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ABSTRACT

Purpose

Neuroscience methods working on widely different scales can complement and inform each other. At
the macroscopic scale, magnetic resonance imaging methods that estimate microstructural measures have
much to gain from ground truth validation and models based on accurate measurement of that
microstructure. We present an approach to generate rich and accurate geometric models of white matter
microstructure through dense segmentation of 3D electron microscopy (EM).

Methods

Volumetric data of the white matter of the genu of the corpus callosum of the adult mouse brain were
acquired using serial blockface scanning electron microscopy (SBF-SEM). A segmentation pipeline was
developed to separate the 3D EM data into compartments and individual cellular and subcellular
constituents, making use of established tools as well as newly developed algorithms to achieve accurate
segmentation of various compartments.

Results

The volume was segmented into six compartments comprising myelinated axons (axon, myelin sheath,
nodes of Ranvier), oligodendrocytes, blood vessels, mitochondria, and unmyelinated axons. The
myelinated axons had an average inner diameter of 0.56 um and an average outer diameter of 0.87 um.
The diameter of unmyelinated axons was 0.43 um. A mean g-ratio of 0.61 was found for myelinated
axons, but the g-ratio was highly variable between as well as within axons.

Conclusion

The approach for segmentation of 3D EM data yielded a dense annotation of a range of white matter
compartments that can be interrogated for their properties and used for in silico experiments of brain
structure. We provide the resulting dense annotation as a resource to the neuroscience community.

Keywords:

serial blockface scanning electron microscopy, white matter segmentation, corpus callosum, g-ratio,
axon diameter distribution
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INTRODUCTION

The white matter (WM) shapes an integral part of brain function. Not only does it
determine the precise long-range anatomical connectivity between brain regions, its
microstructure also alters the conduction and timing of physiological signals [1]. To
understand the functional architecture of the brain it is required that connections are
identified at multiple levels of inquiry [2]. A detailed description of the connectivity of
the brain is sought through major collaborative undertakings, such as in the Human
Connectome Project [3] using magnetic resonance imaging (MRI). On the most
detailed scale, 3D electron microscopy (EM) techniques are used to chart individual
connections in simpler animals [4]. Similarly, a large body of research is devoted to a
multitude of microstructural properties of individual axons (e.g. myelination [5],
microtubules [6], mitochondria [7]). At the macroscopic end, a relatively new field is
looking into mapping aggregate indices of WM microstructure in the whole human

brain with MRI [8,9].

One of the biggest challenges in neuroscience today is elucidating the links between
these scales measured with MRl and EM [10-12]. To interpret the aggregate signal
from voxels in MRI, computational models that predict properties from the data are
essential. Ideally, these computational models should be firmly grounded in
observations at the microstructural level where the signal is generated. Some models
have derived their properties from 2D histological data [13], but these data lack the

complexity of the 3D structure of the tissue found in a typical MRI voxel. Conversely,
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3D EM methods can provide data with a detail that is uniquely appropriate to achieve
this goal. The development and validation of MR-based microstructure mapping
techniques can benefit greatly from accurate 3D models of WM microstructure.
Therefore, we have developed a pipeline for the reconstruction of 3D EM data of the

WM that deals with the specific demands of this tissue type.

To render these 3D EM datasets suitable for this purpose, the cellular constituents
and features need to be extracted and assessed on their relevance to the influence
on the MRI signal. The accurate segmentation of the enormous amounts of data from
the 3D EM technique is very challenging, as the size of data precludes manual dense
(labelling all voxels) reconstruction approaches for anything but very small volumes.
Over the past decades some excellent approaches for segmenting grey matter (GM)
have been proposed and published in software libraries. These include manual tracing
packages (CATMAID [14], TrakEM [15], KNOSSOS [16]) as well as semi-automated
segmentation tools (llastik [17], SegEM [18], rhoANA [19]). Ultimately, though, dense
connectome mapping also requires inclusion of the long-range, white matter
connections. The projectome of the larval zebrafish has already been established with
the 3D EM technique using manual tracing [20] and there are efforts to achieve axon
tracing throughout the mammalian brain in 3D EM datasets [21]. Nonetheless,
comprehensive automated tracing of long-range heavily myelinated pathways
currently appears prohibitively demanding, with acquisition times of more than a year

for volumes equivalent to a cortical column [22].
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While EM-based mammalian connectome mapping is yet out of reach, 3D EM can be
used to inform and improve the MRI tools that are commonly employed to assess
brain connectivity and microstructure. Our specific goal of segmenting 3D EM
volumes is grounded in the general goal of building and validating biophysical models
for predicting MRI signals. These segmented volumes can be used as the substrate
for such models: for example, simulating the movement of water molecules in tissue
for calculating diffusion MRI signals [23] or capturing microgeometry for estimation of
microscopic field offsets in susceptibility-based MRI [24]. Monte Carlo diffusion
simulations, for instance, have the potential to accurately predict the signals
generated in an MRI voxel by a particular diffusion MRI sequences. Realistic
simulations require mesh models that include all tissue constituents that influence the
movement of water molecules underlying the diffusion MRI signal. This movement is
restricted or hindered by cell membranes of unmyelinated axons, the myelin sheath
and subcellular structures (mitochondria, microtubules, etc). These have to be
modelled as walls in the simulation environment. Ideally, individual objects have to
be identified and classified to a particular compartment to assign properties such as
permeability and drag that may be very different for various compartments. Therefore,
to obtain a comprehensive view of all signal components that contribute to the
diffusion MRI signal, dense segmentation of the tissue into individual objects is

desired.
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Alternatively, highly accurate 3D models could be used to validate conditions under
which simplifying assumptions can be made in biophysical models: for example, the
use of hollow, impermeable cylinders to mimic axons in diffusion MRI. Finally, these
models could provide a platform for in silico experimentation, in which changes to
different tissue properties could be explicitly manipulated to predict associated signal

changes.

The WM has specific properties that present both challenges and opportunities for
dense segmentation that warrant different approaches from those used for GM
segmentation. Firstly, while the thick membranous myelin wrappings do greatly
facilitate the tracing of myelinated axons, it is not without complications. For instance,
Nodes of Ranvier present themselves as gaps in the myelin sheath, necessitating
specific algorithms to deal with them. Furthermore, myelin sheaths need to be
assigned accurately to individual axons in some applications, including use in diffusion
MRI simulations where mesh representations of entire compartments are required.
Such segmentations are not always trivial because myelin sheaths often abut each
other and oligodendrocytes wrap their processes around multiple axons. A second
difference between the two tissue types is the more homogeneous organization of
the WM as compared to the GM. As WM is mainly composed of myelinated and
unmyelinated axons that are organized in bundles, a few cell body types
(oligodendrocytes and astrocytes) and blood vessels, the identification of individual
components is simplified compared to GM (where, for example, an important major

challenge is the identification of synapses). This relatively simple microstructure makes
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fully automated segmentation of WM into its cellular components more feasible than

for GM.

For the WM specifically, a limited number of automated segmentation approaches
have been published. AxonSeg is a Matlab-based library for segmentation of
myelinated axons in 2D histology slices [25]. It is primarily based on morphological
operations requiring a roughly circular cross section, but has been extended to a more
flexible deep learning extension [26]. Kreshuk et al., 2015 [27], leverage the widely
used llastik tool for segmentation of myelinated axons, complemented with an
algorithm to detect and close gaps at the nodes of Ranvier. The recently proposed
approach ACSON [28] uses bounded volume growing to provide an axon
segmentation of WM tissue from 3D EM datasets, but does not assign the myelin
compartment to individual axons. A random walker segmentation has been proposed
to segment myelinated axons from 3D-EM volumes for use in an MRI model of

orientation dispersion [12].

In this work, we present a pipeline for generating segmentations of WM tissue
compartments from 3D EM data that specifically aims to be useful for biophysical
models of MRI signals. In particular, we have designed this pipeline for the stringent
requirements of realistic Monte Carlo simulations of the diffusion MRI signal using
mesh representations of a range of tissue compartments. It builds on well-established

open-source tools that have proven accuracy for GM segmentation, but focuses on
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the unique characteristics of WM tissue. The raw datasets that were used to test the
pipeline, the final segmentations, as well as the code are made available. The Python

code can be downloaded from https://github.com/michielkleinnijenhuis/EM.
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METHODS

TISSUE HANDLING

Two animals were used to collect the data presented here. For the first dataset (DS1),
a male adult Balb/c mouse was perfused with Ringer’s solution with 20 units/ml of
heparin followed by a mixture of 2.5% glutaraldehyde and 2.0% formaldehyde in 0.1M
PIPES buffer and post-fixed overnight in the same solution. The brain was removed
and placed in buffer for 48 hours and then bisected mid-sagittally and sectioned at
100 pm using a vibratome. The genu of the corpus callosum was cut from the second
full section and this sample was prepared for 3D EM according to the protocol
described in [29], except that the 50% resin infiltration step was increased to overnight
and the samples were given an extra 48 hrs in 100% resin with multiple changes of

fresh resin over this time.

The second animal (dataset DS2) was a male adult MyRF transgenic mouse (not
activated). The perfusion of the animal was as above, but used 0.1M sodium
cacodylate with 4.35% sucrose as buffer. Vibratome sectioning was done at 300 um.
The corpus callosum was cut from a midsagittal section and was then bisected
anterior-posteriorly through the midbody. The anterior sample was prepared for 3D
EM up to the dehydration stage as for [29], then the dehydration and Durcupan resin

infiltration was performed with microwave assistance, using a Leica AMW.
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After EM preparation, the two resin-embedded samples were trimmed to ~0.5x0.5
mm blocks containing the genu, mounted on 3View pins using conductive epoxy and
baked at 60 °C overnight. The samples were then coated with ~15nm gold using a

Quorum 150 RES sputter coater.
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Figure 1. Segmentation pipeline for white matter 3D EM data. General overview of the stages and main
relations of the axon segmentation. The full segmentation is formed by consecutively segmenting myelinated
axons, myelin and unmyelinated axons (top row). The bottom row lists the minimally preprocessed input
volumes for these processing stages (data, myelin mask and probabilities) where arrows indicates which
volumes feed into which stages.

ELECTRON MICROSCOPY DATA ACQUISITION

Our pipeline () was tested on serial blockface scanning electron microscopy (SBF-SEM)
datasets acquired from the corpus callosum of the mouse brain. In SBF-SEM, an SEM
image of the blockface is acquired using the backscattered electron signal after which
a thin section is removed from the top of the blockface using a diamond knife. This
process is automated and repeated many times to build up the high resolution 3D
volume with minimal deformations from section to section (for a detailed review of

volume EM see [30]). The system consisted of a Zeiss Merlin Compact VP Scanning
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Electron Microscope (Carl Zeiss Ltd., Cambridge, UK) equipped with Gatan 3View 2XP

module.

The first dataset (DS1) was collected with an accelerating voltage of 5 kV in variable
pressure mode (50 Pa) using a 30 um aperture. Images were acquired as a 2x2
montage with 10% overlap each with a frame size of 4000x4000 pixels. The in-plane
resolution was 7.3x7.3 nm with a pixel dwell time of 3 us. The number of sections was
460 with a thickness of 50 nm. This yielded a field of view of ~60x60x23 pum after
stitching. The second dataset (DS2) was collected with an accelerating voltage of 3 kV
in variable pressure mode (35 Pa) using a 30 um aperture. Images were acquired with
a frame size of 8000x8000 pixels, a resolution of 7.0x7.0 nm (pixel dwell time 4 ps).
For DS2, 184 sections with a thickness of 100 nm were collected, yielding a field of
view of ~56x56x18.4 um. Both DS1 and DS2 were taken from the central region of

the genu of the corpus callosum, imaged along the sagittal plane.

REGISTRATION

Drift during SBEM acquisition means that slices require slight correction for alignment.
Slicewise linear registration was performed using the ‘Register Virtual Stack’ [31]
plugin in Fiji [32] using the middle section of the stack as the unmoving reference
(maxOctavesize=1024, no shrinking constraint, minimal inlier ratio=0.05). For the
montage acquisition, stitching of the sections was performed using the ‘Grid

Collection” plugin  [33] (regression threshold=0.30, max/avg displacement
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threshold=2.5, abs displacement threshold=3.5) with linear blending and subpixel

accuracy enabled.

PIXEL CLASSIFICATION

A classifier was trained for each dataset using the llastik [34] (v1.2.2-post1) ‘Pixel
classification’ workflow to assign probabilities (Figure 1: panel3) to each pixel to
belong to eight classes (Table 1a). Five of these classes represent compartments of
the tissue (myelin, myelinated axons, membranes, unmyelinated axons,
mitochondria), while three are annotated to detect the boundaries of the myelin
sheaths (inner and outer boundary) and mitochondria compartments (outer
boundary). The classes were interactively annotated in a block of 500x500xN, in a
minimum of 3 sections (Table 1a: fourth column; 25min/section), continuing
annotation for the mitochondria in a minimum of 6 additional sections (Table 1a: fifth
column; 2min/section); with sections distributed throughout the block. A subset of the
available features was selected to reduce computational load (Table 1b) guided by
the ‘Suggest Features’ widget in llastik. The classifier was then applied to the full 3D

volume.
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Table 1. Ilastik pixel classification. a.) Compartments and annotation. b.) Features used in

classification.
a.
code compartment color full annotation extra annotation MT
MM myelin sheath
MA myelinated axon
MT mitochondria
MB membrane UA
UA unmyelinated axon
MM_I MM inner boundary
MM_O MM outer boundary
MT_O MT outer boundary : .
500x500 px 500x500 px
b.
feature gaussian smoothing
color/intensity o=1.0px; 6=5.0px;
edge — gradient gaussian magnitude 6=3.5px; 0=10.0px;
texture — structure tensor eigenvalues o=1.0px; o=1.6px; 0=3.5px; 6=5.0px; 0=10.0px;

texture — hessian of gaussian eigenvalues o=1.6px; 6=3.5px;

MYELINATED AXONS

Myelinated axons were segmented through a combined 3D/2D connected
components procedure using scikit-image [35] (vO0.13). First, a myelin mask was
created by thresholding the data after smoothing with a 40 nm isotropic gaussian
kernel (Figure 1: panel1-2). Small unconnected segments in the otherwise fully
connected myelin were removed from the mask by rejecting segments <1.2 pm?
(mostly mitochondria). As the in-plane resolution of the sections exceeds the required
resolution to detect the myelin sheaths, the myelin mask was downsampled in-plane
by a factor of 7 before further processing, taking the 7x7 blockwise maximum for a

~50x50 nm in-plane resolution.
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Figure 2. Myelinated axon segmentation. Connected component labeling of the inverse of the myelin mask at
low resolution is performed in 3D (panel4-5) and 2D (panel6-11) for non-leaky and leaky axons, respectively.
For 3D-labeling, connected components are extracted from the myelin mask (panel4) after which rejection of
the largest label and very small labels and manual proofreading yields the non-leaky axons in the volume
(panelS). For 2D-labeling, steps can be summarized as 2D connected component labelling (panel6); label
rejection by classification (panel7) and proofreading (panel8); merging the label stacks by overlap in
neighbouring sections and filling minor gaps (panel9); closing larger gaps by watershed fill (panell0) in a
search region (box). The two streams are then combined to arrive at the volume with segmented myelinated
axons (panelll).
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A 3D connected component labelling was performed on the inverse of the 3D myelin
mask to segment the non-myelin space (Figure 2: panel4-5). All the connected
components of the non-myelin space were labelled in 3D, removing the largest label
(representing unmyelinated axon space) as well as small labels (<0.12 pm?
representing small volumes enclosed in between myelinated axons). Erroneous labels

were removed in a manual proofreading step using annotation in ITK-SNAP [36].

Because the myelin mask around many myelinated axons does not perfectly enclose
the axons, these axons are missed by the 3D labelling. Therefore, a 2D connected
component labelling was performed on each z-section (Figure 2: panel6-11) to

segment the non-myelin space. Features (Table 2) were computed for each label in
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order to distinguish labels representing myelinated axons from the remaining space

(unmyelinated axons, blood vessels, cell bodies).

Table 2. 2D label features.

Feature Description

area the area of the label

eccentricity of ellipse with same second-moments as the label
mean intensity of PmatPua within the label

solidity area / ared onyexnun of the label

extent area / aredyoundnox of the label

euler number the euler number of the label

For the first dataset that was processed (DS1), the selection of myelinated axons was
achieved by retaining only labels of which: 1.) the area was between 0.025 and 3.75
um?; 2.) the solidity was > 0.50; and 3.) the extent was > 0.30. Manual proofreading
was performed to remove false positive 2D-labels. On DS1 this required extensive
manual proofreading. This segmentation served as ground truth to train a support
vector classifier in scikit-learn [37] (v0.19.1) based on the features given in Table 2.
This more automated segmentation pipeline was then applied to dataset DS2. The
classifier was used to predict membership of the myelinated axon compartment for
each 2D-label of dataset DS2. As an extra selection step, 2D-labels in which the mean
intensity of the myelinated axon probability map from llastik classification was larger
than 0.8 were all included and 2D-labels with an area larger than 7.5 pm? were all

excluded.
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After the proofreading step, 2D-labels were aggregated to stacks over the z-direction.
Labels that overlap segments identified in the 3D labelling step were first masked
from the 2D-labeled volume (Figure 2: panel8). 2D-labels from neighbouring sections
were merged according to a criterion of a 50 % overlap. To close minor 1- or 2-section
gaps (due to missing labels in the stack), a morphological closing operation is used
along the z-direction, after which another aggregation is run, merging newly

connected labels using a 20% overlap criterion (Figure 2: panel9).

Any remaining unfinished segments from the 2D-labeled and 3D-labeled volumes
(e.g. separated by a node of Ranvier or a series of more than two false negatives in
the 2D-labeled volume) were merged and connected through a watershed procedure
(Figure 2: panel10). For each segment, merge candidates were sought in a region of
20x20xN; voxels above/below the segment (i.e. positioned above/below the centroid
of the 2D-label in the top/bottom section of the segment), where N, was increased in
successive iterations N,=[10, 40, 80]. In this search region, seeds were placed in the
border section: positive seeds consisted of the segment’s 2D-label and the remainder
of the voxels in this section were negative seeds, while the myelin space was masked
from the watershed operation. Merge candidates were identified by selecting
segments that 1) showed an overlap of more than 10 voxels with the positive label
after watershed; and 2) did not occupy any of the same sections as the seed segment
(i.e. did not backtrack). The segment with the largest overlap was selected for merging

with the seed segment.
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The gap in between the merged pair was then filled by performing a new watershed
using both the 2D-labels in the border sections as seeds. This watershed was
constrained within a cylindrical region projected between the label centroids in the
border sections of each of the two segments with a radius of double the equivalent
radius of the largest seed label. The space outside the cylinder was used as a negative
seed, while the myelin space was masked. Finally, segments that did not traverse
volume at this stage were mostly disconnected by a node of Ranvier where leaving
the volume. The procedure was adapted by using watershed fill to the volume

boundary instead of to a connecting segment.

To translate the resulting myelinated axons to the full-resolution volume, an
oversegmentation (in which the volume is partitioned into supervoxels: segments
consisting of multiple voxels likely to belong to the same structure - larger than a
voxel, but usually smaller than the axons themselves) was derived from the smoothed
data using a watershed in the space outside the myelin mask. Seeds were defined by
thresholding the data and labelling connected components (rejecting components
smaller than 0.0024 um?). To avoid any gaps between the upsampled axons and the
high-resolution myelin mask, the low-resolution myelinated axon labels were
upsampled to the full resolution and dilated to halfway the myelin sheath. The
myelinated axons in the full resolution were then obtained by merging any labels in

the oversegmentation that overlapped with the upsampled myelinated axons. Any
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segments of supervoxels extending outside the dilated myelinated axons were
removed and additionally, the union of the (non-dilated) myelinated axons and the
aggregated supervoxels was taken to ensure continuous axons (i.e. also including the
nodes of Ranvier). Thus, the dilated and non-dilated myelinated axon labels were the

outer and inner bounds on the myelinated axons at full resolution.

MITOCHONDRIA AND NODES OF RANVIER

Many mitochondria are included in the myelin mask and therefore form holes in the
myelinated axons. We want to segment these mitochondria as a separate subcellular
compartment, remove them from the myelin mask and include them in the myelinated
axon compartment. To label these mitochondria, two iterations of morphological
image closing (structure element of xyz=[29, 29, 5] voxels) and hole-filling are
performed on the mask of the myelinated axons. The morphological closing has the
added benefit of smoothing the boundary of the myelinated axons, in particular at
the nodes of Ranvier where the boundary was determined by the inner boundary of
the upsampled myelinated axons, rather than the aggregated supervoxels. However,
because this smoothing operation also adds thin sheets of voxels at the inner myelin
boundary—where its surface is concave on the scale of the structure element—that
do not represent mitochondria, the final mitochondria segmentation is achieved by
morphological opening (structure element of xyz=[15, 15, 1] voxels) of the difference

between the myelinated axon mask after and before closing, i.e. MAdosed - MA.
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Another subcellular compartment that is sesgmented are the nodes of Ranvier. Nodes
of Ranvier are characterized by the absence of myelin over a short length of the
myelinated axon. The resulting gaps in the reconstructed myelinated axons were
bridged by the gap-filling procedure as indicated above. Now, we can easily identify
the nodes of Ranvier by evaluating each myelinated axon over 2D sections, marking
any 2D labels that are not fully enclosed by the myelin mask. A node of Ranvier was
defined as a consecutive sequence of 2D labels in the myelinated axons that are not

fully enclosed by the myelin compartment and together span a length of >1 um.

MYELIN SHEATHS

The myelin mask represents the totality of all myelin sheaths, many of which are
abutting. We aim to represent each myelin sheath as a separate object. To separate
the individual sheaths, a watershed procedure is used (Figure 3). In order to generate
a seed region for each myelinated axon that closely follows the inner boundary of the
myelin sheath, the procedure uses the myelinated axon labels where the mitochondria
within the myelinated axons are included, but the nodes of Ranvier are removed
(Figure 3: panel12). The seeds are obtained by dilating the myelinated axon labels
into the myelin mask. For the watershed’s intensity input / landscape, the Euclidean
distance transform is used: for each voxel in the myelin mask, the distance to the
nearest voxel in any myelinated axon is calculated. The watershed is constrained to

voxels in the myelin mask with a maximal distance of 0.35 um to any myelinated axon.
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Figure 3. Myelin sheath separation. Subdividing the myelin mask into individual sheaths is based on
watershed from the myelinated axon seeds on the distance map of these myelinated axons (panell2-14). Biases
in sheath thickness where axons with different thickness touch are corrected through an iterative weighted
approach using the axon’s overall sheath thickness in a weighted distance map (panel 15-16). The hand-icon
indicates steps where manual proofreading effort is required.

The distance transform is agnostic to the thickness of the myelin sheath of individual
myelinated fibres. If two abutting myelinated axons have different sheath thickness,
the boundary based on the distance transform watershed will be skewed towards the
axon with the thicker sheath. To mitigate this issue, an iterative weighted-watershed
is performed, using a modulated distance map. The modulation is derived from the
median sheath thickness of the previous pass. The median will be a good
approximation of the axon'’s thickness under the assumptions that 1) over most of its
surface area, the sheath does not touch other sheaths with very different thickness;
and 2) the thickness of the sheath is relatively constant over the axon. The weighted
distance transform is calculated on a per-axon basis and modulated by a sigmoid
function with a width of the median sheath thickness of that axon multiplied by a
weighting factor w controlling the sensitivity (for this work w=10). Per-label weighted
distance maps are combined by taken the minimum over all maps. Additionally, in the
weighted watershed the mask is constrained to 1.5 times the median width around

each myelinated axon (1.2 times for the final iteration).
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UNMYELINATED AXONS, GLIA & BLOOD VESSELS

The remaining tissue compartments, mainly unmyelinated axons, are segmented by
automated classification using NeuroProof [38], a segmentation method that learns to
agglomerate a graph of supervoxels into neurons using features from the provided

probability maps (as obtained from the llastik pixel classification).

Our supervoxels are generated by watershed of the summed and smoothed (c=21
nm) probability map for intracellular space (Pics=Pwa+Pua). The seeds are obtained by
finding local maxima in the ICS probability map that are >0.1 um apart and exceed
Pics=0.8. We isolate the unmyelinated axon space by masking out the myelinated
axons as identified in the previous steps (axons, sheaths, mitochondria and nodes). In
addition, we mask out the mitochondria of the unmyelinated axons. These are
hypointense in the ICS probability map and we define their mask by thresholding at

Pics=0.2.

A ground truth segmentation was generated for a block of 500x500x430 voxels of
dataset DS1 by manually proofreading and merging the supervoxels in that block.
Next, a random forest classifier is trained on this annotated training dataset with
NeuroProof (settings: 5 iterations; strategy type 2; no mitochondria context). Finally,
with this classifier, the supervoxels of the full datasets are agglomerated to form the
processes of unmyelinated axons and glia, glial bodies and blood vessels with a

threshold setting of 0.5. This stage requires extensive proofreading to correct
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split/merge errors, although we chose not to pursue this here. Conversely, we have
improved on the output of the random forest classifier by specifically identifying the
large structures in the dataset (the glial bodies and blood vessels; further subdivided
into glial bodies, glial processes surrounding bodies, blood vessel lumen, blood
vessel walls, pericytes). This was achieved by performing a partial manual annotation
of each 10" slice (x-direction) in the low-resolution dataset using ITK-SNAP after which
these annotations are upsampled and the supervoxels that overlap with the manual

annotations are agglomerated to form these additional compartments.
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RESULTS

Dataset DS2 serves as an example of the detailed workflow and will be used for

demonstrating the pipeline’s features and limitations.

d.) compartment probabilities (split)
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Figure 4. Preprocessing results. a.) Block of 500%500x430 voxels of DS1 after registration. b.) The myelin
mask is obtained by thresholding the data after smoothing. The blue array indicates a node of Ranvier; the
magenta arrows indicate mitochondria included in the myelin mask. ¢.) Compartment probabilities from
Ilastik pixel classification. For compartments that were split into multiple classes (MM, MT), the colour of
the constituent classes are equal. d.) Compartment probabilities split over each class.
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PREPROCESSING

The 8-class probability map from llastik (Figure 4d) suggests that, as expected, the
myelin boundaries are well-defined (MM, MM_I, MM_O); the classifier can distinguish
between intracellular spaces for myelinated (MA) and unmyelinated axons (UA); the
thin membranes of unmyelinated axons (MB) are well-separated from the thick
membrane wrappings of the myelin compartment; however, the mitochondria
probability maps (MT, MT_O) contain high probability for myelin sheaths as well,

indicating the general difficulty of separating the myelin and mitochondria.

MYELINATED AXONS

The 3D-labelling stage in the segmentation of myelinated axons (Figure 5b) detected
1603 labels, after rejecting the largest label (representing the—almost completely
connected—unmyelinated axon space) and labels smaller than 0.12 um?*. A further 45
labels were rejected manually (required time: 25 min), because they represented false
positives enclosed between clusters of myelinated axons. 1422 labels traversed the
volume (Figure 5b: blue labels) and were considered complete myelinated axons. The
136 segments that did not traverse the volume were partial axons, either because the
segments were split by mitochondria included in the myelin mask; or because the
axon featured a very thin segment disconnecting the segments in the downsampled
mask (Figure 5b: green labels; white arrow). These segments are later merged with

other segments as part of the 2D-labelling stage.
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3D EM data

- downsampled in-plane x 7

3D MA labeling

- connected components
in myelin mask

- rejection of largest label
that represent unmyelinated
axon space

- manual proofreading (25 min)

Bl myelin mask (MM)
| ] myelinated axon complete (MA)
[ ] myelinated axon segment (MA)

2D MA labeling

- slicewise conn. components
in myelin mask

- - manual proofreading (4h)

of false positives

(red arrows)

¥ | 3D labeling results
5 W 2D label stacks

merge & fill gaps

- neighbour merge
by > 50% overlap
- handling section gaps
--- closing (< 3 sections)
--- watershed fill

| 3D labeling results

B merged stacks by dice

M close minor gaps

M bridge gaps by watershed

final MA labels

- all myelinated axons
identified at low resolution

B MA labels

Figure 5. Procedure for identification of myelinated axons (MA). The left and right panels show a small 3D
block and a slice view perpendicular to the direction of sectioning, respectively. a.) Data is downsampled in-
plane for segmenting the MA compartment. b.) A myelin mask is created by thresholding the data (red). An
initial set of myelinated axons is identified by 3D connected component labeling. Labels traversing the volume
(blue) were marked as finished, while segments (green) were transferred to the 2D-labeling stage. c.) 2D labels
after label classification. Stacks of 2D labels are obtained by slicewise 2D connected-component labeling of
the non-myelin space. The space already segmented by the 3D labelling procedure is masked and labels
representing myelinated axons are selected by automated classification. Residual false positives (e.g. red
arrows) are removed by manual proofreading. d.) Merging neighbouring labels by spatial overlap and closing
gaps in between the resulting segments using morphological closing (green; < 2 sections) and watershed fill
(red) ; labels identified by the 3D-labeling stage are masked in white. e.) Final segmentation of myelinated
axons at low resolution. Cyan asterisks indicate nodes of Ranvier. The axon indicated by the white arrow (a)
exemplifies various steps in the pipeline. It is not fully reconstructed in the 3D-labeling stage (b); it has
consecutive false negatives in the 2D-label stacks (c), but it’s segments formed in the 3D- and 2D-labeling
stages could be merged by the watershed-fill (d) to a full axon (e).


https://doi.org/10.1101/2020.03.19.979393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.979393; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

WHITE MATTER ELECTRON MICROSCOPY SEGMENTATION 26

The presence of nodes of Ranvier and other (unintended) holes in the myelin mask
results in leaky myelinated axons, which prompted a 2D-labeling approach for this
compartment (Figure 5c). For the first dataset (DS1), 2D-labels belonging to the
myelinated axon compartment were filtered according to a set of area and shape
criteria, after which a substantial proofreading effort was required to exclude false
positive labels outside myelinated axons (required time: ~80 h). The classifier that was
trained on the basis of dataset DS1 resulted in a considerably improved initial
classification of the 2D-labels of the subsequent dataset DS2. In DS2, both the filtering
and classification procedures were applied. The performance of two methods was
then evaluated - retrospectively, after proofreading of the myelinated axon
compartment to establish the ground truth myelinated axons for DS2. Supplementary
Figure 1 compares the the feature-filtering (Fig S1a) and feature-classification (Fig
S1b) approaches in terms of label assignment errors. False positives and have
significant negative impact on subsequent processing as they create erroneous axons.
False negatives result in gaps in the axons and need to be handled by gap-closing
and filling procedures. Using the automated classifier rather than filtering, false
positives reduced from 138,282 labels to 23,100 labels; and false negatives were
increased from 27,902 to 54,363. The percentage of correctly classified labels
increased from 81% to 92%. The manual proofreading after classification could now

be done in ~4 hours for dataset DS2.
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The 2D-labels were further processed by progressively aggregating them into larger
segments, until the axon traversed the volume. The first step consists of merging
neighbouring labels into stacks (Figure 5d; blue mask) using a criterion of a spatial
(Dice) overlap of >50%. Next, gaps of 1 or 2 sections were filled by morphological
closing in the z-direction (Figure 5d: green mask). After closing, newly connected label
segments were merged through a second run of the overlap merge using a 20%
overlap threshold. The result of merging neighbouring 2D-labels and closing small
gaps consisted of 179 finished axons, but also of 10,195 label segments that did not

traverse the volume.

Thus, the majority of leaky myelinated axons are still fragmented after the first
merging and closing attempt. These axons consist of segments with larger gaps,
because they have had several consecutive 2D-labels rejected (i.e. false negatives) in
the 2D-label classification step. Often, these locations had atypical cross-section (e.g.
narrow necks) or represent nodes of Ranvier (indicated by cyan asterisks in Fig. 5)

where the 2D-labels flood into the neighbouring unmyelinated axon space.

The watershed procedure to merge and fill these unfinished segments (including
those of the 3D labelling stage) was performed iteratively using a progressively larger
search region in the z-direction while masking out the finished axons after each
iteration. Iterations with closing extents of 10, 40, 80 sections yielded 441, 413 and

51 axons, respectively. The gaps closed by the watershed merge procedure are
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depicted by the red mask in Figure 5d. Labels smaller than 0.12 um? voxels were
removed at this stage, as they almost always represented residual false positives
(missed in the 2D-label proofreading) in the unmyelinated axon space. A final iteration
where the myelin mask was not used to constrain the watershed resulted in another
463 axons. This left 871 segments which were not merged by the procedure and were
merged by manual intervention (time required: ~16 h). The final myelinated axon

segmentation contained 3605 axons (Figure 5e).

mitochondria

- morphological closing and
hole-filling identifies
the mitochondria
in myelinated axons

¥ myelinated axon mask (MA)
B mitochondria mask (MT)

nodes of Ranvier

>1 pm of consecutive
sections not enclosed
by the myelin mask

l myelinated axon mask
I nodes of Ranvier
B myelin mask

Figure 6. Subdivision of the myelinated axons. a.) mitochondria in myelinated axons (marked in red) are
obtained by morphological closing and hole-filling. b.) nodes of Ranvier (green) are interuptions in the myelin
(red) around the myelinated axons (blue) and were defined as > 1 pm of consecutive sections not enclosed by
the myelin compartment.

Segmentation of the myelinated axons is completed in the full-resolution data. To
obtain the myelinated axons at full resolution, an oversegmentation was aggregated
by overlap with upsampled myelinated axons (Supplementary Figure 2). The

myelinated axon compartment is fine-tuned and subdivided by handling
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mitochondria and nodes of Ranvier (Figure 6). Mitochondria (Figure 6a) were first
included in the myelinated axons by morphological closing of the axons and filling
the holes left by the mitochondria. Nodes of Ranvier (Figure 6b) were identified by
finding consecutive series of 2D labels (>1 um along the z-direction) that were not
enclosed by a myelin sheath. In 3605 myelinated axons, representing a combined

length of 27.25 mm, 429 nodes of Ranvier were detected with a median length of 1.9

um.

MYELIN SHEATHS

With the myelinated axons and nodes of Ranvier carefully segmented, the
identification of myelin sheaths is straightforward. Individual myelin sheaths
encapsulating the axons were yielded by subdivision of the myelin mask (Figure 7a;
red mask) using a watershed of dilated myelinated axon seeds (Figure 7a; coloured

labels) on the distance transform of the myelinated axon compartment (Figure 7b).

However, the accuracy of this initial segmentation can be poor. One source of error
is that, based on this processing pipeline, myelin sheaths include mitochondria of
unmyelinated axons (Figure 7a; asterisks). Using an upper limit of 0.35 pm for the

myelin sheath thickness partly removes these mitochondria (Figure 7b; asterisks).

A second inaccuracy concerns abutting myelin sheaths with different sheath
thickness—a commonly observed configuration. In these locations, the separation of

sheaths is skewed towards the thicker sheath (Figure 7b; arrows). In addition to
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inaccuracies in the estimation of the sheaths’' thickness, the incorrect attribution of
voxels of the myelin mask results in distortion in the sheaths’ quasi-cylindrical

geometry (e.g. black arrow).

a. seeds and mask b. myelin sheaths C. corrected myelin sheaths

B! corrected myelin sheaths

d. boundary overlays

— boundary of uncorrected sheaths

— boundary of corrected sheaths

— manual tracing of sheaths in raw data

[ myelin mask (MM) B! separated myelin sheaths
I'| myelinated axons (seeds)

€. histograms of sheath thickness

I. sheath thickness 1. masked thickness 1ll. absolute differences IV. percentage change
500

! uncorrected ™ uncorrected (masked) I corrected - uncorrected I corrected - uncorrected
corrected correcte corrected - masked corrected - masked
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Figure 7. Myelin sheath separation and correction. a.) Myelinated axons are used as seeds to separate the
myelin mask (red) into individual sheaths with a watershed on the map of the distance from the myelinated
axon compartment mask. Asterisks indicate where mitochondria are included in the myelin mask. A manual
tracing of the sheaths is outlined with the white dashed line. b.) Separated sheaths show errors where myelin
sheaths of different thickness are touching, leading to overestimation of thin sheaths and underestimation of
thick sheaths (arrows). c.) Sheaths after 5 iterations of weighted watershed. d.) The boundary of the corrected
sheaths (green) follow the manual tracing (blue) more closely as compared to the boundary of the uncorrected
sheaths (red). e.) Corrected sheaths have a lower overall thickness mostly because they are constrained within
a mask of 1.2x the sheath thickness which decreases the myelin volume by removing erroneously included
(mitochondria) voxels from the sheaths (panel I). The extent of voxel reassignment to different labels can also
be evaluated by comparing the thicknesses of corrected vs uncorrected sheaths within the final corrected
myelin mask which removes the effect of a difference in total myelin volume (panel II). While the overall
thickness decreases, within this mask most sheaths show thickness increases (panel I1I). The corrections are
substantial (panel IV) with a typical 0—30% (mean 9.25%; std 10.9%) decrease in sheath thickness after
correction; and thickness changes due to voxel label reassignments typically ranging from -10—20% (mean
4.38%; std 10.0%).
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We have attempted to counter these errors through a weighted distance transform to
shift the sheaths’ outer boundaries towards their mostly likely true position as derived
from the median width over their entire length. Figure 7c shows the individual sheaths
after running five iterations of the weighted-distance watershed procedure proposed
to mitigate this issue. The restoration of the sheath geometry to circular cross-sections
is best appreciated in Figure 7c, while the overlay of boundaries in Figure 7d
demonstrates a better overlap between the manually traced boundaries (blue trace)
and the corrected sheaths (green trace) as compared to the uncorrected sheaths (red

trace).

Beyond the improved separation of abutting sheaths, the individual sheath thickness
was used for improvement of the sheaths’ outer perimeter by constraining it within
120% of the median sheath thickness from the myelinated axon. This also improved
the exclusion of mitochondria of the unmyelinated axons (Figure 7c; asterisks). In
effect, this reduction in the myelin volume by excluding misclassified voxels accounts
for most of the difference in sheath thickness distribution between the corrected and
uncorrected sheaths (Figure 7e; panel I). Evaluating the sheath thickness distributions
within the mask of the corrected sheaths, i.e. removing the effect of changes in total
myelin volume and only looking at voxel label reassignments within this mask (Figure
7e; panel ll), it is observed that after the correction most sheaths actually increased in

thickness. This is obviously at the expense of previously overestimated sheaths that
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decrease in thickness. Whereas the thickness decreases by an average of 9.3%
between the uncorrected and corrected sheaths due to the better-informed distance
threshold, within the final mask the median thickness regularization tends to shift the
sheaths towards a larger thickness between 0-20% with an average of 4.4% (Figure

7e; panel IV).

UNMYELINATED AXONS, GLIA & BLOOD VESSELS

The space not occupied by myelinated fibres was subdivided into individual
unmyelinated axons, blood vessels, cell bodies and cell processes by NeuroProof [38].
The three inputs to train the classifier (probability maps, oversegmentation and

ground truth) are shown in the top panel of Figure 8.

As an indication of the coarseness of the oversegmentation (Figure 8b), the training
volume, as masked to exclude the myelinated axons and sheaths, contained 3190
supervoxels, while the unmyelinated axon count in the ground truth was 164 (Figure

8¢).

The bottom panel of Figure 8 shows an example of prediction of unmyelinated axons
(Figure 8f) and compares it to a manual tracing of the axon boundaries (Figure 8d).
The boundary overlay in Figure 8g indicates that although most merges (that have

occurred in location where the red boundaries are visible) are correct, many
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supervoxels remain separated that should be merged (e.g. arrowheads) and some

supervoxels have been merged erroneously (asterisks).

l. training

b.) supervoxels

Il. agglomeration

1pm e.) supervoxels

f.) prediction

Figure 8. Segmentation of unmyelinated axons with NeuroProof. Panel I: training data. Panel II: example of
agglomeration result. a.) A 500x500 section showing probability map outputs of the 8-class Ilastik pixel
classifier in a colour blend (red—pooled myelin classes (Pviv+Pyv_1+Pyy_o0); green—pooled mitochondria
classes (Pvt+Pwmr 0); magenta—membranes of unmyelinated axons; cyan—unmyelinated axons; blue—
myelinated axons). b.) watershed oversegmentation derived from summed intracellular probability maps
(PmatPya). ¢.) ground truth annotation of a block of 500x500x430 voxels. d.) data from a block of dataset
DS2, overlaid with manual tracing of unmyelinated axon boundaries (blue dashed lines); e.) watershed
oversegmentation; f.) agglomerated axons predicted by NeuroProof; g.) overlay of the manual tracing (blue)
and the boundaries of the oversegmentation (red) and agglomeration (green). Although the result in g
appears plausible at first glance, a large amount of split (arrowheads) and merge (asterisks) errors remain
in the segmentation by fully automated classification without proofreading.
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outer inner

thickness

g-ratio

rad

angle

200 myelinated axons —-

Figure 9. Variations along the axons. The heatmaps show five different features for 200 randomly selected
axons over its extent. Each column represents a different axon. a.) Inner diameter of 200 myelinated fibres
over ~17 pum of their length. b.) Outer diameter. c.) Myelin thickness is relatively constant within axons (except
for the black patches representing nodes of Ranvier). d.) G-ratio variation along axons (nodes of Ranvier are
white patches here with g=1). e.) Angle with the bundle’s mean orientation.

COMPARTMENT PROPERTIES

In this section, we use the final segmentation of the SBF-SEM volume to demonstrate
the ability to extract estimates of compartmental properties of biological relevance.
Properties of WM tissue that have received considerable attention in the MRI
community are the axon diameter, the g-ratio (the ratio of the inner and outer
diameter of the myelin sheath) and orientation dispersion. These properties relate to
the fundamental function of WM and are of interest in health and disease. One area
of active research is to estimate these, and related, microstructural properties using
advanced MRI acquisition methods. However, these estimates remain controversial
due to the need for strong assumptions in the associated biophysical models and the

difficulty in sensitising the signal to these properties with conventional MRI scanners.
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As comparison between these MRI estimates and EM in the same tissue would be of

particular interest, Figure 9 shows examples of some of these properties varying along

the length of 200 randomly selected myelinated axons of dataset DS2.

a.) inner diameter
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Figure 10. Axon diameter distribution a.) The distribution of equivalent (circle) diameters of the myelinated
axons (494,891 cross-sections). b.) The distribution of the equivalent outer diameter of the myelin sheath. c.)
Variation in the axon diameter over the axon occurs, but is considerably less than than the variance of a
random permutation of the distribution. d.) The distribution of the equivalent diameter of unmyelinated

axons.

The myelinated axons had an average equivalent cross-sectional diameter of 0.56 um

(sd 0.28 um; median 0.51 um) and their size distribution is well-described by a gamma

distribution with shape k=4.1 and scale 6=0.14 (Figure 10a). The outer diameter,

including the myelin sheath, was 0.87 um (sd 0.31 um; median 0.81 um), on average,

and deviated from a gamma distribution. For unmyelinated axons (Figure 10d), a

mean diameter of 0.43 um (sd 0.30 um; median 0.36 um) was found.

To assess the sources of variance of the axon diameter within and across myelinated

axons, we calculated a value for the variance of the equivalent axon diameters of the

2D-labels comprising each axon, as well as from a random permutation of all these
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2D cross-sections in the dataset. The variance of the diameter within individual
myelinated axons over z-sections is much smaller as compared to when the values of
the section are randomly permuted across the dataset (Figure 10c), suggesting that
much of the variance in the diameter distribution can be ascribed to axons having a
range of calibres. Yet, the variation over sections along the axons is not negligible.
Figure 9 shows depth profiles of a set of 200 randomly selected axons from the set
that fully traversed the volume over all sections. Variation over depth of the
myelinated axon diameter is commonly observed (Figure 9b) and has a typical period
of >2 um and may well have alternations of the inner diameter (Figure 9a) between

very thin segments (<0.5 ym) and wide segments (>1 pum).

a.) g-ratio (sections) b.) g-ratio (axons) c.) g-ratio variance d.) g-ratio vs axon diameter
10000 | 120 ‘ 600 - -
M within-axon variance ®
permutation &
0.75
5000 60 300 0.5
0.25 |
— log-linear
0" 0 0
0 025 05 075 1 0 025 05 075 1 0 001 002 003 0.04 0o 05 1 15 2
g-ratio g-ratio g-ratio var inner diameter (um)

Figure 11. G-ratio distribution. a.) The distribution of g-ratio of all the cross-sectional axons (494,891 cross-
sections). b.) The shape of the distribution changes when pooling the g-ratio over the axons, because within-
axon g-ratio variation (due to varying axon diameter) is averaged out. E.g. the many thin segments of
myelinated axons (that mostly exhibit low g-ratios) may the reason for the skewness of the distribution in a),
which is obscured through averaging over the sections of axon. c.) The g-ratio shows variance over the
extent of the axon. Differences across axons are larger, yet overall modest as seen from the fairly tight
distribution in (b). d.) The relation between the inner axonal diameter and g-ratio can be described by a log-
linear fit as proposed in [39].

The g-ratio when measured for each axon and cross-section (Figure 11a) had an
average of 0.62 (sd: 0.12; median 0.63). When calculating a per-axon aggregate g-

ratio from the axon and myelin volume (Figure 11b), however, the g-ratio mean (and
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distribution) was 0.67 (sd: 0.079; median 0.67). This variation in g-ratio (Figure 11c¢) is
primarily driven by the axon diameter (Figure 9a) rather than the myelin thickness
which is homogeneous over the axon (Figure 9c). This pronounced g-ratio variation
over the extent of the axons has the consequence of diverging averages, because the

true g-ratio average over sections is lower than the aggregate g-ratio calculated from

the volumes pooled across sections as g = /1 — Vinyetin/Vsinre-

The dispersion of the myelinated axons is shown in Figure 12. Although the top view
on the axons suggests a high dispersion, the side view indicates a relatively
homogeneous bundle (Figure 12a). The histogram (Figure 12b) and orientation
distribution (Figure 12c) confirm a tight distribution around a mean that is 12° off the
z-axis. The dispersion is near-isotropic for this sample with & = 23.6 (ODI; = 0.0272)

and x; = 16.7 (ODI, = 0.0381) for a fit to a Bingham distribution [40].

a.) fibre paths b.) histogram c.) orientation distribution
pm'!

® |
K, =23.6,0DI, = 0.0272
K,=16.7,0DI, = 0.0381

pdf

Figure 12. Dispersion a.) Myelinated fibre pathways through the dataset as seen along the section direction
(left panel) and in an othogonal view (right panel). b.) Histogram of fibre segments. c.) The fibre orientation
distribution plotted on a sphere in a view along the section direction.
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DISCUSSION

In the development of novel methods in MRI research, identification of relevant and
informative features in the MRI signal has much to gain from accurate models of the
microstructure from which the signal is generated. We have presented a pipeline to
derive a representation of the brain’s WM microstructure at a (sub)cellular level by
dense segmentation. It includes the main cellular compartments (myelinated axons,
unmyelinated axons, glial cells, blood vessels) and various subcellular features of the
tissue relevant for a host of physiological processes (myelin sheaths, mitochondria,
nodes of Ranvier). This allows detailed interrogation of the datasets for tissue
properties and provides a testbed for probing specific microstructure manipulations.
The methods as well as data and accompanying segmentations are made available as

a resource to the neuroscience community.

We have attempted to design a pipeline that is as comprehensive as possible with
regards to the content of the acquired 3D EM data. We segmented the full datasets
and provide dense annotation: labelling all voxels as part of a specific cell and
attempting to assign them to subcellular structures where possible. We will highlight
the performance and utility of a number of these compartment annotations, and
discuss some relevant features that are lacking or might be inaccurate in our
segmentation. Also, we will provide suggestions on avenues for improvement and

application.


https://doi.org/10.1101/2020.03.19.979393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.979393; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

WHITE MATTER ELECTRON MICROSCOPY SEGMENTATION 39

PIPELINE FEATURES

Our pipeline uses progressive step-by-step compartment annotation and refinement,
starting with the easiest-to-segment objects down to more challenging objects. At
each stage, the already identified structures are masked from the process, reducing
errors in segmenting the more challenging objects. We have built our pipeline upon
tools that are accessible and readily available (scikit-image, llastik, ITK-SNAP,
NeuroProof). Where appropriate, computational cost and the burden of manual
intervention was reduced by working on more manageable low-resolution images,
with implementation of upsampling methods for representing the segmentations at
the full resolution of the acquisition. For other steps (llastik pixel classification,
generation of supervoxels, NeuroProof agglomeration), high performance distributed
computing with trivial parallelization (blockwise processing) to speed up computation

or large memory nodes (separation of myelin sheaths) were used.

A relevant novel feature that has been introduced in our segmentation approach is
the careful consideration of the accurate segmentation of abutting myelin sheaths.
Myelin sheath thickness is a parameter of considerable interest in neuroscience. It is
an important factor in signal conduction velocity [41] and may be used as a marker for
disease [42]. Together with the axon diameter it determines the g-ratio. Both the
aggregate axonal calibre and g-ratio have been suggested to be MRI-detectable
[43,44], although questions remain regarding both in-vivo translation and accuracy. In
our data, myelin thickness was found to be roughly homogeneous within axons, but

neighbouring axons may have very different myelin sheath thickness. Because
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abutting sheaths cannot be distinguished by textural features in EM, a common
approach to separate sheaths is by watershed of the Euclidian distance transform.
However, the watershed line on the midway point between the axons is an inaccurate
representation of the myelin structure. As the myelin properties are one of the main
measures of interest from the segmentation, we found it essential to improve the
separation of the sheaths. In our pipeline we used an iterative weighted watershed
that takes the median thickness of the sheath over the axon into account. The median
thickness yields a good prediction of the true sheath thickness at the site of touching
axons, provided the sheath thickness is fairly constant over the individual axon and
the largest surface of the axon does not touch other myelinated axons. We have
shown that this inaccuracy of a basic watershed on the distance transform affects a
large proportion of axons and that the misestimation of the thickness is non-
negligible. For accurate quantification of myelin thickness from segmentations using
the watershed approach, it is therefore necessary to employ a correction that counters

this bias.

COMPARTMENT PROPERTIES

The diameter of myelinated axons as measured by the equivalent circle diameter in
the dataset described here (mean 0.56 um; sd 0.28 um) is in accordance with the
average diameter reported in similar recent studies by West et al., 2015 [45] (mean
0.56 um; sd 0.32 um), Sepehrband et al., 2016 [46] (mean 0.54 pm; sd 0.28 pm) and

Abdollahzadeh et al. 2019 [28], but markedly different from Lee et al., 2019 [12] (mean
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0.99 um; sd 0.42 um). This difference may be explained by selection of larger axons

through the random walker segmentation that disregards leaky axons.

In contrast to what was found by Sepherband et al., 2016 [47] and Lee et al., 2019
[12], we did not obtain a better fit of the inner axonal diameters to the generalized
extreme value distribution (not shown) as compared to the gamma distribution,
although the log-likelihood was marginally better for the generalized extreme value
distribution. For the outer diameter, however, the generalized extreme value
distribution was markedly better than the gamma distribution. Our measurements are
in agreement with Lee et al., 2019 [12] about within-axon variance of the myelinated
axon diameter, arriving at slightly higher, but comparable, coefficients of variation

(CVinner: mean 0.37, median 0.35, sd 0.15; CVouer: mean 0.23, median 0.22, sd 0.10).

In this study, we specifically note that the g-ratio not only varies across axons, but also
within axons (CV: mean 0.16, median 0.15, sd 0.078) due to pronounced variation of
axon diameter while maintaining constant myelin thickness over the axon’s extent
(except for nodes of Ranvier, which were excluded from g-ratio analysis; ). Although
it does not invalidate MRI-based g-ratio models (since they are specifically designed
to be agnostic about the internal distribution of myelin within the voxel), this point has

been overlooked in the literature.
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The dispersion of myelinated axons was low and showed little directional difference.
The Bingham distribution fit yielded k1 = 23.6 and k2 = 16.7, where estimates of other
studies that evaluate dispersion in 3D are: k1 = 19 and k2 = 5[12]; k1 = 21 and k2 = 12
[48]. During our acquisition, the dataset location was specifically selected as a region
where the top surface of the sample block visible during setup of the acquisition did
not contain many cell bodies and blood vessels, but rather a region dominated by
axons, with a quasi-circular cross-section. It is probable that this selection bias is
responsible for the absence of dispersion in the dataset and that it represents a value

near the lower bound of dispersion found in the corpus callosum.

LIMITATIONS

Despite our best efforts to minimize errors in the segmentation, inaccuracies remain.
Some of these are due to our methods not functioning as intended, others due to
unmet demands (e.g. non-trivial myelin geometry) and yet others are inaccuracies of

representation of the compartments (e.g. omission of the extracellular space).

One challenge lies in the complexity of the organization of even the most regularly
ordered white matter bundle investigated here. An example is where myelin sheaths
do not form simple wraps, but expand from oligodendrocyte process towards multiple
axons or are not tightly compacted. These cases are not handled by algorithms in our
pipeline. Improvements may be achieved in future implementations by specifically

modelling the myelin sheath as continuous closed surfaces.
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Our pipeline works best for coherent axon bundles oriented perpendicular to an
ordinal axis (the direction of sectioning). Axons traversing the volume obliquely have
aberrant cross-sectional shape and labels are more likely to be rejected in our 2D
processing steps. For these axons, more extensive manual correction was required

which would increase with more heterogeneous orientation distributions.

We have used machine learning classification of the unmyelinated axons by means of
the NeuroProof software library. Although this tool delivers an initial dense
segmentation, it still requires extensive proofreading to correct split/merge errors. We
have not corrected these errors in the datasets presented here, as our intended
applications do not strictly necessitate it. If required for the particular application, the
unmyelinated compartment could be improved by using proofreading tools such as

guided proofreading [49].

Although we have achieved segmentation of cellular constituents of the tissue, it has
to be considered that 20% of the volume of white matter tissue is extracellular space
(ECS) [50]. The sample preparation procedures in EM reduce the ECS volume to the
point that there is little space between axons. This poses a problem for the accurate
representation of the tissue state in vivo. This is particularly relevant in the application
of diffusion MRI simulations, because the protons diffusing unrestrictedly in the ECS

can be an important contributor to the diffusion MRI signal. A way to handle the


https://doi.org/10.1101/2020.03.19.979393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.979393; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

WHITE MATTER ELECTRON MICROSCOPY SEGMENTATION 44

absence of the ECS in the EM data is to artificially erode the individual axon labels
until they occupy a volume fraction of 0.8, after which the aggregate voxelvolume can
be rescaled to reinstate the original axon volumes. However, it is not certain that the
shape of the artificially induced ECS is a good representation of the in vivo situation.
We have explored alternative EM preparation methods that preserve the ECS [21],
but it is still not known if the ECS morphology in these preparations is representative
of in vivo tissue structure. This specific issue is just one example of the general concern
of morphological changes of the cells associated with various preparation protocols.
For instance, the cross-sectional shape of axons is affected by artefacts from chemical
fixation and ethanol dehydration, as compared to their shape observed following high
pressure freezing and freeze substitution [51]. In sum, tissue preparation methods may
be an important caveat in the interpretation of morphological shape measures and
absolute volumetric measurement. Therefore, proper consideration must be given to
any conclusions derived from these measures when generalising them to the in vivo

situation.
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CONCLUSIONS

We have presented an approach for dense and detailed segmentation of 3D EM data
of WM. A novel element in the pipeline of specific interest for white matter
investigations is the method for myelin segmentation that yields accurate boundaries
for the individual axons. The segmentation consists of individual cells in the volume,
as well as nested subcellular components, such as myelin, mitochondria and the nodes
of Ranvier. These objects can be interrogated for their morphological properties and
can be used in validation and development of biophysical models for predicting MRI
signals. This work has presented benchmark statistics of MRI-accessible
microstructural properties (axon diameter and g-ratios). Future work will focus on the
comparison between white matter regions and application of models in in silico

experiments.
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