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ABSTRACT 33 

Purpose 34 
Neuroscience methods working on widely different scales can complement and inform each other. At 35 
the macroscopic scale, magnetic resonance imaging methods that estimate microstructural measures have 36 
much to gain from ground truth validation and models based on accurate measurement of that 37 
microstructure. We present an approach to generate rich and accurate geometric models of white matter 38 
microstructure through dense segmentation of 3D electron microscopy (EM).  39 
 40 
Methods 41 
Volumetric data of the white matter of the genu of the corpus callosum of the adult mouse brain were 42 
acquired using serial blockface scanning electron microscopy (SBF-SEM). A segmentation pipeline was 43 
developed to separate the 3D EM data into compartments and individual cellular and subcellular 44 
constituents, making use of established tools as well as newly developed algorithms to achieve accurate 45 
segmentation of various compartments.  46 
 47 
Results 48 
The volume was segmented into six compartments comprising myelinated axons (axon, myelin sheath, 49 
nodes of Ranvier), oligodendrocytes, blood vessels, mitochondria, and unmyelinated axons. The 50 
myelinated axons had an average inner diameter of 0.56 μm and an average outer diameter of 0.87 μm. 51 
The diameter of unmyelinated axons was 0.43 μm. A mean g-ratio of 0.61 was found for myelinated 52 
axons, but the g-ratio was highly variable between as well as within axons. 53 
 54 
Conclusion 55 
The approach for segmentation of 3D EM data yielded a dense annotation of a range of white matter 56 
compartments that can be interrogated for their properties and used for in silico experiments of brain 57 
structure. We provide the resulting dense annotation as a resource to the neuroscience community. 58 
 59 
 60 

Keywords:  61 

serial blockface scanning electron microscopy, white matter segmentation, corpus callosum, g-ratio, 62 
axon diameter distribution 63 
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INTRODUCTION 65 

The white matter (WM) shapes an integral part of brain function. Not only does it 66 

determine the precise long-range anatomical connectivity between brain regions, its 67 

microstructure also alters the conduction and timing of physiological signals [1]. To 68 

understand the functional architecture of the brain it is required that connections are 69 

identified at multiple levels of inquiry [2]. A detailed description of the connectivity of 70 

the brain is sought through major collaborative undertakings, such as in the Human 71 

Connectome Project [3] using magnetic resonance imaging (MRI). On the most 72 

detailed scale, 3D electron microscopy (EM) techniques are used to chart individual 73 

connections in simpler animals [4]. Similarly, a large body of research is devoted to a 74 

multitude of microstructural properties of individual axons (e.g. myelination [5], 75 

microtubules [6], mitochondria [7]). At the macroscopic end, a relatively new field is 76 

looking into mapping aggregate indices of WM microstructure in the whole human 77 

brain with MRI [8,9].  78 

 79 

One of the biggest challenges in neuroscience today is elucidating the links between 80 

these scales measured with MRI and EM [10–12]. To interpret the aggregate signal 81 

from voxels in MRI, computational models that predict properties from the data are 82 

essential. Ideally, these computational models should be firmly grounded in 83 

observations at the microstructural level where the signal is generated. Some models 84 

have derived their properties from 2D histological data [13], but these data lack the 85 

complexity of the 3D structure of the tissue found in a typical MRI voxel. Conversely, 86 
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3D EM methods can provide data with a detail that is uniquely appropriate to achieve 87 

this goal. The development and validation of MR-based microstructure mapping 88 

techniques can benefit greatly from accurate 3D models of WM microstructure. 89 

Therefore, we have developed a pipeline for the reconstruction of 3D EM data of the 90 

WM that deals with the specific demands of this tissue type. 91 

 92 

To render these 3D EM datasets suitable for this purpose, the cellular constituents 93 

and features need to be extracted and assessed on their relevance to the influence 94 

on the MRI signal. The accurate segmentation of the enormous amounts of data from 95 

the 3D EM technique is very challenging, as the size of data precludes manual dense 96 

(labelling all voxels) reconstruction approaches for anything but very small volumes. 97 

Over the past decades some excellent approaches for segmenting grey matter (GM) 98 

have been proposed and published in software libraries. These include manual tracing 99 

packages (CATMAID [14], TrakEM [15], KNOSSOS [16]) as well as semi-automated 100 

segmentation tools (Ilastik [17], SegEM [18], rhoANA [19]). Ultimately, though, dense 101 

connectome mapping also requires inclusion of the long-range, white matter 102 

connections. The projectome of the larval zebrafish has already been established with 103 

the 3D EM technique using manual tracing [20] and there are efforts to achieve axon 104 

tracing throughout the mammalian brain in 3D EM datasets [21]. Nonetheless, 105 

comprehensive automated tracing of long-range heavily myelinated pathways 106 

currently appears prohibitively demanding, with acquisition times of more than a year 107 

for volumes equivalent to a cortical column [22].  108 
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 109 

While EM-based mammalian connectome mapping is yet out of reach, 3D EM can be 110 

used to inform and improve the MRI tools that are commonly employed to assess 111 

brain connectivity and microstructure. Our specific goal of segmenting 3D EM 112 

volumes is grounded in the general goal of building and validating biophysical models 113 

for predicting MRI signals. These segmented volumes can be used as the substrate 114 

for such models: for example, simulating the movement of water molecules in tissue 115 

for calculating diffusion MRI signals [23] or capturing microgeometry for estimation of 116 

microscopic field offsets in susceptibility-based MRI [24]. Monte Carlo diffusion 117 

simulations, for instance, have the potential to accurately predict the signals 118 

generated in an MRI voxel by a particular diffusion MRI sequences. Realistic 119 

simulations require mesh models that include all tissue constituents that influence the 120 

movement of water molecules underlying the diffusion MRI signal. This movement is 121 

restricted or hindered by cell membranes of unmyelinated axons, the myelin sheath 122 

and subcellular structures (mitochondria, microtubules, etc). These have to be 123 

modelled as walls in the simulation environment. Ideally, individual objects have to 124 

be identified and classified to a particular compartment to assign properties such as 125 

permeability and drag that may be very different for various compartments. Therefore, 126 

to obtain a comprehensive view of all signal components that contribute to the 127 

diffusion MRI signal, dense segmentation of the tissue into individual objects is 128 

desired. 129 

 130 
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Alternatively, highly accurate 3D models could be used to validate conditions under 131 

which simplifying assumptions can be made in biophysical models: for example, the 132 

use of hollow, impermeable cylinders to mimic axons in diffusion MRI. Finally, these 133 

models could provide a platform for in silico experimentation, in which changes to 134 

different tissue properties could be explicitly manipulated to predict associated signal 135 

changes. 136 

 137 

The WM has specific properties that present both challenges and opportunities for 138 

dense segmentation that warrant different approaches from those used for GM 139 

segmentation. Firstly, while the thick membranous myelin wrappings do greatly 140 

facilitate the tracing of myelinated axons, it is not without complications. For instance, 141 

Nodes of Ranvier present themselves as gaps in the myelin sheath, necessitating 142 

specific algorithms to deal with them. Furthermore, myelin sheaths need to be 143 

assigned accurately to individual axons in some applications, including use in diffusion 144 

MRI simulations where mesh representations of entire compartments are required. 145 

Such segmentations are not always trivial because myelin sheaths often abut each 146 

other and oligodendrocytes wrap their processes around multiple axons. A second 147 

difference between the two tissue types is the more homogeneous organization of 148 

the WM as compared to the GM. As WM is mainly composed of myelinated and 149 

unmyelinated axons that are organized in bundles, a few cell body types 150 

(oligodendrocytes and astrocytes) and blood vessels, the identification of individual 151 

components is simplified compared to GM (where, for example, an important major 152 

challenge is the identification of synapses). This relatively simple microstructure makes 153 
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fully automated segmentation of WM into its cellular components more feasible than 154 

for GM. 155 

 156 

For the WM specifically, a limited number of automated segmentation approaches 157 

have been published. AxonSeg is a Matlab-based library for segmentation of 158 

myelinated axons in 2D histology slices [25]. It is primarily based on morphological 159 

operations requiring a roughly circular cross section, but has been extended to a more 160 

flexible deep learning extension [26]. Kreshuk et al., 2015 [27], leverage the widely 161 

used Ilastik tool for segmentation of myelinated axons, complemented with an 162 

algorithm to detect and close gaps at the nodes of Ranvier. The recently proposed 163 

approach ACSON [28] uses bounded volume growing to provide an axon 164 

segmentation of WM tissue from 3D EM datasets, but does not assign the myelin 165 

compartment to individual axons. A random walker segmentation has been proposed 166 

to segment myelinated axons from 3D-EM volumes for use in an MRI model of 167 

orientation dispersion  [12].  168 

 169 

In this work, we present a pipeline for generating segmentations of WM tissue 170 

compartments from 3D EM data that specifically aims to be useful for biophysical 171 

models of MRI signals. In particular, we have designed this pipeline for the stringent 172 

requirements of realistic Monte Carlo simulations of the diffusion MRI signal using 173 

mesh representations of a range of tissue compartments. It builds on well-established 174 

open-source tools that have proven accuracy for GM segmentation, but focuses on 175 
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the unique characteristics of WM tissue. The raw datasets that were used to test the 176 

pipeline, the final segmentations, as well as the code are made available. The Python 177 

code can be downloaded from https://github.com/michielkleinnijenhuis/EM. 178 

179 
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METHODS 180 

TISSUE HANDLING 181 

Two animals were used to collect the data presented here. For the first dataset (DS1), 182 

a male adult Balb/c mouse was perfused with Ringer’s solution with 20 units/ml of 183 

heparin followed by a mixture of 2.5% glutaraldehyde and 2.0% formaldehyde in 0.1M 184 

PIPES buffer and post-fixed overnight in the same solution. The brain was removed 185 

and placed in buffer for 48 hours and then bisected mid-sagittally and sectioned at 186 

100 µm using a vibratome. The genu of the corpus callosum was cut from the second 187 

full section and this sample was prepared for 3D EM according to the protocol 188 

described in [29], except that the 50% resin infiltration step was increased to overnight 189 

and the samples were given an extra 48 hrs in 100% resin with multiple changes of 190 

fresh resin over this time. 191 

 192 

The second animal (dataset DS2) was a male adult MyRF transgenic mouse (not 193 

activated). The perfusion of the animal was as above, but used 0.1M sodium 194 

cacodylate with 4.35% sucrose as buffer. Vibratome sectioning was done at 300 µm. 195 

The corpus callosum was cut from a midsagittal section and was then bisected 196 

anterior-posteriorly through the midbody. The anterior sample was prepared for 3D 197 

EM up to the dehydration stage as for [29], then the dehydration and Durcupan resin 198 

infiltration was performed with microwave assistance, using a Leica AMW.  199 

 200 
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After EM preparation, the two resin-embedded samples were trimmed to ~0.5x0.5 201 

mm blocks containing the genu, mounted on 3View pins using conductive epoxy and 202 

baked at 60 °C overnight. The samples were then coated with ~15nm gold using a 203 

Quorum 150 RES sputter coater. 204 

 205 

 206 
Figure 1. Segmentation pipeline for white matter 3D EM data. General overview of the stages and main 207 
relations of the axon segmentation. The full segmentation is formed by consecutively segmenting myelinated 208 
axons, myelin and unmyelinated axons (top row). The bottom row lists the minimally preprocessed input 209 
volumes for these processing stages (data, myelin mask and probabilities) where arrows indicates which 210 
volumes feed into which stages.  211 

 212 

ELECTRON MICROSCOPY DATA ACQUISITION 213 

Our pipeline () was tested on serial blockface scanning electron microscopy (SBF-SEM) 214 

datasets acquired from the corpus callosum of the mouse brain. In SBF-SEM, an SEM 215 

image of the blockface is acquired using the backscattered electron signal after which 216 

a thin section is removed from the top of the blockface using a diamond knife. This 217 

process is automated and repeated many times to build up the high resolution 3D 218 

volume with minimal deformations from section to section (for a detailed review of 219 

volume EM see [30]). The system consisted of a Zeiss Merlin Compact VP Scanning 220 
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Electron Microscope (Carl Zeiss Ltd., Cambridge, UK) equipped with Gatan 3View 2XP 221 

module. 222 

 223 

The first dataset (DS1) was collected with an accelerating voltage of 5 kV in variable 224 

pressure mode (50 Pa) using a 30 µm aperture. Images were acquired as a 2x2 225 

montage with 10% overlap each with a frame size of 4000x4000 pixels. The in-plane 226 

resolution was 7.3x7.3 nm with a pixel dwell time of 3 µs. The number of sections was 227 

460 with a thickness of 50 nm. This yielded a field of view of ~60x60x23 µm after 228 

stitching. The second dataset (DS2) was collected with an accelerating voltage of 3 kV 229 

in variable pressure mode (35 Pa) using a 30 µm aperture. Images were acquired with 230 

a frame size of 8000x8000 pixels, a resolution of 7.0x7.0 nm (pixel dwell time 4 µs). 231 

For DS2, 184 sections with a thickness of 100 nm were collected, yielding a field of 232 

view of ~56x56x18.4 µm. Both DS1 and DS2 were taken from the central region of 233 

the genu of the corpus callosum, imaged along the sagittal plane. 234 

 235 

REGISTRATION 236 

Drift during SBEM acquisition means that slices require slight correction for alignment. 237 

Slicewise linear registration was performed using the ‘Register Virtual Stack’ [31] 238 

plugin in Fiji [32] using the middle section of the stack as the unmoving reference 239 

(maxOctavesize=1024, no shrinking constraint, minimal inlier ratio=0.05). For the 240 

montage acquisition, stitching of the sections was performed using the ‘Grid 241 

Collection’ plugin [33] (regression threshold=0.30, max/avg displacement 242 
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threshold=2.5, abs displacement threshold=3.5) with linear blending and subpixel 243 

accuracy enabled. 244 

 245 

PIXEL CLASSIFICATION 246 

A classifier was trained for each dataset using the Ilastik [34] (v1.2.2-post1) ‘Pixel 247 

classification’ workflow to assign probabilities (Figure 1: panel3) to each pixel to 248 

belong to eight classes (Table 1a). Five of these classes represent compartments of 249 

the tissue (myelin, myelinated axons, membranes, unmyelinated axons, 250 

mitochondria), while three are annotated to detect the boundaries of the myelin 251 

sheaths (inner and outer boundary) and mitochondria compartments (outer 252 

boundary). The classes were interactively annotated in a block of 500x500xNz in a 253 

minimum of 3 sections (Table 1a: fourth column; 25min/section), continuing 254 

annotation for the mitochondria in a minimum of 6 additional sections (Table 1a: fifth 255 

column; 2min/section); with sections distributed throughout the block. A subset of the 256 

available features was selected to reduce computational load (Table 1b) guided by 257 

the ‘Suggest Features’ widget in Ilastik. The classifier was then applied to the full 3D 258 

volume. 259 

 260 

 261 

 262 

 263 
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Table 1. Ilastik pixel classification. a.) Compartments and annotation. b.) Features used in 264 
classification. 265 

a. 266 

code compartment color full annotation extra annotation MT 
     

MM myelin sheath  

  

MA myelinated axon  

MT mitochondria  

MB membrane UA  

UA unmyelinated axon  

MM_I MM inner boundary  

MM_O MM outer boundary  

MT_O MT outer boundary  

   500x500 px 500x500 px 

b. 267 

feature gaussian smoothing 

  
color/intensity s=1.0px;  s=5.0px; 
edge – gradient gaussian magnitude s=3.5px;  s=10.0px; 
texture – structure tensor eigenvalues s=1.0px;  s=1.6px;  s=3.5px;  s=5.0px;  s=10.0px; 
texture – hessian of gaussian eigenvalues s=1.6px;  s=3.5px; 
  

 268 

MYELINATED AXONS 269 

Myelinated axons were segmented through a combined 3D/2D connected 270 

components procedure using scikit-image [35] (v0.13). First, a myelin mask was 271 

created by thresholding the data after smoothing with a 40 nm isotropic gaussian 272 

kernel (Figure 1: panel1-2). Small unconnected segments in the otherwise fully 273 

connected myelin were removed from the mask by rejecting segments <1.2 µm3 274 

(mostly mitochondria). As the in-plane resolution of the sections exceeds the required 275 

resolution to detect the myelin sheaths, the myelin mask was downsampled in-plane 276 

by a factor of 7 before further processing, taking the 7x7 blockwise maximum for a 277 

~50x50 nm in-plane resolution.  278 

 279 
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 280 
Figure 2. Myelinated axon segmentation. Connected component labeling of the inverse of the myelin mask at 281 
low resolution is performed in 3D (panel4-5) and 2D (panel6-11) for non-leaky and leaky axons, respectively. 282 
For 3D-labeling, connected components are extracted from the myelin mask (panel4) after which rejection of 283 
the largest label and very small labels and manual proofreading yields the non-leaky axons in the volume 284 
(panel5). For 2D-labeling, steps can be summarized as 2D connected component labelling (panel6); label 285 
rejection by classification (panel7) and proofreading (panel8); merging the label stacks by overlap in 286 
neighbouring sections and filling minor gaps (panel9); closing larger gaps by watershed fill (panel10) in a 287 
search region (box). The two streams are then combined to arrive at the volume with segmented myelinated 288 
axons (panel11). 289 

 290 

A 3D connected component labelling was performed on the inverse of the 3D myelin 291 

mask to segment the non-myelin space (Figure 2: panel4-5). All the connected 292 

components of the non-myelin space were labelled in 3D, removing the largest label 293 

(representing unmyelinated axon space) as well as small labels (<0.12 µm3; 294 

representing small volumes enclosed in between myelinated axons). Erroneous labels 295 

were removed in a manual proofreading step using annotation in ITK-SNAP [36].  296 

 297 

Because the myelin mask around many myelinated axons does not perfectly enclose 298 

the axons, these axons are missed by the 3D labelling. Therefore, a 2D connected 299 

component labelling was performed on each z-section (Figure 2: panel6-11) to 300 

segment the non-myelin space. Features (Table 2) were computed for each label in 301 
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order to distinguish labels representing myelinated axons from the remaining space 302 

(unmyelinated axons, blood vessels, cell bodies).  303 

 304 

Table 2. 2D label features. 305 

Feature Description 

  
area the area of the label 
eccentricity of ellipse with same second-moments as the label 
mean intensity of PMA+PUA within the label 
solidity area / areaconvexhull of the label 
extent area / areaboundbox of the label 
euler number the euler number of the label 
  

 306 

For the first dataset that was processed (DS1), the selection of myelinated axons was 307 

achieved by retaining only labels of which: 1.) the area was between 0.025 and 3.75 308 

µm2; 2.) the solidity was > 0.50; and 3.) the extent was > 0.30. Manual proofreading 309 

was performed to remove false positive 2D-labels. On DS1 this required extensive 310 

manual proofreading. This segmentation served as ground truth to train a support 311 

vector classifier in scikit-learn [37] (v0.19.1) based on the features given in Table 2. 312 

This more automated segmentation pipeline was then applied to dataset DS2. The 313 

classifier was used to predict membership of the myelinated axon compartment for 314 

each 2D-label of dataset DS2. As an extra selection step, 2D-labels in which the mean 315 

intensity of the myelinated axon probability map from Ilastik classification was larger 316 

than 0.8 were all included and 2D-labels with an area larger than 7.5  µm2 were all 317 

excluded.  318 

 319 
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After the proofreading step, 2D-labels were aggregated to stacks over the z-direction. 320 

Labels that overlap segments identified in the 3D labelling step were first masked 321 

from the 2D-labeled volume (Figure 2: panel8). 2D-labels from neighbouring sections 322 

were merged according to a criterion of a 50 % overlap. To close minor 1- or 2-section 323 

gaps (due to missing labels in the stack), a morphological closing operation is used 324 

along the z-direction, after which another aggregation is run, merging newly 325 

connected labels using a 20% overlap criterion (Figure 2: panel9).  326 

 327 

Any remaining unfinished segments from the 2D-labeled and 3D-labeled volumes 328 

(e.g. separated by a node of Ranvier or a series of more than two false negatives in 329 

the 2D-labeled volume) were merged and connected through a watershed procedure 330 

(Figure 2: panel10). For each segment, merge candidates were sought in a region of 331 

20x20xNz voxels above/below the segment (i.e. positioned above/below the centroid 332 

of the 2D-label in the top/bottom section of the segment), where Nz was increased in 333 

successive iterations Nz=[10, 40, 80]. In this search region, seeds were placed in the 334 

border section: positive seeds consisted of the segment’s 2D-label and the remainder 335 

of the voxels in this section were negative seeds, while the myelin space was masked 336 

from the watershed operation. Merge candidates were identified by selecting 337 

segments that 1) showed an overlap of more than 10 voxels with the positive label 338 

after watershed; and 2) did not occupy any of the same sections as the seed segment 339 

(i.e. did not backtrack). The segment with the largest overlap was selected for merging 340 

with the seed segment.  341 
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 342 

The gap in between the merged pair was then filled by performing a new watershed 343 

using both the 2D-labels in the border sections as seeds. This watershed was 344 

constrained within a cylindrical region projected between the label centroids in the 345 

border sections of each of the two segments with a radius of double the equivalent 346 

radius of the largest seed label. The space outside the cylinder was used as a negative 347 

seed, while the myelin space was masked. Finally, segments that did not traverse 348 

volume at this stage were mostly disconnected by a node of Ranvier where leaving 349 

the volume. The procedure was adapted by using watershed fill to the volume 350 

boundary instead of to a connecting segment.  351 

 352 

To translate the resulting myelinated axons to the full-resolution volume, an 353 

oversegmentation (in which the volume is partitioned into supervoxels: segments 354 

consisting of multiple voxels likely to belong to the same structure – larger than a 355 

voxel, but usually smaller than the axons themselves) was derived from the smoothed 356 

data using a watershed in the space outside the myelin mask. Seeds were defined by 357 

thresholding the data and labelling connected components (rejecting components 358 

smaller than 0.0024 µm3). To avoid any gaps between the upsampled axons and the 359 

high-resolution myelin mask, the low-resolution myelinated axon labels were 360 

upsampled to the full resolution and dilated to halfway the myelin sheath. The 361 

myelinated axons in the full resolution were then obtained by merging any labels in 362 

the oversegmentation that overlapped with the upsampled myelinated axons. Any 363 
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segments of supervoxels extending outside the dilated myelinated axons were 364 

removed and additionally, the union of the (non-dilated) myelinated axons and the 365 

aggregated supervoxels was taken to ensure continuous axons (i.e. also including the 366 

nodes of Ranvier). Thus, the dilated and non-dilated myelinated axon labels were the 367 

outer and inner bounds on the myelinated axons at full resolution. 368 

 369 

MITOCHONDRIA AND NODES OF RANVIER 370 

Many mitochondria are included in the myelin mask and therefore form holes in the 371 

myelinated axons. We want to segment these mitochondria as a separate subcellular 372 

compartment, remove them from the myelin mask and include them in the myelinated 373 

axon compartment. To label these mitochondria, two iterations of morphological 374 

image closing (structure element of xyz=[29, 29, 5] voxels) and hole-filling are 375 

performed on the mask of the myelinated axons. The morphological closing has the 376 

added benefit of smoothing the boundary of the myelinated axons, in particular at 377 

the nodes of Ranvier where the boundary was determined by the inner boundary of 378 

the upsampled myelinated axons, rather than the aggregated supervoxels. However, 379 

because this smoothing operation also adds thin sheets of voxels at the inner myelin 380 

boundary—where its surface is concave on the scale of the structure element—that 381 

do not represent mitochondria, the final mitochondria segmentation is achieved by 382 

morphological opening (structure element of xyz=[15, 15, 1] voxels) of the difference 383 

between the myelinated axon mask after and before closing, i.e. MAclosed - MA.  384 

 385 
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Another subcellular compartment that is segmented are the nodes of Ranvier. Nodes 386 

of Ranvier are characterized by the absence of myelin over a short length of the 387 

myelinated axon. The resulting gaps in the reconstructed myelinated axons were 388 

bridged by the gap-filling procedure as indicated above. Now, we can easily identify 389 

the nodes of Ranvier by evaluating each myelinated axon over 2D sections, marking 390 

any 2D labels that are not fully enclosed by the myelin mask. A node of Ranvier was 391 

defined as a consecutive sequence of 2D labels in the myelinated axons that are not 392 

fully enclosed by the myelin compartment and together span a length of >1 µm. 393 

 394 

MYELIN SHEATHS 395 

The myelin mask represents the totality of all myelin sheaths, many of which are 396 

abutting. We aim to represent each myelin sheath as a separate object. To separate 397 

the individual sheaths, a watershed procedure is used (Figure 3). In order to generate 398 

a seed region for each myelinated axon that closely follows the inner boundary of the 399 

myelin sheath, the procedure uses the myelinated axon labels where the mitochondria 400 

within the myelinated axons are included, but the nodes of Ranvier are removed 401 

(Figure 3: panel12). The seeds are obtained by dilating the myelinated axon labels 402 

into the myelin mask. For the watershed’s intensity input / landscape, the Euclidean 403 

distance transform is used: for each voxel in the myelin mask, the distance to the 404 

nearest voxel in any myelinated axon is calculated. The watershed is constrained to 405 

voxels in the myelin mask with a maximal distance of 0.35 µm to any myelinated axon.  406 

 407 
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 408 
Figure 3. Myelin sheath separation. Subdividing the myelin mask into individual sheaths is based on 409 
watershed from the myelinated axon seeds on the distance map of these myelinated axons (panel12-14). Biases 410 
in sheath thickness where axons with different thickness touch are corrected through an iterative weighted 411 
approach using the axon’s overall sheath thickness in a weighted distance map (panel 15-16). The hand-icon 412 
indicates steps where manual proofreading effort is required. 413 

 414 

The distance transform is agnostic to the thickness of the myelin sheath of individual 415 

myelinated fibres. If two abutting myelinated axons have different sheath thickness, 416 

the boundary based on the distance transform watershed will be skewed towards the 417 

axon with the thicker sheath. To mitigate this issue, an iterative weighted-watershed 418 

is performed, using a modulated distance map. The modulation is derived from the 419 

median sheath thickness of the previous pass. The median will be a good 420 

approximation of the axon’s thickness under the assumptions that 1) over most of its 421 

surface area, the sheath does not touch other sheaths with very different thickness; 422 

and 2) the thickness of the sheath is relatively constant over the axon. The weighted 423 

distance transform is calculated on a per-axon basis and modulated by a sigmoid 424 

function with a width of the median sheath thickness of that axon multiplied by a 425 

weighting factor w controlling the sensitivity (for this work w=10). Per-label weighted 426 

distance maps are combined by taken the minimum over all maps. Additionally, in the 427 

weighted watershed the mask is constrained to 1.5 times the median width around 428 

each myelinated axon (1.2 times for the final iteration).  429 

 430 
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UNMYELINATED AXONS, GLIA & BLOOD VESSELS 431 

The remaining tissue compartments, mainly unmyelinated axons, are segmented by 432 

automated classification using NeuroProof [38], a segmentation method that learns to 433 

agglomerate a graph of supervoxels into neurons using features from the provided 434 

probability maps (as obtained from the Ilastik pixel classification). 435 

 436 

Our supervoxels are generated by watershed of the summed and smoothed (s=21 437 

nm) probability map for intracellular space (PICS=PMA+PUA). The seeds are obtained by 438 

finding local maxima in the ICS probability map that are >0.1 µm apart and exceed 439 

PICS=0.8. We isolate the unmyelinated axon space by masking out the myelinated 440 

axons as identified in the previous steps (axons, sheaths, mitochondria and nodes). In 441 

addition, we mask out the mitochondria of the unmyelinated axons. These are 442 

hypointense in the ICS probability map and we define their mask by thresholding at 443 

PICS=0.2.  444 

 445 

A ground truth segmentation was generated for a block of 500x500x430 voxels of 446 

dataset DS1 by manually proofreading and merging the supervoxels in that block. 447 

Next, a random forest classifier is trained on this annotated training dataset with 448 

NeuroProof (settings: 5 iterations; strategy type 2; no mitochondria context). Finally, 449 

with this classifier, the supervoxels of the full datasets are agglomerated to form the 450 

processes of unmyelinated axons and glia, glial bodies and blood vessels with a 451 

threshold setting of 0.5. This stage requires extensive proofreading to correct 452 
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split/merge errors, although we chose not to pursue this here. Conversely, we have 453 

improved on the output of the random forest classifier by specifically identifying the 454 

large structures in the dataset (the glial bodies and blood vessels; further subdivided 455 

into glial bodies, glial processes surrounding bodies, blood vessel lumen, blood 456 

vessel walls, pericytes). This was achieved  by performing a partial manual annotation 457 

of each 10th slice (x-direction) in the low-resolution dataset using ITK-SNAP after which 458 

these annotations are upsampled and the supervoxels that overlap with the manual 459 

annotations are agglomerated to form these additional compartments.  460 

461 
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RESULTS 462 

Dataset DS2 serves as an example of the detailed workflow and will be used for 463 

demonstrating the pipeline’s features and limitations.  464 

 465 

 466 
Figure 4. Preprocessing results. a.) Block of 500×500×430 voxels of DS1 after registration. b.) The myelin 467 
mask is obtained by thresholding the data after smoothing. The blue array indicates a node of Ranvier; the 468 
magenta arrows indicate mitochondria included in the myelin mask. c.) Compartment probabilities from 469 
Ilastik pixel classification. For compartments that were split into multiple classes (MM, MT), the colour of 470 
the constituent classes are equal. d.) Compartment probabilities split over each class. 471 

 472 
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PREPROCESSING 473 

The 8-class probability map from Ilastik (Figure 4d) suggests that, as expected, the 474 

myelin boundaries are well-defined (MM, MM_I, MM_O); the classifier can distinguish 475 

between intracellular spaces for myelinated (MA) and unmyelinated axons (UA); the 476 

thin membranes of unmyelinated axons (MB) are well-separated from the thick 477 

membrane wrappings of the myelin compartment; however, the mitochondria 478 

probability maps (MT, MT_O) contain high probability for myelin sheaths as well, 479 

indicating the general difficulty of separating the myelin and mitochondria.  480 

 481 

MYELINATED AXONS 482 

The 3D-labelling stage in the segmentation of myelinated axons (Figure 5b) detected 483 

1603 labels, after rejecting the largest label (representing the—almost completely 484 

connected—unmyelinated axon space) and labels smaller than 0.12 µm3. A further 45 485 

labels were rejected manually (required time: 25 min), because they represented false 486 

positives enclosed between clusters of myelinated axons. 1422 labels traversed the 487 

volume (Figure 5b: blue labels) and were considered complete myelinated axons. The 488 

136 segments that did not traverse the volume were partial axons, either because the 489 

segments were split by mitochondria included in the myelin mask; or because the 490 

axon featured a very thin segment disconnecting the segments in the downsampled 491 

mask (Figure 5b: green labels; white arrow). These segments are later merged with 492 

other segments as part of the 2D-labelling stage. 493 

 494 
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 495 
Figure 5. Procedure for identification of myelinated axons (MA). The left and right panels show a small 3D 496 
block and a slice view perpendicular to the direction of sectioning, respectively. a.) Data is downsampled in-497 
plane for segmenting the MA compartment. b.) A myelin mask is created by thresholding the data (red). An 498 
initial set of myelinated axons is identified by 3D connected component labeling. Labels traversing the volume 499 
(blue) were marked as finished, while segments (green) were transferred to the 2D-labeling stage. c.) 2D labels 500 
after label classification. Stacks of 2D labels are obtained by slicewise 2D connected-component labeling of 501 
the non-myelin space. The space already segmented by the 3D labelling procedure is masked and labels 502 
representing myelinated axons are selected by automated classification. Residual false positives (e.g. red 503 
arrows) are removed by manual proofreading. d.) Merging neighbouring labels by spatial overlap and closing 504 
gaps in between the resulting segments using morphological closing (green; < 2 sections) and watershed fill 505 
(red) ; labels identified by the 3D-labeling stage are masked in white. e.) Final segmentation of myelinated 506 
axons at low resolution. Cyan asterisks indicate nodes of Ranvier. The axon indicated by the white arrow (a) 507 
exemplifies various steps in the pipeline. It is not fully reconstructed in the 3D-labeling stage (b); it has 508 
consecutive false negatives in the 2D-label stacks (c), but it’s segments formed in the 3D- and 2D-labeling 509 
stages could be merged by the watershed-fill (d) to a full axon (e). 510 
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 511 

The presence of nodes of Ranvier and other (unintended) holes in the myelin mask 512 

results in leaky myelinated axons, which prompted a 2D-labeling approach for this 513 

compartment (Figure 5c). For the first dataset (DS1), 2D-labels belonging to the 514 

myelinated axon compartment were filtered according to a set of area and shape 515 

criteria, after which a substantial proofreading effort was required to exclude false 516 

positive labels outside myelinated axons (required time: ~80 h). The classifier that was 517 

trained on the basis of dataset DS1 resulted in a considerably improved initial 518 

classification of the 2D-labels of the subsequent dataset DS2. In DS2, both the filtering 519 

and classification procedures were applied. The performance of two methods was 520 

then evaluated – retrospectively, after proofreading of the myelinated axon 521 

compartment to establish the ground truth myelinated axons for DS2. Supplementary 522 

Figure 1 compares the the feature-filtering (Fig S1a) and feature-classification (Fig 523 

S1b) approaches in terms of label assignment errors. False positives and have 524 

significant negative impact on subsequent processing as they create erroneous axons. 525 

False negatives result in gaps in the axons and need to be handled by gap-closing 526 

and filling procedures. Using the automated classifier rather than filtering, false 527 

positives reduced from 138,282 labels to 23,100 labels; and false negatives were 528 

increased from 27,902 to 54,363. The percentage of correctly classified labels 529 

increased from 81% to 92%. The manual proofreading after classification could now 530 

be done in ~4 hours for dataset DS2.  531 

 532 
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The 2D-labels were further processed by progressively aggregating them into larger 533 

segments, until the axon traversed the volume. The first step consists of merging 534 

neighbouring labels into stacks (Figure 5d; blue mask) using a criterion of a spatial 535 

(Dice) overlap of >50%. Next, gaps of 1 or 2 sections were filled by morphological 536 

closing in the z-direction (Figure 5d: green mask). After closing, newly connected label 537 

segments were merged through a second run of the overlap merge using a 20% 538 

overlap threshold. The result of merging neighbouring 2D-labels and closing small 539 

gaps consisted of 179 finished axons, but also of 10,195 label segments that did not 540 

traverse the volume.  541 

 542 

Thus, the majority of leaky myelinated axons are still fragmented after the first 543 

merging and closing attempt. These axons consist of segments with larger gaps, 544 

because they have had several consecutive 2D-labels rejected (i.e. false negatives) in 545 

the 2D-label classification step. Often, these locations had atypical cross-section (e.g. 546 

narrow necks) or represent nodes of Ranvier (indicated by cyan asterisks in Fig. 5) 547 

where the 2D-labels flood into the neighbouring unmyelinated axon space. 548 

 549 

The watershed procedure to merge and fill these unfinished segments (including 550 

those of the 3D labelling stage) was performed iteratively using a progressively larger 551 

search region in the z-direction while masking out the finished axons after each 552 

iteration. Iterations with closing extents of 10, 40, 80 sections yielded 441, 413 and 553 

51 axons, respectively. The gaps closed by the watershed merge procedure are 554 
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depicted by the red mask in Figure 5d. Labels smaller than 0.12 µm3 voxels were 555 

removed at this stage, as they almost always represented residual false positives 556 

(missed in the 2D-label proofreading) in the unmyelinated axon space. A final iteration 557 

where the myelin mask was not used to constrain the watershed resulted in another 558 

463 axons. This left 871 segments which were not merged by the procedure and were 559 

merged by manual intervention (time required: ~16 h). The final myelinated axon 560 

segmentation contained 3605 axons (Figure 5e). 561 

 562 

 563 
Figure 6. Subdivision of the myelinated axons. a.) mitochondria in myelinated axons (marked in red) are 564 
obtained by morphological closing and hole-filling. b.) nodes of Ranvier (green) are interuptions in the myelin 565 
(red) around the myelinated axons (blue) and were defined as > 1 µm of consecutive sections not enclosed by 566 
the myelin compartment. 567 

 568 

Segmentation of the myelinated axons is completed in the full-resolution data. To 569 

obtain the myelinated axons at full resolution, an oversegmentation was aggregated 570 

by overlap with upsampled myelinated axons (Supplementary Figure 2). The 571 

myelinated axon compartment is fine-tuned and subdivided by handling 572 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.19.979393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.19.979393
http://creativecommons.org/licenses/by-nc-nd/4.0/


WHITE  MATTER  ELECTRON M ICROSCOPY SEGMENTATION   2 9  

mitochondria and nodes of Ranvier (Figure 6). Mitochondria (Figure 6a) were first 573 

included in the myelinated axons by morphological closing of the axons and filling 574 

the holes left by the mitochondria. Nodes of Ranvier (Figure 6b) were identified by 575 

finding consecutive series of 2D labels (>1 µm along the z-direction) that were not 576 

enclosed by a myelin sheath. In 3605 myelinated axons, representing a combined 577 

length of 27.25 mm, 429 nodes of Ranvier were detected with a median length of 1.9 578 

µm. 579 

 580 

MYELIN SHEATHS 581 

With the myelinated axons and nodes of Ranvier carefully segmented, the 582 

identification of myelin sheaths is straightforward. Individual myelin sheaths 583 

encapsulating the axons were yielded by subdivision of the myelin mask (Figure 7a; 584 

red mask) using a watershed of dilated myelinated axon seeds (Figure 7a; coloured 585 

labels) on the distance transform of the myelinated axon compartment (Figure 7b).  586 

However, the accuracy of this initial segmentation can be poor. One source of error 587 

is that, based on this processing pipeline, myelin sheaths include mitochondria of 588 

unmyelinated axons (Figure 7a; asterisks). Using an upper limit of 0.35 µm for the 589 

myelin sheath thickness partly removes these mitochondria (Figure 7b; asterisks).  590 

 591 

A second inaccuracy concerns abutting myelin sheaths with different sheath 592 

thickness—a commonly observed configuration. In these locations, the separation of 593 

sheaths is skewed towards the thicker sheath (Figure 7b; arrows). In addition to 594 
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inaccuracies in the estimation of the sheaths’ thickness, the incorrect attribution of 595 

voxels of the myelin mask results in distortion in the sheaths’ quasi-cylindrical 596 

geometry (e.g. black arrow).  597 

 598 
Figure 7. Myelin sheath separation and correction. a.) Myelinated axons are used as seeds to separate the 599 
myelin mask (red) into individual sheaths with a watershed on the map of the distance from the myelinated 600 
axon compartment mask. Asterisks indicate where mitochondria are included in the myelin mask. A manual 601 
tracing of the sheaths is outlined with the white dashed line. b.) Separated sheaths show errors where myelin 602 
sheaths of different thickness are touching, leading to overestimation of thin sheaths and underestimation of 603 
thick sheaths (arrows). c.) Sheaths after 5 iterations of weighted watershed. d.) The boundary of the corrected 604 
sheaths (green) follow the manual tracing (blue) more closely as compared to the boundary of the uncorrected 605 
sheaths (red). e.) Corrected sheaths have a lower overall thickness mostly because they are constrained within 606 
a mask of 1.2x the sheath thickness which decreases the myelin volume by removing erroneously included 607 
(mitochondria) voxels from the sheaths (panel I). The extent of voxel reassignment to different labels can also 608 
be evaluated by comparing the thicknesses of corrected vs uncorrected sheaths within the final corrected 609 
myelin mask which removes the effect of a difference in total myelin volume (panel II). While the overall 610 
thickness decreases, within this mask most sheaths show thickness increases (panel III). The corrections are 611 
substantial (panel IV) with a typical 0—30% (mean 9.25%; std 10.9%) decrease in sheath thickness after 612 
correction; and thickness changes due to voxel label reassignments typically ranging from -10—20% (mean 613 
4.38%; std 10.0%). 614 
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 615 

We have attempted to counter these errors through a weighted distance transform to 616 

shift the sheaths’ outer boundaries towards their mostly likely true position as derived 617 

from the median width over their entire length. Figure 7c shows the individual sheaths 618 

after running five iterations of the weighted-distance watershed procedure proposed 619 

to mitigate this issue. The restoration of the sheath geometry to circular cross-sections 620 

is best appreciated in Figure 7c, while the overlay of boundaries in Figure 7d 621 

demonstrates a better overlap between the manually traced boundaries (blue trace) 622 

and the corrected sheaths (green trace) as compared to the uncorrected sheaths (red 623 

trace).  624 

 625 

Beyond the improved separation of abutting sheaths, the individual sheath thickness 626 

was used for improvement of the sheaths’ outer perimeter by constraining it within 627 

120% of the median sheath thickness from the myelinated axon. This also improved 628 

the exclusion of mitochondria of the unmyelinated axons (Figure 7c; asterisks). In 629 

effect, this reduction in the myelin volume by excluding misclassified voxels accounts 630 

for most of the difference in sheath thickness distribution between the corrected and 631 

uncorrected sheaths (Figure 7e; panel I). Evaluating the sheath thickness distributions 632 

within the mask of the corrected sheaths, i.e. removing the effect of changes in total 633 

myelin volume and only looking at voxel label reassignments within this mask (Figure 634 

7e; panel II), it is observed that after the correction most sheaths actually increased in 635 

thickness. This is obviously at the expense of previously overestimated sheaths that 636 
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decrease in thickness. Whereas the thickness decreases by an average of 9.3% 637 

between the uncorrected and corrected sheaths due to the better-informed distance 638 

threshold, within the final mask the median thickness regularization tends to shift the 639 

sheaths towards a larger thickness between 0-20% with an average of 4.4% (Figure 640 

7e; panel IV).  641 

 642 

UNMYELINATED AXONS, GLIA & BLOOD VESSELS 643 

The space not occupied by myelinated fibres was subdivided into individual 644 

unmyelinated axons, blood vessels, cell bodies and cell processes by NeuroProof [38]. 645 

The three inputs to train the classifier (probability maps, oversegmentation and 646 

ground truth) are shown in the top panel of Figure 8.  647 

 648 

As an indication of the coarseness of the oversegmentation (Figure 8b), the training 649 

volume, as masked to exclude the myelinated axons and sheaths, contained 3190 650 

supervoxels, while the unmyelinated axon count in the ground truth was 164 (Figure 651 

8c). 652 

 653 

The bottom panel of Figure 8 shows an example of prediction of unmyelinated axons 654 

(Figure 8f) and compares it to a manual tracing of the axon boundaries (Figure 8d). 655 

The boundary overlay in Figure 8g indicates that although most merges (that have 656 

occurred in location where the red boundaries are visible) are correct, many 657 
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supervoxels remain separated that should be merged (e.g. arrowheads) and some 658 

supervoxels have been merged erroneously (asterisks). 659 

 660 

 661 
Figure 8. Segmentation of unmyelinated axons with NeuroProof. Panel I: training data. Panel II: example of 662 
agglomeration result. a.) A 500´500 section showing probability map outputs of the 8-class Ilastik pixel 663 
classifier in a colour blend (red—pooled myelin classes (PMM+PMM_I+PMM_O); green—pooled mitochondria 664 
classes (PMT+PMT_O); magenta—membranes of unmyelinated axons; cyan—unmyelinated axons; blue—665 
myelinated axons). b.) watershed oversegmentation derived from summed intracellular probability maps 666 
(PMA+PUA). c.) ground truth annotation of a block of 500´500´430 voxels. d.) data from a block of dataset 667 
DS2, overlaid with manual tracing of unmyelinated axon boundaries (blue dashed lines); e.) watershed 668 
oversegmentation; f.) agglomerated axons predicted by NeuroProof; g.) overlay of the manual tracing (blue) 669 
and the boundaries of the oversegmentation (red) and agglomeration (green). Although the result in g 670 
appears plausible at first glance, a large amount of split (arrowheads) and merge (asterisks) errors remain 671 
in the segmentation by fully automated classification without proofreading. 672 

 673 
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 674 
Figure 9. Variations along the axons. The heatmaps show five different features for 200 randomly selected 675 
axons over its extent. Each column represents a different axon. a.) Inner diameter of 200 myelinated fibres 676 
over ~17 µm of their length. b.) Outer diameter. c.) Myelin thickness is relatively constant within axons (except 677 
for the black patches representing nodes of Ranvier). d.) G-ratio variation along axons (nodes of Ranvier are 678 
white patches here with g=1). e.) Angle with the bundle’s mean orientation. 679 

 680 

COMPARTMENT PROPERTIES 681 

In this section, we use the final segmentation of the SBF-SEM volume to demonstrate 682 

the ability to extract estimates of compartmental properties of biological relevance. 683 

Properties of WM tissue that have received considerable attention in the MRI 684 

community are the axon diameter, the g-ratio (the ratio of the inner and outer 685 

diameter of the myelin sheath) and orientation dispersion. These properties relate to 686 

the fundamental function of WM and are of interest in health and disease. One area 687 

of active research is to estimate these, and related, microstructural properties using 688 

advanced MRI acquisition methods. However, these estimates remain controversial 689 

due to the need for strong assumptions in the associated biophysical models and the 690 

difficulty in sensitising the signal to these properties with conventional MRI scanners. 691 
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As comparison between these MRI estimates and EM in the same tissue would be of 692 

particular interest, Figure 9 shows examples of some of these properties varying along 693 

the length of 200 randomly selected myelinated axons of dataset DS2.  694 

 695 

 696 
Figure 10. Axon diameter distribution a.) The distribution of equivalent (circle) diameters of the myelinated 697 
axons (494,891 cross-sections). b.) The distribution of the equivalent outer diameter of the myelin sheath. c.) 698 
Variation in the axon diameter over the axon occurs, but is considerably less than than the variance of a 699 
random permutation of the distribution. d.) The distribution of the equivalent diameter of unmyelinated 700 
axons.  701 

 702 

The myelinated axons had an average equivalent cross-sectional diameter of 0.56 µm 703 

(sd 0.28 µm; median 0.51 µm) and their size distribution is well-described by a gamma 704 

distribution with shape k=4.1 and scale  q=0.14 (Figure 10a). The outer diameter, 705 

including the myelin sheath, was 0.87 µm (sd 0.31 µm; median 0.81 µm), on average, 706 

and deviated from a gamma distribution. For unmyelinated axons (Figure 10d), a 707 

mean diameter of 0.43 µm (sd 0.30 µm; median 0.36 µm) was found.  708 

 709 

To assess the sources of variance of the axon diameter within and across myelinated 710 

axons, we calculated a value for the variance of the equivalent axon diameters of the 711 

2D-labels comprising each axon, as well as from a random permutation of all these 712 
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2D cross-sections in the dataset. The variance of the diameter within individual 713 

myelinated axons over z-sections is much smaller as compared to when the values of 714 

the section are randomly permuted across the dataset (Figure 10c), suggesting that 715 

much of the variance in the diameter distribution can be ascribed to axons having a 716 

range of calibres. Yet, the variation over sections along the axons is not negligible. 717 

Figure 9 shows depth profiles of a set of 200 randomly selected axons from the set 718 

that fully traversed the volume over all sections. Variation over depth of the 719 

myelinated axon diameter is commonly observed (Figure 9b) and has a typical period 720 

of >2 µm and may well have alternations of the inner diameter (Figure 9a) between 721 

very thin segments (<0.5 µm) and wide segments (>1 µm).  722 

 723 

 724 
Figure 11. G-ratio distribution. a.) The distribution of g-ratio of all the cross-sectional axons (494,891 cross-725 
sections). b.) The shape of the distribution changes when pooling the g-ratio over the axons, because within-726 
axon g-ratio variation (due to varying axon diameter) is averaged out. E.g. the many thin segments of 727 
myelinated axons (that mostly exhibit low g-ratios) may the reason for the skewness of the distribution in a), 728 
which is obscured through averaging over the sections of axon. c.) The g-ratio shows variance over the 729 
extent of the axon. Differences across axons are larger, yet overall modest as seen from the fairly tight 730 
distribution in (b). d.) The relation between the inner axonal diameter and g-ratio can be described by a log-731 
linear fit as proposed in [39].  732 

 733 

The g-ratio when measured for each axon and cross-section (Figure 11a) had an 734 

average of 0.62 (sd: 0.12; median 0.63). When calculating a per-axon aggregate g-735 

ratio from the axon and myelin volume (Figure 11b), however, the g-ratio mean (and 736 
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distribution) was 0.67 (sd: 0.079; median 0.67). This variation in g-ratio (Figure 11c) is 737 

primarily driven by the axon diameter (Figure 9a) rather than the myelin thickness 738 

which is homogeneous over the axon (Figure 9c). This pronounced g-ratio variation 739 

over the extent of the axons has the consequence of diverging averages, because the 740 

true g-ratio average over sections is lower than the aggregate g-ratio calculated from 741 

the volumes pooled across sections as 𝑔 = #1 − 𝑉!"#$%& 𝑉'%()#⁄ .  742 

 743 

The dispersion of the myelinated axons is shown in Figure 12. Although the top view 744 

on the axons suggests a high dispersion, the side view indicates a relatively 745 

homogeneous bundle (Figure 12a). The histogram (Figure 12b) and orientation 746 

distribution (Figure 12c) confirm a tight distribution around a mean that is 12° off the 747 

z-axis. The dispersion is near-isotropic for this sample with  k1 = 23.6 (ODI1 = 0.0272) 748 

and k2 = 16.7 (ODI2 = 0.0381) for a fit to a Bingham distribution [40]. 749 

 750 

 751 
Figure 12. Dispersion a.) Myelinated fibre pathways through the dataset as seen along the section direction 752 
(left panel) and in an othogonal view (right panel). b.) Histogram of fibre segments. c.) The fibre orientation 753 
distribution plotted on a sphere in a view along the section direction.  754 

 755 

756 
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DISCUSSION 757 

In the development of novel methods in MRI research, identification of relevant and 758 

informative features in the MRI signal has much to gain from accurate models of the 759 

microstructure from which the signal is generated. We have presented a pipeline to 760 

derive a representation of the brain’s WM microstructure at a (sub)cellular level by 761 

dense segmentation. It includes the main cellular compartments (myelinated axons, 762 

unmyelinated axons, glial cells, blood vessels) and various subcellular features of the 763 

tissue relevant for a host of physiological processes (myelin sheaths, mitochondria, 764 

nodes of Ranvier). This allows detailed interrogation of the datasets for tissue 765 

properties and provides a testbed for probing specific microstructure manipulations. 766 

The methods as well as data and accompanying segmentations are made available as 767 

a resource to the neuroscience community. 768 

 769 

We have attempted to design a pipeline that is as comprehensive as possible with 770 

regards to the content of the acquired 3D EM data. We segmented the full datasets 771 

and provide dense annotation: labelling all voxels as part of a specific cell and 772 

attempting to assign them to subcellular structures where possible. We will highlight 773 

the performance and utility of a number of these compartment annotations, and 774 

discuss some relevant features that are lacking or might be inaccurate in our 775 

segmentation. Also, we will provide suggestions on avenues for improvement and 776 

application. 777 

 778 
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PIPELINE FEATURES 779 

Our pipeline uses progressive step-by-step compartment annotation and refinement, 780 

starting with the easiest-to-segment objects down to more challenging objects. At 781 

each stage, the already identified structures are masked from the process, reducing 782 

errors in segmenting the more challenging objects. We have built our pipeline upon 783 

tools that are accessible and readily available (scikit-image, Ilastik, ITK-SNAP, 784 

NeuroProof). Where appropriate, computational cost and the burden of manual 785 

intervention was reduced by working on more manageable low-resolution images, 786 

with implementation of upsampling methods for representing the segmentations at 787 

the full resolution of the acquisition. For other steps (Ilastik pixel classification, 788 

generation of supervoxels, NeuroProof agglomeration), high performance distributed 789 

computing with trivial parallelization (blockwise processing) to speed up computation 790 

or large memory nodes (separation of myelin sheaths) were used.  791 

 792 

A relevant novel feature that has been introduced in our segmentation approach is 793 

the careful consideration of the accurate segmentation of abutting myelin sheaths. 794 

Myelin sheath thickness is a parameter of considerable interest in neuroscience. It is 795 

an important factor in signal conduction velocity [41] and may be used as a marker for 796 

disease [42]. Together with the axon diameter it determines the g-ratio. Both the 797 

aggregate axonal calibre and g-ratio have been suggested to be MRI-detectable 798 

[43,44], although questions remain regarding both in-vivo translation and accuracy. In 799 

our data, myelin thickness was found to be roughly homogeneous within axons, but 800 

neighbouring axons may have very different myelin sheath thickness. Because 801 
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abutting sheaths cannot be distinguished by textural features in EM, a common 802 

approach to separate sheaths is by watershed of the Euclidian distance transform. 803 

However, the watershed line on the midway point between the axons is an inaccurate 804 

representation of the myelin structure. As the myelin properties are one of the main 805 

measures of interest from the segmentation, we found it essential to improve the 806 

separation of the sheaths. In our pipeline we used an iterative weighted watershed 807 

that takes the median thickness of the sheath over the axon into account. The median 808 

thickness yields a good prediction of the true sheath thickness at the site of touching 809 

axons, provided the sheath thickness is fairly constant over the individual axon and 810 

the largest surface of the axon does not touch other myelinated axons. We have 811 

shown that this inaccuracy of a basic watershed on the distance transform affects a 812 

large proportion of axons and that the misestimation of the thickness is non-813 

negligible. For accurate quantification of myelin thickness from segmentations using 814 

the watershed approach, it is therefore necessary to employ a correction that counters 815 

this bias.  816 

 817 

COMPARTMENT PROPERTIES 818 

The diameter of myelinated axons as measured by the equivalent circle diameter in 819 

the dataset described here (mean 0.56 µm; sd 0.28 µm) is in accordance with the 820 

average diameter reported in similar recent studies by West et al., 2015 [45] (mean 821 

0.56 µm; sd 0.32 µm), Sepehrband et al., 2016 [46] (mean 0.54 µm; sd 0.28 µm) and 822 

Abdollahzadeh et al. 2019 [28], but markedly different from Lee et al., 2019 [12] (mean 823 
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0.99 µm; sd 0.42 µm). This difference may be explained by selection of larger axons 824 

through the random walker segmentation that disregards leaky axons. 825 

 826 

In contrast to what was found by Sepherband et al., 2016 [47] and Lee et al., 2019 827 

[12], we did not obtain a better fit of the inner axonal diameters to the generalized 828 

extreme value distribution (not shown) as compared to the gamma distribution, 829 

although the log-likelihood was marginally better for the generalized extreme value 830 

distribution. For the outer diameter, however, the generalized extreme value 831 

distribution was markedly better than the gamma distribution. Our measurements are 832 

in agreement with Lee et al., 2019 [12] about within-axon variance of the myelinated 833 

axon diameter, arriving at slightly higher, but comparable, coefficients of variation 834 

(CVinner: mean 0.37, median 0.35, sd 0.15; CVouter: mean 0.23, median 0.22, sd 0.10).  835 

 836 

In this study, we specifically note that the g-ratio not only varies across axons, but also 837 

within axons (CV: mean 0.16, median 0.15, sd 0.078) due to pronounced variation of 838 

axon diameter while maintaining constant myelin thickness over the axon’s extent 839 

(except for nodes of Ranvier, which were excluded from g-ratio analysis; ). Although 840 

it does not invalidate MRI-based g-ratio models (since they are specifically designed 841 

to be agnostic about the internal distribution of myelin within the voxel), this point has 842 

been overlooked in the literature.  843 

 844 
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The dispersion of myelinated axons was low and showed little directional difference. 845 

The Bingham distribution fit yielded k1 = 23.6 and k2 = 16.7, where estimates of other 846 

studies that evaluate dispersion in 3D are: k1 = 19 and k2 = 5 [12]; k1 = 21 and k2 = 12 847 

[48]. During our acquisition, the dataset location was specifically selected as a region 848 

where the top surface of the sample block visible during setup of the acquisition did 849 

not contain many cell bodies and blood vessels, but rather a region dominated by 850 

axons, with a quasi-circular cross-section. It is probable that this selection bias is 851 

responsible for the absence of dispersion in the dataset and that it represents a value 852 

near the lower bound of dispersion found in the corpus callosum. 853 

 854 

LIMITATIONS 855 

Despite our best efforts to minimize errors in the segmentation, inaccuracies remain. 856 

Some of these are due to our methods not functioning as intended, others due to 857 

unmet demands (e.g. non-trivial myelin geometry) and yet others are inaccuracies of 858 

representation of the compartments (e.g. omission of the extracellular space). 859 

 860 

One challenge lies in the complexity of the organization of even the most regularly 861 

ordered white matter bundle investigated here. An example is where myelin sheaths 862 

do not form simple wraps, but expand from oligodendrocyte process towards multiple 863 

axons or are not tightly compacted. These cases are not handled by algorithms in our 864 

pipeline. Improvements may be achieved in future implementations by specifically 865 

modelling the myelin sheath as continuous closed surfaces. 866 
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 867 

Our pipeline works best for coherent axon bundles oriented perpendicular to an 868 

ordinal axis (the direction of sectioning). Axons traversing the volume obliquely have 869 

aberrant cross-sectional shape and labels are more likely to be rejected in our 2D 870 

processing steps. For these axons, more extensive manual correction was required 871 

which would increase with more heterogeneous orientation distributions.  872 

 873 

We have used machine learning classification of the unmyelinated axons by means of 874 

the NeuroProof software library. Although this tool delivers an initial dense 875 

segmentation, it still requires extensive proofreading to correct split/merge errors. We 876 

have not corrected these errors in the datasets presented here, as our intended 877 

applications do not strictly necessitate it. If required for the particular application, the 878 

unmyelinated compartment could be improved by using proofreading tools such as 879 

guided proofreading [49].  880 

 881 

Although we have achieved segmentation of cellular constituents of the tissue, it has 882 

to be considered that 20% of the volume of white matter tissue is extracellular space 883 

(ECS) [50]. The sample preparation procedures in EM reduce the ECS volume to the 884 

point that there is little space between axons. This poses a problem for the accurate 885 

representation of the tissue state in vivo. This is particularly relevant in the application 886 

of diffusion MRI simulations, because the protons diffusing unrestrictedly in the ECS 887 

can be an important contributor to the diffusion MRI signal. A way to handle the 888 
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absence of the ECS in the EM data is to artificially erode the individual axon labels 889 

until they occupy a volume fraction of 0.8, after which the aggregate voxelvolume can 890 

be rescaled to reinstate the original axon volumes. However, it is not certain that the 891 

shape of the artificially induced ECS is a good representation of the in vivo situation. 892 

We have explored alternative EM preparation methods that preserve the ECS [21], 893 

but it is still not known if the ECS morphology in these preparations is representative 894 

of in vivo tissue structure. This specific issue is just one example of the general concern 895 

of morphological changes of the cells associated with various preparation protocols. 896 

For instance, the cross-sectional shape of axons is affected by artefacts from chemical 897 

fixation and ethanol dehydration, as compared to their shape observed following high 898 

pressure freezing and freeze substitution [51]. In sum, tissue preparation methods may 899 

be an important caveat in the interpretation of morphological shape measures and 900 

absolute volumetric measurement. Therefore, proper consideration must be given to 901 

any conclusions derived from these measures when generalising them to the in vivo 902 

situation. 903 

 904 

905 
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CONCLUSIONS 906 

We have presented an approach for dense and detailed segmentation of 3D EM data 907 

of WM. A novel element in the pipeline of specific interest for white matter 908 

investigations is the method for myelin segmentation that yields accurate boundaries 909 

for the individual axons. The segmentation consists of individual cells in the volume, 910 

as well as nested subcellular components, such as myelin, mitochondria and the nodes 911 

of Ranvier. These objects can be interrogated for their morphological properties and 912 

can be used in validation and development of biophysical models for predicting MRI 913 

signals. This work has presented benchmark statistics of MRI-accessible 914 

microstructural properties (axon diameter and g-ratios). Future work will focus on the 915 

comparison between white matter regions and application of models in in silico 916 

experiments. 917 
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