

1 **Title: RRBP1 rewrites cisplatin resistance in Oral Squamous Cell Carcinoma by regulating
2 YAP-1.**

3 **Running title: Radezolid reverses chemoresistance by repressing RRBP1.**

4 Omprakash Shriwas,^{1,2} Rakesh Arya,³ Sibasish Mohanty,^{1,4} Sugandh Kumar,¹ Rachna Rath,⁵
5 Sandeep Rai Kaushik,³ Mukund Chandra Thakur,^{3,6} Falak Pahwa,³ Saroj Kumar Das
6 Majumdar,⁷ Dillip Kumar Muduly,⁸ Ranjan K Nanda,^{3*} Rupesh Dash^{1*}

7 1. Institute of Life Sciences, Bhubaneswar, Odisha, India-751023

8 2. Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.

9 3. Translational Health Group, International Centre for Genetic Engineering and Biotechnology,
10 New Delhi-110067, India.

11 4. Regional Centre for Biotechnology, Faridabad, India.

12 5. Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Odisha, India- 753007

13 6. Ashok & Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied
14 Sciences, New Vallabh Vidyanagar-388121, Anand, Gujarat

15 7. Department of Radiotherapy, All India Institute of Medical Sciences, Bhubaneswar, Odisha,
16 India-751019

17 8. Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar,
18 Odisha, India-751019

19 * Corresponding authors

20 Rupesh Dash, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar-
21 751023, Odisha, India. Phone: +91-674-2301460, Fax: +91-674-2300728, E-mail:

22 rupesh.dash@gmail.com , rupeshdash@ils.res.in

23 and/or

24 Ranjan Nanda, Group Leader, Translational Health Group, International Centre for Genetic
25 Engineering and Biotechnology, New Delhi-110067, India. Phone: +91-11-26741358, Fax: +91-
26 11-26742316, E-mail: ranjan@icgeb.res.in

27 **Key words:** RRBP1, Hippo signaling, Radezolid, Patient derives cells, cisplatin

28

29

30 **Abstract**

31 Cisplatin-based chemotherapy still remains as one of the primary treatment modalities for
32 OSCC. Several OSCC patients experience relapse owing to development of chemoresistance. To
33 identify key resistance triggering molecules, we performed global proteomic profiling of human
34 OSCC lines presenting with sensitive, early and late cisplatin resistance patterns. From the
35 proteomic profiling study, human RRBP1 was identified to be upregulated in both early and late
36 cisplatin-resistant cells with respect to the sensitive counterpart. Analysis of OSCC patient
37 sample indicates that RRBP1 expression is elevated in chemotherapy-non-responder tumors as
38 compared to chemotherapy-naïve tumors. Knocking out RRBP1 resulted in restoring cisplatin
39 mediated cell death in chemoresistant lines and patient derived cells (PDC). Mechanistically,
40 RRBP1 regulates YAP-1 to induce chemoresistance in OSCC. The chemoresistant PDC
41 xenograft data suggests that knock out of RRBP1 induces cisplatin mediated cell death and
42 facilitates a significant reduction of tumor burden. We also found Radezolid, a novel
43 oxazolidinone antibiotic represses the expression of RRBP1 and restores cisplatin-induced cell
44 death in chemoresistant OSCC. This unique combinatorial approach needs further clinical
45 investigation to target advanced OSCC. Here with for the first time, we uncover the novel role of
46 RRBP1 as potential modulator of cisplatin resistance in advanced OSCC.

47

48 **Introduction:** HNSCC is the sixth most common cancer globally and most prevalent in
49 developing countries. OSCC is an aggressive form of HNSCC and is the most common cancer
50 among Indian males [1]. Approximately 80,000 new OSCC cases are reported annually with a
51 mortality of 46,000 individuals each year in India. The traditional treatment modalities for
52 advanced OSCC comprises of surgical removal of primary tumors followed by concomitant
53 adjuvant chemoradiotherapy [2]. In addition, neoadjuvant chemotherapy is frequently
54 recommended for surgically unresectable OSCC tumors that reduces tumor and provides more
55 surgical options. Despite having these solutions, the 5-year survival rate of advanced tongue
56 OSCC is approximately 50%, indicating a possible resistance to currently available therapeutics.

57 Chemoresistance is one of the important factors for treatment failure in OSCC [3]. Cisplatin
58 alone or in combination with 5-fluorouracil and taxane/docetaxel (TPF) are generally used as
59 chemotherapy regimen for OSCC [4]. But due to chemoresistance development, patients
60 experience relapse which leads to continued tumor growth and metastasis. The chemoresistant
61 properties could be attributed to enhanced cancer stem cell population, decreased drug
62 accumulation, reduced drug-target interaction, reduced apoptotic response and enhanced
63 autophagic activities [5]. These hallmarks present the endpoint events, when cancer cell had
64 already acquired chemoresistance. Till date, the causative factors responsible for acquiring
65 chemoresistance in cells are yet not explored. Identifying these molecular triggers will enable us
66 to understand the molecular mechanism behind chemoresistance and may be useful to identify
67 important targets.

68 In the present study, to identify the causative factors responsible for cisplatin resistance, we
69 employed a global quantitative proteomics study to identify deregulated proteins in cisplatin-

70 resistant OSCC cancer cell lines. Protein samples extracted from sensitive, early and late
71 cisplatin resistant cells were subjected to isobaric tags for relative and absolute quantification
72 (iTRAQ) studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A
73 representative deregulated protein was selected for validation in multiple cell lines and patient
74 derived biopsy samples using western blotting, qRT-PCR and IHC. Transcript and protein
75 expression values were correlated. CRISPR/Cas9-based knock out of the identified important
76 protein in cisplatin-resistant cells restored drug induced phenotype. The patient derived cell
77 (PDC) xenograft experiment suggests that knock out of the dysregulated protein induces
78 cisplatin- mediated cell death and facilitate significant reduction of tumor burden.
79 Mechanistically, the deregulated molecule regulates hippo signaling and activates YAP-1 target
80 genes, which confers chemoresistance in OSCC. Following the discovery and validation of the
81 protein target, we identified that the Radezolid (oxazolidinone group of antibiotics) represses the
82 expression of the target protein and reverses drug resistance in OSCC-chemoresistant cell lines.
83 The identified dysregulated molecule could be useful as a putative cancer marker explaining
84 cisplatin-resistant development in OSCC cells.

85

86 **Materials and methods:**

87

88 **Ethics statement**

89 This study was approved by the Institute review Board and Human Ethics committees (HEC) of
90 Institute of Life Sciences, Bhubaneswar (84/HEC/18) and All India Institute of Medical Sciences
91 (AIIMS), Bhubaneswar (T/EMF/Surg.Onco/19/03). The animal related experiments were

92 performed in accordance to the protocol approved by Institutional Animal Ethics Committee of
93 Institute of Life Sciences, Bhubaneswar (ILS/IAEC-147-AH/FEB-19).

94 _____

95 **Cell culture and establishment of chemoresistant OSCC cells**

96 The human tongue OSCC cell lines (H357, SCC-9 and SCC-4) were obtained from Sigma
97 Aldrich, sourced from European collection of authenticated cell culture. PCR fingerprinting to
98 establish the cell line authentication were done by the provider. All OSCC cell lines were
99 cultured and maintained as described earlier [6].

100 _____

101 **Generation of early and late cisplatin resistance cell lines**

102 To establish a chemoresistant cell model system, OSCC cell lines (H357, SCC-9 and SCC-4)
103 were initially treated with cisplatin at 1 μ M (lower dose) for a week and then the cisplatin
104 concentration was increased gradually up to 15 μ M (IC₅₀ value) in a span of 3 months and
105 further grown the cells at IC₅₀ concentration until 8 month. Here, drugs efficiently eliminated
106 the rapidly dividing cancer cells by inducing cell death, but poorly targeted the slowly dividing
107 cells. Gradually, the poorly sensitive cells regained the normal growth cycle. Cells at the starting
108 time were grouped as sensitive (CisS) and at 4 and 8 months of treatment were termed as early
109 (Cis EarlyR) and late resistant (CisR Late R) cells respectively (Supplementary figure 1A).

110 _____

111

112

113 **iTRAQ based proteomics analysis**

114 Harvested cells (5×10^6), from three time points (0M, 4M and 8M) were treated with RIPA buffer
115 (Thermo Fisher Scientific, Cat #88665) supplemented with protease (details) and phosphatase
116 inhibitor (Sigma, Cat # P0044.). Extracted cellular proteins from all three time points with
117 appropriate technical and biological replicates were used in an isobaric tag for relative and
118 absolute quantification (iTRAQ) experiment (**Fig. 1A & 1B**). Equal amount of proteins (100 μg)
119 from all samples were taken for tryptic protein preparation following manufacturer's instructions
120 (AB Sciex, USA). Study samples with the tag details used for labelling in iTRAQ experiment are
121 presented in (**Fig. 1B**). Protein lysates were dried and dissolved using dissolution buffer and
122 denaturant (2% SDS) supplied in the kit. Before trypsinization, proteins were reduced using tris-
123 (2-carboxyethyl) phosphine (TCEP, 50 mM) at 60 °C for 1 hr, and cysteinyl residues were
124 blocked using methyl methanethiosulfonate (MMTS, 200 mM). Trypsin treatment was
125 performed using trypsin supplied by the manufacturer and incubating at 37°C for 16-20 hrs.
126 Tryptic peptides were dried at 40°C using SpeedVac (LabConco, USA). Tagged tryptic peptides
127 (~250 μg) were subjected to strong cation exchange fractionation using a hand-held ICAT®
128 Cartridge-cation-exchange system (Applied Biosystems, USA).

129 Each SCX fraction was resuspended in 20 μl of buffer (water with 0.1% formic acid) and
130 introduced to easy-nanoLC 1000 HPLC system (Thermo Fisher Scientific, Waltham, MA)
131 connected to hybrid Orbitrap Velos Pro Mass Spectrometer (Thermo Fisher Scientific, Waltham,
132 MA). The nano-LC system contains the Acclaim PepMap100 C18 column (75 $\mu\text{m} \times 2 \text{ cm}$)
133 packed with 3 μm C18 resin connected to Acclaim PepMap100 C18 column (50 $\mu\text{m} \times 15 \text{ cm}$)
134 packed with 2 μm C18 beads. A 120 min gradient of 5% to 90% buffer B (0.1% formic acid in
135 95% Acetonitrile) and Buffer A (0.1% formic acid in 5% Acetonitrile) was applied for separation

136 of the peptide with a flow-rate of 300 nl/min. The eluted peptides were electrosprayed with a
137 spray voltage of 1.5 kV in positive ion mode. Mass spectrometry data acquisition was carried out
138 using a data-dependent mode to switch between MS1 and MS2.

139 _____

140 **Protein Identification and iTRAQ Quantitation**

141 Protein identification and quantification was carried out using SEQUEST search algorithm of
142 Proteome Discoverer Software 1.4 (Thermo Fisher, Waltham, MA, USA). Each MS/MS
143 spectrum was searched against a human proteome database (UniProt, 89,796 total proteins,
144 downloaded in April 2017). Precursor ion mass tolerance (20 ppm), fragmented ion mass
145 tolerance (0.1 Da), missed cleavages (<2) for trypsin specificity, Carbamidomethyl (C),
146 Deamidation (N and Q), Oxidation (M) and 8-plex iTRAQ label (N terminus and K) were set as
147 variable modifications. The false discovery rate (FDR) at both protein and peptide level was
148 calculated at 5%. The identified protein list with fold change values were exported to Microsoft
149 Excel for further statistical analysis. Identified proteins from study samples and relative fold
150 change values were selected for principal component analysis and a partial least square
151 discriminate analysis model was built using MetaboAnalyst 3.0. All the mass spectrometry data
152 files (.raw and .mgf) with result files were deposited in the ProteomeXchange Consortium
153 (PXD0016977).

154 _____

155 **Lentivirus production and generation of stable Cas9 over expressing chemoresistant lines**

156 For Cas9 lentivirus generation, we transfected lentiCas9-Blast (Addgene, Cat#52962) along
157 with its packaging psPAX2 and envelop pMD2G in HEK293T cells as lentiviral particles were

158 generated by protocol described in Shriwas et al [7]. Chemoresistant cells were infected with
159 lento Cas9 particles and treated with blastidicines hydrochloride (5 μ g/ml, MP biomedical, Cat#
160 2150477). Single clones were selected, and Cas9 over expression was confirmed by Western blot
161 using anti-Cas9 antibody (CST Cat #14697) (Supplementary Fig 3A). The lentiCas9-Blast vector
162 was kindly deposited to Addgene by Feng Zhang lab [8].

163 —

164 **Generation of CRISPR based RRBP1 KO cell line**

165 For generation of RRBP1 knockout cells, lentiviral vector expressing RRBP1 sgRNA
166 (GGCGTTTCAGAATGCCACA) was procured from Addgene (Cat# 92157). This lentiGuide-
167 RRBP1-2 vector was kindly deposited by Alice Ting Lab [9]. Lentiviral particles were generated
168 as described above using HEK293T cells. Stable clones of Cas9 overexpressing (Supplementary
169 Fig 3A) chemoresistant cells (H357 CisR, SCC-9 CisR and patient derived cells PDC1) were
170 infected with lentiGuide-RRBP1-2 for 48h in presence of polybrene (8 μ g/ml), after which cells
171 were treated with puromycin (2 μ g/ml, Invitrogen, USA, Cat #A11138-03) for 7 days. Single
172 clones were selected, and RRBP1 knockout was confirmed by Western blot using anti-RRBP1
173 antibody (Abcam, USA, Cat # ab95983). The RRBP1 KO clones were confirmed by cleavage
174 detection assay (Supplementary Fig. 3B&C). The genomic cleavage efficiency was measured by
175 the GeneArt® Genomic Cleavage Detection kit (Thermo Fisher Scientific, Cat # A24372)
176 according to manufacturer's protocol. Oligos used for this study are mentioned in supplementary
177 table 3).

178 —

179 **Transient transfection with plasmids**

180 For transient expression, H357 and SCC-9 cells were transfected with RRBP1 overexpression
181 plasmids pcDNA4 HisMax-V5-GFP-RRBP1(Addgene:Cat#92150) using the ViaFect
182 transfection reagent (Promega Cat# E4982). pcDNA4 HisMax-V5-GFP-RRBP1 was kindly
183 deposited by Alice Ting Lab [9]. The cells were transfected for 48h, after which they were
184 treated with cisplatin (5μM) followed by flow cytometry analysis (Annexin V PE/7-AAD Assay)
185 and immunoblotting with anti-PARP and Anti β-actin. The transfection efficiency was
186 determined by immunoblotting with Anti GFP (Abcam, USA, Cat # ab6556).

187 _____

188 **OSCC patient sample**

189 Biopsy samples of chemotherapy-naive patients (n=29, (OSCC patients that were never treated
190 with any chemotherapy) and OSCC chemotherapy non-responders (n=23, OSCC patients were
191 treated with neoadjuvant chemotherapy but never responded or partially responded) were
192 collected from clinical sites. Study subject details with treatment modalities are presented in
193 Supplementary Tables 1 and 2. Primary patient-derived cells (PDC) were isolated from harvested
194 tissues of patients not responding to treatment and cultured [10].

195 _____

196 **Organoid culture**

197 Following earlier published methods with minor modification, chemoresistant lines (H357CisR,
198 SCC-9 CisR) and patient derived cells (PDC1) were used for developing 3D organoid [11].
199 Organoid formation rate was defined as the average number of 50-mm spherical structures at day
200 14 that was divided by the total number of seeded cells in each well at day 0. During this

201 experiment, at day 8 from establishing organoid culture, cisplatin (10 μ M) or DMSO (vehicle
202 control) was used for treatment.

203 _____

204 **Immunoblotting**

205 Cell lysates were used for immunoblotting experiments as described earlier [12]. For this study,
206 we used antibody against Anti β -actin (Abcam, USA, Cat#A2066), Anti RRBPI (Sigma, Cat#
207 HPA011924, Abcam USA, Cat# ab95983), Anti YAP(CST, Cat # 14074), Anti YAP-1^{s-397} (CST,
208 Cat # 13619S), Anti YAP-1^{s-127} (CST, Cat # 13008), Anti PARP (CST, Cat #9542L), Anti
209 p^{s-139}-H2AX (CST, Cat # 9718S), Anti GFP (Abcam, USA, Cat # ab6556), and YAP/TAZ
210 Transcriptional Targets Antibody Sampler Kit (CST, Cat#56674), anti Cas9 (CST, Cat #
211 14697).

212 _____

213 **Patient Derived Xenograft**

214 BALB/C-nude mice (6-8 weeks, male, NCr-Foxn1nu athymic) were purchased from Vivo
215 biotech Ltd (Secunderabad, India) and maintained under pathogen-free conditions in the animal
216 house. The patient-derived cells (PDC1) established from chemo non-responders was used for
217 xenograft model [10]. The patient (PDC#1) was treated with TP (50 mg carboplatin and 20 mg
218 paclitaxel for 3 cycles) without having any response. For xenograft experiment, cells (one
219 million) were suspended in phosphate-buffered solution-Matrigel (1:1, 100 μ l) and transplanted
220 into upper flank of mice. The PDC1RRBP1KO cells were injected in the left upper flank and
221 PDC1 WT cells were injected in right upper flank of same mice. After tumor reached volume of

222 50 mm³, we randomly divided these mice into 2 groups to treat with vehicle or inject cisplatin (3
223 mg/Kg) intraperitoneally twice a week.

224 _____

225 **RT-PCR and Real Time Quantitative PCR**

226 Total RNA was isolated using RNA mini kit (Himedia, Cat# MB602) as per manufacturer's
227 instruction and quantified by Nanodrop. RNA (300 ng) was used for reverse transcription by
228 using first cDNA synthesis (VERSO CDNA KIT Thermo Fisher Scientific, Cat # AB1453A) and
229 qRT-PCR was carried out using SYBR Green master mix (Thermo Fisher scientific Cat #
230 4367659). GAPDH was used as a loading control and complete primer details used in this article
231 are listed in supplementary table 3.

232 _____

233 **Immunohistochemistry**

234 OSCC patients tumor and mice tumors were isolated for paraffin embedding for
235 immunohistochemistry following previously described method [7]. Antibodies for RRBP1
236 (Sigma, cat# HPA011924), Ki67 (Vector, Cat# VP-RM04), cleaved caspase (CST, cat # 9661S),
237 CTGF (Santa Cruz Cat# SC 25440), Survivin (CST Cat# 2808) were used for
238 immunohistochemistry. Q-score was determined by protocol as described in Maji et al [10].

239 _____

240 **Annexin V PE/7-ADD Assay**

241 Apoptosis and cell death were measured by staining with Annexin V Apoptosis Detection Kit
242 PE (eBioscience™, USA, Cat # 88-8102-74) as described earlier [10].

243 _____

244

245 **Immunofluorescence**

246 Cell (10^3) were seeded on coverslip and allowed to adhere to the surface. The adhered cells were
247 fixed in 4% formaldehyde for 15 min and permeabilize with 1X permeabilization buffer
248 (eBioscience™, USA, Cat # 00-8333-56) followed by blocking with 3% BSA for 1h at room
249 temperature. Then cells were incubated with primary antibody overnight at 4°C, washed thrice
250 with PBST followed by 1h incubation with Alexa fluor conjugated secondary antibody (Thermo
251 Fisher Scientific Cat # 11008, 21244) then again washed thrice with 1XPBST, after which
252 coverslips were mounted with DAPI (Slow Fade ® GOLD Antifade, Thermo Fisher Scientific,
253 Cat # S36938). Images were captured using a confocal microscopy (LEICA TCS-SP5).

254 _____

255 **Colony formation assay**

256 For colony forming assay, cells (500) were seeded in 6 well plate and treated with DMSO,
257 Cisplatin (*cis*-diammineplatinum (II) dichloride, Sigma, Cat#479306), Radezolid
258 (MedChemExpress USA, Cat #HY-14800) or in combination then allowed for 10 days to grow.
259 The colonies were stained with 0.5% crystal violet and counted by ImageJ software.

260 _____

261 **Validation of relative expression levels of YAP target gene with RRB1**

262 The relative expression levels of YAP target gene with RRB1 in HNSCC patient tumors were
263 validated using GEPIA (<http://gepia.cancer-pku.cn/detail.php?gene=RRB1>), online analysis

264 software based on the TCGA database and Genotype, using $|\log_2\text{FC}| \geq 1$ and $P \leq 0.05$ as the cut-off
265 criteria.

266 _____

267 **Insilco molecular docking**

268 The Radezolid structure was obtained from DrugBank (<https://www.drugbank.ca/>). The ligand
269 was prepared by LigPrep module in Schrodinger molecular modeling software. Since there is no
270 crystal structure available for the target protein RRBP1 in Protein Databank (PDB), a homology
271 model of RRBP1 was built using Modller9.22 software. The protein template for homology
272 modeling was selected using DELTA-BLAST. Two templates (PDB ID 6FSA, and 5TBY) were
273 selected and multiple sequence alignment with RRBP1 sequence was done for the modeling. Ten
274 models were built using Modeller9.22 and the best model was chosen on MolPDF score. The
275 selected model was imported in the Maestro module of Schrodinger software to prepare it for
276 docking. The hydrogens were added, bond orders and ionization states were assigned and
277 charges were calculated for the atoms of the RRBP1 protein. The active site of RRBP1 protein
278 was identified by SiteMap and a cavity with 772.7 A³ was selected for docking. The docking
279 study was done using the Glide module with extra precision (XP) mode.

280 _____

281 **Statistical analysis**

282 All data points are presented as mean and standard deviation and Graph Pad Prism 5.0 was used
283 for calculation. The statistical significance was calculated by one-way variance (one-way
284 ANOVA), Two-Way ANOVA and considered significance at $P \leq 0.05$.

285

286

287

288 **Results:**

289 **Establishment of chemoresistance OSCC cells:** To identify the key resistance triggering
290 molecules, we have established cisplatin resistant cells by prolonged treatment of cisplatin to
291 OSCC cell lines as described in the method section. Monitoring cisplatin-induced cell death in
292 three stages (CisS, Cis EarlyR and Cis LateR) of H357, SCC-9 and SCC-4 cells by flow
293 cytometry assay showed Cis LateR achieved complete acquired resistance and Cis EarlyR
294 achieved partial resistance (Supplementary Fig 1A-B)

295 **RRBP1 expression is elevated in chemoresistant OSCC:** From the adopted global proteomics
296 experiment including H357 CisS, H357 Cis EarlyR and H357 Cis LateR, a set of **247 proteins**
297 were identified and **44** showed dysregulations ($\log_2(\text{resistance/sensitive}) > \pm 1.0$ and VIP
298 score > 1.6) (Fig. 1 A-B and supplementary table 4). Principal Component Analysis reveals that
299 (PCA), all the identified proteins as variables with their fold change values are grouped into two
300 different cluster (Supplementary Fig.2A). The variable importance in the projection (VIP) values
301 were also applied to identify deregulated proteins with cut-off value > 2 (Fig. 1C). From literature
302 mining, we selected one of these important deregulated molecules i.e. Ribosome Binding Protein
303 1 for further validation. The dendrogram indicates that RRBP1 expression is elevated during the
304 development of cisplatin resistance (Fig 1D). Further we checked and confirmed the
305 fragmentation spectra of RRBP1 protein quantified by peptide ALNQATSQVES
306 (Supplementary Fig 2B-C). Based on these observations, we went for further validation of

307 RRB1 and to elucidate its potential role in acquired cisplatin resistance. In independent sample
308 sets, we monitored the RRB1 expression in H357, SCC-9 and SCC-4 OSCC tongue cell lines
309 showing different acquired chemoresistant patterns (H357 Cis EarlyR, H357 Cis LateR, SCC-4
310 Cis EarlyR, SCC-4 Cis LateR, SCC-9 Cis EarlyR and SCC-9 Cis LateR, R indicates Resistance).
311 Expressions of RRB1 at protein and mRNA levels were found to be up-regulated in Cis EarlyR
312 and Cis LateR cells with respect to CisS (cisplatin sensitive) counterparts in all cell lines (Figure
313 1E-F). A similar profile of RRB1 was also observed in tumor isolated from drug naïve (freshly
314 diagnosed OSCC tumors) and patients not responding or partially responding to neoadjuvant
315 chemotherapy (TPF) (Figure 1G-I). In drug-naïve and post-treated paired tumor samples not
316 responding to neoadjuvant chemotherapy treatment, we observed higher expression of RRB1 in
317 post chemotherapy treated tumors (Figure 1J-L). From the in-vitro and tumor samples isolated
318 from OSCC patients presenting with chemoresistance, consistently higher RRB1 abundance
319 was observed.

320 **RRB1 dependency in chemo-resistant cell lines and patient-derived cells (PDC):** We
321 generated RRB1 knock out clones in H357 CisR and SCC-9 CisR which was confirmed by
322 cleavage detection assay (Supplementary Fig 3 A-C). The RRB1 KO chemoresistant cells
323 restored cisplatin-mediated cell death in H357 CisR and SCC-9 CisR (Figure 2A, B) After
324 knocking out RRB1 from patient-derived tumor primary cells not responding to TP, PDC1 cells
325 reversed resistance and became sensitive to cisplatin-induced cell death (Figure 2C). In addition
326 to this, transient over expression of RRB1 in H357CisS and SCC-9 CisS cells using over-
327 expression construct (pcDNA4 HisMax-V5-GFP-RRB1), showed the development of cisplatin
328 resistance (Fig. 3A-F). This observation indicated an RRB1 dependency of OSCC
329 chemoresistant cells.

330 **RRBP1 regulates YAP-1 expression in chemoresistant cells:** The deregulated proteins,
331 identified from global proteomics analysis, were converted to gene list and a functional analysis
332 was carried out using Ingenuity Pathway Analysis (IPA). IPA analysis of functional pathways in
333 acquired chemo-resistance cells showed highest down-regulation of Hippo signaling
334 (Supplementary Fig. 4A-B). Hippo pathway negatively regulates the activity of its downstream
335 transcriptional co-activators, Yes-associated protein 1 (YAP-1) and Transcriptional coactivator
336 with PDZ-binding motif (TAZ). The active YAP-1/TAZ translocate to the nucleus and binds
337 with TEA domain family member (TEAD), which in turn transcribes genes that promotes cell
338 proliferation and inhibit apoptosis. Dysregulated Hippo signaling promotes malignancy in cancer
339 cells and mediate chemoresistance in different neoplasms.

340 Expression of YAP-1 and its target genes (CYR61, CTGF, Jagged 1, AXL, Integrin β 2, IGFBP3
341 and Laminin B2) monitored in RRBP1 KO chemoresistant cells and WT, were found to be
342 significantly downregulated both at mRNA and protein levels (Figure 4A and 4B) in KO cells.
343 Moreover, our confocal microscopy data suggest that nuclear YAP-1 expression is significantly
344 reduced in RRBP1 KO cells as compared to wild type cells (Fig.4C). Hippo signaling is tightly
345 regulated by MST1/2 and LATS1/2, which phosphorylates the YAP-1 at Ser127 (Hippo on)
346 resulting in its cytoplasmic retention and proteasome-mediated degradation. Similarly,
347 phosphorylation at Ser397 of YAP-1 by LATS1/2 creates a phospho□degron motif for β □TrCP
348 binding followed by proteasomal degradation [13]. We did not find any increase in
349 phosphorylated YAP-1, rather, lower expression of p-YAP (at Ser-127 and Ser-397) were
350 observed in RRBP1 KO as compared to WT cells (Figure 4D). YAP-1 m-RNA expression in WT
351 and RRBP1 KO cells were found to be similar (Figure 4E). Further, association analysis of
352 RRBP1 m-RNA levels with YAP-1 target gene (CTGF, CYR61, Jagged 1, AXL, TEAD1,

353 COL1A1,DCN, NUAK1,FOXO1, AMOTL2, PCDH7 and MYOF) in the TCGA (The Cancer
354 Genome Atlas) HNSCC cohort using GEPIA showed a positive correlation ($r \geq 0.3$) (Fig. 4F).
355 Collectively these data demonstrated that loss of RRB1P1 impair YAP-TEAD target gene
356 expression, henceforth RRB1P1 regulate YAP1 expression.

357 **Knock out of RRB1P1 significantly induced cisplatin-mediated apoptosis in chemoresistant**
358 **patient-derived xenograft:** To evaluate in-vivo efficacy of knocking out RRB1P1 in restoring
359 cisplatin-induced cell death in chemoresistant OSCC, we established xenograft tumors in nude
360 mice using PDC isolated from tumors of a chemotherapy-non-responder patient(Fig 5A)
361 (patient# 1, table 1). The PDC1 WT cells were implanted in the right flank of athymic nude mice
362 and PDC1RRB1P1KO cells were implanted in the left flank of same mice. We observed a
363 reduction in tumor growth and size in RRB1P1 KO group as compared to WT PDC1. Treating
364 with cisplatin (3 mg/kg) significantly reduced the tumour burden in case of RRB1P1 KO group
365 (Figure 5 B-D). Immunohistochemistry analysis of harvested tumors showed significantly
366 higher apoptosis levels, reduced expression of YAP-1 and its target genes in RBB1P1KO groups
367 treated with cisplatin (Figure 5E).

368 **Radezolid, a potential inhibitor of RRB1P1 restores cisplatin-induced cell death in**
369 **chemoresistant OSCC:** As potential inhibitors of RRB1P1 are missing the in literature. From
370 PubChem and drug bank database search, it seemed that Radezolid, a second generation
371 oxazolidinone antibiotic could be used as a potential candidate to target RRB1P1. The Insilco
372 molecular docking study suggested that the molecule docks well at the active site (Fig 6 A-B)
373 making multiple hydrogen bond interactions. The molecule shows a docking score of -8.0
374 indicating it is having a high affinity for the RRB1P1 protein. There are three hydrogen bonds
375 interacting with RRB1P1 and Radezolid. The first hydrogen bond with GLU78 while the nearby

376 amide makes a hydrogen bond with PRO115. The other amide makes a hydrogen bond
377 interaction with ARG101 of RRBP1 (Fig 6 C-D). The docking score and three hydrogen bond
378 interaction showed that Radezolid have potential binding affinity to inhibit the RRBP1
379 expression. Next, RRBP1 expression was monitored in chemoresistant cells (H357CisR, SCC-9
380 CisR and PDC1) treated with Radezolid. We observed a dose dependent ($\geq 5 \mu\text{M}$) lowering of
381 RRBP1 protein expression with treatment of Radezolid (Fig. 6E). Interestingly, our qRT-PCR
382 data suggests that Radezolid treatment did not affect the mRNA expression of RRBP1 in
383 chemoresistant cells (Fig. 6F). However, Radezolid treatment significantly reduced the
384 expression of YAP-1 target genes in H357CisR and SCC-9CisR cells (Fig. 6G). Further, we
385 evaluated if treatment of Radezolid can overcome cisplatin resistance in OSCC. Our data suggest
386 upon combination effect of Radezolid and Cisplatin treatment in cisplatin-resistant OSCC cells
387 and PDC1, we observed a reversal of chemoresistance (Figure 7 A-C). Apoptosis induced by this
388 combinatorial effect was confirmed from a significant increase in cleaved PARP, and increased
389 p- γ H2AX level. Our ongoing effort is to understand the in vivo efficacy of Radezolid in
390 chemoresistant PDX.

391

392 **Discussion:**

393 Earlier, cisplatin resistance models have been successfully established by prolonged treatment of
394 drugs to cancer cell lines representing various neoplasms [14]. These models can be broadly
395 divided into two groups, I) clinically relevant model, where cells were grown with lower doses
396 of drug adopting a pulse treatment strategy [15, 16], II) High-level laboratory models, where
397 cells are continually grown in presence of drugs with dosage escalation from lower dose to IC50
398 [17, 18]. The advantage of clinically relevant models is that it mimics the chemotherapy

399 strategies in patients; on the other hand, its resistance pattern is very inconsistent. High-level
400 laboratory models showed consistent resistant pattern and are generally preferred to study the
401 mechanism of chemoresistance in cancer cells. All these studies engage the parental sensitive
402 cells and late drug resistant cells to understand the molecular mechanism for chemoresistance.
403 Here, to explore the causative factors of chemoresistance in OSCC, we have established and
404 characterized sensitive, early and late cisplatin-resistant cells. Using global proteomic profiling
405 of oral cancer cells with different grades of resistance to cisplatin, we have identified and
406 validated that Ribosomal binding protein 1 (RRBP1) is one of the critical proteins responsible for
407 resistance development. RRBP1 is localized in the rough endoplasmic reticulum (rER) and
408 supposed to play a role in secretion of newly synthesized protein [19]. RRBP1 is reported to be
409 over expressed in breast [20], lung [19], colorectal [21], esophageal [22], endometrial [23],
410 prostate [24] and ovarian cancer [25] patient tissues. RRBP1 expression is associated with the
411 disease progression and also envisaged as an unfavourable post-operative prognosis [21]. Here,
412 we established that inhibiting RRBP1 expression has cisplatin resistance rewiring potential
413 making it susceptible to cisplatin. To the best of our knowledge, this is the first study to
414 demonstrate that elevated RRBP1 in cisplatin resistant OSCC cancer cells could be
415 reversed/manipulated to make them susceptible to cisplatin treatment.

416 RRBP1 proteins, critical for translation, transportation and secretion of secretory proteins,
417 anchors to the rough endoplasmic reticulum and also present in cytoplasm and nucleus [26, 27].
418 It is critical for translation, transportation and secretion of secretory proteins [27]. It plays an
419 important role in augmenting collagen synthesis and secretion at the entry of secretory
420 compartment. Knocking down RRBP1 in human fibroblast results in a significant reduction of
421 secreted collagen. Electron microscopy study suggests lesser interaction of ER and ribosome in

422 RRB1 knocked down cells [28]. RRB1 also mediates the targeting of certain m-RNAs to the
423 ER. It was detected in mass spectrometry analysis of ER bound polysomes. The m-RNA
424 targeted to ER generally has a signal receptor peptide. SRP of the ER destined m-RNA binds to
425 RRB1 (SRP receptor proteins on ER) through its single transmembrane domain and a large
426 carboxyterminal lysine-rich domain. Interestingly, it was found that knocking down RRB1 can
427 inhibit the translation-dependent and translation independent ER association of specific mRNAs
428 encoding calreticulin and alkaline phosphatase.

429 In this study, we observed a significant reduction of YAP-1 in RRB1 knock out cells, limited or
430 no YAP-1 phosphorylation, indicating that it is not degraded by proteasomal degradation. Our
431 results indicate that RRB1 might be playing a role in the translation of YAP-1 mRNA. In
432 absence of RRB1, the translation of YAP-1 is partially blocked (Fig. 8). It is well established
433 that dysregulated Hippo signaling promotes malignancy in cancer cells [29, 30]. Recently, Hippo
434 signaling has also been correlated to mediate chemoresistance in different neoplasms to several
435 chemotherapeutic drugs [31]. Similarly, phosphorylation at S397 of YAP-1 by LATS1/2 creates
436 a phosphodegron motif for β -TrCP binding followed by proteasomal degradation [13].
437 Overall, dephosphorylated YAP-1 (Hippo off) translocate to the nucleus to transcribe the YAP-1
438 target genes.

439 We additionally provide evidence that a second generation Oxazolidinones (Radezolid),
440 synthetic antibiotic affecting the initiation phase of bacterial protein synthesis (under
441 development by Melinta Therapeutics Inc) represses RRB1 in chemoresistant cells. Further,
442 preclinical studies are underway to determine the toxicity profile, pharmacokinetic properties of
443 Radezolid. In recent future, we will evaluate the in-vivo efficacy of Radezolid, if it can reverse
444 the cisplatin resistance in OSCC.

445 In conclusion, our findings suggest that blocking the RRB1 expression in cisplatin resistant
446 cells can be a viable strategy to overcome cisplatin resistance. We further demonstrated that
447 Radezolid could be useful to reverse cisplatin resistance in acquired chemoresistant lines and
448 PDX models. Further studies are warranted to establish the mechanism of action.

449

450 **Acknowledgements-** Grant support: This work is supported by Institute of Life Sciences,
451 Bhubaneswar intramural support and ICMR (5/13/9/2019-NCD-III) and. RD is thankful to
452 Ramalingaswami Fellowship. SM is UGC-JRF, OPS is a UGC-SRF. Core support from
453 International Centre for Genetic Engineering and Biotechnology is highly acknowledged.

454 **Competing Interests:** The authors have no conflict of interest

455

456 **References**

457 1 Dikshit R, Gupta PC, Ramasundarahettige C, Gajalakshmi V, Aleksandrowicz L, Badwe R *et al.*
458 Cancer mortality in India: a nationally representative survey. *Lancet* 2012; 379: 1807-1816.

459 2 Huang SH, O'Sullivan B. Oral cancer: Current role of radiotherapy and chemotherapy. *Med Oral
460 Patol Oral Cir Bucal* 2013; 18: e233-240.

462 3 Wang C, Liu XQ, Hou JS, Wang JN, Huang HZ. Molecular Mechanisms of Chemoresistance in Oral
463 Cancer. *Chin J Dent Res* 2016; 19: 25-33.

465 4 Vishak S, Rangarajan B, Kekatpure VD. Neoadjuvant chemotherapy in oral cancers: Selecting the
466 right patients. *Indian J Med Paediatr Oncol* 2015; 36: 148-153.

468 5 Maji S, Panda S, Samal SK, Shriwas O, Rath R, Pellecchia M *et al.* Bcl-2 Antiapoptotic Family
469 Proteins and Chemoresistance in Cancer. *Adv Cancer Res* 2018; 137: 37-75.

471 6 Samal SK, Routray S, Veeramachaneni GK, Dash R, Botlagunta M. Ketorolac salt is a newly
472 discovered DDX3 inhibitor to treat oral cancer. *Sci Rep* 2015; 5: 9982.

474

475 7 Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK *et al.* DDX3 modulates
476 cisplatin resistance in OSCC through ALKBH5-mediated m(6)A-demethylation of FOXM1 and
477 NANOG. *Apoptosis* 2020.

478

479 8 Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR
480 screening. *Nat Methods* 2014; 11: 783-784.

481

482 9 Hung V, Lam SS, Udeshi ND, Svinkina T, Guzman G, Mootha VK *et al.* Proteomic mapping of
483 cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity
484 biotinylation. *Elife* 2017; 6.

485

486 10 Maji S, Shriwas O, Samal SK, Priyadarshini M, Rath R, Panda S *et al.* STAT3- and GSK3beta-
487 mediated Mcl-1 regulation modulates TPF resistance in oral squamous cell carcinoma.
488 *Carcinogenesis* 2019; 40: 173-183.

489

490 11 Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V *et al.* Three-
491 Dimensional Organoids Reveal Therapy Resistance of Esophageal and Oropharyngeal Squamous
492 Cell Carcinoma Cells. *Cell Mol Gastroenterol Hepatol* 2019; 7: 73-91.

493

494 12 Maji S, Samal SK, Pattanaik L, Panda S, Quinn BA, Das SK *et al.* Mcl-1 is an important therapeutic
495 target for oral squamous cell carcinomas. *Oncotarget* 2015; 6: 16623-16637.

496

497 13 Rozengurt E, Sinnott-Smith J, Eibl G. Yes-associated protein (YAP) in pancreatic cancer: at the
498 epicenter of a targetable signaling network associated with patient survival. *Signal Transduct
499 Target Ther* 2018; 3: 11.

500

501 14 McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M *et al.* In vitro Development
502 of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with
503 Case Studies. *Front Oncol* 2014; 4: 40.

504

505 15 Stordal BK, Davey MW, Davey RA. Oxaliplatin induces drug resistance more rapidly than cisplatin
506 in H69 small cell lung cancer cells. *Cancer Chemother Pharmacol* 2006; 58: 256-265.

507

508 16 Ma J, Maliepaard M, Kolker HJ, Verweij J, Schellens JH. Abrogated energy-dependent uptake of
509 cisplatin in a cisplatin-resistant subline of the human ovarian cancer cell line IGROV-1. *Cancer
510 Chemother Pharmacol* 1998; 41: 186-192.

511

512 17 Shen DW, Akiyama S, Schoenlein P, Pastan I, Gottesman MM. Characterisation of high-level
513 cisplatin-resistant cell lines established from a human hepatoma cell line and human KB
514 adenocarcinoma cells: cross-resistance and protein changes. *Br J Cancer* 1995; 71: 676-683.

515
516 18 Liang XJ, Shen DW, Garfield S, Gottesman MM. Mislocalization of membrane proteins associated
517 with multidrug resistance in cisplatin-resistant cancer cell lines. *Cancer Res* 2003; 63: 5909-5916.

518
519 19 Tsai HY, Yang YF, Wu AT, Yang CJ, Liu YP, Jan YH *et al.* Endoplasmic reticulum ribosome-binding
520 protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates
521 intracellular stress-induced apoptosis through the enhancement of GRP78. *Oncogene* 2013; 32:
522 4921-4931.

523
524 20 Telikicherla D, Marimuthu A, Kashyap MK, Ramachandra YL, Mohan S, Roa JC *et al.*
525 Overexpression of ribosome binding protein 1 (RRBP1) in breast cancer. *Clin Proteomics* 2012; 9:
526 7.

527
528 21 Pan Y, Cao F, Guo A, Chang W, Chen X, Ma W *et al.* Endoplasmic reticulum ribosome-binding
529 protein 1, RRBP1, promotes progression of colorectal cancer and predicts an unfavourable
530 prognosis. *Br J Cancer* 2015; 113: 763-772.

531
532 22 Wang L, Wang M, Zhang M, Li X, Zhu Z, Wang H. Expression and significance of RRBP1 in
533 esophageal carcinoma. *Cancer Manag Res* 2018; 10: 1243-1249.

534
535 23 Liu S, Lin M, Ji H, Ding J, Zhu J, Ma R *et al.* RRBP1 overexpression is associated with progression
536 and prognosis in endometrial endometrioid adenocarcinoma. *Diagn Pathol* 2019; 14: 7.

537
538 24 Li T, Wang Q, Hong X, Li H, Yang K, Li J *et al.* RRBP1 is highly expressed in prostate cancer and
539 correlates with prognosis. *Cancer Manag Res* 2019; 11: 3021-3027.

540
541 25 Ma J, Ren S, Ding J, Liu S, Zhu J, Ma R *et al.* Expression of RRBP1 in epithelial ovarian cancer and
542 its clinical significance. *Biosci Rep* 2019; 39.

543
544 26 Wanker EE, Sun Y, Savitz AJ, Meyer DL. Functional characterization of the 180-kD ribosome
545 receptor in vivo. *J Cell Biol* 1995; 130: 29-39.

546
547 27 Savitz AJ, Meyer DL. 180-kD ribosome receptor is essential for both ribosome binding and
548 protein translocation. *J Cell Biol* 1993; 120: 853-863.

549
550 28 Ueno T, Tanaka K, Kaneko K, Taga Y, Sata T, Irie S *et al.* Enhancement of procollagen biosynthesis
551 by p180 through augmented ribosome association on the endoplasmic reticulum in response to
552 stimulated secretion. *J Biol Chem* 2010; 285: 29941-29950.

553
554 29 Han Y. Analysis of the role of the Hippo pathway in cancer. *J Transl Med* 2019; 17: 116.

555

556 30 Misra JR, Irvine KD. The Hippo Signaling Network and Its Biological Functions. *Annu Rev Genet*
557 2018; 52: 65-87.

558
559 31 Gujral TS, Kirschner MW. Hippo pathway mediates resistance to cytotoxic drugs. *Proc Natl Acad*
560 *Sci U S A* 2017; 114: E3729-E3738.

561

562

563 **Figure legend:**

564 **Figure 1: Global proteomics data revealed RRB1 is upregulated in OSCC chemoresistant**
565 **cells.**

566 **A)** Schematic representation of sensitive, early and late cisplatin resistant OSCC line for global
567 proteomic profiling. The establishment of sensitive, early and late resistant cells is described in
568 the materials and method section. **B)** The lysates were isolated from parental sensitive
569 (H3457CisS), early (H357Cis Early R) and late (H357Cis Late R) cisplatin resistant cells and
570 subjected to global proteomic profiling. The schematic diagram depicts the iTRAQ labeling
571 strategy for proteomic analysis. 0R11 and 0R12 are technical replicates of H357CisS group,
572 4R11: 4R12 are technical and 4R2 is biological replicates of H357Cis EarlyR group, 8R11:
573 8R12 are technical and 8R2 is biological replicates of H357Cis LateR group. **C)** VIP score
574 analysis of global proteomic profiling of sensitive, early (EarlyR) and late resistant cells
575 (LateR). The uniport ID (A1A5C5) represents for human Ribosome Binding Protein. **D)** The
576 dendrogram represents the deregulated genes from proteomic analysis (from early to late
577 resistance normalized with sensitive). **E)** Relative mRNA (fold change) expression of RRB1
578 was analyzed by qRT PCR in indicated acquired chemoresistant OSCC cells as compared to the
579 sensitive counterpart (mean \pm SEM, n=2). GAPDH was used as an internal control. **F)** Cell
580 lysates from indicated resistant and sensitive OSCC cells were isolated and subjected to

581 immunoblotting against RRBP1 and β -actin antibodies. **G**) Protein expression of RRBP1 was
582 analyzed by immunohistochemistry (IHC) in chemotherapy-naïve and chemotherapy-non-
583 responder OSCC tumors. **H**) Representative IHC Scoring for RRBP1 from panel G (Q Score
584 =Staining Intensity \times % of Staining), (Median, n=29 for chemotherapy-naïve and n=23 for
585 chemotherapy-non-responder) *: P < 0.05. **I**) Relative mRNA expression of RRBP1 was
586 analyzed by qRT PCR in different chemotherapy-non-responder OSCC tumors as compared to
587 chemotherapy-naïve tumors (Median, n=29 for chemotherapy-naïve and n=23 for
588 chemotherapy-non-responder). *: P < 0.05. **J**) Protein expression of RRBP1 was analyzed by
589 immunohistochemistry (IHC) in pre- and post-TPF treated paired tumor samples for
590 chemotherapy-non-responder patients. **K**) IHC Scoring for RRBP1 from panel J (Q Score
591 =Staining Intensity \times % of Staining), n=6. **L**) Relative mRNA expression of RRBP1 was
592 analyzed by qRT PCR in pre- and post-TPF treated paired tumor samples for chemotherapy-
593 non-responder patients (n=6). Pt represents each patient.

594

595 **Figure 2: RRBP1 knock out sensitized chemoresistant resistant cells to cisplatin.**

596 **A)** RRBP1 KO cells in human OSCC line H357CisR were generated using a lentiviral approach
597 as described in materials and methods. **1st panel:** RRBP1KO and RRBP1WT cells were treated
598 with cisplatin (10 μ M) for 48 hours and cell viability was determined using MTT assay (Mean
599 \pm SEM, n=3) *: P < 0.05. **2nd panel:** RRBP1KO and RRBP1WT cells were treated with cisplatin
600 (10 μ M) and anchorage dependent colony forming assay was performed as described in materials
601 methods. The bar describes the relative colony number in each treatment group (Mean \pm SEM,
602 n=3) *: P < 0.05. **3rd panel:** RBP1KO and WT cells were treated with cisplatin (10 μ M) and 3D
603 organoid assay was performed as described in materials and methods. The bar diagram

604 represents the number of organoids in each treatment group (Mean \pm SEM, n=3) *: P < 0.05. **4th**
605 **panel:** representative images of anchorage dependent colony forming assay (lower panel) and
606 3D organoid assay (upper panel) as described in 2nd and 3rd panel. **5th panel:** RRBP1KO and
607 WT cells were treated with cisplatin (10 μ M) for 48h, after which cell death was determined by
608 annexin V/7AAD assay using flow cytometer. Bar diagrams indicate the percentage of cell
609 death with respective treated groups (Mean \pm SEM, n=2). **6th panel:** RRBP1KO and WT cells
610 were treated with cisplatin (10 μ M) for 48h and immunoblotting was performed with indicated
611 antibodies.

612 **B)** RRBP1 KO cells in human OSCC line SCC-9 were generated using a lentiviral approach as
613 described in materials and methods. Similar experiments were conducted with SCC-9 CisR
614 RRBP1 KO and SCC-9 CisR RRBP1WT as described in all panels of section A. **C)** RRBP1 KO
615 cells in PDC1 (patient derived cells) were generated using a lentiviral approach as described in
616 materials and methods. Similar experiments were conducted with PDC1 RRBP1 KO PDC1
617 RRBP1WT as described in all panels of section A.

618

619 **Figure 3: Overexpression of RRBP1 in human OSCC lines results in development of**
620 **cisplatin resistance.**

621 **A)** H357CisS were transfected with RRBP1 overexpression vector (pcDNA4 HisMax-V5-GFP-
622 RRBP1) and treated with cisplatin (5 μ M) for 48h, after which immunoblotting was performed
623 against indicated antibodies. GFP expression indicates the transfection efficiency of RRBP1
624 overexpression construct. **B)** Cells were treated as described in A panel and cell viability was
625 determined by MTT assay (Mean \pm SEM, n=3) *: P < 0.05. **C)** Cells were treated as described in

626 A panel and cell death was determined by annexin V/7AAD assay using flow cytometer. Bar
627 diagrams indicate the percentage of cell death with respective treated groups (Mean \pm SEM, n=3).
628 **D-F**) SCC-9 CisS cells were transfected with RRBP1 overexpression vector (pcDNA4 HisMax-
629 V5-GFP-RRBP1) and treated with cisplatin (5 μ M) for 48h and experiments were performed as
630 described in panel A-C.

631

632

633 **Figure 4: RRBP1 regulates YAP in chemoresistant OSCC.**

634 **A)** Cell lysates from indicated RRBP1KO and WT cells were isolated and subjected to
635 immunoblotting against indicated antibodies. **B)** Relative mRNA (fold change) expression of
636 indicated genes was analyzed by qRT PCR in indicated RRBP1 KO and RRBP1WT
637 chemoresistant cells (mean \pm SEM, n=3). GAPDH was used as an internal control. **C)** H357CiSR
638 RRBP1KO and H357 CisR RRBP1WT cells were cultured and immunostaining were performed
639 using the anti-YAP-1 antibody as described in materials and methods. Images were acquired
640 using confocal microscopy (LEICA TCS-SP8). **D)** Cell lysates from indicated RRBP1KO and
641 RRBP1WT were isolated and subjected to immunoblotting against indicated antibodies. **E)**
642 Relative mRNA (fold change) expression of RRBP1 was analyzed by qRT PCR in indicated cell
643 lines with RRBP1 KO and RRBP1 WT (mean \pm SEM, n=3). **F)** Expression correlation of
644 RRBP1 and YAP-1 target genes (mRNA) analyzed in the HNSCC TCGA cohort. (CTGF,
645 CYR61, Jagged 1, AXL, TEAD1, COL1A1, DCN, NUAK1, FOXO1, AMOTL2, PCDH7 and
646 MYOF). Correlation was analyzed using Spearman's correlation coefficient test, n = 520. The
647 analysis was performed in Gene Expression Profiling Interactive Analysis (GEPIA) platform.

648

649 **Figure 5: Knock out of RRBP1 restores cisplatin induced cell death in chemoresistant**
650 **xenografts.**

651 **A)** Schematic representation of establishment of PDX, using patient derived cells isolated from
652 chemotherapy-non-responder patient **B)**. RRBP1 WT cells were injected to the right flank of
653 athymic nude mice and PDC1RRBP1KO cells were injected to the left flank of same mice as
654 described in materials and methods. After which mice were treated with either vehicle control or
655 3 mg/Kg of cisplatin in two different groups (twice a week). At the end of the experiment's mice
656 were sacrificed and images were captured (n=6). **C)** At the end of experiments, tumor weight
657 was measured and represented in bar diagram (mean \pm SEM, **P < 0.05, n = 6). **D)** Tumor
658 growth was measured in the indicated time point using digital slide caliper and plotted as a graph
659 (mean \pm SEM, n = 6). **E)** After completion of treatment, tumors from each group were fixed with
660 formalin, and paraffin-embedded sections were prepared to perform immunohistochemistry with
661 indicated antibodies.

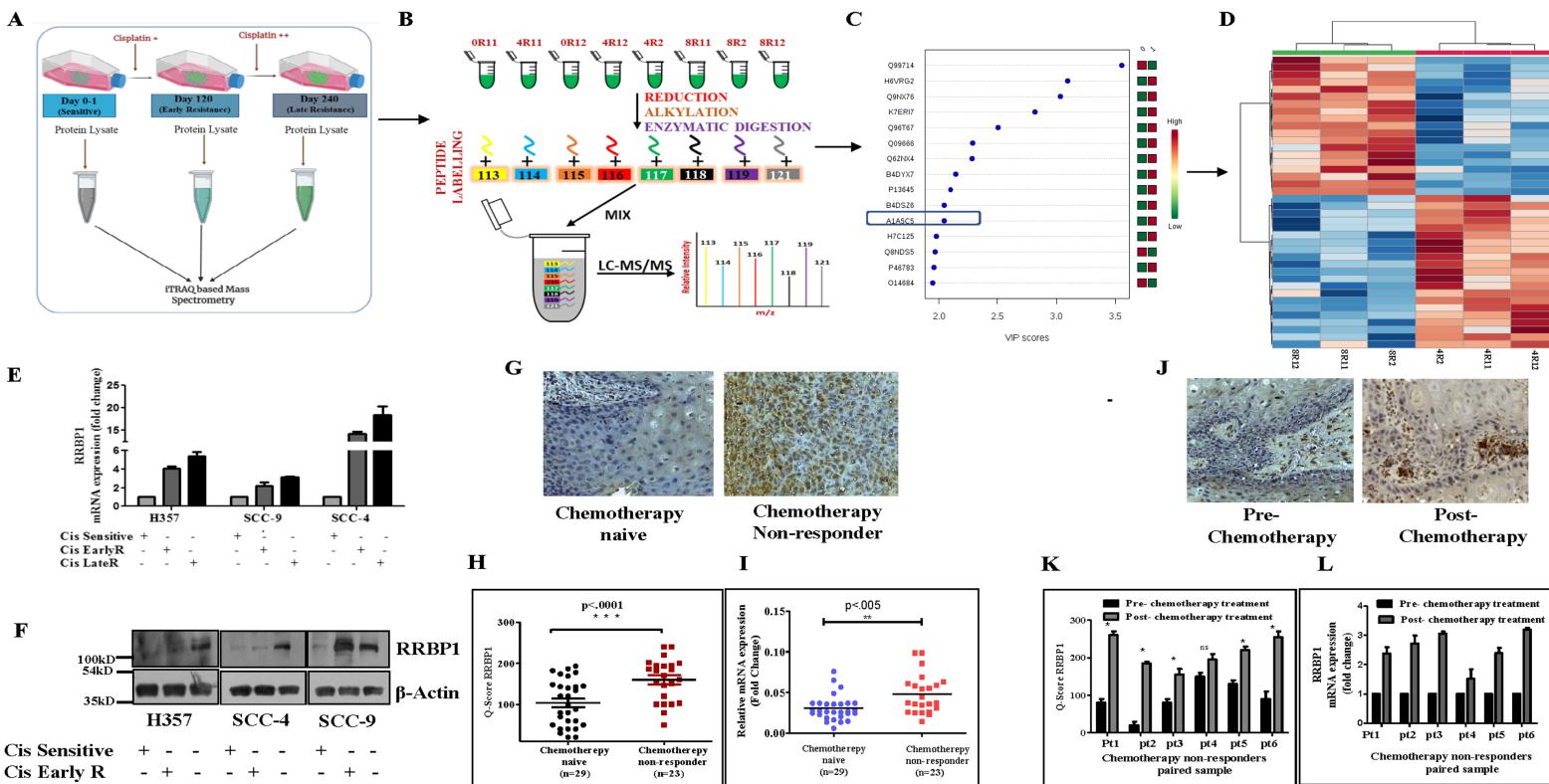
662

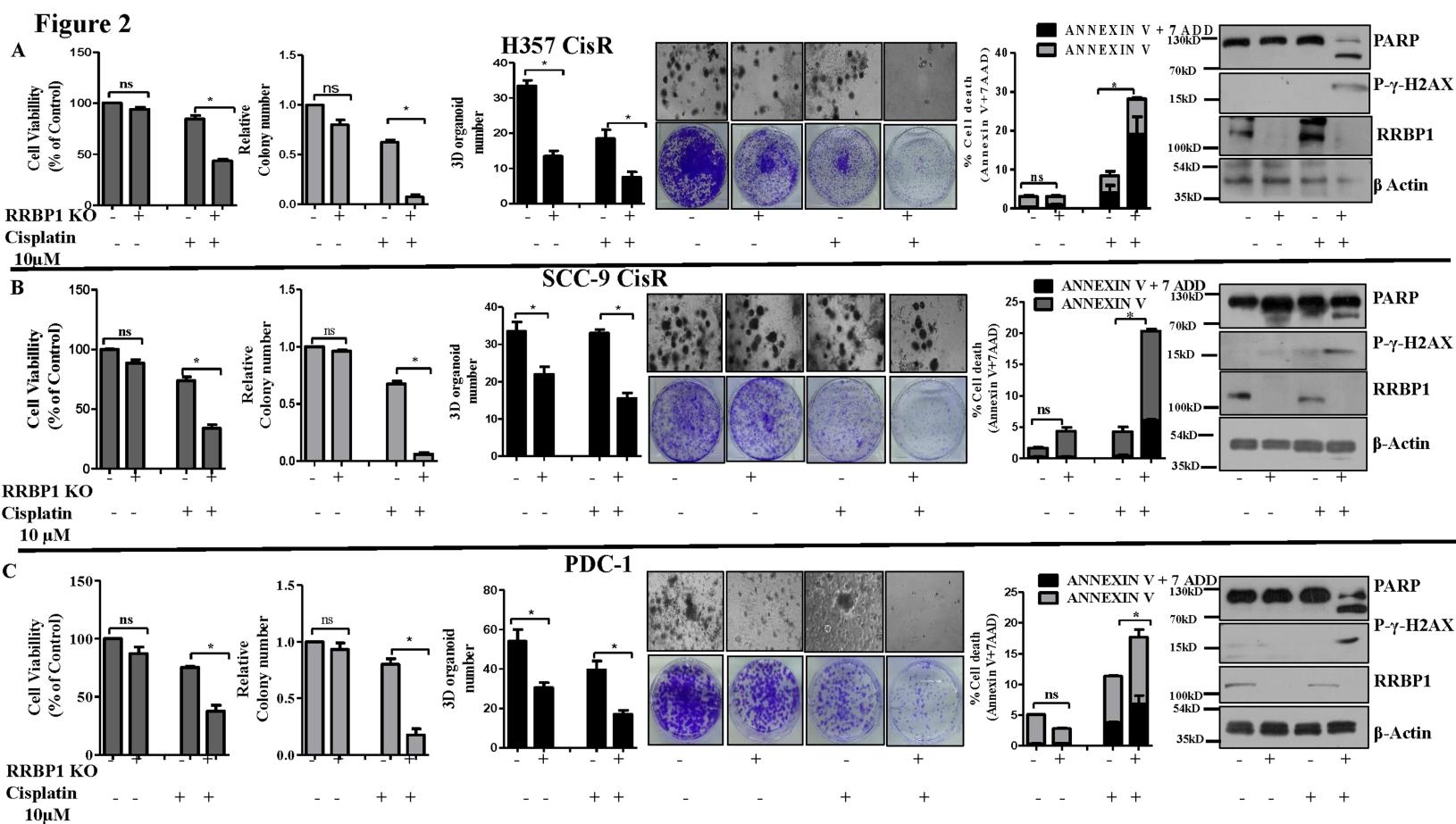
663 **Figure 6: Radezolid represses RRBP1 protein expression and regulate YAP target gene in**
664 **chemoresistant OSCC.**

665 **A)** Molecular docking of RRBP1 with Radezolid compounds carried out in Glide and
666 representation in surface view receptor of drug interaction **B)** Ribbon model structure of RRBP1
667 showing the hydrogen bonding interaction with Radezolid at PRO-115, ARG-101 and GLU-76.
668 Hydrogen bonds are shown as dashed lines. **C)** Active site residues within 5 Angstrom of RRBP1
669 and Radezolid interactions. **D)** Ligand plot showing interaction of the Radezolid interaction with
670 different residues of RRBP1 within 5 angstrom distance. **E)** Indicated chemoresistant OSCC
671 cells were treated with Radezolid in a dose dependent manner for 48h, after which lysates were

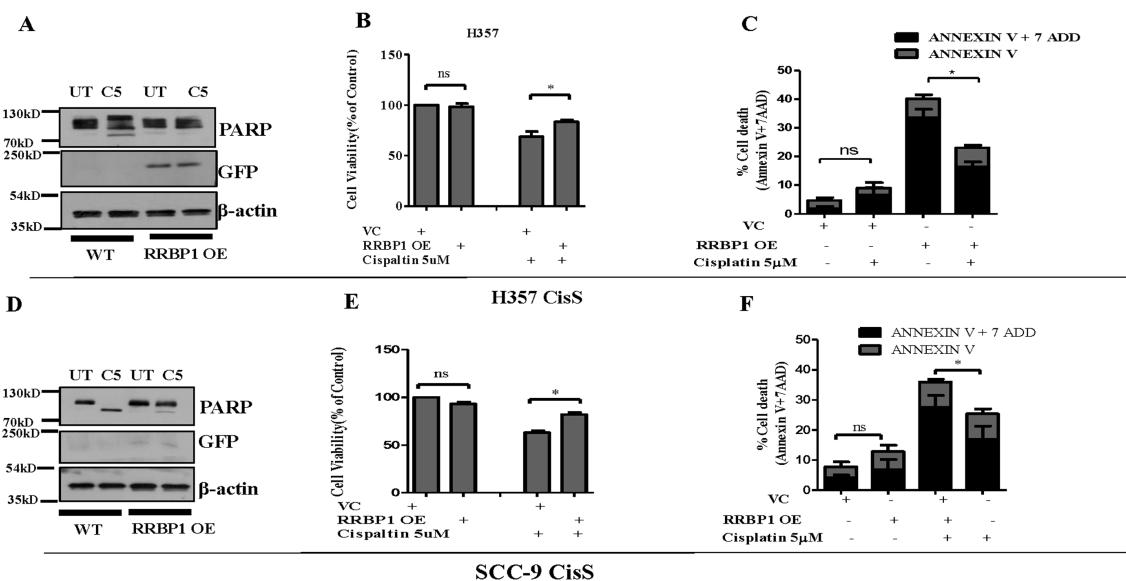
672 isolated to perform immunoblotting against β -actin and RRBp1 **F**) Indicated cells were treated
673 with Radezolid in a dose dependent manner for 48h and qRT-PCR was performed to determine
674 the relative mRNA expression (fold change) of RRBp1. GAPDH was used as an internal
675 control. **G**) Chemoresistant cells (H357CisR and SCC-9CisR were treated with indicated
676 concentration of Radezolid and qRT-PCR was performed to determine the relative mRNA
677 expression of YAP-1 indicated target genes. GAPDH was used as an internal control.

678

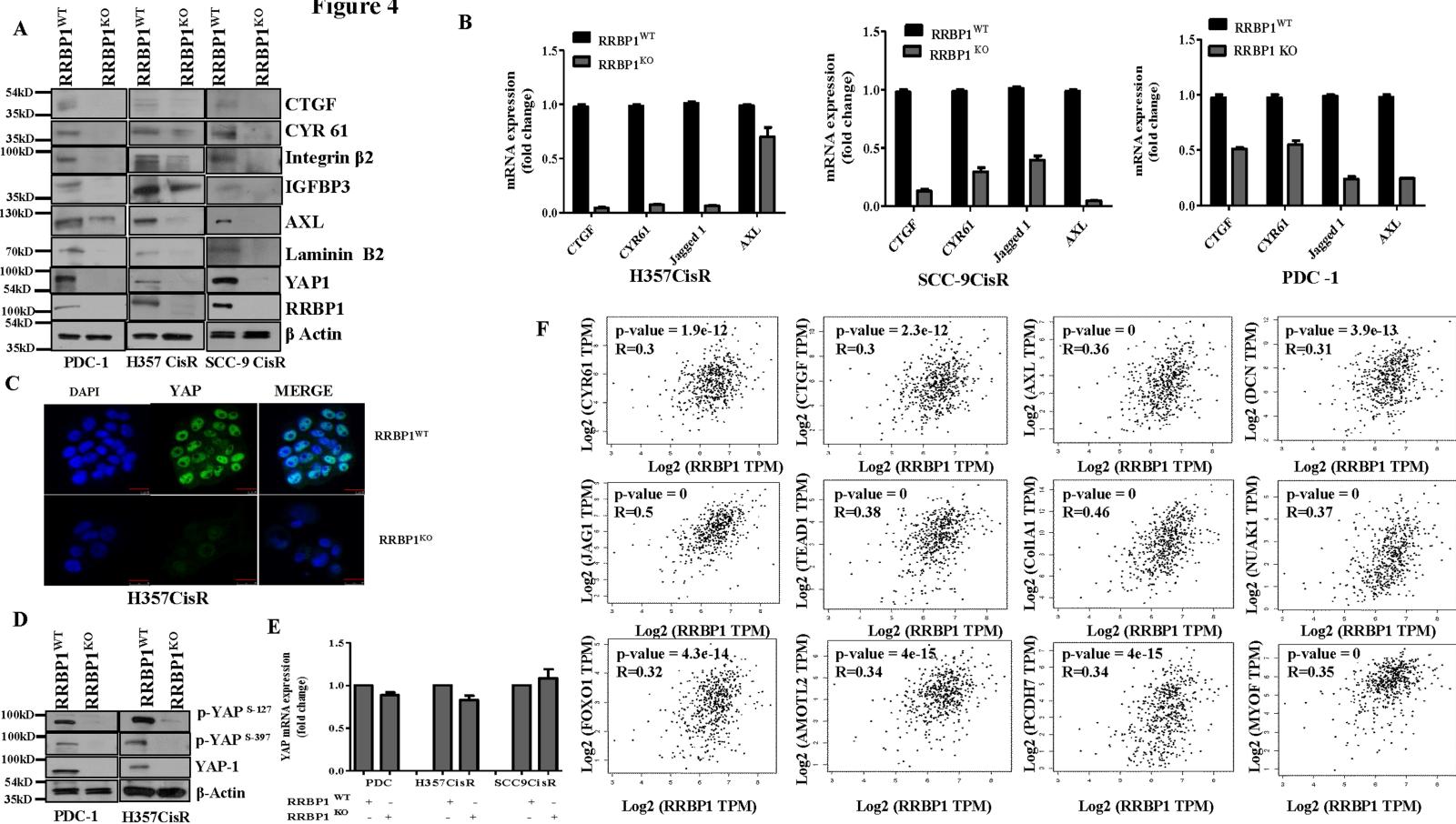

679 **Figure 7: Radezolid (oxazolidinone group antibiotic) restored cisplatin-induced cell death**
680 **in chemoresistant OSCC.**

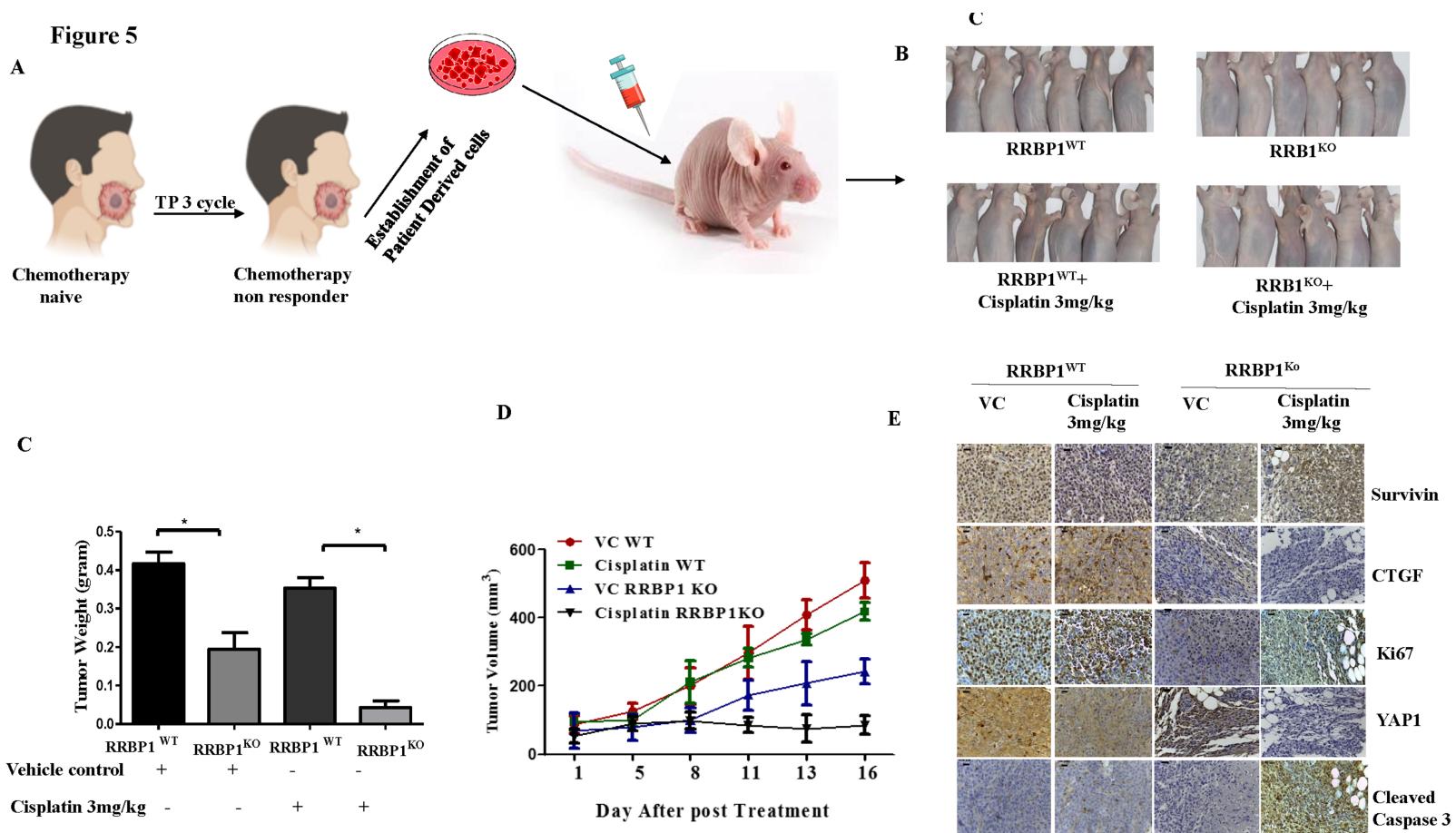

681 **A).** **1st** panel: Cisplatin resistant OSCC line H357 CisR cells were treated with Radezolid
682 (10 μ M) and cisplatin(10 μ M) alone or in combination for 48h and cell viability was determined
683 using MTT assay (Mean \pm SEM, n=3) *: P < 0.05. (A **2nd** panel: H357 CisR cells were treated
684 with Radezolid (10 μ M) and cisplatin(10 μ M) after which anchorage dependent colony forming
685 assay was performed as described in materials methods. The bar describes the colony number as
686 compared to vehicle treated H357CisR (cells (Mean \pm SEM, n=3) *: P < 0.05. **3rd panel:** Images
687 of the anchorage dependent colony forming assay described in 2nd (panel). **4th panel:** H357
688 CisR cells were treated with Radezolid (10 μ M) and cisplatin(10 μ M) for 48h, after which cell
689 death was determined by annexin V/7AAD assay using flow cytometer. Bar diagrams indicate
690 the percentage of cell death from a panel with respective treated groups (Mean \pm SEM, n=3). **5th**
691 **panel:** H357 CisR cells were treated with Radezolid (10 μ M) and cisplatin (10 μ M) for 48h, after
692 which immunoblotting was performed with indicated antibodies. **B)** Cisplatin resistant OSCC
693 line SCC-9 CisR cells were treated with Radezolid (10 μ M) and cisplatin(10 μ M) after which
694 different assays were performed as described in section A. **C)** PDC-1 cells were treated with

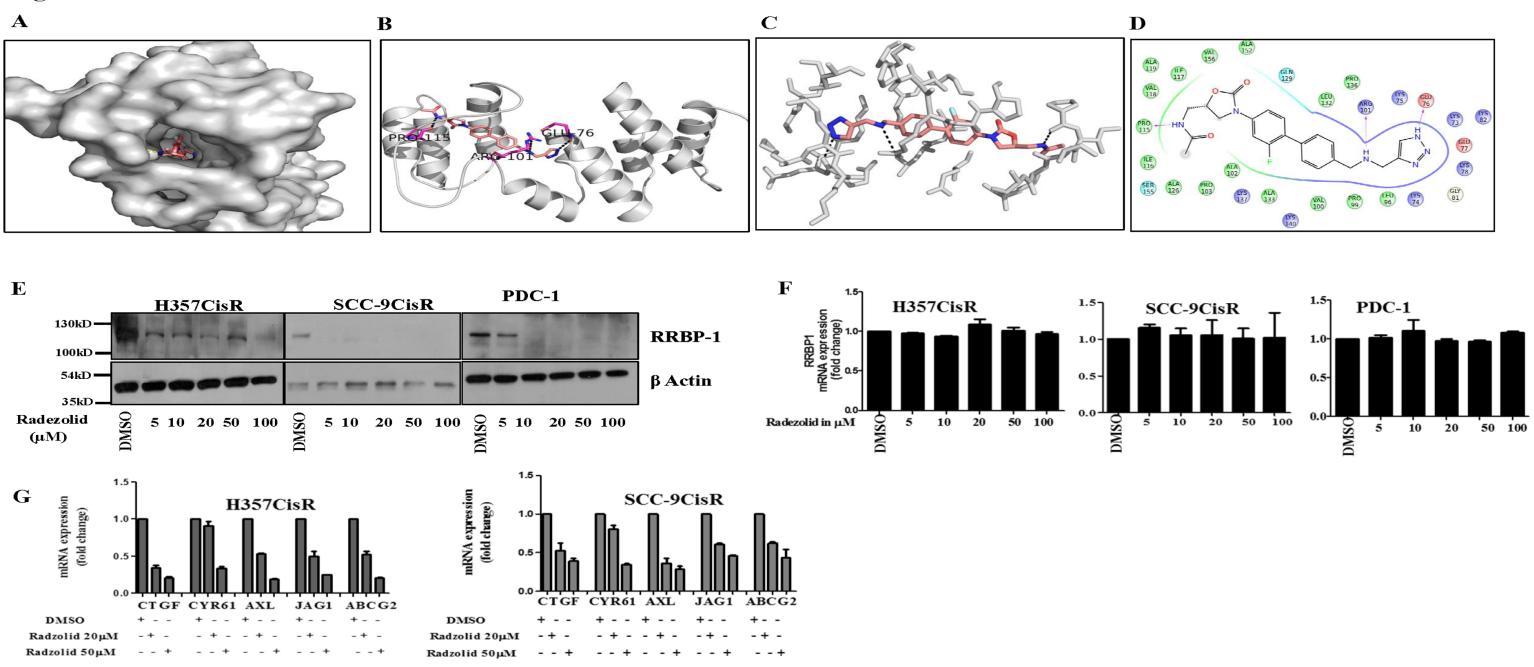
695 Radezolid (10 μ M) and cisplatin(10 μ M) after which different assays were performed as described
696 in section A.


697

698 **Figure 8: Schematic presentation of the mechanism by which RRBP1 mediates**
699 **chemoresistance in OSCC.** RRBP1 confers cisplatin resistance in OSCC via YAP-1 and its
700 target gene. In presence of cisplatin RRBP1 expression elevated which activate YAP-1. As a
701 result, cisplatin showing resistance and no cell death. Radezolid is an inhibitor of RRBP1 which
702 repress RRBP-1 expression and induces cisplatin mediated cell death.




Figure 3


Figure 4

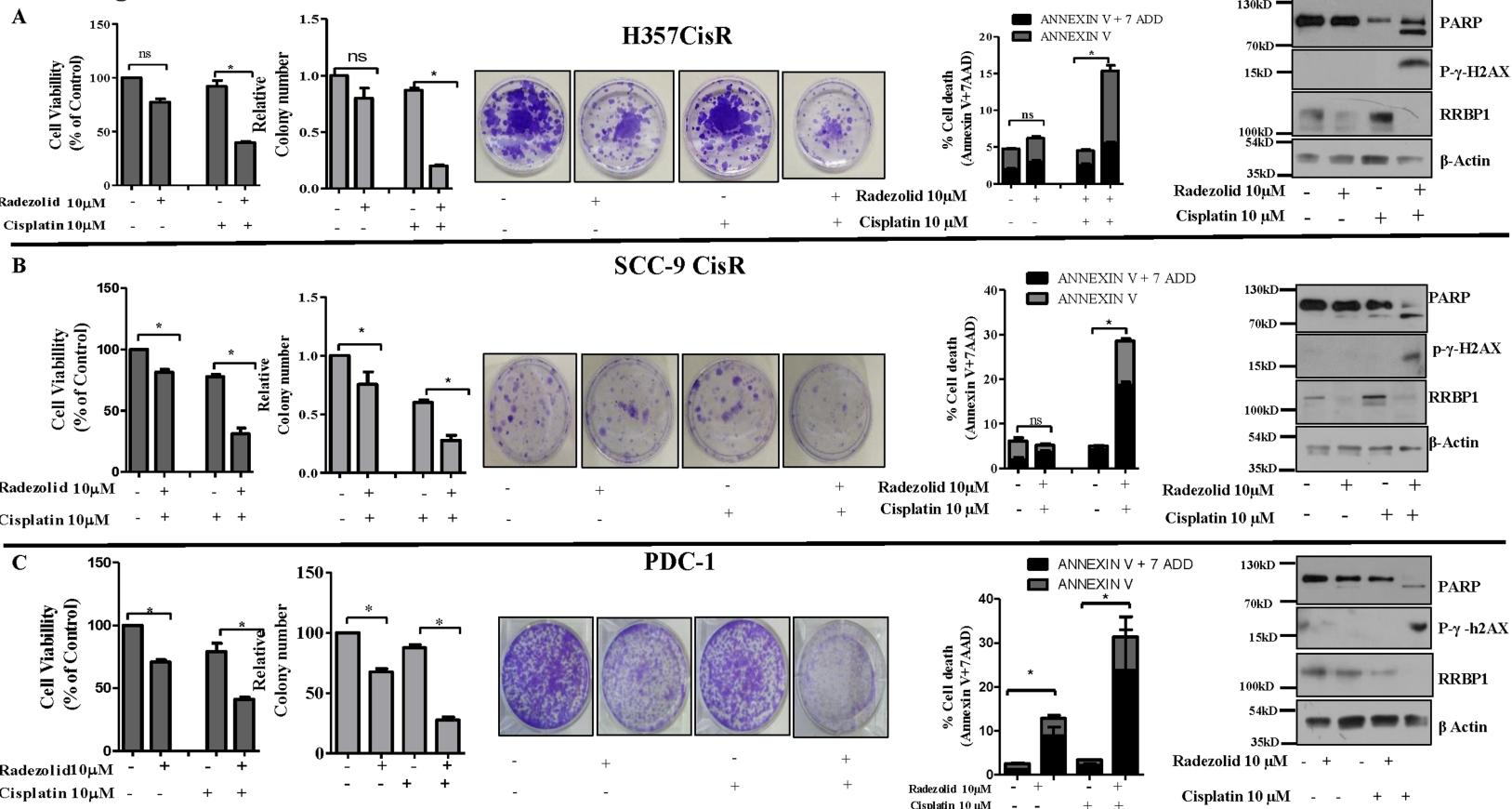

Figure 5


Figure 6

Figure 7

Figure 8

