure 4. Cancer cells from small cell carcinoma are dominated by distinct regulons compared to

adenocarcinoma cells.

a, b) Gene set expression scores in single cells using an expression signature of neuroendocrine

prostate cancer'® and of a set of genes under regulation by 4R*2. Boxplots: centre line: median;
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box limits: upper and lower quartiles; whiskers extend at most 1.5x interquartile range past upper
and lower quartiles.

¢) Inferred activity of regulons of different transcriptional regulators. x-axis: g-values from
comparison of inferred regulon activity in cancer cells from small cell carcinoma (n = 76) vs
cancer cells from adenocarcinomas (n = 188, sampled as described in Methods) (negative values
indicate regulon is less active in small cell carcinoma; two-sided Mann-Whitney U test, median
outcome of sampling iterations (Methods) with Bonferroni FWER correction). y-axis: P values
(two-sided Mann-Whitney U test, signed as previous) from comparison of expression scores of
scRNA-inferred regulons in bulk RNA-seq of small cell carcinomas (n = 8) vs adenocarcinomas
(n = 18) from a published cohort’.

d) Regulon activity in single cells for select transcriptional regulators.
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Figure 5. Clonally expanded cytotoxic lymphocytes have different effector phenotypes in

distinct metastatic niches.

a) Sub-clustering of NK and T cells. Each dot represents a single cell projected onto UMAP

space coloured corresponding to clustering via the Louvain algorithm. Clusters are manually

labelled with dominant phenotype/cell type from patterns of marker gene expression. Cluster

colours are used throughout subpanels.

b) Expression of select marker, effector, and co-inhibitory receptor genes within cytotoxic

clusters, CD16" NK (n = 30), CD8" GNLY' (n = 84), CD8" CXCR4" (n=157), and CDS8"

PDCDI" (n=106). P values from two-sided Mann Whitney U test.

¢) Proportions of cellular phenotypes from each biopsy, grouped by metastatic site, for all

biopsies from which high-quality T and NK cells were recovered.
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d) T cell clonotypes from TCR reconstruction. Each bar represents cells sharing a reconstructed
productive TCR CDR3 sequence and are grouped by patient. Colours indicate phenotype/cell
type.

e) Proportions of cytotoxic cell phenotypes in patient 01115655 before and after enzalutamide
treatment.

f) Changes in clonal fractions of cytotoxic T cell clonotypes in patient 01115655 following
enzalutamide treatment. Each subplot corresponds to a single clonotype with TCRa and f CDR3
amino acid sequences inferred from single-cell RNA-seq. Clonal fractions for the same CDR3
sequences (matching at both nucleotide and amino acid level) inferred from TCR reconstruction
in bulk RNA-seq are plotted. All detected single cells of the displayed clonotypes come from the

PDCDI-expressing CD8" T cell cluster.
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458  METHODS (2,578 words)

459  Reference versions

460 We used human genome reference b37 and the GENCODE® release 30 gene annotation
461  lifted over to GRCh37.

462  Statistical software

463 Statistical tests were conducted with SciPy® v1.3.2 running on Python 3.7. R packages
464  were runon R v3.5.1.

465  Whole exome analyses

466 For biopsies with paired tumour and normal samples available, we performed whole

467  exome sequencing with a customized version of a previously described protocol®. After DNA
468  shearing, hybridization and exome capture were performed using Illumina’s Rapid Capture

469  Exome Kit (with the exception of the normal sample for 01115149 and the tumour sample for
470  biopsy 01115149-TA, which used the Agilent SureSelect Human All Exon 44Mb v2.0 bait set®*).
471  Libraries were sequenced with 76 bp paired-end reads on an [llumina instrument.

472 Reads were aligned using BWA®® v0.5.9 and somatic mutations called using a customized
473  version of the Getz Lab CGA WES Characterization pipeline

474  (https://portal.firecloud.org/#methods/getzlab/CGA_WES Characterization Pipeline v0.1 Dec2
475  018/) developed at the Broad Institute. Briefly, we used ContEst®® to estimate contamination,
476  MuTect® and Strelka®® to call SNVs and indels, DeTiN®° to estimate tumour-in-normal

477  contamination, and Orientation Bias Filter®® and MAFPoNFilter® to filter sequencing artefacts.
478  Variants were annotated using VEP®2, Oncotator®, and vcf2maf v1.6.17

479  (https://github.com/mskcc/vef2maf). Copy number alterations, purity, ploidy, and whole genome
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480  doubling status were called using FACETS® v0.5.14. Copy number alterations were evaluated
481  with respect to whole genome doubling status.

482  OncoPanel

483 For biopsies where whole exome sequencing failed, somatic mutation calls, copy number
484  alterations, and ETS fusion status were taken from OncoPanel, a clinical panel sequencing test
485  available at DFCI®®.

486  Sample collection and dissociation for single-cell RNA-seq

487 Tumour samples were collected and transported in Dulbecco's Modified Eagle Medium,
488  high glucose, pyruvate ("DMEM", ThermoFisher Scientific, #11995073) on ice. Single-cell

489  suspensions for single-cell RNA-seq were obtained from tumour core needle biopsies through
490  mechanical and enzymatic dissociation. Samples were first cut into pieces smaller than 1 mm?
491  using a scalpel. For bone biopsies, soft tissue was also scraped from the hard bone surface using
492  ascalpel blade. Samples were then dissociated using one of two protocols, chiefly to optimize
493  for yield of viable cells from different metastatic sites. Cells obtained from the two protocols
494  were comparable, and findings were consistent in sub-analyses of cells processed with the same
495  protocol (Supplementary Fig. 4).

496 For biopsies, 01115655-TC, 01115666-TA, 01115680, 01115681, 09171111, 09171135,
497 09171136, and 09171139, the resulting tissue fragments were incubated in 3 mL Accumax

498  (Innovative Cell Technologies, #AM105) for 10 min at room temperature on a rocking shaker
499  ("ACC" protocol). Cell suspensions were then filtered with a 100 pm cell strainer (ThermoFisher
500  Scientific #08-771-19) and spun at 580 g for 5 min at 4°C. In cases where cell pellets appeared
501  bloody, red blood cells were lysed with ACK Lysing Buffer (ThermoFisher Scientific,

502  #A1049201) on ice for 1 min, followed by quenching with PBS and an additional centrifugation.
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503  The final cell pellet was resuspended in PBS (Fisher Scientific, #MT21040CV) with 2% FBS
504  (Gemini Bio-Products, #100-106).

505 For biopsies 01115655-TA, 01115665, 01115149-TC, 01115578-TA, 09171123,

506 09171144, and 09171146, tissue fragments were incubated in 2-3 mL Medium 199, Earle's Salts
507 ("M199", ThermoFisher Scientific, #11150059) with 1 mg/mL Collagenase 4 (Fisher Scientific,
508  #NC9836075), and 10-20 ug/mL DNAse I (StemCell Technologies, #7900) for 5-10 min in a
509  37°C water bath with intermittent mixing, followed by additional mixing and pipetting ("CD"
510 protocol). Cell suspensions were then filtered with a 100 um cell strainer, spun at 580 g for 5 min
511  at4°C, and the resulting pellet resuspended in PBS with 2% FBS. The blood clot from biopsy
512 09171144 was processed in a similar manner, with the exception that red blood cells were lysed
513  with ACK Lysing Buffer on ice at 5-minute increments for a total of 15 min. For the bone

514  marrow aspirate from biopsy 09171144, mechanical and enzymatic dissociation were not

515  performed, and red blood cells were lysed with ACK Lysing Buffer on ice at 5-minute

516  increments for a total of 10 min.

517  Single-cell sorting

518 Single cell suspensions in PBS with 2% FBS were stained by incubating for 15 minutes
519  atroom temperature protected from light with anti-human PTPRC (CD45) monoclonal antibody
520  conjugated to FITC (1:200 dilution, VWR #ABNOMAB12230), anti-human EPCAM antibody
521  conjugated to PE (1:50 dilution, Miltenyi Biotec #130-091-253), and either Calcein-AM (1:200
522  dilution, ThermoFisher Scientific #C3100MP; biopsies 01115655-TA and 01115665), 7-

523  Aminoactinomycin D (7-AAD) (1:200 dilution, ThermoFisher Scientific #A1310; all other

524  biopsies except sample 01115149-TC), or both (sample 01115149-TC). We first sorted cells with

525  biological dimensions (high FSC-A and high SSC-A), selected single cells, and excluded

30


https://doi.org/10.1101/2020.03.19.998450
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.998450; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

526  doublets or triplets (low FSC-W). Next, we sorted live cells (low 7AAD/ high Calcein-AM) that
527  were CD45" (high FITC, enriching for immune cells), EPCAM" (high PE, enriching for cancer
528 cells), or double negative (low FITC/low PE, only in biopsy 09171144) (see Supplementary Fig.
529 5 for example gating). Cell sorting was performed using a BD Biosciences FACSAria cell sorter
530 (ITu or UV) with FACSDiva software. Individual cells were sorted into the wells of 96-well

531  plates with 10 uL TCL buffer (Qiagen, #1070498) with 1% beta-mercaptoethanol (Sigma 63689)
532  per well. Plates were then sealed, vortexed for 10 s, spun at 3,700 rpm for 2 min at 4°C, and

533  frozen on dry ice.

534  Transcriptome sequencing, alignment, and quantification

535 Library preparation for bulk RNA-seq was performed using the [1lumina TruSeq Stranded
536 mRNA Sample Preparation Kit (except for biopsy 01115149-TA, which was prepared using the
537 unstranded Illumina TruSeq RNA Sample Preparation protocol (Revision A, 2010)). Libraries
538  were sequenced with 101 bp paired-end reads (except biopsy 01115149-TA, which was

539  sequenced with 76bp paired-end reads) on an Illumina instrument.

540 For scRNA-seq, RNA was captured from single-cell lysates with 2.2x RNAClean SPRI
541  beads (Beckman Coulter Genomics) without the final elution®’. After air drying and secondary
542  structure denaturation at 72°C for three minutes, library construction was performed using a

543  slightly customized Smart-seq2 protocol®® with 21 cycles of PCR for preamplification. cDNA
544  was purified with 0.8x Ampure SPRI beads (Beckman Coulter Genomics) and eluted in 21 pL
545  TE buffer. During tagmentation and PCR amplification, we used 0.2ng of cDNA per cell and
546  one-eighth of the [llumina NexteraXT (Illumina FC-131-1096) reaction volume. Individual cells
547  were sequenced to a mean depth of ~1.5 million 38 bp paired-end reads on an Illumina NextSeq

548 500 instrument with 75 cycle high output kits (Illumina TG-160-2005).
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t68

549 After adapter trimming with cutadapt® v2.2, reads were aligned using STAR aligner®®

550  v2.7.2b with parameters: --outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --

551 outFilterMismatchNoverReadlLmax ©0.04 --alignIntronMin 20 --alignMatesGapMax 1250000 --
552 alignIntronMax 1250000 --chimSegmentMin 12 --chimJunctionOverhangMin 12 --
553 alignSJstitchMismatchNmax 5 -1 5 5 --chimMultimapScoreRange 3 --

554 chimScoreJunctionNonGTAG -4 --chimMultimapNmax 20 --chimNonchimScoreDropMin 10 --

555 peOverlapNbasesMin 12 --peOverlapMMp 0.1 --chimOutJunctionFormat 1. sjdbOverhang was
556  setto 1 less than the untrimmed read length. We used multi-sample 2-pass mapping for all

557  samples from each patient, first mapping all samples (bulk and single-cell transcriptomes),

558  merging the SJ.out.tab files, then running the second pass with the jointly called splice junctions.
559  STAR BAMs were passed into Salmon’ v0.14.1 to generate gene-level transcript per million
560 (TPM) quantifications with parameters: --incompatPrior 0.0 --seqBias --gcBias --

561  reduceGCMemory --posBias. STAR chimeric junctions were supplied to STAR-Fusion’! v1.7.0 in
562  kickstart mode to call ETS family fusions.

563  Single-cell quality control and clustering

564 After removing low quality cells (fewer than 500 or more than 10,000 detected genes,
565  fewer than 50,000 reads, or more than 25% expression from mitochondrial genes), we used

566  Seurat’? v3.1.0 to perform first-pass clustering using the TPM matrix rescaled to exclude

567  mitochondrial genes. We manually identified and removed a small number of cells with

568 anomalous expression patterns (chiefly co-expression of high levels of haemoglobin with marker
569  genes for non-erythroid cells). Additionally, some cells that did not cluster with erythroid cells
570 (easily identified with dominant haemoglobin expression) nonetheless had low levels of

571  haemoglobin detected, suggestive of contamination from ambient RNA released from lysed

572  erythroid cells. To account for this, we identified genes whose expression was correlated
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573  (Pearson correlation > 0.2) with total haemoglobin expression levels in non-erythroid cells with
574  detectable haemoglobin. This consisted of a small set of genes with known function in erythroid
575  cell development and function: AHSP, GATAI, CAl, EPB42, KLF1, SLC4A1, CA2, GYPA, TFR2,
576  RHAG, FAXDC2, RHD, ALAS2, SPTA1, and BLVRB. To mitigate batch effects driven by

577  different degrees of contaminating ambient erythroid transcripts, we removed these genes, along
578  with the genes encoding haemoglobin subunits, from the expression matrix for all non-erythroid
579  cells.

580 We repeated the clustering and conducted all downstream analyses with the filtered

581  expression matrix. After joint clustering of all cells (Fig. 1b), we performed sub-clustering on 3
582  cell subsets: 1) NK and T cells 2) B-lineage cells 3) myeloid cells. We manually labelled clusters
583 by dominant cell identity, as assessed by marker gene expression patterns (Supplementary Table
584  2). Briefly, cancer cell clusters were identified by expression of AR, KLK3, or CHGA; T cell

585  populations by CD3D and CD3G; Tregs by CD4, FOXP3, and CTLA4; NK cells by absence of
586 CD3D and CD3G and expression of FCGR3A, FCGR3B, and GZMB; erythroid cells by HBA and
587  HBB; neutrophils by ELANE, CEACAMS, AZU1, and DEFA1; macrophages by APOE, C10QA,
588 and C/QB; monocytes by ITGAX, CD14, FCGR3A, and FCGR3B; B cells by CD19 and MS4A1,
589  plasmablasts by CD/9 and absence of MS4A41; and plasma cells by SDC/ and high expression of
590 immunoglobulin genes. Additionally, we confirmed the identity of cancer cell clusters by

591  matching transcriptome-inferred copy number alteration profiles generated from inferCNV

592 v0.99.7 (https://github.com/broadinstitute/inferCNV) with those obtained from corresponding
593  bulk whole exome sequencing.

594  Cluster specifically expressed genes and LDSC-SEG
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595 We grouped cell clusters into ‘superclusters’ of related cell types (Supplementary Table 2)
596 and performed differential expression to identify markers for each cell cluster, omitting cells in
597 the same supercluster. To mitigate uneven representation of cell types, when comparing against
598 any cluster, we subsampled the same number of cells from each other supercluster and used as
599  even representation as possible of the contained clusters. In determining cancer cell markers, we
600  used as even representation as possible of cells from each biopsy while sampling 200 cancer
601 cells total per iteration. For each cluster, we repeated the sampling 500 times. In each sampling,
602  we performed a one-sided Mann Whitney U test for differential expression on all genes with at
603  least 1 TPM expression in at least 10% of the cluster’s cells. We then selected the top 10% most
604  upregulated genes (lowest median P value across samplings) as cluster specifically expressed
605  genes. We used a 100kb interval around genes for heritability partitioning with LDSC-SEG

606  v1.0.1, additionally including an annotation corresponding to all genes and the baseline v1.1

607  model®.

608 AR isoform-informative reads

609 To identify reads that uniquely map to an AR splice variant, we generated a FASTA

610 transcriptome annotation of spliced sequences from isoforms described in literature”>"°, We
611  extracted all reads initially mapped by STAR to the AR genomic interval X:66753830-67011796
612  and then remapped them to our AR isoform transcriptome, disallowing clipping, multimapping,

613  or chimeric reads, and requiring end-to-end mapping (STAR parameters: - -

614 outFilterMultimapNmax 1 --alignEndsType EndToEnd --alignSoftClipAtReferenceEnds No --

615 outFilterMismatchNmax 999 --outFilterMismatchNoverReadlLmax ©.04 --peOverlapNbasesMin

616  10). As our AR isoform transcriptome corresponded to transcript sequences after splicing, we
617  further excluded reads that mapped with gaps corresponding to additional inferred splice events.

618  We reported all reads that mapped uniquely to an isoform with at most 1 mismatch in Figure 2a.
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619  Gene set scoring, regulon activity

620 For both bulk samples and single cells, we scored the activity of gene sets with VISION?
621  v2.0.0. From single cancer cells, we inferred regulons and transcriptional regulatory factor

622  activity with SCENIC?* v1.1.2.2. In Figure 4, for single cells, we used SCENIC AUC directly as
623  a measure of regulon activity. For Figure 4c, to infer regulon activity in bulk samples, we

624  extracted the gene sets corresponding to regulons from SCENIC and scored bulk samples for
625  activity of the genes sets using VISION.

626 When comparing VISION scores in cells from biopsies exposed and naive to treatment
627  with enzalutamide, we included only cells inferred to be in G1 by Seurat to reduce discovery of
628  signals introduced by different proportions of cycling cells between tumours’2. We restricted our
629 initial analyses to biopsies with at least 10 G1 cancer cells. As we were interested in

630  generalizable patterns of expression change related to enzalutamide exposure, we attempted to
631 filter out signals driven primarily by expression patterns in any single biopsy by undertaking a
632  subsampling procedure. By considering subsets of the data more balanced for representation

633  from different biopsies, we traded reduced power for more robustness. From either class

634  (enzalutamide naive vs exposed), we sampled up to 20 cells per biopsy to prevent results from
635  being dominated by tumours with many recovered cells. Additionally, across repeated sampling
636  iterations, we omitted each biopsy in turn, instead sampling cells from other biopsies within its
637  class, keeping the total number of cells the same. We performed 501 iterations of sampling for
638  each biopsy being excluded. For each gene set being scored with VISION, we used the sampling
639  with the median effect size as the summary of all iterations. When measuring effect size, we

640  consistently compared one class vs the other (i.e. always exposed relative to naive) to ensure
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641  consistency in comparisons of direction of effect. We used the corresponding two-sided Mann
642  Whitney U test P value as the nominal P value for the given gene set.

643 We additionally took the following steps to filter results that appeared to be driven by a
644  single biopsy: for any given biopsy, we compared samplings when cells from the biopsy were
645  held out vs when cells from the biopsy were included. If the proportion of nominally significant
646  results (P < 0.05, same direction of effect as the overall median outcome for the given signature)
647  when the biopsy was excluded was less than 80% of the proportion of nominally significant
648  results when the biopsy was included, we considered any overall finding of differential gene set
649  expression as non-robust and did not report it. We reported signatures with FDR <0.05 in

650  Supplementary Table 18, Note that P values shown in F igures 3a, 3b, 4a, and 4b are based on all
651 Gl cells and confirmed the findings from this sampling approach.

652 For comparisons of regulon activity in small cell carcinoma and adenocarcinoma, we
653  took a similar approach, except that in comparing SCENIC AUC scores, we did not restrict to
654  only G1 cells, as the regulons had been inferred with all cancer cells together. As there was one
655  small cell carcinoma biopsy, cells from that biopsy were never selected for omission across

656  samplings.

657  Bulk RNA-seq analyses of Abida cohort

658 In Figures 3c and 4c, we compared our findings to bulk RNA-seq data from a published
659  cohort®. Clinical annotations and expression quantifications were obtained from the published
660  supplementary materials and from the authors directly. We converted gene expression values
661  from FKPM to TPM for consistency with the rest of our study. As this cohort included samples
662  sequenced at different centres and from different metastatic sites, we further restricted our

663  analyses to avoid batch effects. For Figure 3c, we analysed only samples sequenced via
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transcriptome capture at the University of Michigan, as this was the largest identifiably
uniformly sequenced subset. For Figure 4c, as the largest number of small cell carcinoma
samples were sequenced at Cornell, we included only small cell carcinoma and adenocarcinoma
cases from Cornell in our analyses.
TCR reconstruction

We performed TCR reconstruction and clonotype inference from single-cell RNA-seq
with TraCeR®! v0.6.0. We performed TCR reconstruction and estimation of clonal fraction from
bulk RNA-seq using MiXCR® v3.0.12. TCRs were inferred as detected in both bulk and single-

cell RNA-seq if the CDR3 nucleic acid (and therefore amino acid) sequence matched.
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785  Extended Data Figure 1. Adenocarcinoma and small cell carcinoma cells are clearly
786  distinguished by marker genes.
787 AR and KLK3 (which encodes PSA) expression marks adenocarcinoma cells (n = 760), while

788  CHGA marks small cell carcinoma cells (n = 76).
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790 Extended Data Figure 2. Marker gene expression in NK and T cells.
791  Darker colours indicate higher expression of a) cell type markers, b) dysfunction and activation

792  markers, ¢) markers of tumour-reactive cytotoxic cells, d) genes expressed in a GNLY-positive
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793  cytotoxic subset, and e) genes reported to mark a progenitor population necessary for response
794  after anti-PD-1 therapy in melanoma**. Cells are projected onto UMAP space as in Fig. 5a.

795 ) Scatterplots showing pairwise co-expression of HAVCR2, SLAMF6, and TCF7 in CD8" T
796  cells. Expression values are in TPM. Points are coloured according to cluster membership as in

797  Fig. Sa.
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799  Extended Data Figure 3. Different cytotoxic subsets are represented in different proportions
800  across metastatic sites.

801 NK and T cells are projected onto UMAP space as in Fig. Sa.

802 a) Cells are labelled by site of biopsy.

803  Cells infiltrating b) bone and ¢) lymph node metastases are labelled by originating biopsy.
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