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Abstract

The integration of transcriptomic studies and GWAS (genome-wide association studies)
via imputed expression has seen extensive application in recent years, enabling the
functional characterization and causal gene prioritization of GWAS loci. However, the
techniques for imputing transcriptomic traits from DNA variation remain underdevel-
oped. Furthermore, associations found when linking eQTL studies to complex traits
through methods like PrediXcan can lead to false positives due to linkage disequilibrium
between distinct causal variants. Therefore, the best prediction performance models
may not necessarily lead to more reliable causal gene discovery. With the goal of im-
proving discoveries without increasing false positives, we develop and compare multiple
transcriptomic imputation approaches using the most recent GTEx release of expression
and splicing data on 17,382 RNA-sequencing samples from 948 post-mortem donors in
54 tissues. We find that informing prediction models with posterior causal probability
from fine-mapping (dap-g) and borrowing information across tissues (mashr) lead to
better performance in terms of number and proportion of significant associations that
are colocalized and the proportion of silver standard genes identified as indicated by
precision-recall and ROC (Receiver Operating Characteristic) curves. All prediction
models are made publicly available at predictdb.org.

Author summary

Integrating molecular biology information with genome-wide association studies (GWAS)
sheds light on the mechanisms tying genetic variation to complex traits. However,
associations found when linking eQTL studies to complex traits through methods like
PrediXcan can lead to false positives due to linkage disequilibrium of distinct causal
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variants. By integrating fine-mapping information into the models, and leveraging the
widespread tissue-sharing of eQTLs, we improve the proportion of likely causal genes
among significant gene-trait associations, as well as the prediction of “ground truth”
genes.

Introduction 1

Transcriptome studies with whole genome interrogation characterize genetic effects on 2

gene expression traits. These mechanisms help elucidate the function of loci identified in 3

genome-wide association studies (GWAS) by identifying potential causal genes that link 4

genetic variation with complex traits [1–5]{Albert:2015fx, Aguet2019, Huckins:2019ix, 5

Mancuso:2018fv, Gusev:2018dy}. 6

In particular, the Genotype-Tissue Expression (GTEx) project [2]{Aguet2019} has 7

sequenced whole genomes from 948 organ donors and generated RNA-seq data across 52 8

tissues and 2 cell lines. Results and tools derived from this comprehensive catalog of 9

transcriptome variation have enabled a myriad of applications such as drug repurposing 10

[6]{So2017} and clinical discoveries in cancer susceptibility genes [7]{Wu2018}, to name 11

a few. 12

The general consensus that many noncoding variants associated with complex traits 13

exercise their action via gene expression regulation has motivated the development of 14

imputed transcriptome association approaches such as PrediXcan [8, 9]{Gamazon2015, 15

Barbeira2018}, TWAS/FUSION [10]{Gusev:2016ey} and UTMOST [11]{Hu2019}. In 16

essence, these methods predict gene expression traits based on individuals’ genotypes 17

and test how these predictions correlate with complex traits. 18

Reliable prediction models for gene expression traits are key components of imputed 19

transcriptome association studies. Given the predominantly sparse genetic architecture 20

of gene expression traits [12]{Wheeler2016} and overall robustness and performance 21

[3, 13]{Huckins:2019ix, Fryett:2018bg}, Elastic Net [14]{Friedman2010GLMNET} has 22

become the algorithm of choice for predicting transcriptome variation. 23

Despite Elastic Net’s many advantages such as robustness and sparcity, we hypothe- 24

sized that transcriptome imputation can be improved by leveraging biologically-informed 25

methods. Recent efforts [11]{Hu2019} have exploited the high degree of eQTL sharing 26

across tissues [15]{GTEx2017} by leveraging cross-tissue patterns in the broad GTEx 27

panel to improve prediction performance, more notably in tissues with small sample sizes. 28

Also, important methodological progress in fine-mapping [16, 17]{Wen2017, Wang2018} 29

and an adaptive shrinkage method that improves effect size estimates across multi- 30

ple experiments [18]{Urbut2019} provide opportunities to further improve quality of 31

downstream associations. 32

In this article, we analyze different transcriptome prediction strategies and compare 33

their strengths both in prediction performance and downstream phenotypic associations. 34

Proximity and linkage disequilibrium (LD) between distinct causal variants can 35

lead to non causal associations between predicted expression and complex traits [9, 36

19]{Barbeira2018, Wainberg:2019kq}. Since the ultimate goal of imputed transcriptome 37

studies is to identify causal genes, our main focus here is to improve discoveries with less 38

emphasis on expression prediction performance. We also applied the same model building 39

techniques to alternative splicing traits quantified with Leafcutter [20]{Li:2018cy}. We 40

make all results, prediction models and software available to the research community. 41
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Results 42

To identify optimal techniques for transcriptomic imputation, we have built models 43

to predict genetically regulated expression (GREx) using four different approaches on 44

GTEx expression and splicing data (release version 8). To reduce LD misspecification 45

problems, most apparent when applying summary statistics-based versions of PrediXcan 46

on GWAS of European populations, we used only European samples. 47

We restricted the analysis to genes that are annotated as protein coding, lncRNA, 48

and pseudogenes in GENCODE version 26 [21]{Frankish2019}. We included 49 different 49

tissues with sample sizes ranging from 65 (Kidney Cortex) to 602 (Muscle Skeletal). 50

The first strategy used the Elastic Net [14]{Friedman2010GLMNET} algorithm to 51

compute predictions as described previously in [8,12]{Gamazon2015, Wheeler2016}. For 52

every gene available in each tissue, this strategy used variants from the HapMap CEU 53

track in a window ranging from 1Mb upstream of the transcription start site to 1MB 54

downstream of the transcription end site as explanatory variables. Only those models 55

achieving thresholds of cross-validated correlation ρ > 0.1 and prediction performance 56

p-value < 0.05 were kept. We will refer to this family as the EN-M models. 57

The second strategy used CTIMP (Cross Tissue gene expression IMPutation) [11]{Hu2019}.58

CTIMP uses a regularized, generalized linear regression algorithm to fit expression from 59

different tissues simultaneously. CTIMP optimizes a cost function including a within- 60

tissue Lasso penalty and a cross-tissue group Lasso penalty, thus inheriting Lasso-like 61

behaviour that is less sparse than Elastic Net. We used the same variants from the 62

EN-M strategy (HapMap CEU track, same windows around each gene), and identical 63

correlation threshold (ρ > 0.1) and cross-validated prediction performance threshold 64

(p < 0.05) to accept models. We will refer to this family as the CTIMP-M family. 65

We verified that this method’s performance is not significantly improved by using all 66

available GTEx variants, as explained in the supplementary material. 67

The third strategy used the posterior inclusion probability (PIP) of a variant being 68

causal for gene expression as estimated by the Bayesian fine mapping method dap-g 69

(Deterministic Approximation of Posteriors) [22]{Wen2016}. First, for every gene, we 70

restricted to variants with posterior inclusion probabilities PIP > 0.01. Since dap-g 71

clusters variants by their LD, we kept the variant with highest PIP from each cluster to 72

avoid redundant explanatory variables. Then, the selected variants were fed into the 73

Elastic Net algorithm, scaling each variant’s effect size penalty by a factor of 1−PIP 74

(i.e. more likely variants are less penalized). Only those models achieving good enough 75

cross-validated prediction performance (p-value< 0.05) and correlation (ρ > 0.1) were 76

kept. We will refer to this family as DAPGW-M (dap-g weighted). As discussed later, 77

the cross-validated prediction performance of this approach can’t be fairly compared to 78

EN-M and CTIMP-M because the pre-selection of fine-mapped variants is based on the 79

same underlying data. 80

The fourth strategy used mashr (Multivariate Adaptive Shrinkage in R) [18]{Urbut2019} 81

effect sizes from variants selected by dap-g as in the DAPGW-M approach. More 82

specifically, fine-mapped variants were selected as in the DAPGW-M approach but 83

the weights were obtained by applying mashr to the marginal effect sizes and standard 84

errors from the GTEx eQTL analysis [2]{Aguet2019}. Unlike the previous methods, 85

this approach does not fit into a cross-validation strategy and therefore lacks a natural 86

prediction performance measure. Only eGenes with at least one cluster of variants 87

achieving dap-g PIP> 0.1 were kept. We will refer to this family as MASHR-M. 88

We did not consider the BSLMM family of methods for transcriptome prediction. 89

These models contain both a sparse and a polygenic component. The latter is likely to 90

induce LD contamination [9]{Barbeira2018} and doesn’t reflect the sparse architecture 91

of expression traits [12]{Wheeler2016}. 92

We also applied the EN-M and MASHR-M methods to alternative splicing quantifi- 93
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cation from LeafCutter [20]{Li:2018cy} and made them readily available to the research 94

community. These models were extensively used in [2]{Aguet2019} and [23]{GTEx- 95

GWAS-Companion}. 96

Summary of models 97

Given the differences in computational approach, not all prediction strategies generated 98

models for every available gene-tissue pair. As can be seen in Fig. 1-A, EN-M yielded 99

the smallest number of valid models, for 281,848 gene-tissue pairs. CTIMP-M produced 100

340,104 valid models, 21% more than EN-M, as expected from its integration of multiple 101

tissues’ information. 102

Fine-mapping-based methods generated even more models: 518,537 from DAPGW-M 103

(84% more than EN-M) and 686,241 from MASHR-M (143% more than EN-M). Please 104

note that given the different criteria used to accept a model as valid, simple counts of 105

available models should not be considered a measure of performance. 106

We show the distribution of cross-validated prediction performances in Fig. 1-B. 107

We include 5 representative tissues ordered by increasing sample size (kidney, brain - 108

hippocampus, brain - cerebellum, breast, skeletal muscle). In order to perform a uniform 109

comparison, we used only gene-tissue pairs available to all model families. CTIMP-M 110

showed better prediction performance than EN-M on tissues with smaller sample size, but 111

performed similarly on tissues with larger sample sizes. We attribute this to CTIMP’s 112

design, which leveraged all existing samples’ genotypes in the tissues of smaller expression 113

sample size. MASHR-M models had no natural prediction performance measure and 114

thus are excluded from these panels. DAPGW-M is presented for completeness but its 115

comparison to EN-M and CTIMP-M is unfair. We show in Sup. Fig 1 the cross-validated 116

prediction performances for all genes in each family. 117
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Fig 1. Models summary.
Panel A shows the number of models generated for protein coding genes, pseudo genes
and lncRNA across the four strategies. MASHR-M displayed the largest number of
generated models.
Panel B compares prediction performances for gene-tissue pairs present in all four
strategies, at 5 different tissues ordered by sample size. CTIMP-M performed better
than EN-M in tissues with smaller sample size.
DAPGW-M is presented for illustration purposes; since it included an additional
variable selection step using the same underlying data, it cannot be fairly compared to
EN-M and CTIMP-M. MASHR-M doesn’t have a prediction performance measure.
The intersection of gene-tissue pairs across the 4 strategies is mostly defined by Elastic
Net, the smallest set. 82% of Elastic Net models make up the intersection available to
all strategies. Tissue abbreviations and sample size: KDNCTX: Kidney - Cortex, n=65; BRNHPP:

Brain - Hippocampus, n=150; BRNCHA: Brain - Cerebellum, n=188; BREAST: Breast - Mammary Tissue,

n=337; MSCLSK: Muscle - Skeletal, n=602
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Finemapping improves expression prediction in independent dataset118

Next, we sought to validate the models’ predictions in an independent RNA-seq dataset. 119

We analyzed data from the the GEUVADIS project [24]{Lappalainen2013}, which 120

includes 341 samples of European ancestry with genotype and LCL (lymphoblastoid cell 121

lines) expression data. We predicted expression using GTEx LCL models from the 4 122

strategies, and compared with measured expression levels. Fig. 2-A shows the number of 123

genes that each family was able to predict. DAPGW-M and MASHR-M had the largest 124

number of predictable genes, followed by CTIMP-M and EN-M. 125

To compare prediction performances, we used Spearman’s rank correlation coefficient 126

ρ as a robust measure that handles the scale and complexity differences between real 127

GEUVADIS expression data and predicted expression levels. Fig. 2-B shows the 128

distribution of prediction performance (Spearman’s ρ) for genes present in all four 129

methods on the LCL tissue. We observed that all four families achieved similar levels of 130

performance, with DAPGW-M and MASHR-M faring slightly but consistently better 131

than EN-M and CTIMP-M. 132

We attribute the smaller performance differences to low power, since GTEx LCL 133

tissue has a sample size of n= 115 individuals, much lower than the 341 available in 134

GEUVADIS. 135

Fig 2. Validation in a separate expression cohort.
Panel A shows the number of genes predicted in GEUVADIS cohort using the LCL
models from each of the four strategies. MASHR-M had the most models available,
followed in decreasing order by DAPGW-M, CTIMP-M and EN-M.
Panel B shows the distribution of prediction performances (Spearman ρ)for genes
available to all four families. DAPGW-M and MASHR-M performed slightly but
consistently better than EN-M and CTIMP-M.
We attributed the small differences to the GTEX LCL tissue having a small sample size
(n=115 individuals), much lower than the 341 available in GEUVADIS. Also, the
intersection of genes available to all 4 strategies is dominated by those present in Elastic
Net, the smallest set; and genes that can be modelled with Elastic Net tend to be the
ones with less complicated patterns of variation.
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Fine-mapping improves number and colocalization of associations 136

Next, we assessed whether any of these models perform better at identifying causal genes. 137

We considered the number and proportion of colocalized genes among the significant 138

ones as measures of association quality. 139

We used the four families of models to correlate predicted expression with 87 phe- 140

notypes through 49 tissues using the summary version of PrediXcan. Results of ap- 141

plying the EN-M models to GWAS summary statistics, harmonized and imputed to 142

GRCh38 [25]{Schneider2017hg}, were presented in [2]{Aguet2019}. In this section, we 143

say that a gene-tissue pair is significant if it achieves a p-value below the Bonferroni- 144

corrected threshold (0.05/number of gene-tissue pairs) within each trait. 145

We used enloc [16]{Wen2017} results published in [2]{Aguet2019} to assess the colo- 146

calization status of GWAS and transcriptomic traits as evidence for a shared underlying 147

mechanism. Briefly, enloc computes the “regional colocalization probability” (rcp) that a 148

trait shares causal variants with a gene’s expression (or an intron’s splicing quantification), 149

within a GWAS region and the overlapping gene’s cis-window. We say that a gene-tissue 150

pair is “colocalized” with a trait if it achieves an enloc regional colocalization probability 151

rcp > 0.5. Note that rcp <= 0.5 should not be interpreted as a false association; rather, 152

it only means that there is not enough evidence of colocalization. See discussion on the 153

conservative nature of colocalization approaches in [23]{GTEx-GWAS-Companion}. 154

We say that a gene-tissue pair that is both significant and colocalized is a “prioritized” 155

detection or candidate. To simplify interpretation of results across multiple tissues, we 156

count the number of unique genes among the prioritized gene-tissue pairs for each trait. 157

We found that MASHR-M tipically yields more candidate genes. We display the 158

numbers of detections for each trait in Fig. 3, through Q-Q plots comparing MASHR-M 159

to the other the model families. We observe in Fig. 3-A that the fine-mapping informed 160

families of models, DAPGW-M and MASHR-M, yielded a similar number of candidates 161

per trait, consistently larger than EN-M and CTIMP-M. When comparing the fraction 162

of colocalized genes among significant genes (3-B), MASHR-M performs better than 163

the other 3 families. In general, we observed that associations obtained through both 164

DAPGW-M and MASHR-M models tend to agree (see Supplementary Figure 2 as an 165

example). 166

We were thus led to favor MASHR-M, which produced the largest number of models, 167

with superior number of colocalized, significant associations as well as higher proportions 168

of colocalized associations among significant genes. 169
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Fig 3. PrediXcan associations across 87 traits.
Panel A shows a Q-Q plot for the number of colocalized, significant genes per trait.
Fine-mapping-informed models (DAPGW-M and MASHR-M) achieved similar numbers
of colocalized detections, both slightly higher than EN-M and CTIMP-M.
Panel B shows a Q-Q plot for the fraction of colocalized genes among significant genes
per trait. MASHR-M’s distribution is shifted towards higher proportions than the other
families.
We say a gene is significant if it achieves a Bonferroni-adjusted threshold of
0.05/number of available gene-tissue pairs, in at least one tissue. Likewise, we say a
gene is colocalized if it achieves enloc rcp > 0.5 in any tissue. We say a gene is a
candidate or ”prioritized” detection if it is both significant and colocalized in any tissue.

Enloc relies on the dap-g algorithm itself as a component, so that the fraction of 170

colocalized genes could have been biased towards dap-g informed methods. To make sure 171

that the use of dap-g is not driving the improved colocalization rate of MASHR-M over 172

th other strategies, we verified the performance using another colocalization method, 173

coloc [26]{Giambartolomei2014}. 174

We observed that MASHR-M still had a better rate of colocalization among significant 175

associations, albeit with smaller differences as can be seen in Supplementary Figure 3. 176

This is probably in part due to coloc’s reduced power and limiting assumption of a single 177

causal variant (see [23]{GTEx-GWAS-Companion} for details). 178

Finemapping improves identification of silver standard genes 179

As an independent way to assess each prediction strategy’s ability to identify causal genes, 180

we framed the problem as one of causal gene prediction and use standard prediction 181

performance measures such as Receiver Operating Charasteristc (ROC) and Precision- 182

Recall (PR). This avoids using an ad-hoc significance or colocalization thresholds. 183

As proxies for causal genes, we leveraged two different “silver standards” as de- 184

scribed in Barbeira et al. [23]{GTEx-GWAS-Companion}. The first one, based on the 185

OMIM (Online Mendelian Inheritance in Man) database [27]{amberger:2019}, features 186

1592 known gene-trait associations. The second one is based on rare variant associ- 187

ation studies [28–30]{marouli:2017, liu:2017, locke:2019} and contains 101 gene-trait 188

associations. 189

We restricted our analysis to gene-trait pairs in the vicinity of the corresponding 190

traits’ GWAS loci since we did not expect any of the methods to detect reliable signals 191

elsewhere. We used approximately-independent LD regions [31]{berisa:2016} to define 192
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vicinity. 193

Using absolute values of z-scores as association score for each strategy, we assessed 194

their ability to ‘predict’ the silver standard gene-trait associations. We show in Fig. 4 195

the ROC and Precision-Recall curves on OMIM- and rare variant-based silver standards. 196

Using the OMIM-based silver standard (Fig. 4-A and -C), we observed that MASHR- 197

M strategy outperforms the other strategies, with DAPGW-M a close second. Thus we 198

concluded that MASHR-M models are better equipped for detecting known genes in the 199

extreme regulatory case of Mendelian diseases, reinforcing our choice of MASHR-M as 200

the best option. 201

Using the rare-variant-based silver standard (Fig. 4-B and -D), we observed that all 202

four strategies are able to detect known causal genes. However, the limited size of this 203

standard did not allow us to distinguish between the four families. 204
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Fig 4. ROC and PR curves.
Panel A shows the Receiver Operating Characteristc (ROC, plotting true-positive
ratio to false-positive ratio) curve for the OMIM silver standard. We observe that
MASHR-M models outperforms the other strategies, with DAPGW-M a close second.
Panel B shows the ROC curve for the rare-variant-based silver standard. We observe
that all strategies perform better than taking a random choice. However, this silver
standard is too limited to properly distinguish between strategies.
Panel C shows the Precision-Recall (PR) curve for the OMIM silver standard.
MASHR-M performs better than the other strategies in general, but precision becomes
a noisy measure towards lower recall ranges.
Panel D shows the PR curve for the rare-variant-based silver standard. The precision
measure is too unstable to draw any conclusions.
The OMIM silver standard not only validates the 4 proposed model strategies as a
consistent approach to detect causal genes, but provides additional evidence of
MASHR-M’s superiority. The second silver standard, based on rare variants, is too
limited to conclude anything beyond a high-level validation of all 4 families.
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Importance of harmonization and imputation of missing sum- 205

mary statistics 206

The prediction models’ usefulness depends on the availability of their variants in the 207

GWAS of interest. Publicly available GWAS use different sequencing and genotyping 208

techniques, based on different genotype imputation panels and human genome release 209

versions, so that the lists of available variants vary wildly across traits. Thus, a GWAS 210

might lack particular variants from a prediction model, so that the model can’t properly 211

infer variation patterns as shown in [32]{Barbeira2019}. Since many fine-mapped variants 212

in the GRCh38-based GTEx study can be absent in a typical GWAS, we sought to assess 213

the impact of variant compatibility in real applications. 214

We compared S-PrediXcan results from MASHR-M models on 69 publicly available 215

GWAS with two preprocessing schemes: 216

1. Harmonization of variants by mapping genomic coordinates between human genome 217

assemblies, and filtering for matching alleles (“Harmonization” for short) 218

2. Imputation of missing summary statistics (“Imputation” for short) on harmonized 219

GWAS. 220

The 69 traits included in this analysis are those among the 87 traits not belonging to 221

the Rapid GWAS project, to prevent the highly homogeneous Rapid GWAS datasets 222

from dominating comparisons. 223

We show in Fig. 5 the effect of these preprocessing schemes on various performance 224

metrics, segregated by human genome release version (hg17, hg18, hg19). 225

Fig. 5-A summarizes the increase in number of gene associations computed for every 226

trait-tissue pair. For hg17- and hg18-based GWAS, the gain through summary-statistics 227

imputation is almost threefold. Some hg19-based GWAS traits without imputation yield 228

a good enough number of computable genes. 229

Fig. 5-B shows the distribution of median fraction of model SNPs also present in 230

the GWAS, within each tissue-trait combination. Roughly 60% of models’ variants 231

are present in hg17- and hg18-based GWAS without imputation; this percenteage is 232

substantially higher for hg19-based GWAS without imputation. Imputing summary 233

statistics increases this median percenteage to 100% on all tissue-trait combinations 234

across the analyzed human genome release versions. 235

Fig. 5-C shows the increase in number of genes detected per trait. As in the previous 236

panels, the increase is more noticeable for hg17- and hg18-based GWAS, while smaller 237

for hg19-based studies. 238

Therefore, we recommend to always perform variant harmonization due to its low 239

complexity and time requirements, followed by summary-statistics imputation if pos- 240

sible. For newer GWAS with modern sequencing and genotyping, summary-statistics 241

imputation may not be as critical depending on their intersection with model variants. 242

March 19, 2020 11/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.19.997213doi: bioRxiv preprint 

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
https://doi.org/10.1101/2020.03.19.997213
http://creativecommons.org/licenses/by/4.0/


Fig 5. Effect of imputation on association quality. We display here a
comparison of S-PrediXcan results from MASHR-M models on 69 GWAS traits using
two different pre-processing schemes: simple harmonization of GWAS variants to
GTEx’s, and additional imputation of missing summary statistics. Results are grouped
by the different human genome release versions underlying each GWAS: 2 traits were
defined on hg17, 13 on hg18, and 54 on hg19.
Panel A shows the distribution of number of associations per trait-tissue pair that can
be computed; imputation dramatically increased the number of associations for hg17-
and hg18-based traits. Some hg19-based traits exhibited a good number of computable
associations after just a simple harmonization.
Panel B shows, per trait-tissue pair, the distribution of median fraction of model SNPs
present in the GWAS. It is nearly 1 for most trait-tissue pairs in the imputation scheme,
ranging between 0.5 and 1 with the harmonization scheme.
Panel C shows the number of colocalized, significantly associated genes that can be
found after applying imputation and harmonization schemes. The gain of imputation
for hg19 is less dramatic that in the other comparisons in this figure, given the
conservative nature of the colocalization filter.

Discussion 243

Through extensive analysis of different model training schemes, we conclude that using 244

fine-mapping information (from dap-g) and cross-tissue patterns (from mashr) improve 245
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transcriptome prediction models both for causal gene detection and prediction perfor- 246

mance. These models (MASHR-M) yield more detections when integrating GWAS and 247

eQTL studies, and show better prediction performance on an independent expression 248

cohort. This method also exhibits superior performance when validating results in a 249

silver standard of known gene-to-trait associations (OMIM database). We make all 250

prediction models and results publicly available. 251

Special consideration must be paid to how well each model’s variants intersect GWAS’ 252

variants. Fine-mapping-informed models are sparse and parsimonious. This could be 253

a hurdle when the fine-mapped variants of import are missing or have low imputation 254

quality in a GWAS, as is often the case with older studies. In this scenario we recommend 255

harmonizing and imputing summary statistics to the models’ variants. The alternative 256

is falling back to models such as CTIMP-M, defined on a robust set of variants available 257

to most GWAS, at the cost of decreased performance (detection and prediction). EN-M 258

additionally features some “built-in” redundacy: for a set of variants in LD among each 259

other, they all tend to be included in a model with the effect spread between them. 260

While our recommended MASHR-M method offers several benefits compared to 261

existing approaches, there is still room for improvement. Potential developments could 262

rely on fine-mapping methods that jointly incorporate cross-tissue patterns, or consensus 263

between different fine-mapping approaches. Also, epigenetic information has been 264

shown to improve transcriptome prediction [33]{Zhang2019EpiXcan} as well. Future 265

improvements should incorporate this epigenetic information and other biologically- 266

informed annotations jointly. 267

Our validation in silver standards, especially our difficulty interpreting the results 268

from the rare-variant-based silver standard, also illustrates the need for well-curated, 269

large databases of known gene-to-phenotype associations to assess performance of either 270

new or improved methods. 271

In conclussion, we present here a method for predicting the genetically regulated 272

component of transcriptomic traits with superior performance both in terms of prediction 273

performance and gene-trait association detection. 274
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Code and data availability 336

Genotype-Tissue Expression (GTEx) project’s raw whole transcriptome and genome 337

sequencing data are available via dbGaP accession number phs000424.v8.p1. All pro- 338

cessed GTEx data are available via GTEx portal. Imputed summary results, enloc, coloc, 339

PrediXcan, MultiXcan, dap-g, prediction models, and reproducible analysis are available 340

in https://github.com/hakyimlab/gtex-gwas-analysis and links therein. 341
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URLs 342

1000 Genomes Project Reference for LDSC, 343

https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz; 344

1000 Genomes Project Reference with regression weights for LDSC, 345

https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_weights_hm3_no_MHC.346

tgz; 347

BioVU, https://victr.vanderbilt.edu/pub/biovu/?sid=194; 348

eCAVIAR, https://github.com/fhormoz/caviar; 349

QTLEnrich, https://github.com/segrelabgenomics/eQTLEnrich; 350

flashr, https://gaow.github.io/mnm-gtex-v8/analysis/mashr_flashr_workflow.html#flashr-prior-covariances;351

Gencode, https://www.gencodegenes.org/releases/26.html; 352

GTEx GWAS subgroup repository, https://github.com/broadinstitute/gtex-v8; 353

GTEx portal, http://gtexportal.org; 354

Hail, https://github.com/hail-is/hail; 355

HapMap Reference for LDSC, https://data.broadinstitute.org/alkesgroup/LDSCORE/w_ 356

hm3.snplist.bz2; 357

LD score regression (LDSD regression), https://github.com/bulik/ldsc; 358

MetaXcan, https://github.com/hakyimlab/MetaXcan; 359

Mouse Phenotype Ontology, http://www.informatics.jax.org/vocab/mp_ontology; 360

NHGRI-EBI GWAS catalog, https://www.ebi.ac.uk/gwas/; 361

picard, http://picard.sourceforge.net/; 362

PLINK 1.90, https://www.cog-genomics.org/plink2; 363

PrediXcan, https://github.com/hakyimlab/MetaXcan; 364

pyliftover, https://pypi.org/project/pyliftover/; 365

Storey’s qvalue R package, https://github.com/StoreyLab/qvalue; 366

Summary GWAS imputation, https://github.com/hakyimlab/summary-gwas-imputation; 367

TORUS, https://github.com/xqwen/torus; 368

UK Biobank GWAS, http://www.nealelab.is/uk-biobank/; 369

UK Biobank, http://www.ukbiobank.ac.uk/; 370

371

Methods 372

We executed all methods using open source software running in a high performance cluster. 373

We release all of our code and the data analyzed in this paper to ease reproducibility 374

and accessibility. 375

GTEx data processing 376

We downloaded GTEx data for version 8 release from dbGAP (accession number 377

phs000424.v8.p1). This data arises from 17382 RNA-seq samples from 54 tissues of 948 378

post-mortem subjects, aligned to the GRCh38 assembly. Primary and extended results 379

generated by consortium members are available on the Google Cloud Platform storage 380

accessible via the GTEx Portal (see URLs). 381

899 whole-genome sequencing (WGS) samples were analyzed, 68 of them at an average 382

coverage of 30x on HiSeq200, and the rest on HiSeqX. 866 GTEx donors’ samples were 383

included in the downstream variant call files (VCF), after excluding one each from 30 384

duplicate samples and 3 donors. Among these, 838 subjects with RNA-seq data were 385

included for QTL mapping and analysis. 386

Whole transcriptome RNA-Seq data were aligned using STAR (v2.5.3.a; [34]{dobin:2013}).387

For STAR index, GENCODE v26 was used with the sjdbOverhang 75 for 76-bp paired-end 388
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sequencing protocol. Default parameters were used for RSEM (see URLs; [35]{Li:2011}) 389

index generation. GTEx utilized Picard (see URLs) to mark and remove potential 390

PCR duplicates and RNA-SeQC [36]{DeLuca:2012dp} to process post-alignment quality 391

control. RSEM was then used for per-sample transcript quantification. Subsequently, 392

read counts were normalized between samples using TMM [37]{robinson:2010}. For 393

eQTL analyses, latent factor covariates were calculated using PEER [38]{stegle:2010} as 394

follows: 15 factors for N < 150 per tissue; 30 factors for 150 ≤ N < 250; 45 factors for 395

250 ≤ N < 350; and 60 factors for N ≥ 350. Expression phenotypes were adjusted for 396

unwanted variation using covariates such as gender, sequencing plaform and pcr protocol, 397

the top 5 principal components from genotype data, and said PEER factors. Finally, 398

fastQTL [39]{ongen:2016} was used for cis-eQTL mapping in each tissue. Only protein- 399

coding, lincRNA, and antisense biotypes as defined by Gencode v26 were considered for 400

further analyses. To study alternative splicing, GTEx applied LeafCutter (version 0.2.8; 401

[20]{Li:2018cy}) using default parameters to quantify splicing QTLs in cis with intron 402

excision ratios [2]{Aguet2019}. 403

We used the dap-g [22]{Wen2016}, enloc [16]{Wen2017} and coloc [26]{Giambartolomei2014}404

results published in [2]{Aguet2019}. 405

GTEx expression and splicing modelling 406

We used the same genotypes, phenotypes, covariates, gene annotations and variant 407

annotations from the main GTEx analysis. 408

When building prediction models, we imposed an additional restriction: we used only 409

samples of European ancestry for the sake of leveraging a well defined population LD 410

structure. Only variants with MAF> 0.01 in these samples were included. We used 49 411

tissues with sample sizes ranging from 65 (Kidney Cortex) to 602 (Muscle Skeletal). 412

This ancestry restriction mitigated problems due to LD mismatch when integrating 413

with most publicly available GWAS summary statistics, which are conducted on pre- 414

dominantly European populations. Prediction models in other ancestries are important, 415

and we are currently dedicating substantial effort to creating and analyzing such models. 416

However, non-European models are beyond the scope of this paper. 417

We only generated models for genes annotated in GENCODE v26 as protein coding, 418

lncRNA or pseudogenes. 419

Elastic Net models 420

We fitted an Elastic Net model for each gene-tissue pair with available adjusted expression 421

data. We restricted the set of variants to those present in the HapMap 3 CEU track 422

[40]{InternationalHapMap3Consortium2010} with MAF> 0.01. The motivation behind 423

this choice was to restrict the analysis to a robust set of SNPs that has significant 424

intersection with most publicly available GWAS summary statistics. For every gene, 425

variants within 1Mb upstream of the gene’s transcription start site and 1Mb downstream 426

of the transcription end site where used as explanatory variables for gene expression. 427

We used the R package glmnet [14]{Friedman2010GLMNET}, with mixing parameter 428

α = 0.5 and penalty parameter chosen through 10-fold cross validation. 429

Prediction performance was estimated using a nested cross-validation approach. 430

Expression was predicted out-of-sample for each fold, with Elastic Net parameters 431

estimated only within training data, and the correlations to observed values at each 432

fold were combined via Fisher’s transformation and Stouffer’s method. Only those 433

models with mean Pearson correlation across 10 folds ρ > 0.1 and nested cross-validated 434

correlation test p < 0.05 were kept. 435

We refer to these models as EN-M. 436
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CTIMP models 437

We employed the CTIMP [11]{Hu2019} framework on the same data from EN-M models 438

in the previous section. This method fits expression for a gene in multiple tissues 439

simultaneously through a regularized linear model, using a Lasso penalty within each 440

tissue and a group-Lasso penalty for cross-tissue patterns. As it internally uses genotypes 441

from all samples available across all tissues, we expect improvements over EN-M to be 442

larger for tissues of smaller sample size where EN-M deals with a less informative LD 443

structure among variants. 444

We performed five-fold cross validation for model tuning and evaluation following 445

the authors’ description. We computed cross-validated correlation measures across 446

folds as in the previous method, and kept those models achieving the thresholds of 447

cross-validated correlation ρ > 0.1 and p-value p < 0.05. As in EN-M, we restricted 448

the model training to variants in the HapMap 3 CEU track with MAF> 0.01; this 449

became necessary because using all variants proved too computationally expensive, since 450

CTIMP consumes large amounts of memory and processing time. We briefly show in 451

the Supplement (Supplementary Figures 4, 5, 6) that this additional restriction brings 452

negligible effects in model training performance and prediction. 453

We refer to these models as CTIMP-M. 454

Elastic Net informed by dap-g results 455

We also trained models via the Elastic Net algorithm using fine-mapping information 456

to refine the list of variants to be used as explanatory variables, and lent more weight 457

to variants with higher chances of affecting expression phenotypes. To this aim, we 458

used dap-g ’s posterior inclusion probability (PIP) of a variant affecting gene expression 459

to select explanatory variables, without restricting to variants in the HapMap CEU 460

track. For every gene, we used all variants in the gene’s cis-window with MAF> 0.01 461

and PIP> 0.01. Since dap-g groups variants in clusters according to LD, we kept the 462

top variant (by PIP) per cluster to avert variable redundancy. Since we reasoned that 463

more probable variants should bear more impact in the model’s outcome, we multiplied 464

each variant’s penalty term in the Elastic Net regularization by a factor of 1− PIP. We 465

used the same thresholds from the previous subsections (ρ > 0.1 and p-value p < 0.05) 466

to select models with acceptable prediction performance. 467

We refer to these models as DAPGW-M. 468

mashr-based models 469

Finally we explored an entirely different algorithm to determine the prediction models. 470

We executed multivariate adaptive shrinkage in R (mashr) [18]{Urbut2019} to estimate 471

the models’ effect sizes by leveraging cross-tissue variations while allowing for sparse and 472

possibly correlated effects in a Bayesian framework. We used mashr on the same set 473

of variants from DAPGW-M models. We kept models only for eGenes and effect sizes 474

only for variants with PIP > 0.01 (from dap-g) at each gene-tissue pair. Unfortunately, 475

there is no natural prediction performance measure in this scenario as cross-validation 476

was not performed. 477

We refer to these models as MASHR-M. 478

GEUVADIS data processing 479

We used GEUVADIS LCL expression study for an independent validation of prediction 480

performance. We obtained GEUVADIS expression data and sample information from 481

the European Bioinformatics Institute web portal at https://www.ebi.ac.uk/. We 482
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obtained genotype data aligned to GRCh38 assembly from the International Genome 483

Sample Resource web portal http://www.internationalgenome.org. We restricted 484

data to individuals of European ancestry, yielding 341 samples. 485

For each one of the four previous model training schemes (EN-M, CTIMP-M, DAPGW- 486

M, MASHR-M) we predicted expression through PrediXcan [8]{Gamazon2015} on GEU- 487

VADIS genotypes using GTEX LCL models, and correlated predictions to observations. 488

GWAS processing and integration 489

We examined 87 GWAS from a heterogeneous set of traits first presented in the GTEx 490

v8 study [2,23]{GTEx-GWAS-Companion, Aguet2019}. These traits were selected to 491

support a phenome-wide study of the impact of gene regulation. Given the heterogeneous 492

landscape of the GWAS, with intricate differences in data processing protocols and 493

underlying human genome reference versions, it was necessary to make the GWAS 494

variants homogeneous and compatible with those from the GTEx study. 495

First, the GWAS’ variants were harmonized to the GTEx study’s variants by mapping 496

genomic coordinates via liftover [41]{haeussler:20019} (https://pypi.org/project/ 497

pyliftover) and keeping only variants with matching alleles. Then, GTEx variants 498

with missing summary statistics for any GWAS were imputed with the BLUP method, 499

a standard in the field [42]{Lee2013}. 500

We executed S-PrediXcan for each of 4 families of models (EN-M, CTIMP-M, 501

DAPGW-M and MASHR-M) using 49 tissues, for a total of 17,052 (trait, model family, 502

tissue) tuples. We integrated with enloc and coloc results published in [2]{Aguet2019}. 503

When analying versatility of the models and GWAS preprocessing schemes, we used 504

GWAS studies not belonging to the rapid GWAS study. This was decided because 505

the rapid GWAS project has a common, homogeneous variant set that could dominate 506

comparisons. 507

Supporting information 508

Restricting CTIMP variants to CEU HapMap track 509

When first attempting to run CTIMP package on GTEx data, we observed a significantly 510

larger computational burden than the related Elastic Net method, up to two orders of 511

magnitude larger in memory, and up to three in compute time for many genes. This 512

scheme was too prohibitive and would had taken months to complete on the high 513

performance cluster available to us. 514

To reduce the computational burden, we decided to restrict the explanatory variables 515

to variants in the HapMap 3 CEU track [40]{InternationalHapMap3Consortium2010} 516

with MAF> 0.01. This brought down the memory and processing consumption to only 517

one order of magnitude larger than Elastic Net. 518

To verify that this technical restriction did not degrade performance too severely, we 519

computed CTIMP models using all variants for chromosome 1, which took over 5 weeks 520

to complete in our computation resource. We refer to these models as CTIMP-M-AS, 521

which allowed comparison to CTIMP-M. 522

In Supplementary Figure 4-A we compare prediction performance R2 between CTIMP- 523

M and CTIMP-M-AS. When both methods converge, they tend to agree. CTIMP-M-AS 524

achieves better R2 on some genes. Supplementary Figure 4-B shows application of 525

S-PrediXcan to one trait (ADIPOGEN) using only one tissue (Adipose Subcutaneous) 526

for illustration purposes. Both methods perform similarly and this behavior is observed 527

in all other tissue-trait combinations. 528
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Supplementary Figure 5 compares CTIMP-M and CTIMP-M-AS models across the 529

array of studied phenotypes. Supplementary Figure 5-A shows that both CTIMP-M 530

and CTIMP-M-AS yield a similar number of models, with CTIMP-M-AS converging on 531

additional genes as expected from its larger pool of explanatory variables. Supplementary 532

Figure 5-B shows that the distribution of prediction performances is similar for both 533

models. 534

Supplementary Figure 6 summarizes S-PrediXcan associations’ zscores in a similar 535

fashion for a few sample traits, both using all associations (significant or not), and using 536

only colocalized associations. We observe no significant gain in association strength 537

using all variants (CTIMP-M-AS) compared to CEU HapMap variants (CTIMP-M). 538

Intersection of GWAS and Model variants 539

EN-M and CTIMP-M are based on variants common in most publicly available GWAS. 540

On the other hand, DAPGW-M and MASHR-M models’s intersection with a typical 541

public GWAS is lower (see Supplementary Note). Therefore a tradeoff arises when 542

integrating models with GWAS, posing the superior but more demanding MASHR-M 543

models against the underperforming but robust EN-M or CTIMP-M models. 544

As an example of the importance of harmonizing and imputing GWAS summary 545

statistics to the transcriptome reference data set (GTEx), consider two relatively new 546

GWAS studies: blood traits from UK Biobank/INTERVAL and height from UK Biobank, 547

without harmonizing nor imputing missing summary statistics. EN-M and CTIMP-M 548

have over 97% of their variants present in said GWAS, while this percenteage drops 549

to around 80% for DAPGW-M and MASHR-M. DAPGW-M shows a slightly higher 550

intersection of variants than MASHR-M. Table 1 summarizes the number for variants 551

present in each family, the subset among them present in the GWAS traits, and the 552

fraction of these two numbers. In our experience, 80% is acceptable for running tools 553

such as PrediXcan in some applications. However, when applying to older studies 554

with potentially lower intersection between GWAS variants and the models’, imputing 555

summary statistics for missing variants becomes necessary. 556

family gwas percent present n
CTIMP-M astle 97% 558457 575256
CTIMP-M ukb 99% 567246 575256
EN-M astle 98% 1445370 1476991
EN-M ukb 99% 1460231 1476991
DAPGW-M astle 84% 322950 386411
DAPGW-M ukb 78% 301318 386411
MASHR-M astle 82% 272282 331523
MASHR-M ukb 76% 251551 331523

Supplementary Table 1. Intersection between prediction model and two GWAS
studies. family is the model strategy, gwas is the study, percent measures the
proportion of model snps present in the GWAS, present is the number of model snps
present in the gwas, n is the total number of unique variants in the models.

To fully exploit the power available to the superior MASHR-M models, harmonizing 557

becomes necessary in newer GWAS; imputation of missing sumamry statistics is also 558

necessary in older GWAS. 559

Supplementary Figures 560
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Supplementary Figure 1. Cross-validated prediction performance is shown
for all available models, on sample tissues ordered from smallest sample size to largest
sample size. As sample size increased, we observed similar performances on the
strategies shown.
DAPGW-M is presented for illustration purposes; since it included an additional
variable selection step using the same underlying data, it cannot be fairly compared to
EN-M and CTIMP-M.
We note that EN-M models produced the smallest number of models (Fig. 1-A), and
82% of them are in the intersection of models available to all strategies. These tend to
be genes with higher heritability and thus easier to predict. In other words, EN-M
models are generally available to CTIMP-M and DAPGW-M, and the intersection of all
strategies is dominated by genes in EN-M. On the other hand, CTIMP-M and
DAPGW-M yield viable models for additional genes that are harder to predict, where
EN-M couldn’t converge to a proper model. In conclusion, CTIMP-M’s and
DAPGW-M’s performance summary on all available genes was penalized by their
convergence on genes with less signal or more complicated expression patterns.
Tissue abbreviations and sample size: KDNCTX: Kidney - Cortex, n=65; BRNHPP: Brain -

Hippocampus, n=150; BRNCHA: Brain - Cerebellum, n=188; BREAST: Breast - Mammary Tissue, n=337;

MSCLSK: Muscle - Skeletal, n=602
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Supplementary Figure 2. This figure compares S-PrediXcan associations for
Coronary Artery Disease using Left Ventricle prediction models from DAPGW-M and
MASHR-M. Black dots are associations present in both DAPGW-M and MASHR-M
models, while gray dots are associations present in only one of them. For shared genes,
both models tend to agree in association direction and magnitude. The concordance is
higher for significant associations, while poorly associated genes might even disagree in
direction.
This behavior is common to all analyzed trait-tissue pairs.
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Supplementary Figure 3. This figure compares the number of S-PrediXcan
associations achieving coloc’s probability of colocalization PP4 > 0.5.
In panel A, the number of detections based on coloc doesn’t clearly distinguish
between the four methods. This is likely caused by coloc’s assumption of only one
causal variant: since genes selected by coloc tend to have less allellic heterogeneity, they
behave similarly across the four model strategies.
In panel B, we observe that the fraction of significant genes that are also colocalized is
slightly better for MASHR-M in general.

Supplementary Figure 4. CTIMP Models using all variants
(CTIMP-M-AS) vs HapMap variants (CTIMP-M).
Panel A shows cross-validated prediction performance R2. When both methods
converge, they tend to achieve similar prediction performances, with CTIMP-M-AS
doing slightly better on some genes.
Panel B compares S-PrediXcan associations for CTIMP-M and CTIMP-M-AS,
showing a high level of agreement.
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Supplementary Figure 5. CTIMP Models summary. We compare here CTIMP
using all variants (abbreviated as CTIMP-M-AS) to CTIMP using only HapMap
variants (abbreviated as CTIMP-M), for genes in chromosome 1. We observed no
significant difference between CTIMP-M and CTIMP-M-AS.
Panel A shows the number of generated models for protein coding genes, pseudo genes
and lncRNA.
Panel B compares prediction performance for all gene-tissue pairs, for sample tissues
(ordered from smallest sample size to largest sample size). The differences in
performance are negligible.
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Supplementary Figure 6. CTIMP’s PrediXcan associations for 4 sample
traits from CTIMP models using all variants (abbreviated as CTIMP-M-AS) to
CTIMP using only HapMap variants (abbreviated as CTIMP-M), for genes in
chromosome 1. Both panels show absolute values of association z-score for gene-tissue
pairs, to Fasting Insulin (INSUL), Coronary Artery Disease (CAD), Schizophrenia
(SCZ) and Height (HEIGHT); traits are ordered from lowest to highest number of
uniquely associated genes. The left panel shows all associations, whereas the right panel
shows colocalized associations. We observed no significant difference between CTIMP-M
and CTIMP-M-AS.
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