

1
2 **Title: CMTM6 drives cisplatin resistance in OSCC by regulating AKT mediated Wnt
3 signaling**

4
5 **Running title:** CMTM6 as a potential target to overcome cisplatin resistance

6
7
8 Pallavi Mohapatra ^{1,2}, Omprakash Shriwas ^{1,3}, Sibasish Mohanty ^{1,2}, Sandeep Rai Kaushik ⁴,
9 Rakesh Arya ⁴, Rachna Rath ⁵, Saroj Kumar Das Majumdar ⁶, Dillip Kumar Muduly ⁷, Ranjan K
10 Nanda ^{4*}, Rupesh Dash ^{1*}

11
12 1. Institute of Life Sciences, Bhubaneswar, Odisha, India-751023

13 2. Regional Center for Biotechnology, Faridabad, India.

14 3. Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.

15 4. Translational Health Group, International Centre for Genetic Engineering and Biotechnology,
16 New Delhi-110067, India.

17 5. Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Odisha, India- 753007

18 6. Department of Radiotherapy, All India Institute of Medical Sciences, Bhubaneswar, Odisha,
19 India-751019

20 7. Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar,
21 Odisha, India-751019

22 * Corresponding authors

23 Rupesh Dash, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar-
24 751023, Odisha, India. Phone: +91-674-2301460, Fax: +91-674-2300728, E-
25 mail: rupesh.dash@gmail.com, rupeshdash@ils.res.in

26 and/or

27 Ranjan Nanda, Group Leader, Translational Health Group, International Centre for Genetic
28 Engineering and Biotechnology, New Delhi-110067, India. Phone: +91-11-26741358, Fax: +91-
29 11-26742316, E-mail: ranjan@icgeb.res.in

30
31 **Key words:** Cisplatin, CMTM6, Wnt Signaling, Enolase-1 and patient derived cells

32

33

34

35

36

37

38

39

40

41 **Abstract:**

42 Chemoresistance is one of the important factors for treatment failure in OSCC, which can
43 culminate in progressive tumor growth and metastatic spread. Rewiring tumor cells to undergo
44 drug-induced apoptosis is a promising way to overcome chemoresistance, which can be achieved
45 by identifying the causative factors for acquired chemoresistance. In this study, to explore the
46 key cisplatin resistance triggering factors, we performed global proteomic profiling of OSCC
47 lines representing with sensitive, early and late cisplatin-resistant patterns. The top ranked up-
48 regulated protein appeared to be CMTM6. We found CMTM6 to be elevated in both early and
49 late cisplatin-resistant cells with respect to the sensitive counterpart. Analyses of OSCC patient
50 samples indicate that CMTM6 expression is upregulated in chemotherapy-non-responder tumors
51 as compared to chemotherapy-naïve tumors. Stable knockdown of CMTM6 restores cisplatin-
52 mediated cell death in chemoresistant OSCC lines. Similarly, upon CMTM6 overexpression in
53 CMTM6KD lines, the cisplatin resistant phenotype was efficiently rescued. Mechanistically, it
54 was found that CMTM6 interacts with membrane bound Enolase-1 and stabilized its expression,
55 which in turn activates the AKT-GSK3 β mediated Wnt signaling. CMTM6 triggers the
56 translocation of β -catenin into the nucleus, which elevates the Wnt target pro-survival genes like
57 Cyclin D, c-Myc and CD44. Moreover, incubation with lithium chloride, a Wnt signaling
58 activator, efficiently rescued the chemoresistant phenotype in CMTM6KD OSCC lines. In a
59 patient-derived cell xenograft model of chemoresistant OSCC, knock-down of CMTM6 restores
60 cisplatin induced cell death and results in significant reduction of tumor burden. CMTM6 has
61 recently been identified as a stabilizer of PD-L1 and henceforth it facilitates immune evasion by
62 tumor cells. Herewith for the first time, we uncovered another novel role of CMTM6 as one of
63 the major driver of cisplatin resistance.

64

65

66

67

68

69

70

71

72 **Introduction**

73 Head and neck cancer is the sixth most common cancer worldwide with approximately 53,260
74 new cases are being reported in United States alone ¹. Almost 90% of HNSCC cancer cases are
75 Oral squamous cell carcinoma (OSCC) which has emerged as the most common cancer in
76 developing countries. In India, 80000 new OSCC cases are reported in each year with a
77 mortality of ~46000 ². OSCC patients commonly present with locally advanced (stage III or IV)
78 disease. The treatment modalities of advanced OSCC are surgical removal of primary tumor
79 followed by chemo-radiotherapy ³. However, neoadjuvant chemotherapy is commonly
80 prescribed for surgically unresectable OSCC tumors that provide more surgical options ⁴. In spite
81 of having all these treatment modalities, the 5-year survival rate of advanced tongue OSCC
82 remains less than 50%, which indicates the development of resistance against existing therapy.
83 Chemoresistance is one of the major factors for treatment failure in OSCC. The common
84 chemotherapy regimens for OSCC are Cisplatin alone or with 5FU and Docetaxel (TPF) ⁵. The
85 tumor shows initial positive response to chemotherapy, but later it acquires chemoresistance, and
86 patient experience relapse with onset of metastatic diseases. The chemoresistant properties could
87 be attributed to enhanced cancer stem cell population, decreased drug accumulation, reduced
88 drug-target interaction, reduced apoptotic response and enhanced autophagic activities ⁶. These
89 hallmarks present the endpoint events, when cancer cell had already acquired chemoresistance.
90 Few attempts have been made to understand the molecular mechanism of chemoresistance in
91 HNSCC. Peng et al in 2012 demonstrate that tongue cancer chemotherapy resistance-associated
92 protein 1 (TCRP1) is a modulator of cisplatin resistance in OSCC. TCRP1 expression is elevated
93 specifically in cisplatin resistant cells, but not in 5FU resistant cancer cells. Analysis of clinical
94 sample indicates that TCRP1 positive OSCC patients are resistant to cisplatin ⁷. Similarly, a

95 shRNA based human kinome study elucidates that microtubule-associated serine/threonine
96 kinase 1 (MAST1) is a major driver of cisplatin resistance in HNSCC. MAST1 inhibitor
97 lestaurtinib, efficiently sensitized chemoresistant cells to cisplatin. Overall the study suggests
98 that MAST1 is a viable target to overcome cisplatin resistance⁸.

99 Here, to elucidate the causative factors those responsible for acquired chemoresistance, we have
100 performed global proteomic profiling of OSCC lines representing with sensitive, early and late
101 cisplatin-resistant patterns. The top ranked up-regulated protein was selected for validation in
102 multiple cell lines and patient derived biopsy samples using qPCR, immunoblotting and
103 immunohistochemistry. ShRNA based stable knock down of the identified important protein in
104 cisplatin-resistant cells restored drug induced phenotype. The PDC based xenograft experiment
105 suggests that knock down of the deregulated protein induces cisplatin- mediated cell death and
106 facilitate significant reduction of tumor burden. Mechanistically, the deregulated molecule
107 interacts with membrane bound Enolase-1 which in turn activates AKT/GSK3 β mediated Wnt
108 signaling. The activated Wnt pathway augments the chemoresistant phenotype. The identified
109 deregulated molecule could be useful target to overcome cisplatin resistance in OSCC cells.

110

111 **Materials and methods:**

112 **Ethics statement:** This study was approved by the Institute review Board and Human Ethics
113 committees (HEC) of Institute of Life Sciences, Bhubaneswar (84/HEC/18) and All India
114 Institute of Medical Sciences (AIIMS), Bhubaneswar (T/EMF/Surg.Onco/19/03). The animal
115 related experiments were performed in accordance to the protocol approved by Institutional
116 Animal Ethics Committee of Institute of Life Sciences, Bhubaneswar (ILS/IAEC-190-AH/DEC-

117 19). Approved procedures were followed for patient recruitment and after receiving written
118 informed consent from each patient, tissues samples were collected.

119 **Cell culture:** H357, SCC-9 and SCC-4 (human tongue OSCC) cell lines were obtained from
120 Sigma Aldrich, sourced from European collection of authenticated cell culture. All OSCC cell
121 lines were cultured and maintained as described earlier. A549 (Lung carcinoma) and A375
122 (Melanoma) cell lines were obtained from NCCS, Pune and were maintained in DMEM
123 supplemented with 10% FBS (Thermo Fisher Scientific) penicillin–streptomycin (Pan Biotech).

124 **Generation of early and late cisplatin resistance cell lines:** For establishment of cisplatin
125 resistant cell cell line, H357, SCC-9 and SCC-4 (OSCC), A549 (Lung carcinoma) and A375
126 (Melanoma) cell lines were initially treated with cisplatin at 1 μ M (lower dose) for a week and
127 then the cisplatin concentration was increased gradually up to IC50 value, i.e. 15 μ M for H357,
128 SCC-9, SCC-4 and A549 and 10 μ M for A375 in a span of 3 months. Parental cells were
129 grouped as sensitive (CisS) and after a period of 4 and 8 months of treatment were termed as
130 early (CisR 4M) and late resistant (CisR 8M) cells respectively.

131 **iTRAQ based proteomics analysis:** Harvested cells (5X10⁶), from three time points (0M, 4M
132 and 8M) were treated with RIPA buffer (Thermo Fisher Scientific, Cat #88665) supplemented
133 with protease and phosphatase inhibitor (Sigma, Cat # P0044,). Extracted cellular proteins from
134 all three time points with appropriate technical and biological replicates were used in an isobaric
135 tag for relative and absolute quantification (iTRAQ) experiment (**Fig. 1B**). Equal amount of
136 proteins (100 μ g) from all samples were taken for tryptic protein preparation following
137 manufacturer's instructions (AB Sciex, USA). Study samples with the tag details used for
138 labelling in iTRAQ experiment are presented in **Fig. 1B**. Trypsin treatment was performed using
139 trypsin supplied by the manufacturer and incubating at 37°C for 16-20 hrs. Tryptic peptides were

140 dried at 40°C using SpeedVac (LabConco, USA). Dried tryptic peptides were dissolved using
141 dissolution buffer and isobaric tags reconstituted with isopropanol were added to be incubated at
142 room temperature for 2 h. After the completion of the reaction, tagged tryptic peptides from all
143 samples were pooled and dried. Tagged tryptic peptides (~250 µg) were subjected to strong
144 cation exchange fractionation using a hand-held ICAT® Cartridge-cation-exchange system
145 (Applied Biosystems, USA). Peptides were eluted using a gradient 30, 50, 80, 120, 250, 300, 400
146 and 500 mM of ammonium formate solutions with a flow rate of 10 drops/min. Each SCX
147 fraction was dried at 40°C using a Speed Vac (CentriVap, Labconco, USA) and cleaned using
148 Pierce C18 spin column (ThermoFisher Scientific Inc., USA).
149 Each SCX fraction was resuspended in 20 µl of buffer (water with 0.1% formic acid) and
150 introduced to easy-nanoLC 1000 HPLC system (Thermo Fisher Scientific, Waltham, MA)
151 connected to hybrid Orbitrap Velos Pro Mass Spectrometer (Thermo Fisher Scientific, Waltham,
152 MA). The nano-LC system contains the Acclaim PepMap100 C18 column (75 µm × 2 cm)
153 packed with 3 µm C18 resin connected to Acclaim PepMap100 C18 column (50 µm × 15 cm)
154 packed with 2 µm C18 beads. A 120 min gradient of 5% to 90% buffer B (0.1% formic acid in
155 95% Acetonitrile) and Buffer A (0.1% formic acid in 5% Acetonitrile) was applied for separation
156 of the peptide with a flow-rate of 300 nl/min. The eluted peptides were electrosprayed with a
157 spray voltage of 1.5 kV in positive ion mode. Mass spectrometry data acquisition was carried out
158 using a data-dependent mode to switch between MS1 and MS2.
159 **Protein Identification and iTRAQ Quantitation:** Protein identification and quantification was
160 carried out using SEQUEST search algorithm of Proteome Discoverer Software 1.4 (Thermo
161 Fisher, Waltham, MA, USA). Each MS/MS spectrum was searched against a human proteome
162 database (UniProt , 89,796 total proteins, downloaded in April 2017). Precursor ion mass

163 tolerance (20 ppm), fragmented ion mass tolerance (0.1 Da), missed cleavages (<2) for trypsin
164 specificity, Carbamidomethyl (C), Deamidation (N and Q), Oxidation (M) and 8-plex iTRAQ
165 label (N terminus and K) were set as variable modifications. The false discovery rate (FDR) at
166 both protein and peptide level was calculated at 5%. The identified protein list with fold change
167 values were exported to Microsoft Excel for further statistical analysis. Identified proteins from
168 study samples and relative fold change values were selected for principal component analysis
169 and a partial least square discriminate analysis model was built using MetaboAnalyst 3.0.
170 Proteins with at least 2.0 fold change (\log_2 resistance/sensitive $>\pm 1.0$, $p<0.05$, variable important
171 projection value >1.0) were selected as deregulated proteins. All the mass spectrometry data files
172 (.raw and .mgf) with result files were deposited in the ProteomeXchange Consortium
173 (PXD016977). The deregulated proteins, identified from global proteomics analysis, were
174 converted to gene list and a functional analysis was carried out using Ingenuity Pathway
175 Analysis (IPA).

176 **Lentivirus production and generation of stable CMTM6 KD cell lines:** ShRNAs targeting
177 CMTM6 were cloned into pLKO.1 vector as per the protocol mentioned by addgene. Cloning of
178 shRNAs were followed by confirmation using sequencing method. Lentivirus was produced by
179 transfection of pLKO.1-shRNA plasmid along with packaging plasmid psPAX2 and envelop
180 plasmid pMD2G into HEK293T cells. Lentivirus particles were generated using protocol as
181 described in Shriwas et al ⁹. Lentivirus infected cells were incubated with puromycin up to 5
182 μ g/ml for two weeks, stable clones were picked and confirmed by immunoblotting. All shRNA
183 sequences used in this study are mentioned in supplementary table 1.

184 **Transient transfection and rescue of CMTM6 expression in CMTM6 KD cell lines:**
185 CMTM6 knockdown cells, stably expressing shRNA#2 targeting 3' UTR of CMTM6 mRNA,

186 were transiently transfected with pCMV6 CMTM6 (Myc-DDK-tagged) (Origene, Cat
187 #RC201061) using the ViaFect transfection reagent (Promega Cat# E4982). The cells were
188 transfected for 48h, after which they were treated with different concentration of cisplatin
189 followed by flow cytometry analysis (Annexin V PE/7-AAD Assay), Cell viability assay(MTT)
190 and immunoblotting with anti PARP, Anti p^{s-139}-H2AX and Anti β -actin. The transfection
191 efficiency was confirmed by immunoblotting against Anti-CMTM6 and Anti-DDK.

192 **OSCC patient sample:** Biopsy samples were collected from clinical sites and divided into two
193 study groups namely chemotherapy-naive patients (n=29, OSCC patients those were never
194 treated with any chemotherapy) and OSCC chemotherapy non-responders (n=23, OSCC patients
195 those were treated with neoadjuvant chemotherapy but never responded or partially responded).
196 The tumor samples were collected from AIIMS, Bhubaneswar and HCG Panda Cancer Centre,
197 Cuttack. The list of patients with treatment modalities and other clinical information are
198 described in table 1.

199 **Immunoblotting:** Cell lysates were used for immunoblotting experiments as described earlier ¹⁰.
200 For this study, we used antibody against β -actin (Sigma, Cat#A2066), PARP (CST, Cat
201 #9542L), p^{s-139}-H2AX (CST, Cat # 9718S), CMTM6 (Sigma, Cat#HPA026980), DDK (CST:
202 Cat#14793), AKT(CST, Cat #9272S), pAKT(Ser473) (CST, Cat #4058S), GSK-3 β (CST, Cat
203 #9315s), Phospho-GSK-3 β (Ser9) (CST, Cat #9323S), β -Catenin (CST, Cat#9562), Phospho- β -
204 Catenin (Ser552)(CST, Cat #9566), Non-phospho (Active) β -Catenin (Ser33/37/Thr41) (CST,
205 Cat #8814), CD44 (Novus, Cat#NBP1-31488), TCF4/TCF7L2 (C48H11) (CST, Cat#2569S), c-
206 Myc(CST, Cat # 9402), Cyclin D1(CST, Cat #2922S), LRP1(Cloud clone, Cat # PAB010Hu01),
207 PSMD2 (Cloud clone, Cat# PAG279Hu01), α Enolase(L-27)(Sanatcrutz, Cat #sc-100812), Sox2
208 (CST, Cat #2748), Nanog (CST, Cat #4893S), and Oct-4 (CST, Cat #2750S). Membrane and

209 cytoplasmic fractions were separated using the Mem-PER™ Plus Membrane Protein Extraction
210 Kit (ThermoFisher Scientific, Cat #78833), according to manufacturer's instructions.

211 **Co-Immunoprecipitation:** For co-immunoprecipitation experiments, cells were lysed in 1%
212 digitonin for 30 min on ice. The lysates were incubated with primary antibody for 1–4 h,
213 followed by addition of Protein A/G PLUS-Agarose beads (Santa cruz, Cat #sc-2003) for
214 overnight at 4 °C. After four washes in 0.2% digitonin, samples were eluted in SDS sample
215 buffer with 50 mM DTT for 10 min at 70 °C, separated by SDS–PAGE and immunoblotted.
216 VeriBlot for IP Detection Reagent (HRP) (Abcam, Cat #ab131366) was used for
217 immunoblotting.

218 **Patient Derived Xenograft:** BALB/C-nude mice (6-8 weeks, male, NCr-Foxn1nu athymic)
219 were purchased from Vivo biotech Ltd (Secunderabad, India). For xenograft model early passage
220 of patient-derived cells (PDC1) established from chemo non-responder patient (treated with TP
221 ,50 mg carboplatin and 20 mg paclitaxel for 3 cycles without having any response) was
222 considered. Two million cells were suspended in phosphate-buffered solution-Matrigel (1:1, 100
223 µl) and transplanted into upper flank of mice. The PDC1 cells stably expressing NtShRNA were
224 injected in right upper flank and PDC1 cells CMTM6ShRNA#1 (PDC1 CMTM6KD) were
225 injected in the left upper flank of same mice. These mice were randomly divided into 2 groups
226 (n=6) once the tumor reached volume of 50 mm³ and injected with vehicle or cisplatin (3 mg/Kg)
227 intraperitoneally twice a week. Tumor size was measured using digital vernier calliper twice a
228 week until the completion of experiment. Tumor volume was determined using the following
229 formula: Tumor volume (mm³) = (minimum diameter)² × (maximum diameter)/2.

230 **RT-PCR and Real Time Quantitative PCR:** RNA mini kit (Himedia, Cat# MB602) was used
231 to isolate total RNA as per manufacturer's instruction and quantified by Nanodrop. c-DNA was

232 synthesised by reverse transcription PCR using Verso cDNA synthesis kit (ThermoFisher
233 Scientific, Cat # AB1453A) from 300 ng of RNA. qRT-PCR was carried out using SYBR Green
234 master mix (Thermo Fisher scientific Cat # 4367659). GAPDH was used as a loading control.
235 The primer (oloigos) details used for qRT-PCR in this article are listed in supplementary table
236 1.

237 **Immunohistochemistry:** Immunohistochemistry of formalin fixed paraffin-embedded samples
238 (OSCC patients tumor and Xenograft tumors from mice) were performed as previously
239 described ¹¹. Antibodies against CMTM6 (Sigma: Cat#HPA026980), β -Catenin (CST,
240 Cat#9562), Non-phospho (Active) β -Catenin (Ser33/37/Thr41) (CST, Cat #8814), Cyclin
241 D1(CST, Cat #2922S) and Ki67 (Vector, Cat #VPRM04) were used for IHC. Images were
242 obtained using Leica DM500 microscope. Q-score was calculated by multiplying percentage of
243 positive cells with staining (P) and intensity of staining (I). P was determined by the percentage
244 of positively stained cells in the section and I was determined by the intensity of the staining in
245 the section i.e. strong (value=3), intermediate (value=2), weak (value=1) and negative (value=0).

246 **Annexin V PE/7-ADD Assay:** Apoptosis and cell death assay was performed by using Annexin
247 V Apoptosis Detection Kit PE (eBioscienceTM, USA, Cat # 88-8102-74) as described
248 earlier ⁹and cell death was monitored using a flow cytometer (BD FACS Fortessa, USA).

249 **Assessment of cell viability:** Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
250 diphenyltetrazolium bromide (MTT; Sigma-Aldrich) assay.

251 **Immunofluorescence:** The cells were seeded on lysine coated coverslip and cultured for
252 overnight. Cells were fixed with 4% formaldehyde for 15 min, permeabilized with 1 \times
253 permeabilization bufer (eBioscience 00-8333-56) followed by blocking with 3% BSA for 1 h at
254 room temperature. Then the cells were incubated with primary antibody overnight at 4 °C,

255 washed three times with PBST followed by 1hr incubation with Goat anti-Rabbit IgG(H+L)
256 secondary Antibody, Alexa Fluor® 488 conjugate (Invitrogen, Cat #A -11008) and Rabbit anti-
257 Mouse IgG(H+L) secondary Antibody, Alexa Fluor® 647 conjugate (Invitrogen, Cat #A –
258 21239). After final wash with PBST (thrice) coverslips were mounted with DAPI (Slow Fade ®
259 GOLD Antifade, Thermo Fisher Scientific, Cat # S36938). Images were captured using a
260 confocal microscopy (LEICA TCS-SP8). Anti CMTM6 (Sigma: Cat#HPA026980), Anti α
261 Enolase (L-27)(Sanatcrutz, Cat #sc-100812) and anti Non-phospho (Active) β -Catenin
262 (Ser33/37/Thr41) (CST, Cat #8814) were used in this study.

263 **Colony formation assay:** Colony formation assay was performed as described in Shriwas et al⁹
264 **Dual luciferase reporter assay:** For this assay cells were co-transfected with M50 Super 8x
265 TOPFlash (which was a kind gift from Randall Moon, Addgene, Cat #12456)¹² and pRL-TK
266 (Promega) in a ratio of 100:1 using ViaFect transfection reagent (Promega Cat# E4982). Seven
267 TCF/LEF-binding sites are present upstream of a firefly luciferase gene in the TOPflash vector,
268 whereas pRL-TK provides constitutive expression of Renilla luciferase and was used as an
269 internal control for the experiment. Cells were treated with vehicle control, LiCl (Sigma Aldrich,
270 Cat #62476-100G-F) and Pyrvinium (Sigma Aldrich, Cat #P0027-10MG) 48h after transfection
271 and luciferase reading was taken using the Dual-Glo luciferase assay kit (Promega, Cat # E1910)
272 as per the manufacturer's instructions.

273 **Tumorsphere formation assay :** 1000 cells were seeded on six-well ultralow attachment plates
274 (Corning-Costar Inc.) and were grown with 1xB27 (Invitrogen 17502048), 1xN2 supplement
275 (Invitrogen 17502048), 20 ng/mL of human recombinant epidermal growth factor (Invitrogen
276 PHG0313), 10 ng/mL of basic fibroblast growth factor (Invitrogen PHG0263) in serum-free

277 DMEM-F12 medium (Pan biotech P04-41500). After spheroid formation, treatment was done
278 with DMSO and cisplatin. Images were captured in a microscope (LEICA DMIL).

279 **ALDH activity assays:**

280 The aldehyde dehydrogenase (ALDH) activity was detected using an ALDEFLUOR assay kit
281 (Stem Cell Technologies, Canada, Cat #1700) according to the manufacturer's protocol. Cells
282 were incubated with ALDH protein substrate (BAAA) in Aldefluor assay buffer for 30 min at
283 37°C. A specific inhibitor of ALDH (DEAB) was used as a negative control. Fluorescence was
284 measured by BD LSR Fortessa.

285 **Correlation analysis of β -Catenin target genes and CMTM6:** The correlation analysis was
286 done between β -Catenin target genes and CMTM6 in HNSCC patient tumors using GEPIA
287 (<http://gepia.cancer-pku.cn/detail.php?gene=CMTM6>), online analysis software based on the
288 TCGA database and Genotype, using $|\log_{2}FC| \geq 1$ and $P \leq 0.05$ as the cut-off criteria.

289 **Statistical analysis:** All data points are presented as mean and standard deviation and Graph Pad
290 Prism 5.0 was used for calculation. The statistical significance was calculated by one-way
291 variance (one-way ANOVA), Two-Way ANOVA and considered significance at $P \leq 0.05$.

292

293 **Results:**

294 **Generation and characterization of early and late cisplatin resistant cells:** First, we
295 evaluated the cisplatin-induced cell death in sensitive early and late cisplatin resistant pattern
296 (CisS, CisR4M and CisR8M) of H357, SCC-9 and SCC-4 cells by performing MTT (cell
297 viability) assay. The data suggested CisR8M achieved complete acquired resistance and
298 CisR4M achieved partial resistance (Supplementary Fig. 1A-B). In addition to this, we
299 established CisS and CisR 8M pattern of A549 (human lung cancer line) and A375 (human

300 melanoma line). The cell viability (MTT) assay suggests that A549CisR and A375 CisR acquired
301 resistance to cisplatin as compared to their sensitive counterparts i.e. A549CisS and A375 CisS
302 (Supplementary Fig. 1C).

303 **CMTM6 expression is elevated in chemoresistant cancer cells:** To explore the causative
304 factors responsible for acquired cisplatin resistance, we performed global proteomic profiling of
305 H357CisS, H357CisR 4M and H357CisR8M cells. From the proteomic profiling, a set of 247
306 proteins were identified and 44 showed deregulation ($\log_2(\text{resistance/sensitive}) > \pm 1.0$ and VIP
307 score > 1.6) (Supplementary table 2). Principal component analysis (PCA), taking all the
308 identified proteins as variables with their fold change values grouped these samples into three
309 separate clusters (Fig. 1A-C). The dendrogram indicates that CMTM6 is up regulated in early
310 and late resistant cells as compared to sensitive cells (Supplementary Fig. 2). The volcano plot
311 data suggests that CMTM6 is the top ranked upregulated protein in early and late cisplatin
312 resistant cells as compared to sensitive counterpart (Fig. 1D). Based on these data, we selected
313 CKLF-like MARVEL transmembrane domain containing protein 6 (CMTM6) for further
314 validation and to explore its potential role in driving cisplatin-resistance. Henceforth, we
315 evaluated the CMTM6 expression in H357, SCC-9 and SCC-4 cell lines showing early and late
316 chemoresistant patterns (H357 CisR4M, H357 CisR8M, SCC-4 CisR4M, SCC-4 CisR8M, SCC-
317 9 CisR4M and SCC-9 CisR8M). Expressions of CMTM6 at protein and mRNA levels were
318 found to be up-regulated in CisR4M and CisR8M cells with respect to CisS counterparts in all
319 cell lines (Fig. 1E, F). We also observed elevated CMTM6 expression in lung cancer line
320 A549CisR and melanoma line A375CisR cells as compared to their sensitive counterpart (Fig.
321 1G, H). Here it is important to mention that we indicate CisR for CisR8M or late cisplatin
322 resistant pattern. To evaluate the clinical significance of our observation, we monitored CMTM6

323 expression in tumors isolated from drug naïve freshly diagnosed OSCC patients and non-
324 responders, i.e. patients not responding or partially responding to neoadjuvant chemotherapy
325 (TPF). Based on qRT-PCR and immunohistochemistry data, higher abundance of CMTM6 was
326 observed in tumor tissues isolated from non-responders to drug naive OSCC patients (Fig. 1I-K).
327 Similarly, we determined the expression of CMTM6 in drug-naive and post chemotherapy
328 treated paired tumor samples not responding to treatment. The post chemotherapy treated tumor
329 samples showed higher expression of CMTM6 (Fig. 1L). Overall, it was found that CMTM6
330 expression is significantly elevated in chemoresistant lines.

331 **Targeting CMTM6 reverses cisplatin resistance in squamous cell carcinomas:** To delineate
332 the potential role of CMTM6 as a major driver of cisplatin resistance, we generated stable
333 CMTM6 knock down clones in chemoresistant lines using a lentivirus based ShRNA approach.
334 To knock down CMTM6 we used two different ShRNAs, one targeting the coding sequence
335 (CMTM6ShRNA#1) and the other targeting 5'UTR (CMTM6ShRNA#2) of CMTM6 mRNA.
336 Stable clones generated by both the ShRNA showed efficient knock down of CMTM6 (Fig. 2A).
337 Our cell viability and cell death assay data suggests that knock down of CMTM6 significantly
338 sensitized chemoresistant lines to cisplatin (Fig. 2B-D). Similarly, after knocking down CMTM6
339 in patient-derived tumor primary cells not responding to TP, PDC1 cells reversed resistance and
340 became sensitive to cisplatin (Figure 2B-D). Our immunoblotting data suggests that knocking
341 down CMTM6 in chemoresistant cells results in significant increase in cisplatin induced cleaved
342 caspase and γ -H2AX expression (Fig. 2E). These data suggest CMTM6 dependency of
343 chemoresistant OSCC cells.

344 **CMTM6 overexpression in CMTM6KD cells rescued the chemoresistant phenotype:** To
345 confirm the potential role of CMTM6 in modulating cisplatin, CMTM6 was transiently

346 overexpressed in chemoresistant cells those were stably transfected with CMTM6ShRNA#2
347 (targets 5'UTR of CMTM6 mRNA)followed by treatment with cisplatin (Fig. 3A). The MTT
348 assay and annexin-V/7AAD staining data suggests that ectopic overexpression of CMTM6 in
349 CMTM6KD drug resistant cells results in rescuing the cisplatin resistant phenotype (Fig. 3B, C).
350 Similarly, transient overexpression of CMTM6 decreases the expression of γ -H2AX in CMTM6
351 KD cells (Fig. 3D).

352

353 **CMTM6 regulates AKT/GSK3 β signaling by stabilizing membrane Enolase-1 expression:**
354 The deregulated proteins, identified from global proteomics analysis, were converted to gene list
355 and a functional analysis was carried out using Ingenuity Pathway Analysis (IPA). This showed
356 deregulation of multiple functional pathways in acquired chemo-resistant cells with significant
357 up-regulation of PI3k/AKT signaling (Fig. 4A). Out of 130 molecules that regulate AKT
358 signaling, in this analysis 30 AKT signaling related genes were deregulated including β -catenin.
359 Henceforth, we evaluated the expression of p-AKT (S437) and p-GSK-3 β (S9) in chemoresistant
360 cells. The immunoblotting data suggests that knock down of CMTM6 in chemoresistant cell
361 results in significant reduction of p-AKT and p-GSK3 β expression (Fig. 4B). Similarly, CMTM6
362 overexpression in CMTM6KD chemoresistant cells results in increased p-AKT (S437) and p-
363 GSK-3 β (S9) expression (Fig. 4C). Earlier, it is reported in the literature that Enolase-1 can
364 activate AKT signaling ¹³. In a mass spectrometry based analysis by Burr et al., 2017 mentioned
365 that CMTM6 interacts with membrane enolase-1 ¹⁴. Henceforth, we wanted to observe whether
366 CMTM6 interacts with Enolase-1. Our co-immunoprecipitation and confocal microscopy assay
367 confirmed that CMTM6 and Enolase-1 interact with each other and they co-localized in plasma
368 membrane (Fig. 4D, E). Further, we analyzed the expression of Enolase-1 in cytoplasmic and

369 membrane fraction in chemoresistant cells those stably expressing NTShRNA and
370 CMTM6ShRNA. The data indicates significant reduction in the expression of membrane
371 Enolase-1 in CMTM6KD cells (Fig. 4F).

372

373 **CMTM6 modulates cisplatin resistance by regulating β -catenin expression:** To know if
374 CMTM6 regulates Wnt signaling, we evaluated the expression of β -catenin in CMTMKD cells.
375 The immunoblotting and immunostaining data indicates that when CMTM6 is knocked down in
376 chemoresistant lines, there is significant downregulation of β -catenin, p- β -catenin (s552) and
377 non-phospho active β -catenin (Fig. 5A, B). It is important to mention here that AKT is known to
378 phosphorylates β -catenin at s552 and this results in translocation of β -catenin from cytoplasm to
379 nucleus ¹⁵. When Wnt activator lithium chloride (LiCl) was treated with CMTM6KD cells, we
380 observed up regulation of β -catenin and c-Myc expression in chemoresistant cells (Fig. 5C).
381 Similarly, MTT assay data suggests the reversal of chemoresistant phenotype of CMTM6KD
382 cells followed by treatment with Wnt activator lithium chloride (LiCl) (Fig. 5D). Further, we
383 evaluated the expression of β -catenin target genes in CMTM6KD cell. The immunoblotting and
384 qRT-PCR data suggests that in CMTMKD chemoresistant cells, there is a significant down
385 regulation of Wnt target pro-proliferation genes i.e. Cyclin-D, c-Myc and CD44 (Fig. 5E, F).
386 Notably, chemoresistant cells stably transfected with CMTM6ShRNA showed a significantly
387 reduced TOPflash luciferase activity both in presence and absence of LiCl indicating diminished
388 β -catenin/TCF-LEF mediated transcriptional activity (Fig. 5G). Reconstitution of CMTM6 in
389 CMTM6KD cells results in enhanced expression of β -catenin and its target pro-survival genes
390 (Fig. 5H, I). In addition to this, association analysis of CMTM6 m-RNA levels with Wnt target
391 genes (TCF4, LEF1, CD-44, MMP14, ENC1, ID2, PPARA and JAG1) from the cancer genome

392 atlas HNSCC cohort using GEPIA showed a positive correlation ($r>0.2$) (Supplementary Fig. 3).
393 It is well established from literature that Wnt signaling promotes stemness of cancer cells ¹⁶.
394 Henceforth, we performed spheroid formation assay and found significantly reduced number of
395 spheroids in cisplatin treated chemoresistant cells stably transfected with CMTM6ShRNA (Fig.
396 6A). Similarly, the expression of hallmark stem cell markers were found to be reduced in
397 chemoresistant lines stably transfected with CMTM6ShRNA (Fig. 6B). Reconstitution of
398 CMTM6 in CMTM6KD cells results in enhanced expression of hallmark stem cell markers (Fig.
399 6C). To evaluate if CMTM6 can regulate stem ness in chemoresistant cells, we scored the ALDH
400 activity in CMTM6KD cells. Our data suggests that knock down of CMTM6 results in reduction
401 of ALDH activity in chemoresistant OSCC (Fig. 6D). ABC transporters play important role in
402 acquired chemoresistance in cancer. Henceforth, we measured the expression of ABC
403 transporters in chemoresistant cells stably expressing NTSh or CMTM6ShRNA. The qRT-PCR
404 data indicates reduced expression of major ABC transporters (ABCC1, ABCC2, ABCC3,
405 ABCC4, ABCC5 and ABCG2) in CMTM6 depleted cells. Again, the expression of ABC
406 transporter genes were elevated when we ectopically over expressed CMTM6 in CMTM6
407 depleted cells (Supplementary Fig. 4A). Association analysis of CMTM6 m-RNA levels with
408 ABC transporters from the cancer genome atlas HNSCC cohort using GEPIA showed a positive
409 correlation ($r>0.2$) (Supplementary Fig. 4B). Overall, CMTM6 regulates the Wnt signaling and
410 cancer stem ness augmenting chemoresistance in OSCC.

411
412 **Knock down of CMTM6 significantly restores cisplatin-mediated cell death in**
413 **chemoresistant patient-derived xenograft:** To evaluate the in vivo efficacy of knocking down
414 CMTM6 in reversing chemoresistance, we generated PDC1 (patient 1 from chemo non-

415 responder group: Table 1) based xenografts using nude mice. Here, we implanted
416 PDC1NtShRNA cells in right upper flank and PDC1CMTM6ShRNA cells in left upper flank of
417 same mice. Treating with cisplatin (3 mg/kg) significantly reduced the tumor burden in case of
418 CMTM6ShRNA group but not in NtShRNA group (Fig. 7 A-C). We also observed significantly
419 decreased cell proliferation in cisplatin treated CMTM6ShRNA tumors with reduced expression
420 of Wnt target pro survival genes (Fig. 7D).

421

422 **Discussion:**

423 Chemotherapy successfully eliminates the rapidly dividing cells in tumor mass but poorly targets
424 the slowly dividing cells. These cells have either inherent resistance properties or they acquired
425 chemoresistance during the treatment of drug. Due to development of chemoresistance, the
426 patient experience continued tumor growth with metastatic disease. The chemoresistance
427 phenotypes can be attributed to reduced apoptosis, enhanced cancer stem cell population, altered
428 metabolic activity and decreased drug accumulation ^{6, 17, 18}. All these hallmarks are endpoint
429 events when the tumor cells have already acquired drug resistance. However, the exact causative
430 factors responsible for it are yet to be explored. Till date, most of the study engaged the parental
431 sensitive cells and late drug resistant cells to understand the molecular mechanism for
432 chemoresistance. On the contrary, here in this study, we have performed global proteome
433 profiling of parental sensitive, early and late cisplatin-resistant cells. As per our hypothesis,
434 addition of early resistant group for proteome analysis may enable us to identify the key
435 causative factors responsible for acquired chemoresistance.

436 Among the set of deregulated proteins in our proteome profiling, CMTM6 was the highest
437 upregulated protein in early and late cisplatin resistant cells as compared to sensitive counterpart.

438 CMTM6 represents the CMTM family member proteins, which consists of eight members ¹⁹.
439 CMTM6 gene is located at chromosome no 3p22 region ²⁰. All the CMTM proteins belong to
440 chemokine-like factor gene superfamily, a superfamily similar to the chemokine and
441 transmembrane 4 superfamilies ¹⁹. CMTM6 is a type-3 transmembrane protein with a MARVEL
442 domain consisting of three transmembrane helices. It is well established that proteins having
443 MARVEL domain plays important role in regulating the trafficking of transmembrane
444 proteins ²¹. The subcellular localization of CMTM6 is mostly in plasma membrane and it is
445 expressed in several tissues of human body (<https://www.proteinatlas.org/ENSG00000091317-CMTM6/tissue>). Until 2017, the function of this novel protein was not known. A genome wide
446 CRISPR based screening in pancreatic cancer cell line identified that CMTM6 stabilizes the
447 expression of PD-L1. Interestingly, CMTM6 interacts and co-localized with PD-L1 in plasma
448 membrane. Again, CMTM6 prevents the lysosome mediated degradation of PD-L1, therefore it
449 stabilizes the expression PD-L1 ^{14, 22}. Overall, these studies suggest that CMTM6 is an important
450 factor for immune invasion by tumor cells. Further studies suggest that knocking down CMTM6
451 results in decreased PD-L1 expression and increased infiltration of CD8+ and CD4+ T-cells, that
452 in turn increased the anti-tumor immunity in HNSCC ²³. CMTM6 expression is also up regulated
453 in high grade malignant glioma and it can be correlated with poor prognosis of glioma
454 patients ²⁴. In lung cancer patients, CMTM6 acts as a predictor for PD-1 inhibitor therapy i.e.
455 patients having higher CMTM6 expression, responded well to PD-1 inhibitors ^{25, 26}. As the
456 expression of CMTM6 has been detected in several tissues, it is predicted that it might have
457 several biological functions other than triggering immune evasion by tumor cells. Here, in this
458 study for the first time, we uncover another important biological function of CMTM6, i.e. it is a
459 major driver of cisplatin resistance.
460

461

462 In this study, we performed pathway analysis of the set of proteins those were deregulated
463 between sensitive, early and late cisplatin resistant cells. Our data suggests that CMTM6
464 regulates Wnt signaling through AKT/GSK3 β axis. A study by Burr et al in 2017, co-
465 immunoprecipitated CMTM6 from digitonin lysate of pancreatic cancer cells and subjected it to
466 mass spectrometry to explore the potential interacting partners of CMTM6 ¹⁴. The data suggests
467 that CMTM6 interacts with membrane Enolase-1, but the biological relevance of this interaction
468 was not explored. In this study, the CO-IP and confocal microscopy data suggests that CMTM6
469 interacts with membrane enolase-1 and co-localized in plasma membrane. We also demonstrate
470 here that knocking down CMTM6 reduced the expression of membrane enolase-1. It is very well
471 documented by other groups that Enolase-1 enhances the phosphorylation of AKT and GSK3 β ¹³,
472 ²⁷. Henceforth, we predict that CMTM6 stabilizes the expression of membrane Enolase-1 and
473 activates the AKT/GSK3 β mediated Wnt signaling (Fig. 7E). It is very evident from literature
474 that Wnt/ β -catenin signaling plays important role in acquiring chemoresistance as it regulates the
475 cancer stemness ^{28, 29, 30}. Here, we have also demonstrated that knocking down CMTM6
476 significantly reduced the stemness properties of chemoresistant cells. Overall in this study, we
477 uncover the novel mechanism by which CMTM6 regulates Wnt signaling and mediates cisplatin
478 resistance in OSCC.

479

480 In conclusion, it was earlier established that CMTM6 is a novel protein, which stabilizes PD-L1
481 and potentiates the immune evasion by tumor cells. Now we for the first time demonstrate that
482 CMTM6 is a major driver of cisplatin resistance. Henceforth, targeting CMTM6 can be a useful
483 strategy to overcome therapy resistance in advanced squamous cell carcinomas.

484 **Acknowledgment-** Grant support: This work is supported by ICMR (5/13/9/2019-NCD-III) and
485 Institute of Life Sciences, Bhubaneswar intramural support. RD is thankful to Ramalingaswami
486 Fellowship. PM is a CSIR-JRF, SM is UGC-JRF, OPS is a UGC-SRF. Core support from
487 International Centre for Genetic Engineering and Biotechnology is highly acknowledged.

488 **Conflict of interest:** The authors have no conflict of interest

489 **References:**

- 490 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. *CA Cancer J Clin* 2020, **70**(1): 7-30.
- 491 2. Chaturvedi A, Husain N, Misra S, Kumar V, Gupta S, Akhtar N, *et al.* Validation of the Brandwein
492 Gensler Risk Model in Patients of Oral Cavity Squamous Cell Carcinoma in North India. *Head
493 Neck Pathol* 2019.
- 494 3. Huang SH, O'Sullivan B. Oral cancer: Current role of radiotherapy and chemotherapy. *Med Oral
495 Patol Oral Cir Bucal* 2013, **18**(2): e233-240.
- 496 4. Pandey M, Kannepali KK, Dixit R, Kumar M. Effect of neoadjuvant chemotherapy and its
497 correlation with HPV status, EGFR, Her-2-neu, and GADD45 expression in oral squamous cell
500 carcinoma. *World J Surg Oncol* 2018, **16**(1): 20.
- 501 5. Haddad RI, Posner M, Hitt R, Cohen EEW, Schulten J, Lefebvre JL, *et al.* Induction chemotherapy
502 in locally advanced squamous cell carcinoma of the head and neck: role, controversy, and future
503 directions. *Ann Oncol* 2018, **29**(5): 1130-1140.
- 504 6. Maji S, Panda S, Samal SK, Shriwas O, Rath R, Pellecchia M, *et al.* Bcl-2 Antiapoptotic Family
505 Proteins and Chemoresistance in Cancer. *Adv Cancer Res* 2018, **137**: 37-75.
- 506 7. Peng B, Yi S, Gu Y, Zheng G, He Z. Purification and biochemical characterization of a novel
507 protein-tongue cancer chemotherapy resistance-associated protein1 (TCRP1). *Protein Expr Purif*
508 2012, **82**(2): 360-367.
- 509 8. Jin L, Chun J, Pan C, Li D, Lin R, Alesi GN, *et al.* MAST1 Drives Cisplatin Resistance in Human
510 Cancers by Rewiring cRaf-Independent MEK Activation. *Cancer Cell* 2018, **34**(2): 315-330 e317.
- 511 9. Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK, *et al.* DDX3 modulates
512 cisplatin resistance in OSCC through ALKBH5-mediated m(6)A-demethylation of FOXM1 and
513 NANOG. *Apoptosis* 2020.

520

521 10. Maji S, Samal SK, Pattanaik L, Panda S, Quinn BA, Das SK, *et al.* Mcl-1 is an important therapeutic
522 target for oral squamous cell carcinomas. *Oncotarget* 2015, **6**(18): 16623-16637.

523

524 11. Maji S, Shriwas O, Samal SK, Priyadarshini M, Rath R, Panda S, *et al.* STAT3- and GSK3beta-
525 mediated Mcl-1 regulation modulates TPF resistance in oral squamous cell carcinoma.
526 *Carcinogenesis* 2019, **40**(1): 173-183.

527

528 12. Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of
529 noncanonical Wnt/Fz signaling, regulates gastrulation movements. *Curr Biol* 2003, **13**(8): 680-
530 685.

531

532 13. Dai J, Zhou Q, Chen J, Rexius-Hall ML, Rehman J, Zhou G. Alpha-enolase regulates the malignant
533 phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. *Nat Commun*
534 2018, **9**(1): 3850.

535

536 14. Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, *et al.* CMTM6 maintains the
537 expression of PD-L1 and regulates anti-tumour immunity. *Nature* 2017, **549**(7670): 101-105.

538

539 15. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, *et al.* PTEN-deficient intestinal stem cells
540 initiate intestinal polyposis. *Nat Genet* 2007, **39**(2): 189-198.

541

542 16. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. *Curr
543 Opin Cell Biol* 2013, **25**(2): 254-264.

544

545 17. Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. *Clin Transl Med*
546 2013, **2**(1): 3.

547

548 18. Ma L, Zong X. Metabolic Symbiosis in Chemoresistance: Refocusing the Role of Aerobic
549 Glycolysis. *Front Oncol* 2020, **10**: 5.

550

551 19. Han W, Ding P, Xu M, Wang L, Rui M, Shi S, *et al.* Identification of eight genes encoding
552 chemokine-like factor superfamily members 1-8 (CKLFSF1-8) by in silico cloning and
553 experimental validation. *Genomics* 2003, **81**(6): 609-617.

554

555 20. Li H, Li J, Su Y, Fan Y, Guo X, Li L, *et al.* A novel 3p22.3 gene CMTM7 represses oncogenic EGFR
556 signaling and inhibits cancer cell growth. *Oncogene* 2014, **33**(24): 3109-3118.

557

558 21. Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA. MARVEL: a conserved domain
559 involved in membrane apposition events. *Trends Biochem Sci* 2002, **27**(12): 599-601.

560

561 22. Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, *et al.* Identification of CMTM6
562 and CMTM4 as PD-L1 protein regulators. *Nature* 2017, **549**(7670): 106-110.

563
564 23. Chen L, Yang QC, Li YC, Yang LL, Liu JF, Li H, *et al.* Targeting CMTM6 Suppresses Stem Cell-Like
565 Properties and Enhances Antitumor Immunity in Head and Neck Squamous Cell Carcinoma.
566 *Cancer Immunol Res* 2020, **8**(2): 179-191.

567
568 24. Guan X, Zhang C, Zhao J, Sun G, Song Q, Jia W. CMTM6 overexpression is associated with
569 molecular and clinical characteristics of malignancy and predicts poor prognosis in gliomas.
570 *EBioMedicine* 2018, **35**: 233-243.

571
572 25. Koh YW, Han JH, Haam S, Jung J, Lee HW. Increased CMTM6 can predict the clinical response to
573 PD-1 inhibitors in non-small cell lung cancer patients. *Oncoimmunology* 2019, **8**(10): e1629261.

574
575 26. Gao F, Chen J, Wang J, Li P, Wu S, Wang J, *et al.* CMTM6, the newly identified PD-L1 regulator,
576 correlates with PD-L1 expression in lung cancers. *Biochem Biophys Rep* 2019, **20**: 100690.

577
578 27. Zhuang H, Qiang Z, Shao X, Wang H, Dang Y, Wang Z, *et al.* Integration of metabolomics and
579 expression of enolase-phosphatase 1 links to hepatocellular carcinoma progression.
580 *Theranostics* 2019, **9**(12): 3639-3652.

581
582 28. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, *et al.* beta-Catenin
583 mediates the establishment and drug resistance of MLL leukemic stem cells. *Cancer Cell* 2010,
584 **18**(6): 606-618.

585
586 29. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. *Nat Rev Cancer*
587 2013, **13**(1): 11-26.

588
589 30. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells?
590 *Clin Cancer Res* 2010, **16**(12): 3153-3162.

591
592
593
594
595
596
597
598

599 **Figure legends:**

600 **Figure 1: CMTM6 is up regulated in chemoresistant squamous cell carcinomas: A)**
601 Schematic representation of sensitive, early and late cisplatin resistant OSCC line for global
602 proteomic profiling. The establishment of sensitive, early and late resistant cells are described in
603 materials and method section. **B)** The lysates were isolated from parental sensitive (H3457CisS),
604 early (H357CisR4M) and late (H357CisR8M) cisplatin resistant cells and subjected to global
605 proteomic profiling. The schematic diagram depicts the iTRAQ labelling strategy for proteomic
606 analysis. 0R11 and 0R12 are biological replicates of H357CisS group, 4R11: 4R12 and 4R2 are
607 technical and biological replicates of H357CisR4M group, 8R11: 8R12 and 8R2 are technical
608 and biological replicates of H357CisR8M group. **C)** Principal component analysis of global
609 proteomic profiling sensitive, early (4M) and late resistant cells (8M). **D)** Volcano plot
610 indicating deregulated genes in proteome profiling of sensitive and cisplatin resistant cells.
611 CMTM6 is the top ranked up regulated genes in 4M and 8M cisplatin resistant groups. **E)** Cell
612 lysates from indicated resistant and sensitive OSCC cells were isolated and subjected to
613 immunoblotting against CMTM6 and β -actin antibodies. **F)** Relative mRNA (fold change)
614 expression of CMTM6 was analyzed by qRT PCR in indicated cells (mean \pm SEM, n=3). **G)** Cell
615 lysates from indicated resistant and sensitive OSCC cells were isolated and subjected to
616 immunoblotting against CMTM6 and β -actin antibodies. **H)** Relative mRNA (fold change)
617 expression of CMTM6 was analyzed by qRT PCR in indicated cells (mean \pm SEM, n=3). **I)**
618 Relative mRNA expression of CMTM6 was analyzed by qRT PCR in different chemotherapy-
619 non-responder OSCC tumors as compared to chemotherapy-naïve tumors (Median, n=29 for
620 chemotherapy-naïve and n=23 for chemotherapy-non-responder). *: P < 0.05. **J)** Protein
621 expression of CMTM6 was analyzed by IHC in chemotherapy-naïve and chemotherapy-non-
622 responder OSCC tumors. **K)** IHC scoring for CMTM6 from panel J (Q Score =Staining
623 Intensity \times % of Staining), (Median, n=29 for chemotherapy-naïve and n=23 for chemotherapy-
624 non-responder) *: P < 0.05. **L)** Left panel: Protein expression of CMTM6 was analyzed by
625 immunohistochemistry (IHC) in pre- and post-TPF treated paired tumor samples for
626 chemotherapy-non-responder patients Right panel: Q Score =Staining Intensity \times % of IHC
627 Staining.

628 **Figure 2: CMTM6 knock down restores cisplatin induced cell death in drug resistant**
629 **OSCC:** **A)** Cisplatin resistant OSCC lines were stable transfected with NTShRNA and

630 CMTM6ShRNA as described in material methods. ShRNA#1 targets CMTM6 mRNA and
631 ShRNA#2 targets 5'UTR of CMTM6 mRNA. Lysates were collected from indicated stable clone
632 and immunoblotting was performed with anti CMTM6 and β -Actin antibodies. **B)** Left panel:
633 Cisplatin resistant cells stably expressing NTShRNA and CMTM6ShRNA were treated with
634 cisplatin for 12 days and colony forming assays as described in method section. Bar diagram
635 indicated the relative colony number (n=3 and *: P < 0.05). Right panel: representating
636 photographs of colony forming assay in each group. **C)** Cisplatin resistant cells stably expressing
637 NTShRNA and CMTM6ShRNA were treated with cisplatin for 48h and cell viability was
638 determined by MTT assay (n=3 and *: P < 0.05). **D)** Cisplatin resistant cells stably expressing
639 NTShRNA and CMTM6ShRNA were treated with cisplatin for 48h and after which cell death
640 was determined by annexin V/7AAD assay using flow cytometer. Bar diagrams indicate the
641 percentage of cell death with respective treated groups (Mean \pm SEM, n=2). **E)** Cisplatin resistant
642 cells stably expressing NTShRNA and CMTM6ShRNA were treated with cisplatin for 48h and
643 immunoblotting was performed with indicated antibodies.

644 **Figure 3: Ectopic overexpression of CMTM6 rescued the drug resistant phenotype in**
645 **CMTM6KD cells: A)** For ectopic overexpression, pCMV6-Entry-CMTM6 (MYC-DDK tagged)
646 and control vector were transiently transfected to indicated CMTMKD (ShRNA#2) cells and
647 immunoblotting was performed with indicated antibodies. Efficient overexpression was evident
648 from CMTM6 and DDK expression. **B)** CMTM6 was overexpressed in chemoresistant cells
649 stably expressing CMTM6ShRNA#2 and treated with cisplatin with indicated concentration for
650 48, after which cell viability was determined by MTT assay (n=3). **C)** Cells were treated as
651 indicated in B panel and cell death was determined by annexin V/7AAD assay using flow
652 cytometer. Bar diagrams indicate the percentage of cell death with respective treated groups
653 (Mean \pm SEM, n=2). **D)** CMTM6 was overexpressed in chemoresistant cells stably expressing
654 CMTM6ShRNA#2 followed by cisplatin treatment for 48h and immunoblotting was performed
655 with indicated antibodies.

656 **Figure 4: CMTM6 activates AKT/GSK3 β signaling by stabilizing membrane enolase-1**
657 **expression: A)** Deregulated genes from proteomic profiling were subjected to Ingenuity
658 Pathway Analysis and list of pathways involved are indicated as bar diagram. **B)** The lysates
659 were isolated and subjected to immunoblotting with indicated antibodies in chemoresistant cells
660 stably expression NTShRNA or CMTM6ShRNA#1. **C)** CMTM6 was overexpressed in

661 chemoresistant cells stably expressing NTShRNA or CMTM6ShRNA#2 and immunoblotting
662 was performed with indicated antibodies. **D)** Left panel: Lysates were isolated from H357CisR
663 and immunoprecipitated with Enolase-1 and immunoblotting was performed with CMTM6.
664 Right panel: H357CisR was transfected with pCMV6-Entry-CMTM6 (MYC-DDK tagged)
665 after which the lysates were isolated and IP followed by IB was performed with indicated
666 antibodies. **E)** H357CisR cells were subjected to immunostaining with anti-CMTM6 and anti-
667 Enolase-1 using confocal microscope as described in materials and method. **F)** Lysates were
668 isolated from membrane and cytoplasmic fraction and immunoblotting was performed using
669 indicated antibodies.

670 **Figure 5: CMTM6 activates Wnt signaling by up regulating β -catenin expression in**

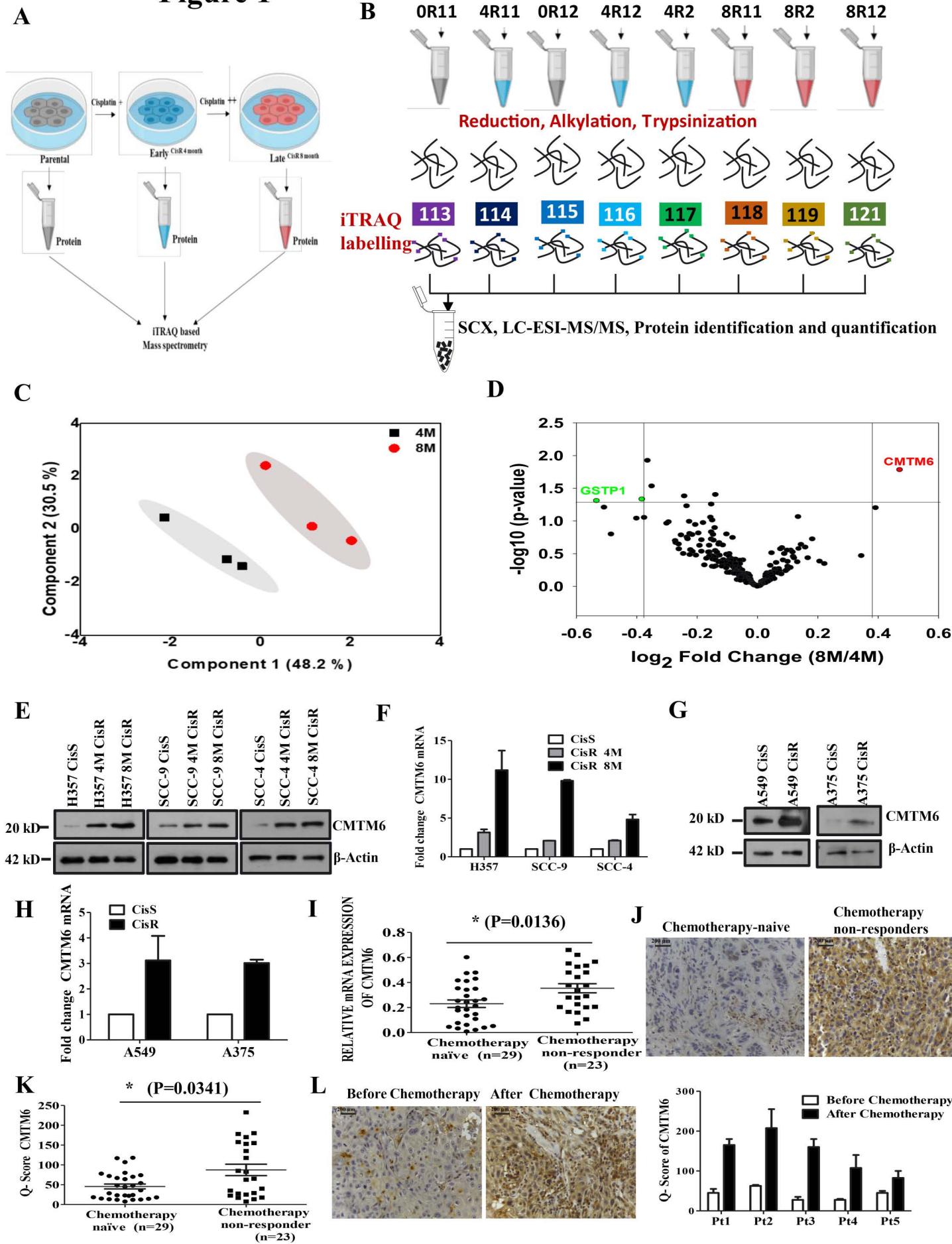
671 chemoresistant OSCC. A)

672 The lysates were isolated and subjected to immunoblotting with indicated antibodies in chemoresistant cells stably expressing NTShRNA or CMTM6ShRNA#1.

673 **B)** Chemoresistant cells stably expressing NTShRNA or CMTM6ShRNA#1 were subjected to immunostaining and confocal microscopy with indicated antibodies. **C)** Cisplatin resistant cells stably expressing NTShRNA and CMTM6ShRNA#1 were treated with LiCl for 24h and immunoblotting was performed with indicated antibodies **D)** Cisplatin resistant cells stably expressing NTShRNA and CMTM6ShRNA#1 were treated with cisplatin for 48h and LiCl for 24h and cell viability was determined by MTT assay (n=3). **E)** The lysates were isolated and subjected to immunoblotting with indicated antibodies in chemoresistant cells stably expressing NTShRNA or CMTM6ShRNA#1. **F)** Relative mRNA (fold change) expression of indicated genes were analyzed by qRT PCR in indicated cells stably expressing NTShRNA or CMTM6ShRNA#1 (mean \pm SEM, n=3). **G)** Chemoresistant cells stably expressing NTShRNA and CMTM6ShRNA#1 were co-transfected with either the TOPflash firefly vector and pRL Renilla control vectors following the treatment with LiCl (20mM) or pyrvinium (50 μ M) for 12h and luciferase activity was measured as described in materials and methods. The bar diagram indicates the relative luciferase activity in each group (n=3). **H)** CMTM6 was overexpressed in chemoresistant cells stably expressing NTShRNA or CMTM6ShRNA#2 and immunoblotting was performed with indicated antibodies. **I)** CMTM6 was overexpressed in chemoresistant CMTM6KD (ShRNA#2) and relative mRNA expression of indicated genes were determined by qRT PCR (mean \pm SEM, n=3).

690 **Figure 6: CMTM6 regulates stem ness in chemoresistant cells: A)** Tumor spheroid assay was

691 performed as described in method section with chemoresistant cells stably expressing NTShRNA


692 and CMTM6ShRNA#1 followed by treatment with indicated concentration of cisplatin for 5
693 days. At the end of the experiment spheroid photographs were captured using Leica DMIL
694 microscope. **B)** The lysates were isolated and subjected to immunoblotting with indicated
695 antibodies in chemoresistant cells stably expressing NTShRNA or CMTM6ShRNA#1. **C)**
696 CMTM6 was transiently overexpressed in chemoresistant cells stably expressing
697 CMTM6ShRNA#2 and relative mRNA (fold change) expression of indicated genes were
698 analyzed by qRT PCR in indicated cells (mean \pm SEM, n=3). **D)** An ALDEFLUOR assay was
699 conducted in chemoresistant cells stably expressing NTShRNA and CMTM6ShRNA#1 and the
700 percentage of ALDH high cells was quantified by flow cytometry as described in method
701 section.

702

703 **Figure 7: Knock down of CMTM6 reverses cisplatin resistance in chemoresistant**
704 **xenografts: A)** Patient derived cells (PDC1) established from tumor of chemo-nonresponder
705 patient. PDC1 cells stably expressing NtShRNA were implanted in right upper flank of athymic
706 male nude mice and PDC1 cells stably expressing CMTM6ShRNA#1 (PDC1 CMTM6KD) were
707 implanted in left upper flank, after which they were treated with cisplatin at indicated
708 concentration. **A)** At the end of the experiment mice were euthanized, tumors were isolated and
709 photographed (n=6). **B)** Bar diagram indicates the tumor weight measured at the end of the
710 experiment (mean \pm SEM, *P < 0.05, n = 6). **C)** Tumor growth was measured in indicated time
711 point using digital slide calipers and plotted as a graph (mean \pm SEM, n = 6). **D)** After
712 completion of treatment, tumors were isolated and paraffin-embedded sections were prepared as
713 described in materials and methods to perform immunohistochemistry with indicated antibodies.
714 **E)** Schematic presentation of the mechanism by which CMTM6 mediates chemoresistance in
715 OSCC.

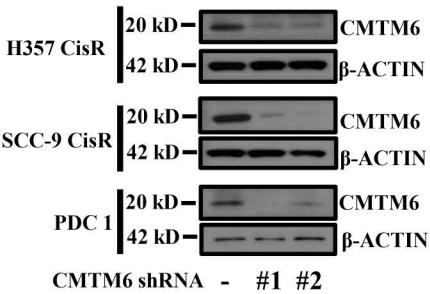

716

Figure 1

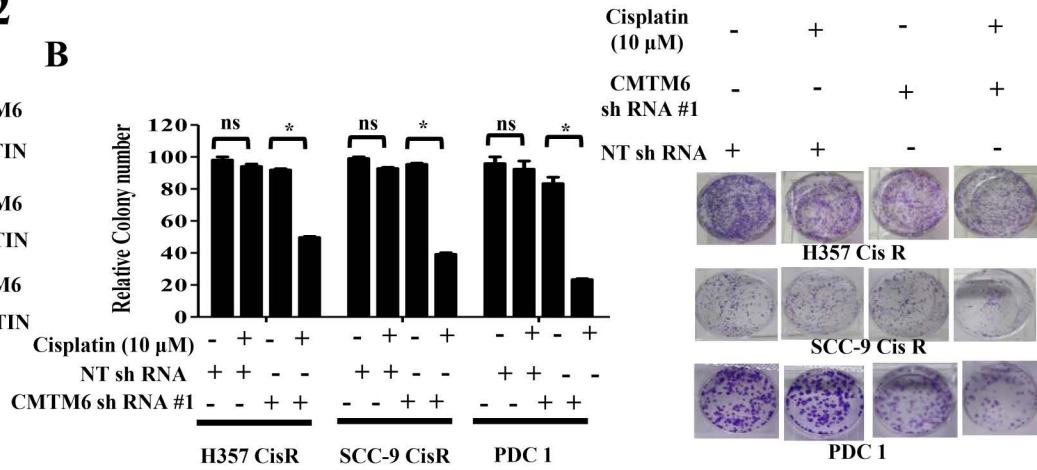
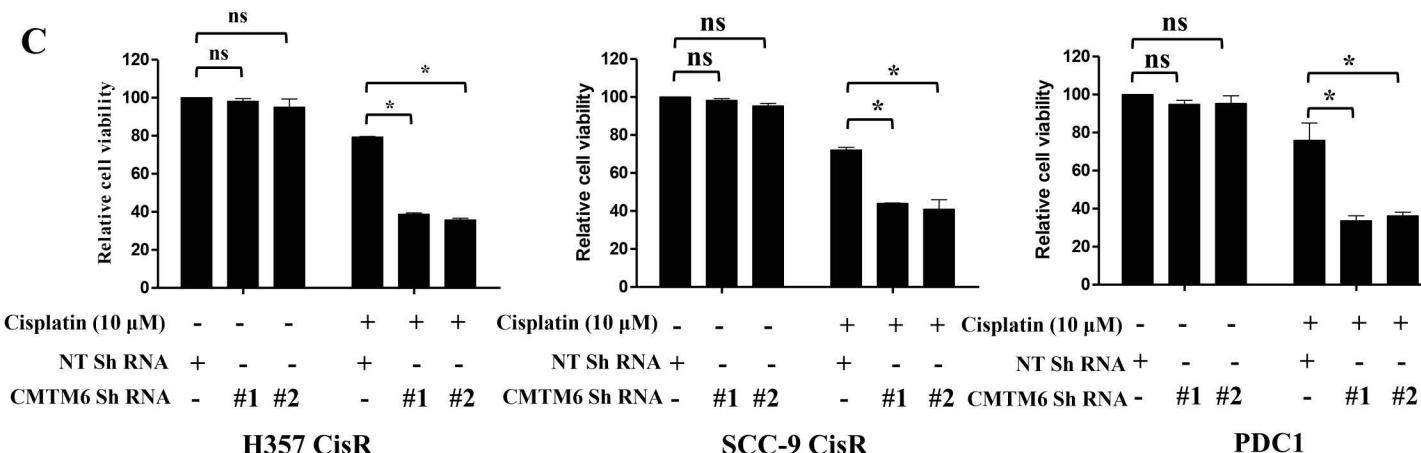
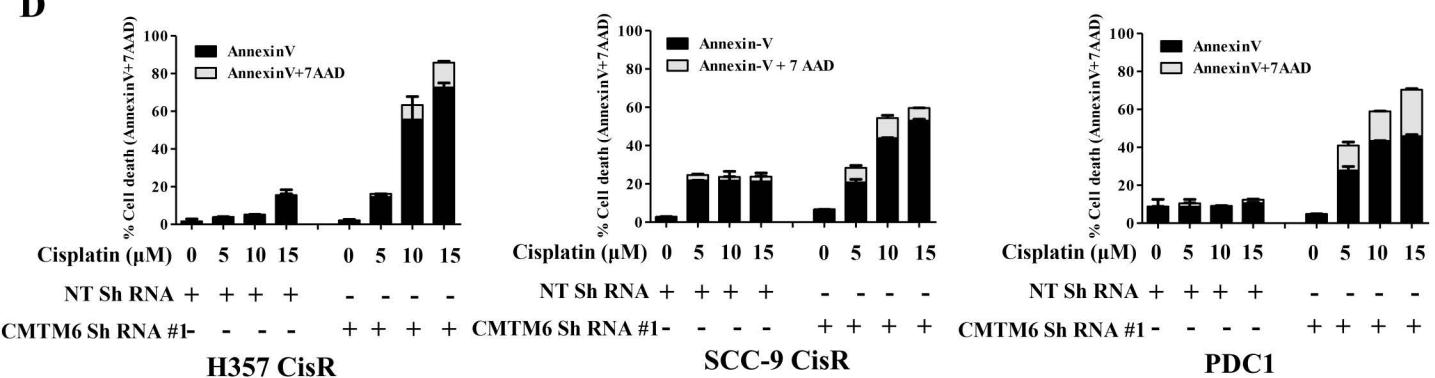
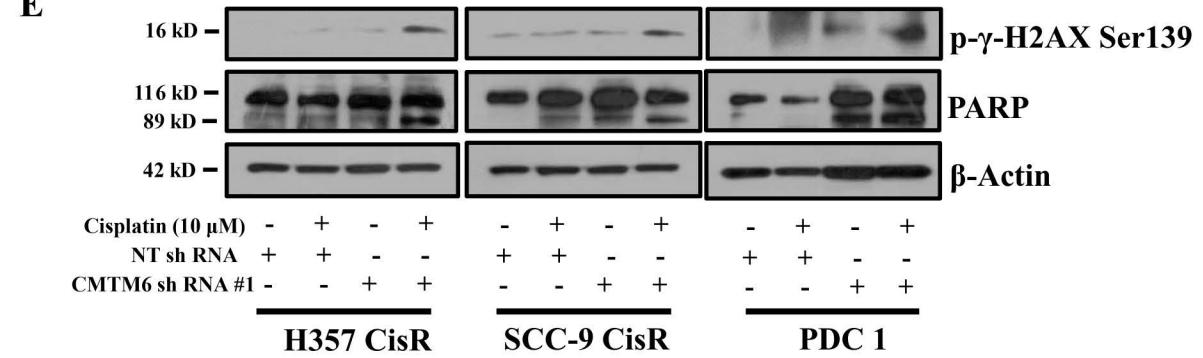


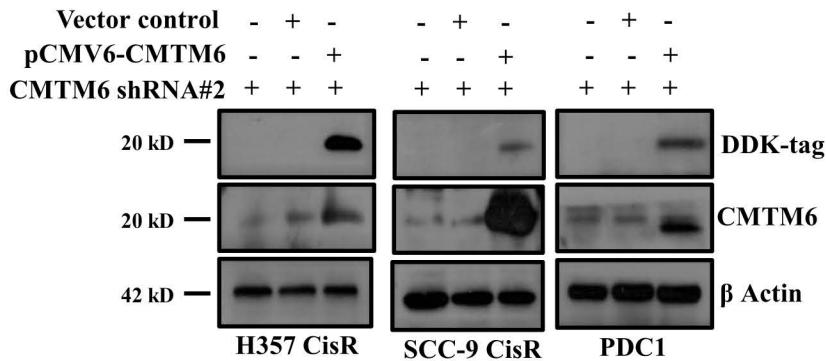
Figure 2


A


B


C

D



E

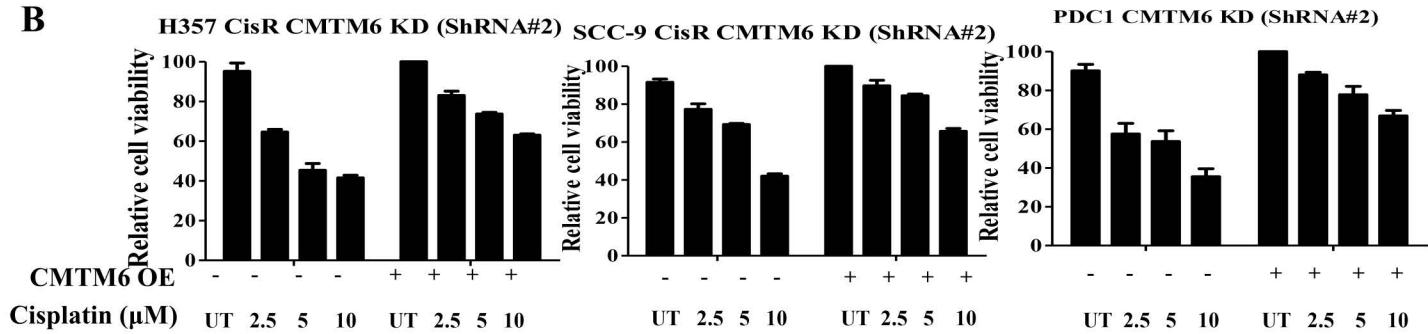
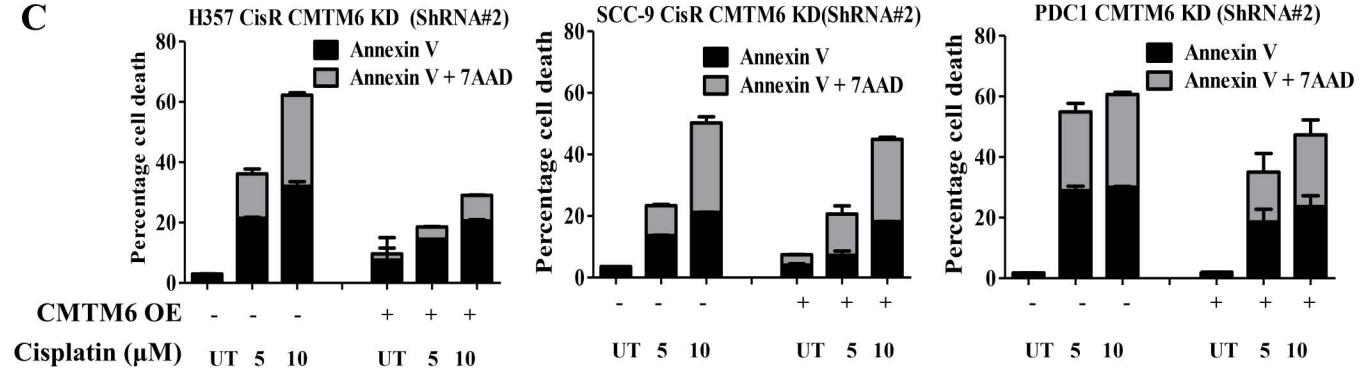
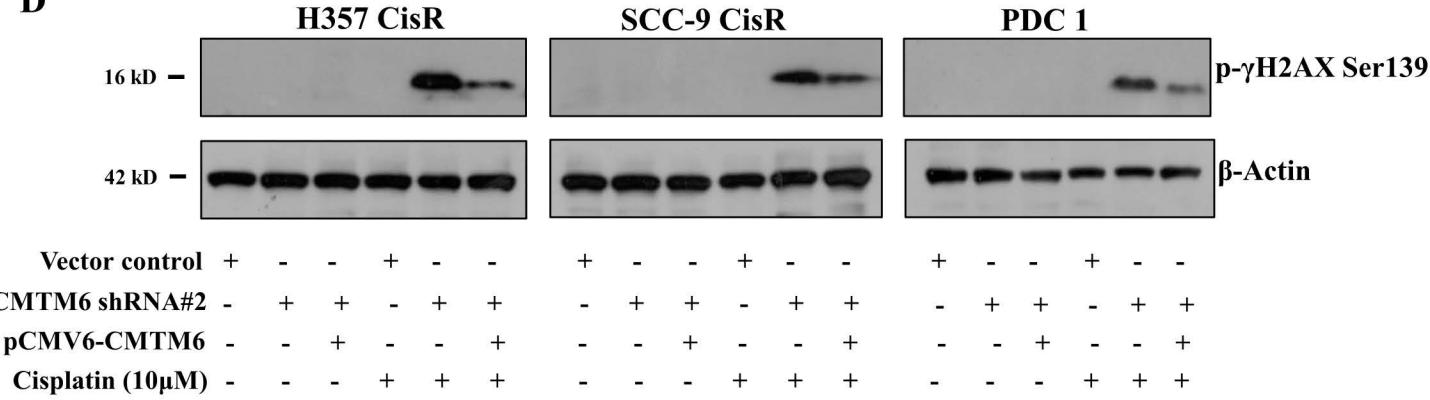
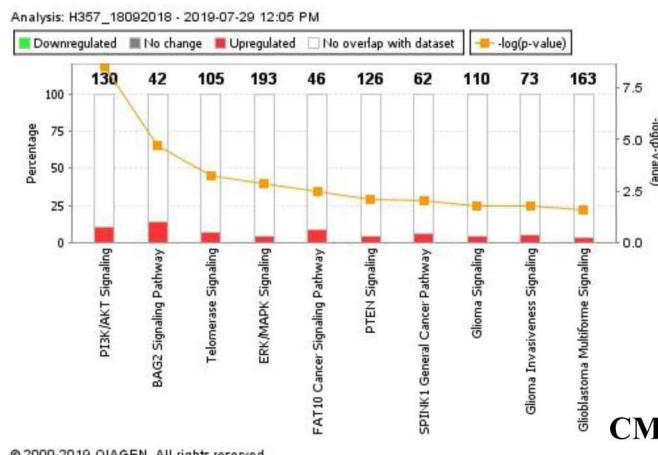


Figure 3


A


B

C



D

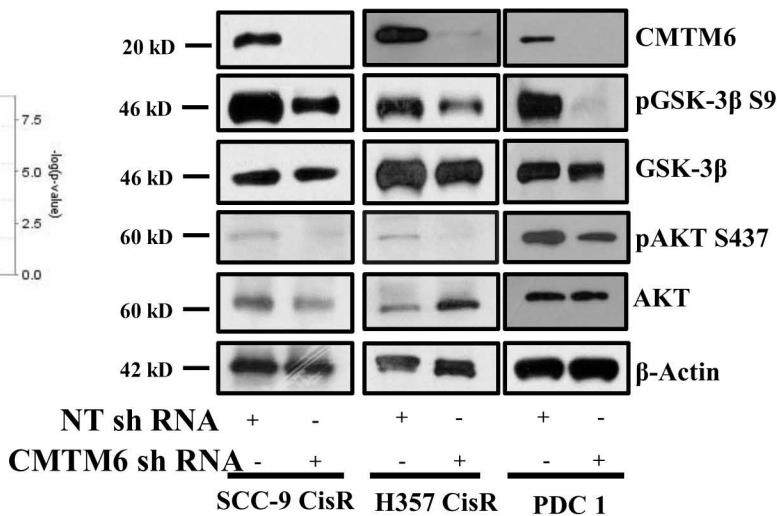
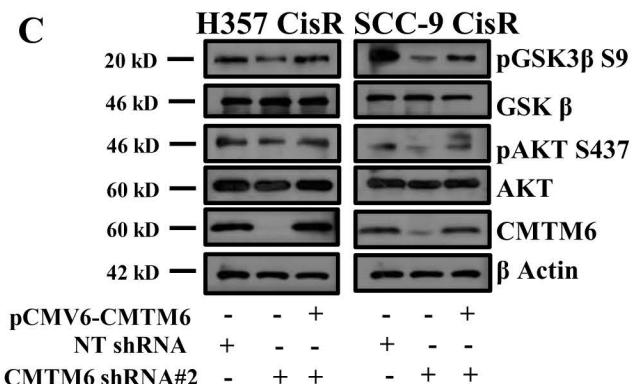
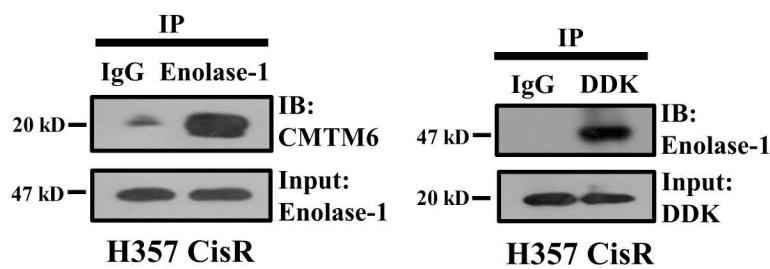
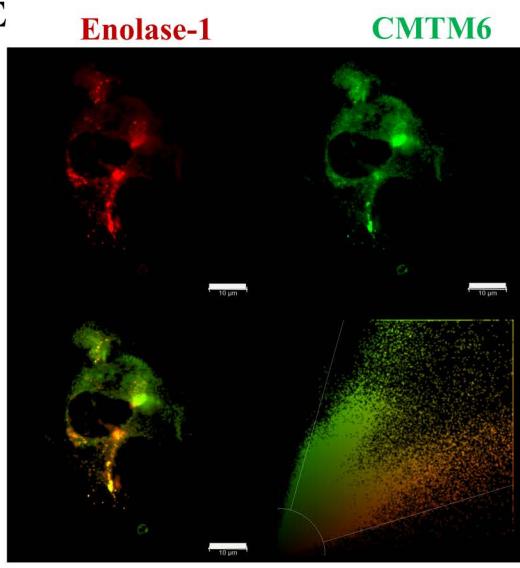
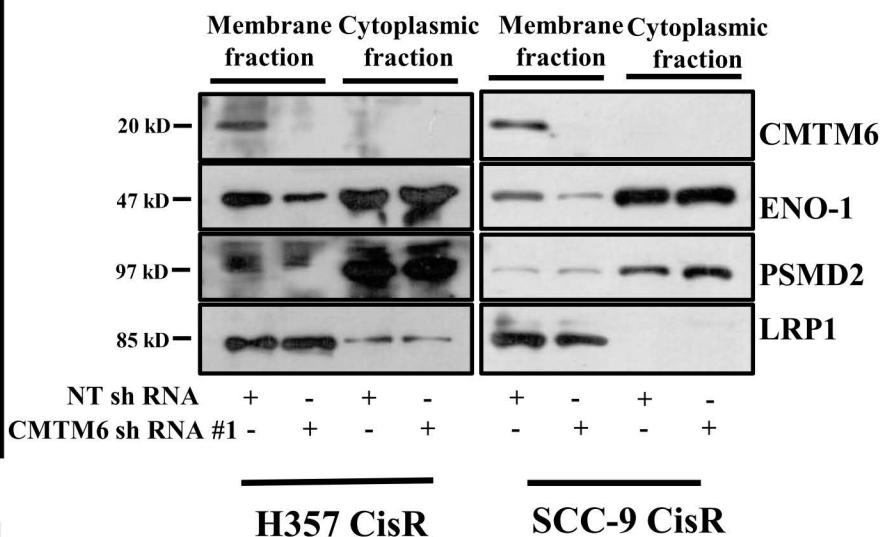


Figure 4

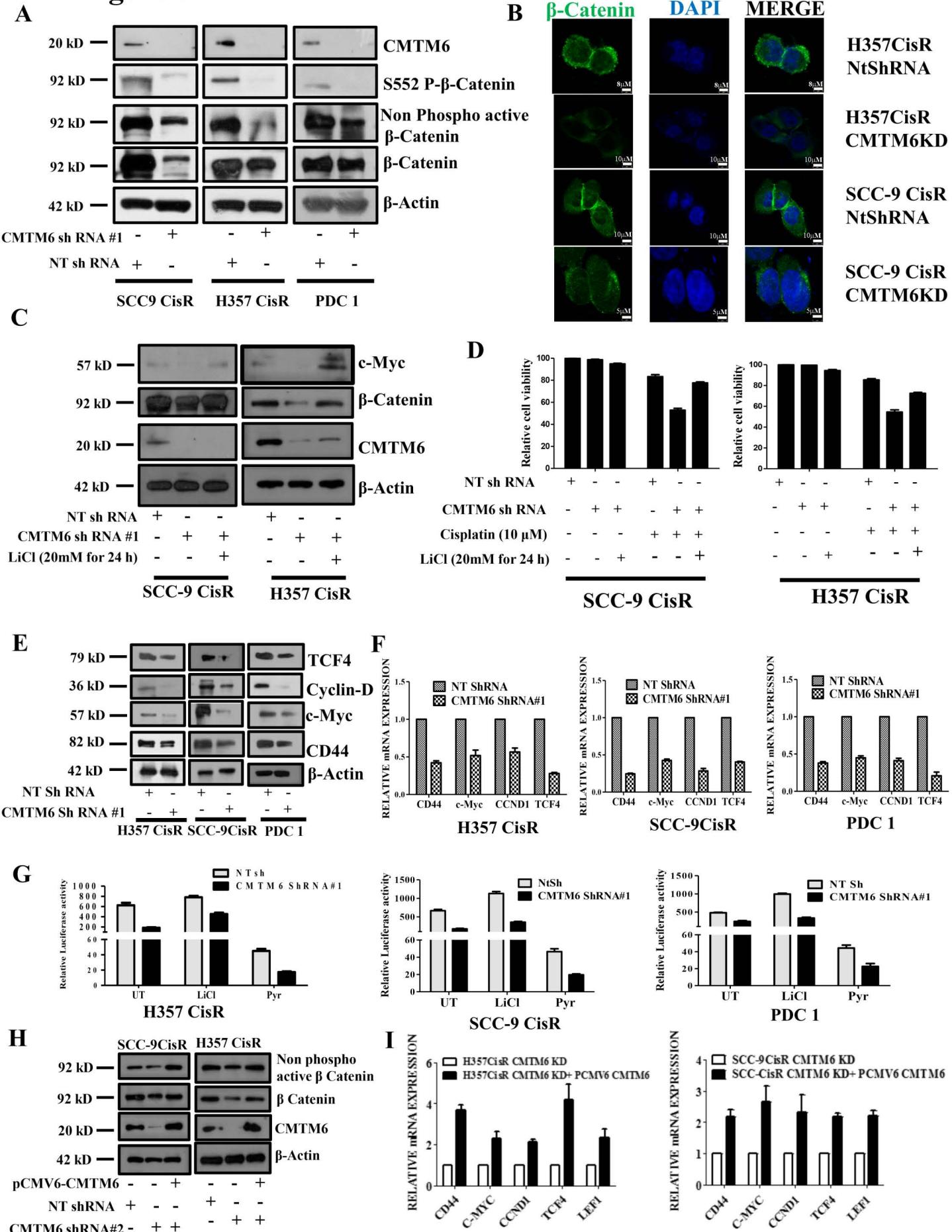

A


B


C


D

E



F

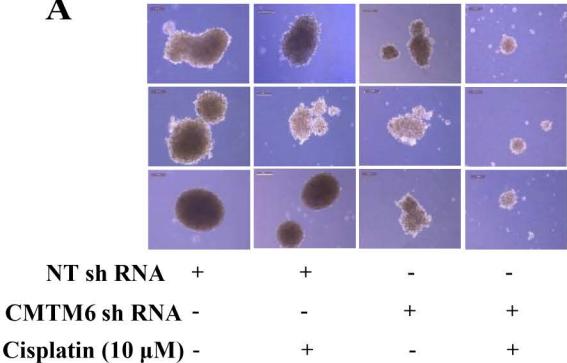
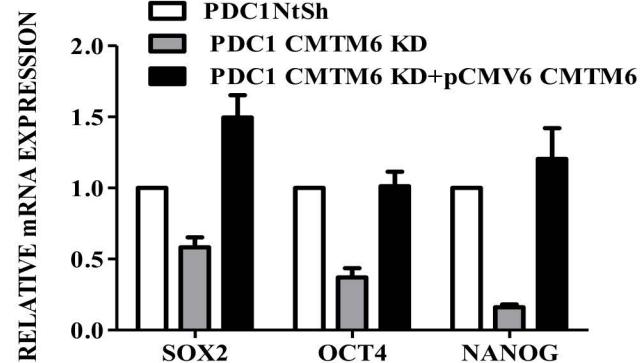
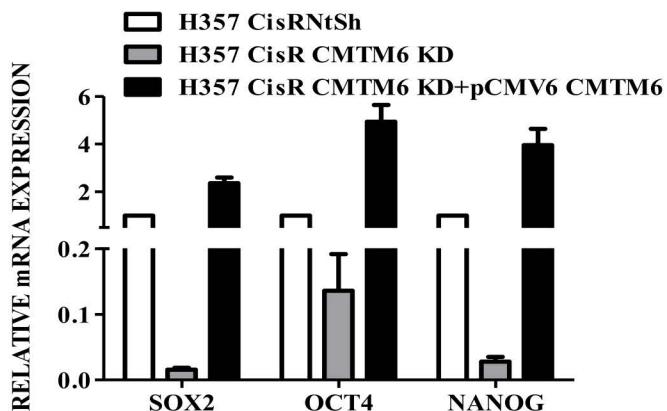
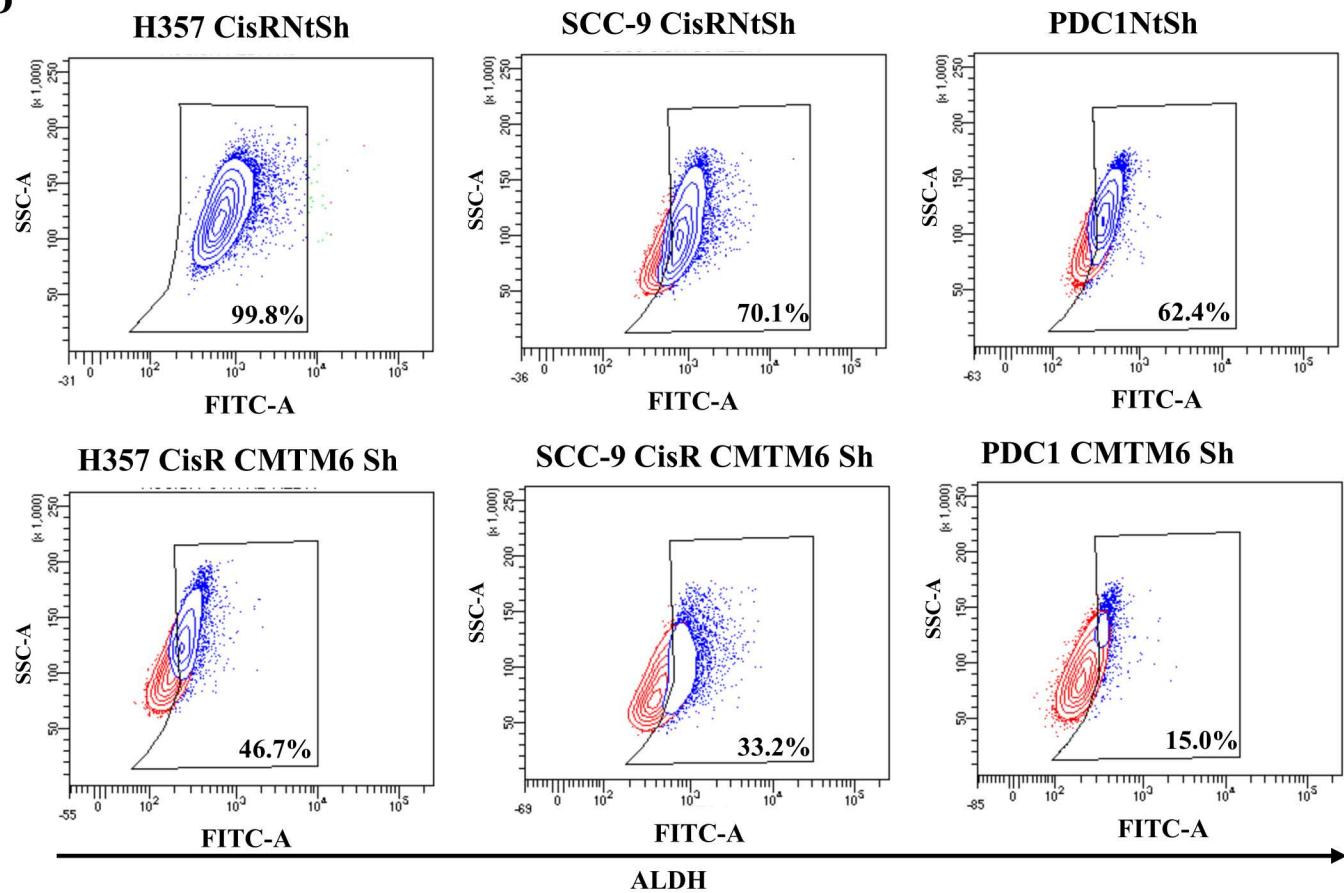

Pearson's correlation	0.8397
Overlap coefficient	0.8606
Colocalization Rate	99.26%
Colocalization Area	273.65 μm^2

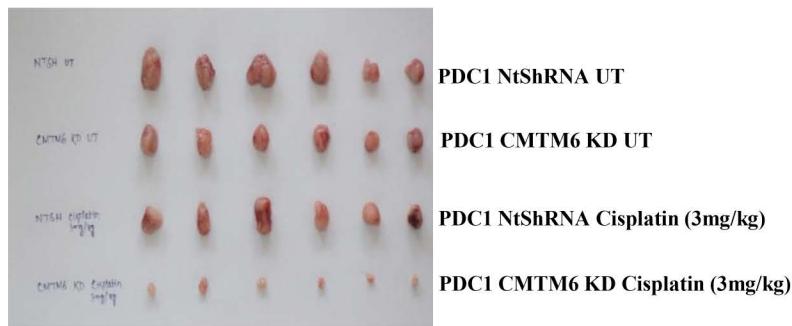
Figure 5

Figure 6



A


B

C



D

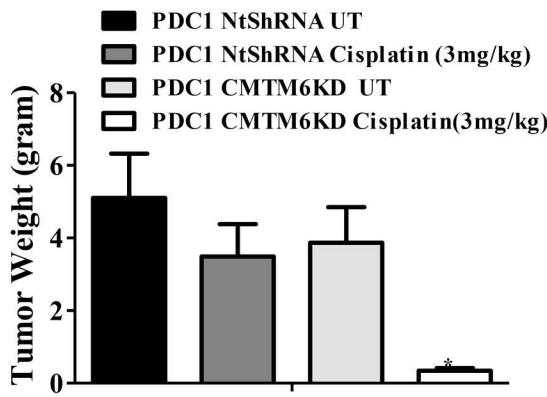
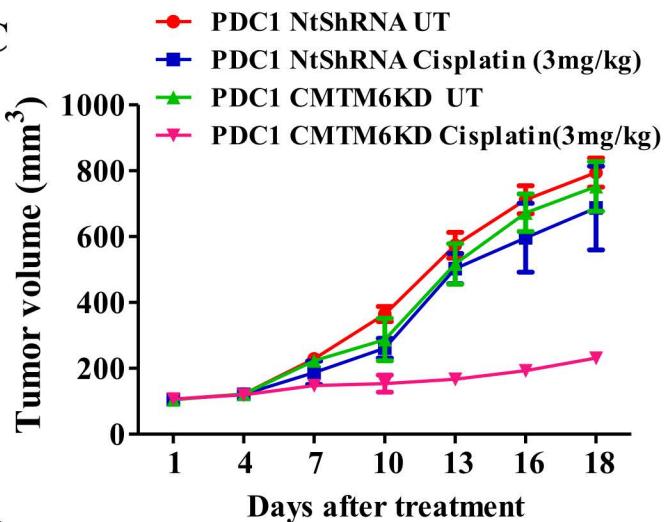
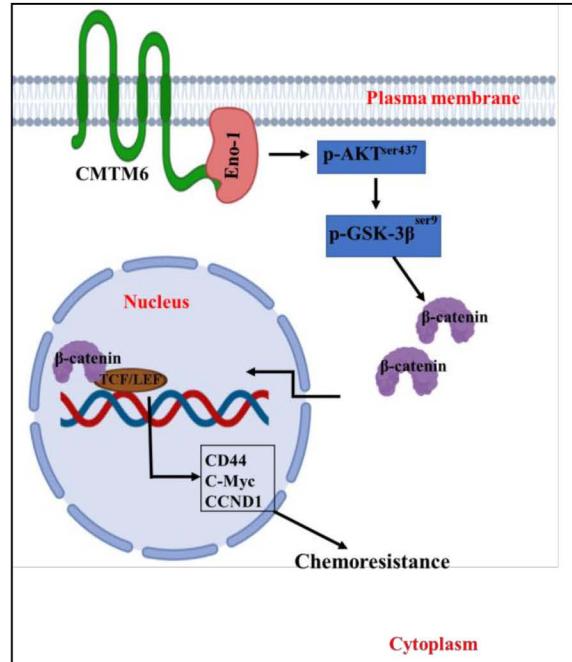
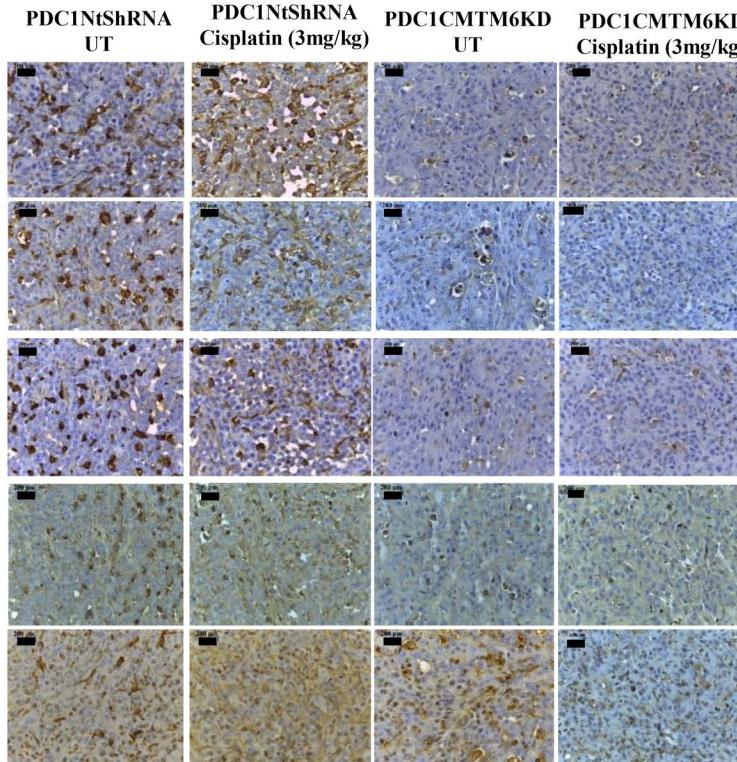


Figure 7


A


B


C

E

D

Table-1a: chemotherapy-naïve Patient details

Sl No	Tumor samples	Age/Sex	Site of disease	Clinical stage
1	Patient#1	32/M	Tongue Lt lateral border	T4N1M0
2	Patient#2	29/F	Rt- Upper gingivobuccal maxillary antrum	T2N1Mx
3	Patient#3	60/F	Upper alveolus	T4aN1M0
4	Patient#4	42/M	Tongue Lt lateral border	T4N1M0
5	Patient#5	60/M	Lt- Buccal mucosa	T4aN1M
6	Patient#6	67/M	Tongue Lt lateral border	T4aN1Mx
7	Patient#7	33/M	Tongue Lt lateral border	T3N1Mx
8	Patient#8	55/F	Rt- Buccal mucosa	T4bN2bM0
9	Patient#9	50/M	Rt- Buccal mucosa	T4aN2bM0
10	Patient#10	42/M	Tongue Rt lateral border	T4aN2bM0
11	Patient#11	52/M	Tongue Lt lateral border	T2N1Mx
12	Patient#12	38/M	Lt-Buccal Mucosa	T4N1M0
13	Patient#13	75/M	Rt- Buccal mucosa	T4aN2bM0
14	Patient#14	74/M	Tongue lateral border	T2N0M0
15	Patient#15	53/M	Tongue Lt lateral border	T4N0M0
16	Patient#16	34/M	Lt Lt-Buccal Mucosa	T4aN2bMx
17	Patient#17	40/M	Toungle- lateral border	T2N2cM0
18	Patient#18	74/M	Toungle	T2N0M0
19	Patient#19	53/M	Oral cavity	T4N0M0
20	Patient#20	45/M	Toungle	T4aN2cM0
21	Patient#21	46/M	Toungle	T3N1M0
22	Patient#22	35/M	Toungle	T4aN2eM0
23	Patient#23	36/M	Toungle	cT4aN2aM0 cT4aN2cM0
24	Patient#24	48/M	Left Buccal Mucosa	
25	Patient#25	38/M	SCC Base of Tongue with extension into Oropharynx	T4aN2cMO
26	Patient#26	36/M	Right Buccal Mucosa	T4aN2aM0
27	Patient#27	34/M	Left Buccal Mucosa	T4aN2bMx
28	Patient#28	38/M	Right Gingiva buccal sulcus	T4N1Mx
29	Patient#29	40/M	Toungle	T2N2M0

Lt-Left, Rt-Right

Table-1b: Chemotherapy-non-responders patient Details

Sl No	Tumor samples	Age /Sex	Site of disease	Clinical stage	Chemotherapy (NACT)	Cycle	Response
1	Patient# 1 (PDC#1)	76/M	Tongue Rt lateral border	T4N0M0	Paclitaxel + Cisplatin	3	non responder
2	Patient#2	51/M	Rt- Buccal mucosa	T2N2bM0	Docetaxel + Cisplatin+ 5FU	2	non responder
3	Patient# 3	60/M	Tongue Rt lateral border	T3N1M0	Paclitaxel + Cisplatin +5FU	3	non responder
4	Patient#4	33/M	Rt- Lower Alveolar mucosa	T3N1Mx	Docetaxel + Cisplatin	3	non responder
5	Patient#5	60/F	Tongue Lt lateral border	T4N0M0	Docetaxel + Cisplatin+ 5FU	3	non responder
6	Patient#6	59/M	Tongue Rt lateral border	T4aN1M0	Docetaxel + Cisplatin+ 5FU	3	non responder
7	Patient#7	46/M	Tongue	T4N3M0	Docetaxel + Cisplatin+ 5FU	3	non responder
8	Patient#8	55/F	Rt- Buccal Mucosa	T4aN2M0	Docetaxel + Cisplatin+ 5FU	2	*Partial responder
9	Patient#9	37/M	Tongue	T4N3M0	Docetaxel + Cisplatin+ 5FU	2	non responder
10	Patient#10	27/M	Lt-Buccal Mucosa	T4N2M0	Docetaxel + Cisplatin+ 5FU	2	*Partial responder
11	Patient#11	46/F	Rt- oral cavity	T4N1M0	Docetaxel + Cisplatin+ 5FU	3	non responder
12	Patient#12	42/M	Rt- Buccal Mucosa	TxN3bM0	Paclitaxel + Cisplatin+ 5FU	2	non responder
13	Patient#13	30/M	Tongue Rt lateral border	T2N0Mx	Paclitaxel + Cisplatin+ 5FU	3	non responder
14	Patient#14	52/M	Rt- Buccal Mucosa	T4N2M0	Docetaxel + Cisplatin+ 5FU	3	non responder
15	Patient#15	32/M	Tongue	T3N1M0	Docetaxel + Cisplatin+ 5FU	3	non responder
16	Patient#16	35/M	Tongue	T4aN2aM0	Docetaxel + Cisplatin+ 5FU	3	*Partial responder
17	Patient#17	36/M	Left Buccal Mucosa	T4aN2aM0	Docetaxel + Cisplatin+ 5FU	3	non responder
18	Patient #18	38/M		T4bN2bMO	Docetaxel + Cisplatin+ 5FU	2	*Partial responder
19	Patient # 19	55/M	Tounge, Left lateral border,		Docetaxel + Cisplatin+ 5FU	3	*Partial responder
20	Patient # 20	35/M	Tounge	T4aN2eM0+	Docetaxel + Cisplatin+ 5FU	3	non- Responder
21	Patient # 21	36/M	Left Buccal Mucosa	cT4aN2aM0	Docetaxel + Cisplatin+ 5FU	3	Non Responde
22	Patient # 22	39/M	Right mandible	cT4bN0Mx	Docetaxel + Cisplatin+ 5FU		Non Responder
23	Patient # 23	55/M	Tounge, Left lateral border,	cT4aN2cM0	Docetaxel + Cisplatin+ 5FU	3	Non responder

*Partial response- Patient initially responded to chemotherapy but after 1-2 cycles became non responded.

Chemotherapy Doses: **Cisplatin:** 100mg, **Paclitaxel:** 260 mg, **Docetaxel:** 100mg, **5FU:**1000mg