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Abstract

The integration of transcriptomic studies and GWAS (genome-wide association studies)
via imputed expression has seen extensive application in recent years, enabling the
functional characterization and causal gene prioritization of GWAS loci. However, the
techniques for imputing transcriptomic traits from DNA variation remain underdevel-
oped. Furthermore, associations found when linking eQTL studies to complex traits
through methods like PrediXcan can lead to false positives due to linkage disequilibrium
between distinct causal variants. Therefore, the best prediction performance models
may not necessarily lead to more reliable causal gene discovery. With the goal of im-
proving discoveries without increasing false positives, we develop and compare multiple
transcriptomic imputation approaches using the most recent GTEx release of expression
and splicing data on 17,382 RNA-sequencing samples from 948 post-mortem donors in
54 tissues. We find that informing prediction models with posterior causal probability
from fine-mapping (dap-g) and borrowing information across tissues (mashr) lead to
better performance in terms of number and proportion of significant associations that
are colocalized and the proportion of silver standard genes identified as indicated by
precision-recall and ROC (Receiver Operating Characteristic) curves. All prediction
models are made publicly available at predictdb.org.

Author summary

Integrating molecular biology information with genome-wide association studies (GWAS)
sheds light on the mechanisms tying genetic variation to complex traits. However,
associations found when linking eQTL studies to complex traits through methods like
PrediXcan can lead to false positives due to linkage disequilibrium of distinct causal
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variants. By integrating fine-mapping information into the models, and leveraging the
widespread tissue-sharing of eQTLs, we improve the proportion of likely causal genes
among significant gene-trait associations, as well as the prediction of “ground truth”
genes.

Introduction

Transcriptome studies with whole genome interrogation characterize genetic effects on
gene expression traits. These mechanisms help elucidate the function of loci identified in
genome-wide association studies (GWAS) by identifying potential causal genes that link
genetic variation with complex traits [IH5]{ Albert:2015fx, Aguet2019, Huckins:2019ix,
Mancuso:2018fv, Gusev:2018dy}.

In particular, the Genotype-Tissue Expression (GTEx) project [2]{Aguet2019} has
sequenced whole genomes from 948 organ donors and generated RNA-seq data across 52
tissues and 2 cell lines. Results and tools derived from this comprehensive catalog of
transcriptome variation have enabled a myriad of applications such as drug repurposing
[6]{S02017} and clinical discoveries in cancer susceptibility genes [7]{Wu2018}, to name
a few.

The general consensus that many noncoding variants associated with complex traits
exercise their action via gene expression regulation has motivated the development of
imputed transcriptome association approaches such as PrediXcan [8]9]{ Gamazon2015,
Barbeira2018}, TWAS/FUSION [10]{Gusev:2016ey} and UTMOST [11]{Hu2019}. In
essence, these methods predict gene expression traits based on individuals’ genotypes
and test how these predictions correlate with complex traits.

Reliable prediction models for gene expression traits are key components of imputed
transcriptome association studies. Given the predominantly sparse genetic architecture
of gene expression traits [12]{Wheeler2016} and overall robustness and performance
[3,[13]{Huckins:2019ix, Fryett:2018bg}, Elastic Net [14]{Friedman2010GLMNET} has
become the algorithm of choice for predicting transcriptome variation.

Despite Elastic Net’s many advantages such as robustness and sparcity, we hypothe-
sized that transcriptome imputation can be improved by leveraging biologically-informed
methods. Recent efforts [11]{Hu2019} have exploited the high degree of eQTL sharing
across tissues |15]{ GTEx2017} by leveraging cross-tissue patterns in the broad GTEx
panel to improve prediction performance, more notably in tissues with small sample sizes.
Also, important methodological progress in fine-mapping [16L|17]{Wen2017, Wang2018}
and an adaptive shrinkage method that improves effect size estimates across multi-
ple experiments |18]{Urbut2019} provide opportunities to further improve quality of
downstream associations.

In this article, we analyze different transcriptome prediction strategies and compare
their strengths both in prediction performance and downstream phenotypic associations.

Proximity and linkage disequilibrium (LD) between distinct causal variants can
lead to non causal associations between predicted expression and complex traits |9,
19]{Barbeira2018, Wainberg:2019kq}. Since the ultimate goal of imputed transcriptome
studies is to identify causal genes, our main focus here is to improve discoveries with less
emphasis on expression prediction performance. We also applied the same model building
techniques to alternative splicing traits quantified with Leafcutter [20]{Li:2018cy}. We
make all results, prediction models and software available to the research community.
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Results ©

To identify optimal techniques for transcriptomic imputation, we have built models
to predict genetically regulated expression (GREx) using four different approaches on 4
GTEx expression and splicing data (release version 8). To reduce LD misspecification
problems, most apparent when applying summary statistics-based versions of PrediXcan 4
on GWAS of European populations, we used only European samples. ar

We restricted the analysis to genes that are annotated as protein coding, IncRNA, s
and pseudogenes in GENCODE version 26 [21]{Frankish2019}. We included 49 different
tissues with sample sizes ranging from 65 (Kidney Cortex) to 602 (Muscle Skeletal). 50

The first strategy used the Elastic Net [14]{Friedman2010GLMNET} algorithm to s
compute predictions as described previously in [8,/12]{Gamazon2015, Wheeler2016}. For s
every gene available in each tissue, this strategy used variants from the HapMap CEU s
track in a window ranging from 1Mb upstream of the transcription start site to IMB s
downstream of the transcription end site as explanatory variables. Only those models  ss
achieving thresholds of cross-validated correlation p > 0.1 and prediction performance s
p-value < 0.05 were kept. We will refer to this family as the EN-M models. 57

The second strategy used CTIMP (Cross Tissue gene expression IMPutation) [11]{Hu2019}
CTIMP uses a regularized, generalized linear regression algorithm to fit expression from s
different tissues simultaneously. CTIMP optimizes a cost function including a within-
tissue Lasso penalty and a cross-tissue group Lasso penalty, thus inheriting Lasso-like &
behaviour that is less sparse than Elastic Net. We used the same variants from the &
EN-M strategy (HapMap CEU track, same windows around each gene), and identical 3
correlation threshold (p > 0.1) and cross-validated prediction performance threshold e
(p < 0.05) to accept models. We will refer to this family as the CTIMP-M family.
We verified that this method’s performance is not significantly improved by using all
available GTEx variants, as explained in the supplementary material. 67

The third strategy used the posterior inclusion probability (PIP) of a variant being s
causal for gene expression as estimated by the Bayesian fine mapping method dap-g e
(Deterministic Approximation of Posteriors) [22]{Wen2016}. First, for every gene, we 1o
restricted to variants with posterior inclusion probabilities PIP > 0.01. Since dap-g =
clusters variants by their LD, we kept the variant with highest PIP from each cluster to =
avoid redundant explanatory variables. Then, the selected variants were fed into the
Elastic Net algorithm, scaling each variant’s effect size penalty by a factor of 1-PIP
(i.e. more likely variants are less penalized). Only those models achieving good enough
cross-validated prediction performance (p-value< 0.05) and correlation (p > 0.1) were
kept. We will refer to this family as DAPGW-M (dap-g weighted). As discussed later, =«
the cross-validated prediction performance of this approach can’t be fairly compared to s
EN-M and CTIMP-M because the pre-selection of fine-mapped variants is based on the 7
same underlying data. 8

The fourth strategy used mashr (Multivariate Adaptive Shrinkage in R) [18]{Urbut2019} s
effect sizes from variants selected by dap-g as in the DAPGW-M approach. More &
specifically, fine-mapped variants were selected as in the DAPGW-M approach but s
the weights were obtained by applying mashr to the marginal effect sizes and standard s
errors from the GTEx eQTL analysis [2]{Aguet2019}. Unlike the previous methods, e
this approach does not fit into a cross-validation strategy and therefore lacks a natural s
prediction performance measure. Only eGenes with at least one cluster of variants &
achieving dap-g PIP> 0.1 were kept. We will refer to this family as MASHR-M. 8

We did not consider the BSLMM family of methods for transcriptome prediction. e
These models contain both a sparse and a polygenic component. The latter is likely to o
induce LD contamination [9]{Barbeira2018} and doesn’t reflect the sparse architecture o
of expression traits [12]{Wheeler2016}. 0

We also applied the EN-M and MASHR-M methods to alternative splicing quantifi- o3

=
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cation from LeafCutter [20]{Li:2018cy} and made them readily available to the research
community. These models were extensively used in [2]{Aguet2019} and [23]{ GTEx-
GWAS-Companion}.

Summary of models

Given the differences in computational approach, not all prediction strategies generated
models for every available gene-tissue pair. As can be seen in Fig. [ItA, EN-M yielded
the smallest number of valid models, for 281,848 gene-tissue pairs. CTIMP-M produced
340,104 valid models, 21% more than EN-M, as expected from its integration of multiple
tissues’ information.

Fine-mapping-based methods generated even more models: 518,537 from DAPGW-M
(84% more than EN-M) and 686,241 from MASHR-M (143% more than EN-M). Please
note that given the different criteria used to accept a model as valid, simple counts of
available models should not be considered a measure of performance.

We show the distribution of cross-validated prediction performances in Fig. [I}B.
We include 5 representative tissues ordered by increasing sample size (kidney, brain -
hippocampus, brain - cerebellum, breast, skeletal muscle). In order to perform a uniform
comparison, we used only gene-tissue pairs available to all model families. CTIMP-M
showed better prediction performance than EN-M on tissues with smaller sample size, but
performed similarly on tissues with larger sample sizes. We attribute this to CTIMP’s
design, which leveraged all existing samples’ genotypes in the tissues of smaller expression
sample size. MASHR-M models had no natural prediction performance measure and
thus are excluded from these panels. DAPGW-M is presented for completeness but its
comparison to EN-M and CTIMP-M is unfair. We show in Sup. Fig[I]the cross-validated
prediction performances for all genes in each family.
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Fig 1. Models summary.

Panel A shows the number of models generated for protein coding genes, pseudo genes
and IncRNA across the four strategies. MASHR-M displayed the largest number of
generated models.

Panel B compares prediction performances for gene-tissue pairs present in all four
strategies, at 5 different tissues ordered by sample size. CTIMP-M performed better
than EN-M in tissues with smaller sample size.

DAPGW-M is presented for illustration purposes; since it included an additional
variable selection step using the same underlying data, it cannot be fairly compared to
EN-M and CTIMP-M. MASHR-M doesn’t have a prediction performance measure.
The intersection of gene-tissue pairs across the 4 strategies is mostly defined by Elastic
Net, the smallest set. 82% of Elastic Net models make up the intersection available to
all strategies. Tissue abbreviations and sample size: KDNCTX: Kidney - Cortex, n=65; BRNHPP:
Brain - Hippocampus, n=150; BRNCHA: Brain - Cerebellum, n=188; BREAST: Breast - Mammary Tissue,
n=337; MSCLSK: Muscle - Skeletal, n=602
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Finemapping improves expression prediction in independent datasets

Next, we sought to validate the models’ predictions in an independent RNA-seq dataset. 119
We analyzed data from the the GEUVADIS project {LappalainenQOlS}, which 120
includes 341 samples of European ancestry with genotype and LCL (lymphoblastoid cell 1
lines) expression data. We predicted expression using GTEx LCL models from the 4 1
strategies, and compared with measured expression levels. Fig. 2} A shows the number of 12
genes that each family was able to predict. DAPGW-M and MASHR-M had the largest 12
number of predictable genes, followed by CTIMP-M and EN-M. 125

To compare prediction performances, we used Spearman’s rank correlation coefficient 12
p as a robust measure that handles the scale and complexity differences between real 1
GEUVADIS expression data and predicted expression levels. Fig. [2}B shows the s
distribution of prediction performance (Spearman’s p) for genes present in all four 1o
methods on the LCL tissue. We observed that all four families achieved similar levels of 1
performance, with DAPGW-M and MASHR-M faring slightly but consistently better
than EN-M and CTIMP-M. 132

We attribute the smaller performance differences to low power, since GTEx LCL 133
tissue has a sample size of n= 115 individuals, much lower than the 341 available in 13

GEUVADIS. 135
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Fig 2. Validation in a separate expression cohort.

Panel A shows the number of genes predicted in GEUVADIS cohort using the LCL
models from each of the four strategies. MASHR-~-M had the most models available,
followed in decreasing order by DAPGW-M, CTIMP-M and EN-M.

Panel B shows the distribution of prediction performances (Spearman p)for genes
available to all four families. DAPGW-M and MASHR-M performed slightly but
consistently better than EN-M and CTIMP-M.

We attributed the small differences to the GTEX LCL tissue having a small sample size
(n=115 individuals), much lower than the 341 available in GEUVADIS. Also, the
intersection of genes available to all 4 strategies is dominated by those present in Elastic
Net, the smallest set; and genes that can be modelled with Elastic Net tend to be the
ones with less complicated patterns of variation.
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Fine-mapping improves number and colocalization of associations

Next, we assessed whether any of these models perform better at identifying causal genes.
We considered the number and proportion of colocalized genes among the significant
ones as measures of association quality.

We used the four families of models to correlate predicted expression with 87 phe-
notypes through 49 tissues using the summary version of PrediXcan. Results of ap-
plying the EN-M models to GWAS summary statistics, harmonized and imputed to
GRCh38 [25]{Schneider2017hg}, were presented in [2]{Aguet2019}. In this section, we
say that a gene-tissue pair is significant if it achieves a p-value below the Bonferroni-
corrected threshold (0.05/number of gene-tissue pairs) within each trait.

We used enloc [16]{Wen2017} results published in [2]{Aguet2019} to assess the colo-
calization status of GWAS and transcriptomic traits as evidence for a shared underlying
mechanism. Briefly, enloc computes the “regional colocalization probability” (rcp) that a
trait shares causal variants with a gene’s expression (or an intron’s splicing quantification),
within a GWAS region and the overlapping gene’s cis-window. We say that a gene-tissue
pair is “colocalized” with a trait if it achieves an enloc regional colocalization probability
rep > 0.5. Note that rep <= 0.5 should not be interpreted as a false association; rather,
it only means that there is not enough evidence of colocalization. See discussion on the
conservative nature of colocalization approaches in [23]{ GTEx-GWAS-Companion}.

We say that a gene-tissue pair that is both significant and colocalized is a “prioritized”
detection or candidate. To simplify interpretation of results across multiple tissues, we
count the number of unique genes among the prioritized gene-tissue pairs for each trait.

We found that MASHR-M tipically yields more candidate genes. We display the
numbers of detections for each trait in Fig. [3] through Q-Q plots comparing MASHR-M
to the other the model families. We observe in Fig. [B}A that the fine-mapping informed
families of models, DAPGW-M and MASHR-M, yielded a similar number of candidates
per trait, consistently larger than EN-M and CTIMP-M. When comparing the fraction
of colocalized genes among significant genes B), MASHR-M performs better than
the other 3 families. In general, we observed that associations obtained through both
DAPGW-M and MASHR-M models tend to agree (see Supplementary Figure |2 as an
example).

We were thus led to favor MASHR-M, which produced the largest number of models,
with superior number of colocalized, significant associations as well as higher proportions
of colocalized associations among significant genes.
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Fig 3. PrediXcan associations across 87 traits.

Panel A shows a Q-Q plot for the number of colocalized, significant genes per trait.
Fine-mapping-informed models (DAPGW-M and MASHR-M) achieved similar numbers
of colocalized detections, both slightly higher than EN-M and CTIMP-M.

Panel B shows a Q-Q plot for the fraction of colocalized genes among significant genes
per trait. MASHR-M’s distribution is shifted towards higher proportions than the other
families.

We say a gene is significant if it achieves a Bonferroni-adjusted threshold of
0.05/number of available gene-tissue pairs, in at least one tissue. Likewise, we say a
gene is colocalized if it achieves enloc rcp > 0.5 in any tissue. We say a gene is a
candidate or ”prioritized” detection if it is both significant and colocalized in any tissue.

Enloc relies on the dap-g algorithm itself as a component, so that the fraction of
colocalized genes could have been biased towards dap-g informed methods. To make sure
that the use of dap-g is not driving the improved colocalization rate of MASHR-M over
th other strategies, we verified the performance using another colocalization method,
coloc [26]{ Giambartolomei2014}.

We observed that MASHR-M still had a better rate of colocalization among significant
associations, albeit with smaller differences as can be seen in Supplementary Figure
This is probably in part due to coloc’s reduced power and limiting assumption of a single
causal variant (see [23[{GTEx-GWAS-Companion} for details).

Finemapping improves identification of silver standard genes

As an independent way to assess each prediction strategy’s ability to identify causal genes,
we framed the problem as one of causal gene prediction and use standard prediction
performance measures such as Receiver Operating Charasteristc (ROC) and Precision-
Recall (PR). This avoids using an ad-hoc significance or colocalization thresholds.

As proxies for causal genes, we leveraged two different “silver standards” as de-
scribed in Barbeira et al. [23]{ GTEx-GWAS-Companion}. The first one, based on the
OMIM (Online Mendelian Inheritance in Man) database [27]{amberger:2019}, features
1592 known gene-trait associations. The second one is based on rare variant associ-
ation studies [28-30]{marouli:2017, 1iu:2017, locke:2019} and contains 101 gene-trait
associations.

We restricted our analysis to gene-trait pairs in the vicinity of the corresponding
traits’” GWAS loci since we did not expect any of the methods to detect reliable signals
elsewhere. We used approximately-independent LD regions [31]{berisa:2016} to define
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vicinity.

Using absolute values of z-scores as association score for each strategy, we assessed
their ability to ‘predict’ the silver standard gene-trait associations. We show in Fig.
the ROC and Precision-Recall curves on OMIM- and rare variant-based silver standards.

Using the OMIM-based silver standard (Fig. A and -C), we observed that MASHR-
M strategy outperforms the other strategies, with DAPGW-M a close second. Thus we
concluded that MASHR-M models are better equipped for detecting known genes in the
extreme regulatory case of Mendelian diseases, reinforcing our choice of MASHR-M as
the best option.

Using the rare-variant-based silver standard (Fig. B and -D), we observed that all
four strategies are able to detect known causal genes. However, the limited size of this
standard did not allow us to distinguish between the four families.
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Fig 4. ROC and PR curves.

Panel A shows the Receiver Operating Characteristc (ROC, plotting true-positive
ratio to false-positive ratio) curve for the OMIM silver standard. We observe that
MASHR-M models outperforms the other strategies, with DAPGW-M a close second.
Panel B shows the ROC curve for the rare-variant-based silver standard. We observe
that all strategies perform better than taking a random choice. However, this silver
standard is too limited to properly distinguish between strategies.

Panel C shows the Precision-Recall (PR) curve for the OMIM silver standard.
MASHR-M performs better than the other strategies in general, but precision becomes
a noisy measure towards lower recall ranges.

Panel D shows the PR curve for the rare-variant-based silver standard. The precision
measure is too unstable to draw any conclusions.

The OMIM silver standard not only validates the 4 proposed model strategies as a
consistent approach to detect causal genes, but provides additional evidence of
MASHR-M’s superiority. The second silver standard, based on rare variants, is too
limited to conclude anything beyond a high-level validation of all 4 families.
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Importance of harmonization and imputation of missing sum-
mary statistics

The prediction models’ usefulness depends on the availability of their variants in the
GWAS of interest. Publicly available GWAS use different sequencing and genotyping
techniques, based on different genotype imputation panels and human genome release
versions, so that the lists of available variants vary wildly across traits. Thus, a GWAS
might lack particular variants from a prediction model, so that the model can’t properly
infer variation patterns as shown in [32]{Barbeira2019}. Since many fine-mapped variants
in the GRCh38-based GTEx study can be absent in a typical GWAS, we sought to assess
the impact of variant compatibility in real applications.

We compared S-PrediXcan results from MASHR-M models on 69 publicly available
GWAS with two preprocessing schemes:

1. Harmonization of variants by mapping genomic coordinates between human genome
assemblies, and filtering for matching alleles (“Harmonization” for short)

2. Imputation of missing summary statistics (“Imputation” for short) on harmonized
GWAS.

The 69 traits included in this analysis are those among the 87 traits not belonging to
the Rapid GWAS project, to prevent the highly homogeneous Rapid GWAS datasets
from dominating comparisons.

We show in Fig. [5| the effect of these preprocessing schemes on various performance
metrics, segregated by human genome release version (hgl7, hgl8, hgl9).

Fig. fFA summarizes the increase in number of gene associations computed for every
trait-tissue pair. For hgl7- and hgl8-based GWAS, the gain through summary-statistics
imputation is almost threefold. Some hgl9-based GWAS traits without imputation yield
a good enough number of computable genes.

Fig. [}B shows the distribution of median fraction of model SNPs also present in
the GWAS, within each tissue-trait combination. Roughly 60% of models’ variants
are present in hgl7- and hgl8-based GWAS without imputation; this percenteage is
substantially higher for hgl9-based GWAS without imputation. Imputing summary
statistics increases this median percenteage to 100% on all tissue-trait combinations
across the analyzed human genome release versions.

Fig. [}C shows the increase in number of genes detected per trait. As in the previous
panels, the increase is more noticeable for hgl7- and hgl8-based GWAS, while smaller
for hgl9-based studies.

Therefore, we recommend to always perform variant harmonization due to its low
complexity and time requirements, followed by summary-statistics imputation if pos-
sible. For newer GWAS with modern sequencing and genotyping, summary-statistics
imputation may not be as critical depending on their intersection with model variants.
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Fig 5. Effect of imputation on association quality. We display here a

comparison of S-PrediXcan results from MASHR-M models on 69 GWAS traits using

two different pre-processing schemes: simple harmonization of GWAS variants to

GTEx’s, and additional imputation of missing summary statistics. Results are grouped
by the different human genome release versions underlying each GWAS: 2 traits were

defined on hgl7, 13 on hgl8, and 54 on hgl9.

Panel A shows the distribution of number of associations per trait-tissue pair that can
be computed; imputation dramatically increased the number of associations for hg17-
and hgl8-based traits. Some hgl9-based traits exhibited a good number of computable

associations after just a simple harmonization.
Panel B shows, per trait-tissue pair, the distribution of median fraction of model

present in the GWAS. It is nearly 1 for most trait-tissue pairs in the imputation scheme,

ranging between 0.5 and 1 with the harmonization scheme.
Panel C shows the number of colocalized, significantly associated genes that can

SNPs

be

found after applying imputation and harmonization schemes. The gain of imputation

for hgl9 is less dramatic that in the other comparisons in this figure, given the
conservative nature of the colocalization filter.

Discussion

Through extensive analysis of different model training schemes, we conclude that

using

fine-mapping information (from dap-g) and cross-tissue patterns (from mashr) improve
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transcriptome prediction models both for causal gene detection and prediction perfor-
mance. These models (MASHR-M) yield more detections when integrating GWAS and
eQTL studies, and show better prediction performance on an independent expression
cohort. This method also exhibits superior performance when validating results in a
silver standard of known gene-to-trait associations (OMIM database). We make all
prediction models and results publicly available.

Special consideration must be paid to how well each model’s variants intersect GWAS’
variants. Fine-mapping-informed models are sparse and parsimonious. This could be
a hurdle when the fine-mapped variants of import are missing or have low imputation
quality in a GWAS, as is often the case with older studies. In this scenario we recommend
harmonizing and imputing summary statistics to the models’ variants. The alternative
is falling back to models such as CTIMP-M, defined on a robust set of variants available
to most GWAS, at the cost of decreased performance (detection and prediction). EN-M
additionally features some “built-in” redundacy: for a set of variants in LD among each
other, they all tend to be included in a model with the effect spread between them.

While our recommended MASHR-M method offers several benefits compared to
existing approaches, there is still room for improvement. Potential developments could
rely on fine-mapping methods that jointly incorporate cross-tissue patterns, or consensus
between different fine-mapping approaches. Also, epigenetic information has been
shown to improve transcriptome prediction [33]{Zhang2019EpiXcan} as well. Future
improvements should incorporate this epigenetic information and other biologically-
informed annotations jointly.

Our validation in silver standards, especially our difficulty interpreting the results
from the rare-variant-based silver standard, also illustrates the need for well-curated,
large databases of known gene-to-phenotype associations to assess performance of either
new or improved methods.

In conclussion, we present here a method for predicting the genetically regulated
component of transcriptomic traits with superior performance both in terms of prediction
performance and gene-trait association detection.

Acknowledgements

We thank the donors and their families for their generous gifts of organ donation for
transplantation, and tissue donations for the GTEx research project.

The consortium was funded by GTEx program grants: HHSN268201000029C (F.A.,
K.G.A., AV.S.,, X.Li,, ET., S.G., A.G., SA., K.HH., D.Y.N., K.H., S.R.M., J.L.N.),
5U41HG009494 (F.A., K.G.A.), 10XS170 (Subcontract to Leidos Biomedical) (W.F.L.,
JAT., GK., AM.,SS., R.H., GWa., M.J., M.Wa., L.E.B., C.J., JW., B.R., M.Hu.,
KM, L.A.S., HM.G., M.Mo., L.K.B.), 10XS171 (Subcontract to Leidos Biomedical)
(B.AF., M.T.M., EX., BM.G., K.D.R., J.B.), 10ST1035 (Subcontract to Leidos Biomedi-
cal) (S.D.J., D.C.R., D.R.V.), ROIDA006227-17 (D.C.M., D.A.D.), Supplement to Univer-
sity of Miami grant DA006227. (D.C.M., D.A.D.), HHSN261200800001E (A.M.S., D.E.T.,
N.V.R., JJAM. LS., MEB, L.Q., T.K., D.B.,, K.R., A.U.), ROIMH101814 (M.M-A.,
V.W., S.BM., R.G., E-T.D., D.G-M., A.V.), U01HG007593 (S.B.M.), ROIMH101822
(C.D.B.), UOIHG007598 (M.O., B.E.S.), ROIMH107666 (H.K.L), P30DK020595 (H.K.L).
E.R.G. is supported by the National Human Genome Research Institute (NHGRI) under
Award Number 1R35HG010718 and by the National Heart, Lung, and Blood Institute
(NHLBI) under Award Number 1R01HL133559. E.R.G. has also significantly benefitted
from a Fellowship at Clare Hall, University of Cambridge (UK) and is grateful to the Pres-
ident and Fellows of the college for a stimulating intellectual home. S.K.-H. is supported
by the Marie-Sklodowska Curie fellowship H2020 Grant 706636. R.D.: R35GM124836,
RO1HL139865, 15CVGPSD27130014. D.M.J.: T32HLO00782. Y.Pa. is supported by the

March 19, 2020

13/128

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295


https://doi.org/10.1101/2020.03.19.997213
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.997213; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

NHGRI award ROIHG10067. A.R.H. was supported by the Massachusetts Lions Eye
Research Fund Grant. H.E.W. is supported by NHGRI R15HG009569. Computation
was performed at the high performance cluster of the Center for Research Informatics
at the University of Chicago, funded by the Biological Sciences Division and CTSA
UL1TR000430. Additional Computation was performed with resources provided by the
University of Chicago Research Computing Center.

We thank the International Genomics of Alzheimer’s Project (IGAP) for providing
summary results data for these analyses. The investigators within IGAP contributed to
the design and implementation of IGAP and/or provided data but did not participate in
analysis or writing of this report. IGAP was made possible by the generous participation
of the control subjects, the patients, and their families. The i—Select chips was funded
by the French National Foundation on Alzheimer’s disease and related disorders. EADI
was supported by the LABEX (laboratory of excellence program investment for the
future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the
Lille University Hospital. GERAD was supported by the Medical Research Council
(Grant n°® 503480), Alzheimer’s Research UK (Grant n°® 503176), the Wellcome Trust
(Grant n® 082604/2/07/Z) and German Federal Ministry of Education and Research
(BMBF): Competence Network Dementia (CND) grant n° 01GI0102, 01GI0711, 01GI0420.
CHARGE was partly supported by the NITH/NIA grant R01 AG033193 and the NTA
AG081220 and AGES contract N01-AG-12100, the NHLBI grant R01 HLL105756, the
Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University.
ADGC was supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01
AGO016976, and the Alzheimer’s Association grant ADGC-10-196728.

Disclosure

F.A. is an inventor on a patent application related to TensorQTL; S.E.C. is a co-founder,
chief technology officer and stock owner at Variant Bio; E.T.D. is chairman and member
of the board of Hybridstat LTD.; B.E.E. is on the scientific advisory boards of Celsius
Therapeutics and Freenome; G.G. receives research funds from IBM and Pharmacyclics,
and is an inventor on patent applications related to MuTect, ABSOLUTE, MutSig,
POLYSOLVER and TensorQTL; S.B.M. is on the scientific advisory board of Prime
Genomics Inc.; D.G.M. is a co-founder with equity in Goldfinch Bio, and has received
research support from AbbVie, Astellas, Biogen, BioMarin, Eisai, Merck, Pfizer, and
Sanofi-Genzyme; H.K.I. has received speaker honoraria from GSK and AbbVie.; T.L. is
a scientific advisory board member of Variant Bio with equity and Goldfinch Bio. P.F. is
member of the scientific advisory boards of Fabric Genomics, Inc., and Eagle Genomes,
Ltd. P.G.F. is a partner of Bioinf2Bio. E.R.G. receives an honorarium from Circulation
Research, the official journal of the American Heart Association, as a member of the
Editorial Board, and has performed consulting for the City of Hope / Beckman Research
Institute. R.D. has received research support from AstraZeneca and Goldfinch Bio, not
related to this work.

Code and data availability

Genotype-Tissue Expression (GTEx) project’s raw whole transcriptome and genome
sequencing data are available via dbGaP accession number phs000424.v8.p1. All pro-
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PrediXcan, MultiXcan, dap-g, prediction models, and reproducible analysis are available
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URLs w2

1000 Genomes Project Reference for LDSC, 343
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz; 344
1000 Genomes Project Reference with regression weights for LDSC, 345
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_weights_hm3_no_MHC.3ss
tgz; 347
BioVU, https://victr.vanderbilt.edu/pub/biovu/7sid=194; 348
eCAVIAR, https://github.com/fhormoz/caviar; 349
QTLEnrich, https://github.com/segrelabgenomics/eQTLEnrich; 350
flashr, https://gaow.github.io/mnm-gtex-v8/analysis/mashr_flashr_workflow.html#flashrsprio
Gencode, https://www.gencodegenes.org/releases/26.html; 352
GTEx GWAS subgroup repository, https://github.com/broadinstitute/gtex-v8; 353
GTEx portal, http://gtexportal.org; 354
Hail, https://github.com/hail-is/hail; 355
HapMap Reference for LDSC, https://data.broadinstitute.org/alkesgroup/LDSCORE/w_| 356
hm3.snplist.bz2; 357
LD score regression (LDSD regression), https://github.com/bulik/1ldsc; 358
MetaXcan, https://github.com/hakyimlab/MetaXcan; 350
Mouse Phenotype Ontology, http://www.informatics. jax.org/vocab/mp_ontology; 360
NHGRI-EBI GWAS catalog, https://www.ebi.ac.uk/gwas/; 361
picard, http://picard.sourceforge.net/; 362
PLINK 1.90, https://www.cog-genomics.org/plink?2; 363
PrediXcan, https://github.com/hakyimlab/MetaXcan; 364
pyliftover, https://pypi.org/project/pyliftover/; 365
Storey’s qvalue R package, https://github.com/StoreyLab/qvalue; 366
Summary GWAS imputation, https://github.com/hakyimlab/summary-gwas-imputation; 367
TORUS, https://github.com/xqwen/torus; 368
UK Biobank GWAS, http://www.nealelab.is/uk-biobank/; 360
UK Biobank, http://wuw.ukbiobank.ac.uk/} 370

371

Methods -

We executed all methods using open source software running in a high performance cluster. a7
We release all of our code and the data analyzed in this paper to ease reproducibility 37
and accessibility. 375

GTEx data processing 376

We downloaded GTEx data for version 8 release from dbGAP (accession number a7
phs000424.v8.pl). This data arises from 17382 RNA-seq samples from 54 tissues of 948 s
post-mortem subjects, aligned to the GRCh38 assembly. Primary and extended results sno
generated by consortium members are available on the Google Cloud Platform storage s
accessible via the GTEx Portal (see URLs). 381

899 whole-genome sequencing (WGS) samples were analyzed, 68 of them at an average s
coverage of 30x on HiSeq200, and the rest on HiSeqX. 866 GTEx donors’ samples were 33
included in the downstream variant call files (VCF), after excluding one each from 30 s
duplicate samples and 3 donors. Among these, 838 subjects with RNA-seq data were 38
included for QTL mapping and analysis. 386

Whole transcriptome RNA-Seq data were aligned using STAR (v2.5.3.a; [34]{dobin:2013}3
For STAR index, GENCODE v26 was used with the sjdbOverhang 75 for 76-bp paired-end s
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sequencing protocol. Default parameters were used for RSEM (see URLs; [35]{Li:2011}) 38
index generation. GTEx utilized Picard (see URLs) to mark and remove potential 30
PCR duplicates and RNA-SeQC [36]{DeLuca:2012dp} to process post-alignment quality s
control. RSEM was then used for per-sample transcript quantification. Subsequently, s
read counts were normalized between samples using TMM [37]{robinson:2010}. For s
eQTL analyses, latent factor covariates were calculated using PEER [38|{stegle:2010} as 30
follows: 15 factors for N < 150 per tissue; 30 factors for 150 < N < 250; 45 factors for s
250 < N < 350; and 60 factors for N > 350. Expression phenotypes were adjusted for s
unwanted variation using covariates such as gender, sequencing plaform and pcr protocol, s
the top 5 principal components from genotype data, and said PEER factors. Finally, 30
fastQTL [39]{ongen:2016} was used for cis-eQTL mapping in each tissue. Only protein- s
coding, lincRNA, and antisense biotypes as defined by Gencode v26 were considered for s
further analyses. To study alternative splicing, GTEx applied LeafCutter (version 0.2.8;
[20]{Li:2018cy}) using default parameters to quantify splicing QTLs in cis with intron 4

excision ratios [2]{Aguet2019}. 403
We used the dap-g [22]{Wen2016}, enloc [16]{ Wen2017} and coloc [26[{ Giambartolomei20ds }

results published in [2]{Aguet2019}. 405

GTEx expression and splicing modelling 406

We used the same genotypes, phenotypes, covariates, gene annotations and variant s
annotations from the main GTEx analysis. 408

When building prediction models, we imposed an additional restriction: we used only 400
samples of European ancestry for the sake of leveraging a well defined population LD a0
structure. Only variants with MAF> 0.01 in these samples were included. We used 49
tissues with sample sizes ranging from 65 (Kidney Cortex) to 602 (Muscle Skeletal). a2

This ancestry restriction mitigated problems due to LD mismatch when integrating s
with most publicly available GWAS summary statistics, which are conducted on pre- 4
dominantly European populations. Prediction models in other ancestries are important, s
and we are currently dedicating substantial effort to creating and analyzing such models. 4

However, non-European models are beyond the scope of this paper. a17

We only generated models for genes annotated in GENCODE v26 as protein coding, s
IncRNA or pseudogenes. 419
Elastic Net models 20

We fitted an Elastic Net model for each gene-tissue pair with available adjusted expression — x
data. We restricted the set of variants to those present in the HapMap 3 CEU track s
[40]{InternationalHapMap3Consortium2010} with MAF> 0.01. The motivation behind s
this choice was to restrict the analysis to a robust set of SNPs that has significant 4
intersection with most publicly available GWAS summary statistics. For every gene, s
variants within 1Mb upstream of the gene’s transcription start site and 1Mb downstream

of the transcription end site where used as explanatory variables for gene expression. 27
We used the R package glmnet [14]{Friedman2010GLMNET}, with mixing parameter s
« = 0.5 and penalty parameter chosen through 10-fold cross validation. 429

Prediction performance was estimated using a nested cross-validation approach. s
Expression was predicted out-of-sample for each fold, with Elastic Net parameters s
estimated only within training data, and the correlations to observed values at each 43
fold were combined via Fisher’s transformation and Stouffer’s method. Only those 4z
models with mean Pearson correlation across 10 folds p > 0.1 and nested cross-validated s
correlation test p < 0.05 were kept. 435

We refer to these models as EN-M. 436
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CTIMP models

We employed the CTIMP [11]{Hu2019} framework on the same data from EN-M models
in the previous section. This method fits expression for a gene in multiple tissues
simultaneously through a regularized linear model, using a Lasso penalty within each
tissue and a group-Lasso penalty for cross-tissue patterns. As it internally uses genotypes
from all samples available across all tissues, we expect improvements over EN-M to be
larger for tissues of smaller sample size where EN-M deals with a less informative LD
structure among variants.

We performed five-fold cross validation for model tuning and evaluation following
the authors’ description. We computed cross-validated correlation measures across
folds as in the previous method, and kept those models achieving the thresholds of
cross-validated correlation p > 0.1 and p-value p < 0.05. As in EN-M, we restricted
the model training to variants in the HapMap 3 CEU track with MAF> 0.01; this
became necessary because using all variants proved too computationally expensive, since
CTIMP consumes large amounts of memory and processing time. We briefly show in
the Supplement (Supplementary Figures @ that this additional restriction brings
negligible effects in model training performance and prediction.

We refer to these models as CTIMP-M.

Elastic Net informed by dap-g results

We also trained models via the Elastic Net algorithm using fine-mapping information
to refine the list of variants to be used as explanatory variables, and lent more weight
to variants with higher chances of affecting expression phenotypes. To this aim, we
used dap-g’s posterior inclusion probability (PIP) of a variant affecting gene expression
to select explanatory variables, without restricting to variants in the HapMap CEU
track. For every gene, we used all variants in the gene’s cis-window with MAF> 0.01
and PIP> 0.01. Since dap-g groups variants in clusters according to LD, we kept the
top variant (by PIP) per cluster to avert variable redundancy. Since we reasoned that
more probable variants should bear more impact in the model’s outcome, we multiplied
each variant’s penalty term in the Elastic Net regularization by a factor of 1 — PIP. We
used the same thresholds from the previous subsections (p > 0.1 and p-value p < 0.05)
to select models with acceptable prediction performance.
We refer to these models as DAPGW-M.

mashr-based models

Finally we explored an entirely different algorithm to determine the prediction models.

We executed multivariate adaptive shrinkage in R (mashr) [18]{Urbut2019} to estimate
the models’ effect sizes by leveraging cross-tissue variations while allowing for sparse and
possibly correlated effects in a Bayesian framework. We used mashr on the same set
of variants from DAPGW-M models. We kept models only for eGenes and effect sizes
only for variants with PIP > 0.01 (from dap-g) at each gene-tissue pair. Unfortunately,
there is no natural prediction performance measure in this scenario as cross-validation

was not performed.
We refer to these models as MASHR-M.

GEUVADIS data processing

We used GEUVADIS LCL expression study for an independent validation of prediction
performance. We obtained GEUVADIS expression data and sample information from
the European Bioinformatics Institute web portal at https://www.ebi.ac.uk/. We
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obtained genotype data aligned to GRCh38 assembly from the International Genome
Sample Resource web portal http://www.internationalgenome.org. We restricted
data to individuals of European ancestry, yielding 341 samples.

For each one of the four previous model training schemes (EN-M, CTIMP-M, DAPGW-
M, MASHR-M) we predicted expression through PrediXcan [8]{Gamazon2015} on GEU-
VADIS genotypes using GTEX LCL models, and correlated predictions to observations.

GWAS processing and integration

We examined 87 GWAS from a heterogeneous set of traits first presented in the GTEx
v8 study [2,23]{ GTEx-GWAS-Companion, Aguet2019}. These traits were selected to
support a phenome-wide study of the impact of gene regulation. Given the heterogeneous
landscape of the GWAS, with intricate differences in data processing protocols and
underlying human genome reference versions, it was necessary to make the GWAS
variants homogeneous and compatible with those from the GTEx study.

First, the GWAS’ variants were harmonized to the GTEx study’s variants by mapping
genomic coordinates via liftover [41]{haeussler:20019} (https://pypi.org/project/
pyliftover]) and keeping only variants with matching alleles. Then, GTEx variants
with missing summary statistics for any GWAS were imputed with the BLUP method,
a standard in the field [42]{Lee2013}.

We executed S-PrediXcan for each of 4 families of models (EN-M, CTIMP-M,
DAPGW-M and MASHR-M) using 49 tissues, for a total of 17,052 (trait, model family,
tissue) tuples. We integrated with enloc and coloc results published in [2]{Aguet2019}.

When analying versatility of the models and GWAS preprocessing schemes, we used
GWAS studies not belonging to the rapid GWAS study. This was decided because
the rapid GWAS project has a common, homogeneous variant set that could dominate
comparisons.

Supporting information

Restricting CTIMP variants to CEU HapMap track

When first attempting to run CTIMP package on GTEx data, we observed a significantly
larger computational burden than the related Elastic Net method, up to two orders of
magnitude larger in memory, and up to three in compute time for many genes. This
scheme was too prohibitive and would had taken months to complete on the high
performance cluster available to us.

To reduce the computational burden, we decided to restrict the explanatory variables
to variants in the HapMap 3 CEU track [40|{InternationalHapMap3Consortium2010}
with MAF> 0.01. This brought down the memory and processing consumption to only
one order of magnitude larger than Elastic Net.

To verify that this technical restriction did not degrade performance too severely, we
computed CTIMP models using all variants for chromosome 1, which took over 5 weeks
to complete in our computation resource. We refer to these models as CTIMP-M-AS,
which allowed comparison to CTIMP-M.

In Supplementary Figure A we compare prediction performance R? between CTIMP-
M and CTIMP-M-AS. When both methods converge, they tend to agree. CTIMP-M-AS
achieves better R? on some genes. Supplementary Figure B shows application of
S-PrediXcan to one trait (ADIPOGEN) using only one tissue (Adipose Subcutaneous)
for illustration purposes. Both methods perform similarly and this behavior is observed
in all other tissue-trait combinations.
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Supplementary Figure |5 compares CTIMP-M and CTIMP-M-AS models across the
array of studied phenotypes. Supplementary Figure [5}A shows that both CTIMP-M
and CTIMP-M-AS yield a similar number of models, with CTIMP-M-AS converging on
additional genes as expected from its larger pool of explanatory variables. Supplementary
Figure 5} B shows that the distribution of prediction performances is similar for both
models.

Supplementary Figure [ summarizes S-PrediXcan associations’ zscores in a similar
fashion for a few sample traits, both using all associations (significant or not), and using
only colocalized associations. We observe no significant gain in association strength
using all variants (CTIMP-M-AS) compared to CEU HapMap variants (CTIMP-M).

Intersection of GWAS and Model variants

EN-M and CTIMP-M are based on variants common in most publicly available GWAS.
On the other hand, DAPGW-M and MASHR-M models’s intersection with a typical
public GWAS is lower (see Supplementary Note). Therefore a tradeoff arises when
integrating models with GWAS, posing the superior but more demanding MASHR-M
models against the underperforming but robust EN-M or CTIMP-M models.

As an example of the importance of harmonizing and imputing GWAS summary
statistics to the transcriptome reference data set (GTEx), consider two relatively new
GWAS studies: blood traits from UK Biobank/INTERVAL and height from UK Biobank,
without harmonizing nor imputing missing summary statistics. EN-M and CTIMP-M
have over 97% of their variants present in said GWAS, while this percenteage drops
to around 80% for DAPGW-M and MASHR-M. DAPGW-M shows a slightly higher
intersection of variants than MASHR-M. Table [[] summarizes the number for variants
present in each family, the subset among them present in the GWAS traits, and the
fraction of these two numbers. In our experience, 80% is acceptable for running tools
such as PrediXcan in some applications. However, when applying to older studies
with potentially lower intersection between GWAS variants and the models’, imputing
summary statistics for missing variants becomes necessary.

family gwas percent  present n
CTIMP-M astle 97% 558457 575256
CTIMP-M ukb 99% 567246 575256
EN-M astle 98% 1445370 1476991
EN-M ukb 99% 1460231 1476991
DAPGW-M astle 84% 322950 386411
DAPGW-M  ukb 78% 301318 386411
MASHR-M  astle 82% 272282 331523
MASHR-M  ukb 76% 251551 331523

Supplementary Table 1. Intersection between prediction model and two GWAS
studies. family is the model strategy, gwas is the study, percent measures the
proportion of model snps present in the GWAS, present is the number of model snps
present in the gwas, n is the total number of unique variants in the models.

To fully exploit the power available to the superior MASHR-~-M models, harmonizing
becomes necessary in newer GWAS; imputation of missing sumamry statistics is also
necessary in older GWAS.

Supplementary Figures
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Supplementary Figure 1. Cross-validated prediction performance is shown
for all available models, on sample tissues ordered from smallest sample size to largest
sample size. As sample size increased, we observed similar performances on the
strategies shown.

DAPGW-M is presented for illustration purposes; since it included an additional
variable selection step using the same underlying data, it cannot be fairly compared to
EN-M and CTIMP-M.

We note that EN-M models produced the smallest number of models (Fig. [I}A), and
82% of them are in the intersection of models available to all strategies. These tend to
be genes with higher heritability and thus easier to predict. In other words, EN-M
models are generally available to CTIMP-M and DAPGW-M, and the intersection of all
strategies is dominated by genes in EN-M. On the other hand, CTIMP-M and
DAPGW-M yield viable models for additional genes that are harder to predict, where
EN-M couldn’t converge to a proper model. In conclusion, CTIMP-M’s and
DAPGW-M’s performance summary on all available genes was penalized by their
convergence on genes with less signal or more complicated expression patterns.

Tissue abbreviations and sample size: KDNCTX: Kidney - Cortex, n=65; BRNHPP: Brain -
Hippocampus, n=150; BRNCHA: Brain - Cerebellum, n=188; BREAST: Breast - Mammary Tissue, n=337;
MSCLSK: Muscle - Skeletal, n=602

March 19, 2020

20/128}


https://doi.org/10.1101/2020.03.19.997213
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.997213; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

S-PrediXcan associations z-score
Coronary Artery Disease and Heart (Left Ventricle)

MASHR-M

-10 -5 0 5 10
DAPGW-M

Supplementary Figure 2. This figure compares S-PrediXcan associations for
Coronary Artery Disease using Left Ventricle prediction models from DAPGW-M and
MASHR-M. Black dots are associations present in both DAPGW-M and MASHR-M
models, while gray dots are associations present in only one of them. For shared genes,
both models tend to agree in association direction and magnitude. The concordance is
higher for significant associations, while poorly associated genes might even disagree in
direction.

This behavior is common to all analyzed trait-tissue pairs.
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Supplementary Figure 3. This figure compares the number of S-PrediXcan
associations achieving coloc’s probability of colocalization PP4 > 0.5.

In panel A, the number of detections based on coloc doesn’t clearly distinguish
between the four methods. This is likely caused by coloc’s assumption of only one
causal variant: since genes selected by coloc tend to have less allellic heterogeneity, they
behave similarly across the four model strategies.

In panel B, we observe that the fraction of significant genes that are also colocalized is
slightly better for MASHR-M in general.

A Cross-validated B PrediXcan association z-score

Prediction Performance (R"2) CTIMP, all snps vs hapmap snps,

Adipose Subcutaneous, chrl
CTIMP, all snps vs hapmap snps oy
Adipose Subcutaneous, chrl Coronary Artery Disease

P 5.0 °
o "
. s -,
‘ £ .
0.6 % 251
[72]
Q. 0.0
=
(2]
w
-2.54
-5.0 | e
0.0 0.2 0.4 0.6 6 3 0 3 6
hapmap snps hapmap snps

Supplementary Figure 4. CTIMP Models using all variants
(CTIMP-M-AS) vs HapMap variants (CTIMP-M).

Panel A shows cross-validated prediction performance R?. When both methods
converge, they tend to achieve similar prediction performances, with CTIMP-M-AS
doing slightly better on some genes.

Panel B compares S-PrediXcan associations for CTIMP-M and CTIMP-M-AS;,
showing a high level of agreement.
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Supplementary Figure 5. CTIMP Models summary. We compare here CTIMP
using all variants (abbreviated as CTIMP-M-AS) to CTIMP using only HapMap
variants (abbreviated as CTIMP-M), for genes in chromosome 1. We observed no
significant difference between CTIMP-M and CTIMP-M-AS.

Panel A shows the number of generated models for protein coding genes, pseudo genes
and IncRNA.

Panel B compares prediction performance for all gene-tissue pairs, for sample tissues
(ordered from smallest sample size to largest sample size). The differences in
performance are negligible.
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Supplementary Figure 6. CTIMP’s PrediXcan associations for 4 sample
traits from CTIMP models using all variants (abbreviated as CTIMP-M-AS) to
CTIMP using only HapMap variants (abbreviated as CTIMP-M), for genes in
chromosome 1. Both panels show absolute values of association z-score for gene-tissue
pairs, to Fasting Insulin (INSUL), Coronary Artery Disease (CAD), Schizophrenia
(SCZ) and Height (HEIGHT); traits are ordered from lowest to highest number of
uniquely associated genes. The left panel shows all associations, whereas the right panel
shows colocalized associations. We observed no significant difference between CTIMP-M
and CTIMP-M-AS.
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