

1

2 **The giant sequoia genome and proliferation of disease resistance genes**

3 Alison D. Scott*, Aleksey V. Zimin^{†‡§}, Daniela Puiu^{†§}, Rachael Workman^{§,1}, Monica Britton^{**},

4 Sumaira Zaman^{††}, Madison Caballero^{††}, Andrew C. Read^{§§}, Adam J. Bogdanove^{§§}, Emily

5 Burns^{***,2}, Jill Wegrzyn^{†††}, Winston Timp[§], Steven L. Salzberg^{†§***}, David B. Neale*

6

7 *Department of Plant Sciences, University of California, Davis, CA 95616

8 † Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University,

9 Baltimore, MD 21205

10 ‡ Institute for Physical Sciences and Technology, University of Maryland, College Park, MD

11 20742

12 § Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218

13 **Bioinformatics Core, University of California, Davis, CA 95616

14 †† Department of Computer Science and Engineering, University of Connecticut, Storrs, CT

15 06269

16 †† Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850

17 §§ Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science,

18 Cornell University, Ithaca, NY 14853

19 *** Save the Redwoods League, San Francisco, CA 94104

20 ††† Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT

21 06269

22 §§§ Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore,
23 MD 21218

²⁴ ¹ present address: Department of Molecular Biology and Genetics, Johns Hopkins University
²⁵ School of Medicine, Baltimore MD USA

26 ² present address: Sky Island Alliance, Tucson, AZ 85701

27 Giant sequoia genome assembly: NCBI accession GCA_007115665.1
28 Raw sequence data: NCBI accessions SRX5827056 - SRX5827083

A high quality reference genome for giant sequoia

32 Corresponding author:

33 Alison Dawn Scott

34 262C Robbins Hall, Mail Stop 4

35 University of California,

36 One Shields Avenue

37 Davis, CA 95616

38 530-752-8413

39 aliscott@ucdavis.edu

KEY WORDS

43 genome assembly, giant sequoia, *Sequoiadendron giganteum*, disease resistance genes, conifer,
44 gymnosperm

46
47

ABSTRACT

48 The giant sequoia (*Sequoiadendron giganteum*) of California are massive, long-lived trees that
49 grow along the U.S. Sierra Nevada mountains. As they grow primarily in isolated groves within
50 a narrow range, conservation of existing trees has been a national goal for over 150 years.
51 Genomic data are limited in giant sequoia, and the assembly and annotation of the first giant
52 sequoia genome has been an important goal to allow marker development for restoration and
53 management. Using Illumina and Oxford Nanopore sequencing combined with Dovetail
54 chromosome conformation capture libraries, 8.125 Gbp of sequence was assembled into eleven
55 chromosome-scale scaffolds. This giant sequoia assembly represents the first genome sequenced
56 in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia
57 conservation and management. Beyond conservation and management applications, the giant
58 sequoia assembly is a resource for answering questions about the life history of this enigmatic
59 and robust species. Here we provide an example by taking an inventory of the large and complex
60 family of NLR type disease resistance genes.

61
62

INTRODUCTION

63
64 Giant sequoia, *Sequoiadendron giganteum* (Lindl.) J.Buchh., is a California endemic
65 conifer found in fragmented groves throughout the U.S. Sierra Nevada mountain range. Giant
66 sequoias are known for their substantial size; individual specimens can reach over 90 m in
67 height, more than 10 m in diameter, and may exceed 1000 m³ of wood volume (Sillett et al.,
68 2015). In addition to their considerable proportions, giant sequoias are among the oldest tree
69 species, as individuals can live for over 3,200 years (Douglass, 1919). Giant sequoias are one of

70 the two redwood species in California, where they share the title of state tree with their closest
71 relative, the coast redwood (*Sequoia sempervirens* Endl.).

72 Though they have occupied their current range for millennia and were known by
73 indigenous people for centuries before colonizers arrived, giant sequoias became icons of the
74 American west beginning with the exploitation of the Discovery Tree in 1853 (Cook, 1961).
75 Despite the brittle nature of their wood, historical research indicates a third of groves were either
76 completely or partially logged (Elliot-Fisk et al., 1997, cited by Burns et al., 2018). Giant
77 sequoias were first protected in 1864 (Cook, 1961), and have remained a cornerstone of the
78 American conservation movement ever since.

79 While the majority (98%) of remaining giant sequoia groves are now protected (Burns et
80 al., 2018), the species is listed as endangered (IUCN) and is overall experiencing a decline
81 (Schmid & Farjon, 2013). The dwindling numbers of giant sequoia are largely attributed to a
82 lack of reproductive success due in part to fire suppression over the last century (Stephenson,
83 1994), as giant sequoia trees rely on extreme heat to open their cones and release seeds in
84 addition to preparing the understory for germination. Mature giant sequoias in natural stands
85 appear to withstand most pests and diseases, but relatively little is documented about the
86 potential impact of insects and pathogens on younger trees. Recent research suggests giant
87 sequoias are potentially susceptible to bark beetles, which can exacerbate the impacts of drought
88 (Stephenson et al., 2018).

89 In plants, disease resistance is typically conferred by genes encoding nucleotide binding
90 leucine-rich repeat (NLR) proteins that individually mediate responses to different pathogens. In
91 crop species, NLR genes have demonstrated contributions to resistance against insects (Stahl et

92 al., 2018), and a recent examination of transcriptome data from several conifer species showed
93 that many conifer NLRs were induced following drought stress (Van Ghelder et al., 2019),
94 suggesting an even broader role. Their importance in resilience to disease and abiotic stress
95 makes cataloging NLR genes of particular interest for conservation and management. Notably,
96 however, across species and even among plant populations, NLR genes account for the majority
97 of copy-number and presence/absence polymorphisms (Yu et al., 2011; Zheng et al., 2011; Xu et
98 al., 2012; Bush et al., 2013; Schatz et al., 2014), and this complexity makes accurate inventory
99 challenging in the absence of a high quality genome assembly.

100 More broadly, a whole genome reference assembly provides a foundation for
101 understanding the distribution of genetic variation in a species, which is critical for conservation
102 and management. Though studies of population genetics and phylogenetics of giant sequoia have
103 been conducted using isozymes, microsatellites, RADseq, and transcriptomic data (Fins and
104 Libby, 1982; DeSilva & Dodd, 2014; Dodd & DeSilva, 2016; Scott et al., 2016) there is a dearth
105 of robust genomic resources in this species. The closest species with fully sequenced genomes
106 exist entirely in the family Pinaceae, which last shared a common ancestor with giant sequoia
107 (Cupressaceae) more than 300 million years ago (Leslie et al., 2018).

108 A combination of short-read Illumina data, long-read Oxford Nanopore data, and
109 Dovetail proximity ligation libraries produced a highly contiguous assembly with
110 chromosome-scale scaffolds, many of which are telomere-to-telomere. This assembly also
111 includes the largest scaffolds assembled to date in any organism. The genome was found to
112 contain over 900 complete or partial NLR genes, of which over 250 are in consensus with
113 annotation derived from protein evidence and gene modeling. The giant sequoia genome

114 assembly and annotation presented here is an unprecedented resource in conifer genomics, both
115 for the quality of the assembly and because it represents an understudied branch of the
116 gymnosperm tree of life.

117

118

119 MATERIALS AND METHODS

120

121 Sequencing and assembly

122

123 *Megagametophyte DNA extraction and sequencing*

124 Cones were collected from a 1,360-year-old giant sequoia (SEGI21, Sillett et al., 2015) in
125 Sequoia/Kings Canyon National Park in 2012. As in previous conifer genome sequencing
126 projects (e.g. Zimin et al., 2014), the megagametophyte from a single fertilized seed was
127 dissected out and its haploid DNA extracted with a Qiagen DNeasy Plant Kit (Hilden, Germany),
128 followed by library preparation with an Illumina TruSeq Nano kit using the low throughput
129 protocol. This megagametophyte library was then sequenced on 10 lanes of an Illumina HiSeq
130 4000 with 150 bp paired-end reads at the UC Davis Genome Center DNA Technologies Core
131 facility.

132

133 *Foliage DNA extraction and Nanopore sequencing*

134 In 2017 foliage was collected from the upper canopy of the same giant sequoia tree (SEGI21).
135 From this foliage, high molecular weight DNA was extracted following the protocol described
136 here (dx.doi.org/10.17504/protocols.io.4vbgw2n) . Briefly, purified genomic DNA was isolated
137 through a nuclei extraction and lysis protocol. First, mature leaf tissue was homogenized in
138 liquid nitrogen until well-ground, then added to a gentle lysis buffer (after Zhang et al., 2016,

139 containing spermine, spermidine, triton, and β -mercaptoethanol) and stirred at 4°C for ten
140 minutes. Cellular homogenate was filtered through five layers of Miracloth into a 50mL Falcon
141 tube, then centrifuged at 4°C for 20 minutes at 1900 x g, which was selected based on the
142 estimated giant sequoia genome size of around 9 Gb (Zhang et al., 2012; Hizume et al., 2001).
143 Extracted nuclei were then lysed and gDNA precipitated using the Circulomics Nanobind Plant
144 Nuclei Big DNA kit - alpha version (SKU NB-900-801-01). Then 1 μ g of purified genomic
145 DNA was input into the Ligation sequencing kit (LSK108-LSK109, Oxford Nanopore),
146 according to protocol, with the exception of end repair optimization (100 μ L sample, 14 μ L
147 enzyme, 6 μ L enzyme at 20°C for 20 minutes, then 65°C for 20 minutes). Samples were
148 sequenced on R9.4 minION flowcells using either the minION or GridION for 48 hours, then
149 raw fast5 data was basecalled with Albacore version 2.13.

150

151 *Hi-C and Chicago library preparation and sequencing*

152 Additional foliage from SEGI21 was submitted to Dovetail Genomics (Scotts Valley, CA) for
153 Hi-C and Chicago library preparation as described by Putnam et al., 2016. Hi-C libraries
154 preserve *in vivo* chromatin structures while Chicago libraries are based on *in vitro* reconstituted
155 chromatin; the combination of these two approaches allows for marked improvement in
156 contiguity for genome assemblies. Three Hi-C libraries and two Chicago libraries passed QC for
157 sequencing and were sent to the UC San Francisco Center for Advanced Technology where they
158 were pooled and sequenced on an Illumina Novaseq 6000 in a single lane of an S4 flowcell (PE
159 150 bp).

160

161 *Genome assembly*

162 Assembly of the giant sequoia genome involved two major steps: contig assembly from Illumina
163 and Oxford Nanopore reads and scaffolding with Chicago and Hi-C data by Dovetail Genomics.
164 Contigs were produced using MaSuRCA assembler version 3.2.4 (Zimin et al, 2013, Zimin et al,
165 2017) with the default parameters. Then the sequence data from the two Chicago libraries were
166 used to scaffold the initial contig assembly using Dovetail's HiRise software (Putnam et al.,
167 2016). Following this step, the output assembly comprised of Illumina, Oxford Nanopore, and
168 Chicago data plus the Hi-C data was used as input for a second run of HiRise re-scaffolding
169 software. The initial contig assembly was named giant sequoia 1.0 and the final scaffolded
170 assembly giant sequoia 2.0.

171

172 *Identification of centromeric and telomeric repeats*

173 Tandem repeat elements up to 500 bp long were identified with the tandem repeat finder program
174 (trf v4.09; Benson, 1999) with the recommended parameters (max mismatch delta PM PI
175 minscore maxperiod, 2 7 7 80 10 50 500 resp.). A histogram of repeat unit lengths was then
176 produced, which had the peaks at 7, 181, and 359 bp.

177

178 **Annotation**

179 *RNA isolation and sequencing*

180 RNA was isolated from giant sequoia roots, foliage, and cambium using a LiCl-Urea buffer
181 followed by cleanup using Zymo columns and reagents (Zymo Research, Irvine, CA). RNA

182 quality was assessed using an Experion Electrophoresis System (Bio-Rad, Hercules, CA) and
183 Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA).

184 Double-stranded cDNA was generated from total RNA (2 µg per tissue) using the
185 Lexogen TeloTM prime Full-length cDNA Kit (Lexogen, Inc., Greenland, NH, USA).
186 Tissue-specific cDNAs were first barcoded by PCR (16-19 cycles) using IDT barcoded primers
187 (Integrated DNA Technologies, Inc., Coralville, Iowa), and then bead-size selected with AMPure
188 PB beads (two different size fractions of 1X and 0.4X). The three cDNAs were pooled in
189 equimolar ratios and used to prepare a SMRTbell™ library using the PacBio Template Prep Kit
190 (PacBio, Menlo Park, CA). The SMRTbell™ library was then sequenced on a Sequel v2 SMRT
191 cell with polymerase 2.1 and chemistry 2.1 (P2.1C2.1) on one PacBio Sequel v2 SMRT cell at
192 the UC Davis Genome Center DNA Technologies Core Facility.

193

194 *Processing of IsoSeq data*

195 Raw IsoSeq subreads were processed using the PacBio IsoSeq3 v3.0 workflow
196 (https://github.com/PacificBiosciences/IsoSeq/blob/master/README_v3.0.md). Briefly, ccs
197 v.3.0.0 was run to merge subreads one full-length circular consensus sequence (ccs) per Zero
198 Mode Waveguide (ZMW). Then, lima v.1.7.0 was run to remove primer artifacts and to
199 demultiplex the ccs by library barcode. Finally, isoseq3 cluster 3.0.0 was run to cluster the
200 demultiplexed CCS reads into transcripts.

201

202 *Repetitive element library generation and masking*

203 RepeatModeler (2.0; Smit and Hubley, 2008) was used to detect *de novo* repeats in the giant
204 sequoia 2.0 assembly, after scaffolds shorter than 3 kbp were removed. The resulting repeat
205 library with classification was used as input for RepeatMasker (v4.0.9, Smit, Hubley, and Green,
206 2013) which soft masks repetitive elements in the genome. After this initial repeat masking using
207 the *de novo* giant sequoia repeat library, RepeatMasker was run using a library of conifer repeats
208 identified in other gymnosperm species clustered at 80% to further mask repetitive elements.

209

210 *Structural annotation*

211 PacBio IsoSeq data and previously published Illumina RNAseq data (Scott et al., 2016) were
212 mapped to the soft masked genome, using Minimap2 v.2.12 (Li, 2018) for the long-read data and
213 HISAT2 v.2.1.0 (Kim, Langmead, and Salzberg, 2015) for short reads. The resulting alignment
214 files were merged and sorted, then used alongside protein evidence generated with
215 GenomeThreader (Gremme et al., 2005) as input to Braker2 v2.1.2 (Hoff et al., 2019; Hoff et al.,
216 2015; Stanke et al., 2008; Stanke et al., 2006) to generate putative gene models.

217

218 *Functional annotation*

219 Structural gene predictions were used as input for Eukaryotic Non-Model Transcriptome
220 Annotation Pipeline (EnTAP; Hart et al., 2019), to add functional information and to and identify
221 improbable gene models. EnTAP was run in runP mode with taxon = Acrogymnospermae using
222 the RefSeq Plant and SwissProt databases plus a custom conifer protein database (O’Leary et al.,
223 2016; The Uniprot Consortium, 2019). To further filter putative gene models, gFACs (Caballero
224 and Wegrzyn, 2019) was used, first by separating multiexonic and monoexonic models.

225 Multiexonics were retained after filtering out models with non-canonical splice sites,
226 micro-introns and micro-exons (<20 bp), and in-frame premature stop codons to ensure correct
227 geneic structure. Additionally, to control for function, genes annotating through Inteproscan
228 (Jones et. al., 2014) as retrodomains (including gag-polypeptide, retrotransposon, reverse
229 transcriptase, copia, gypsy, and ty1) were discarded. In addition, any multi-exonic models that
230 lacked functional annotation either with a sequence similarity hit or gene family assignment were
231 removed. Additionally, gffcompare (<https://ccb.jhu.edu/software/stringtie/gffcompare.shtml>)
232 identified overlap between gene models and softmasked regions of the genome, and multi-exonic
233 gene models were removed if more than 50% of their length fell in masked regions. Clustered
234 transcriptome sequences were aligned to the genome using GMAP (v. 2018-07-04; Wu &
235 Watanabe, 2005; Wu & Nacu, 2010) with a minimum trimmed coverage of 0.95 and a minimum
236 identity of 0.95. To determine overlap and nesting of gene models with this high confidence
237 transcriptomic alignment, BEDtools (Quinlan and Hall, 2010). BUSCO v.3.0.2 (Simao et al.,
238 2015) was used to assess the completeness of the filtered gene space.

239

240 *Orthogroup assignment of proteins*

241 Translated UniGenes for all available gymnosperms were downloaded from the forest genomics
242 database TreeGenes (<https://treegenesdb.org/>; Wegrzyn et al., 2019; Falk et al., 2018). The
243 corresponding files from the *Amborella trichopoda* genome assembly were also included to
244 provide an outgroup to the gymnosperm taxa. Each taxon was evaluated for completeness with
245 BUSCO v4.0.2 in protein mode. All taxa with over 60% completeness were included in
246 OrthoFinder (Emms and Kelly 2015; Emms and Kelly 2019) to identify orthogroups. The longest

247 sequence in each orthogroup was retained, regardless of source species. Species-specific
248 orthogroups unique to giant sequoia were noted. The resulting nonredundant species-specific
249 orthogroups were functionally annotated with EnTAP in runP mode with taxon =
250 *Sequoiadendron* using the RefSeq Plant and SwissProt databases.

251

252 *Gene family evolution*

253
254 Following orthogroup assignment with OrthoFinder, a species tree and orthogroup statistics were
255 used as input for CAFE v4.1 (Han et al., 2013) to assess gene family contraction and expansion
256 dynamics, using a single birth/death parameter (λ) across the phylogeny. Gene families in the
257 giant sequoia lineage experiencing rapid evolution were then functionally annotated using
258 EnTAP.

259

260 *Annotation and analysis of NLR genes*

261 NLR genes were identified using the NLR-Annotator pipeline (Steuernagel et al., 2018) on the
262 giant sequoia 2.0 assembly, then that output was cross-referenced with the genome annotation.
263 Using the genome annotation file and the NLR gene file as input, the BEDtools intersect function
264 (Quinlan and Hall, 2010) was used to identify putative NLRs that were also present in the
265 annotation, requiring features in the NLR gene file to overlap with 100% of the annotation
266 feature. NLR-gene maximum likelihood trees were generated with RAxML v8.2.12 (Stamatakis,
267 2014) using the amino acid sequence of the central NB-ARC [AB2] domain output by
268 NLR-Annotator. NB-ARC domains that included greater than 50% missing data were excluded
269 from all analyses. The best trees were visualized with the Interactive Tree of Life (iTOL) tool,

270 with bootstrap values shown (Letunic and Bork, 2016). Determination of TIR and CC domains
271 was based on motif data from Jupe and colleagues (2012). RPW8-like motifs were determined
272 by alignment to a recently described RNL motif (CFLDLGxFP) (Van Ghelder et al., 2019).

273
274

Data availability

275 The genome assembly of giant sequoia is available at NCBI under accession GCA_007115665.2,
276 and raw sequence data are available under accessions SRX5827056 - SRX5827083. Annotation
277 files are available at <https://treegenesdb.org/FTP/Genomes/Segi>.

278
279
280
281
282

RESULTS AND DISCUSSION

Sequencing and assembly

283 Assembly of the giant sequoia genome leveraged sequence data from four libraries (Table 1).
284 Illumina reads (135x) from a haploid megagametophyte library combined with Oxford Nanopore
285 sequence from foliage (21x) contributed to the contig assembly. The contig assembly was
286 subsequently scaffolded with data from Dovetail Chicago (47x) and Hi-C libraries (76x) in
287 succession.

288
289

290 Giant sequoia 1.0 assembly

291 Initial contig assembly of the Illumina and Oxford Nanopore sequence data yielded giant sequoia
292 1.0. The initial contig assembly giant sequoia 1.0 had a contig N50 of 359,531 bp and a scaffold
293 N50 of 489,478.

294 Genome size was estimated by counting 31-mers (all sub-sequences of 31 bases) in the
295 Illumina reads and computing the histogram of the kmer frequencies vs. counts using jellyfish
296 tool version 2.0 (Marcais et al., 2011). The histogram of 31-mer frequency counts had its largest
297 peak at 101 (see Figure 1). There was a small second peak at 204, roughly double the highest
298 31-mer frequency was 101, likely corresponding to 2x repeat sequences in the genome. The
299 k-mer coverage of the genome was then estimated by computing the area under the curve for
300 frequencies between 1 and 10000 and dividing that number by 101. This method arrived at the
301 genome size estimate of 8,588 Gbp.

302 The intermediate step of correction of the Nanopore in MaSuRCA resulted in 24,279,305
303 mega-reads with an average read length of 6,726 bp. The consensus error rate for the assembly
304 was estimated by aligning the Illumina reads to the contigs with bwa mem (Li, 2013) and then
305 calling variants with freebayes (Garrison et al., 2012) software. Any site in the consensus that
306 had no Illumina reads agreeing with the consensus and at least three Illumina reads agreeing on
307 an alternative variant was considered an error. The total number of bases in the error variants
308 were counted and divided by the total number of bases in the contigs. This yielded an assembly
309 error rate of 0.3 errors per 10000 bases, or consensus quality of 99.997%.
310 The initial contig assembly giant sequoia 1.0 had a contig N50 of 347,954 bp and a scaffold N50
311 of 490,521.

312
313 *Giant sequoia 2.0 assembly*
314 The Dovetail HiRise Chicago and Hi-C assembly increased the total assembly size marginally, to
315 8.125 Gbp, but notably yielded a large increase in the N50 to 690.55Mb (Table 2). The overall

316 number of scaffolds was reduced to 8,125, and the N90 of the final assembly was 690.55Mb. It is
317 worth noting that the largest scaffold in this assembly is 985 Mbp in length, making it the longest
318 contig assembled to date in any organism.

319 The tandem repeat finder program (trf v4.09, G. Benson 1999) identified repeat elements
320 up to 500 bp long, and those data were used to plot a histogram of repeat unit lengths which had
321 peaks at 7, 181, and 359 bp. Based on the position and clustering along the chromosomes, the
322 7-mer was identified as the telomeric repeat and the 181-mer as the centromeric one.

323 The most common telomeric 7-mers were TTTAGGG (present in most land plants), and
324 TTGAGGG. The two 7-mers alternate and have similar frequencies.

325 The 181 bp centromeric repeat unit consensus sequence was
326 AAAAATTGGAGTCGCGTGACACAGATGCAACAGTAGCCTTAAATCAGGTCTCGCCGAA
327 CTCGACATTAAATCGATGGAAATTCAACATTCACGAAAATGATAGAAAATAAGGTTCTT
328 AATAGTCATCTACAACACAATCTAAATCAAAGTTCTCCAAACATGGTTGATTATGGGTG.

329 By looking at the positions of the centromeric and telomeric repeats, a mis-assembly was
330 identified in the original HiRise reference. Two centromeric and one telomeric region were
331 located in the middle of the longest scaffold (1.82Gb), and subsequently this scaffold was split
332 into chr1 (0.95Gb) and chr3 (0.84Gb).

333 There are 11 chromosomes in giant sequoia (Buccholz, 1939; later confirmed by Jensen
334 and Levan, 1941 and Schlarbaum and Tschuiya, 1984), and the 11 largest scaffolds in the
335 assembly span across the centromere (Table 3), suggesting a chromosome-level assembly. The 11
336 largest scaffolds range from 443 Mbp to 985 Mbp in size. Of these 11 scaffolds, seven include
337 telomeric sequence on both ends. The remaining four scaffolds have telomeric sequence on one

338 end. Beyond the 11 largest scaffolds, the next largest (Sc7zsyj_3574) (171 Mb) includes telomere
339 at one end, suggesting it is a substantial portion of a chromosome arm for one of the scaffolds
340 with only one telomere (chromosomes 1, 3, 6, and 9).

341

342 *Assessing assembly completeness*

343 For a rough estimate of the assembly completeness, BUSCO v3.0.2 was run with the
344 embryophyta database (Simao et al., 2015) of 1440 genes. For the complete giant sequoia 2.0
345 genome, the tool found 559 complete BUSCOs out of which 515 were in a single copy, 44 were
346 duplicated, and 133 were fragmented BUSCOs (Table 4). Another 748 BUSCOs were missing.
347 In both the full giant sequoia 2.0 assembly and the version filtered to remove all scaffolds
348 smaller than 3 kbp, completeness was estimated at 38% using BUSCO. Assembly completeness
349 of other conifer assemblies (Supplementary Table S1) range from 27-44%, suggesting giant
350 sequoia 2.0 completeness is consistent with existing work. Despite the contiguity of the
351 assembly, the BUSCO completeness of the genome appears lower than expected, likely due to
352 the presence of very long introns in conifers, which can inhibit identification of genes.

353

354 *Comparison to existing gymnosperm assemblies*

355 The contiguity of giant sequoia 2.0 is most apparent when comparing with other gymnosperm
356 assemblies (Table 5). Giant sequoia 2.0 has an N50 scaffold size of 690Mb, an order of
357 magnitude larger than scaffold N50s reported in other conifers.

358

359 **Annotation of giant sequoia 2.0**

360 *Repeat annotation*

361 Using the custom repeat database created by RepeatModeler, the majority (72.85%) of the giant
362 sequoia genome was softmasked. Subsequent masking using conifer-specific repeat libraries
363 yielded an additional 6% of masked sequence. LTRs were the most abundant known element
364 (28%, Supplementary Table S2) in the masked sequence. These results are comparable to
365 observations from different conifer species, e.g. the most recent *Pinus lambertiana* assembly
366 contained 79% repetitive sequence (Stevens et al., 2016). That our observations are consistent
367 with the only conifer lineage sequenced until now (Pinaceae) is not surprising, as all conifers
368 have large genome sizes, and this genomic bloat is attributed to the proliferation of repetitive
369 elements throughout the genome (Neale et al., 2014).

370

371 *Gene Annotation*

372 Structural annotation using BRAKER2 resulted in 1,460,545 predicted gene models, with an
373 average intron length of 2,362 bp (Table 6). The average CDS length was 613 bp, including both
374 multi- and mono-exonic models. The initial gene set included models with long introns, with the
375 longest measuring 385,133 bp. The number of mono-exonic genes (941,659) was almost twice as
376 large as the total number of multi-exonic gene models (518,886). Even with reasonable filters,
377 the number of *ab initio* prediction of mono-exonic genes was highly inflated. Therefore, the
378 mono-exonic *ab initio* genes were removed from the gene space. The *ab initio* gene space was
379 expanded by the addition of 14,538 well aligned unique transcriptome sequences of which 6,982
380 are mono-exonic and the remaining 7,556 are multi-exonic. After filtering, annotation yielded
381 37,936 high quality gene models. The average CDS length increased to 1,083 bp. The proportion
382

383 of mono-exonics (5,163) to multi-exonics (32,773) was drastically reduced using the
384 transcriptome as an evidence source. Long introns were maintained, with the max intron length
385 in the high quality set reaching nearly 1.4 Mb.

386 Of the 37,936 high quality gene models, 35,183 were functionally annotated by either
387 sequence similarity search or gene family assignment with EnTAP. These functionally annotated
388 gene models include the longest plant intron found so far, at 1.4 Mb. Large introns are
389 characteristic of conifer genomes, with introns up to 800 Kbp observed in *Pinus taeda* (Wegrzyn
390 et al., 2014) and introns over 500 Kbp in *Pinus lambertiana* (Stevens et al., 2016).

391 Functional annotation of the gene containing the 1.4 Mb long intron suggests it is a
392 member of the WASP (Wiskott-Aldrich syndrome protein) family. Wiskott-Aldrich syndrome
393 proteins are in turn members of the SCAR/WAVE (suppressor of cAMP receptor/WASP family
394 verprolin homologous) gene regulatory complex, which in plants has an important role in cell
395 morphogenesis via activation of actin filament proteins (Yanagisawa, Zhang, and Szymanski,
396 2013).

397 Distribution of the high-quality gene models spanned the length of all 11 chromosomes
398 (Figure 2). Repeat density varied across the chromosomes, including overlap with annotated
399 regions.

400
401 *Assessing annotation completeness*

402 Completeness of the annotation was assessed with BUSCO (Table 4). The independent
403 transcriptome completeness of 79% represents the maximum possible BUSCO score for the gene
404 model sets. The BUSCO completeness of the final high-quality gene set was 53%, comparable to
405 the same metric in *Pinus taeda* (53%, Wegrzyn et al., 2014) and *Pinus lambertiana* (50%,

406 Stevens et al., 2016), suggesting the annotation of giant sequoia is on par with other conifer
407 genomes.

408

409 *Comparison to existing gymnosperm annotations*

410 While the genome size of giant sequoia is rather small for a gymnosperm (Table 5), the identified
411 repeat content of giant sequoia 2.0 (79%) is in line with observations from other taxa. The
412 number of high quality annotated genes (37,936) is higher than many gymnosperm assemblies,
413 though there is substantial variation in annotation results across the lineage. Average CDS
414 length and average intron length in giant sequoia 2.0 fall within the observed ranges for existing
415 assemblies, though notably the longest intron reported here is ~1.4 Mb, nearly 400kb longer
416 than the previous longest intron (from *Pinus taeda*, at over 800 kbp). That giant sequoia 2.0
417 contains an even longer intron is likely due to the contiguity of our assembly, which is
418 unprecedented in conifers.

419

420 *Orthology assignment and gene family evolution*

421 Using unigene sets from TreeGenes, twenty gymnosperm taxa passed the 60% threshold
422 for BUSCO completeness (Table 7). Orthogroup clustering of 695,700 protein sequences from
423 these twenty gymnosperms plus an outgroup (*Amborella trichopoda*) yielded a total of 44,797
424 orthogroups (Supplementary Table S3). Only 206 were single-copy in all species, and 5,953
425 orthogroups had representatives from each species. Overall, 6.5% of all protein sequences were
426 in species-specific orthogroups. Of the species-specific orthogroups (12,121 in total), 607 were
427 unique to giant sequoia (Table 8). Among the 607 giant sequoia-specific orthogroups, 536 were

428 functionally annotated with either gene family assignment (318) sequence similarity search (8) or
429 both (536) (Supplementary Table S4).

430 Orthogroup assignments were used as branch labels on a rooted species tree to show gene
431 family contraction and expansion. On branch is the number of families that experienced
432 expansion (dark blue, above) or contraction (light blue, below) (see Figure 3). Giant sequoia
433 (Segi) experienced an overall expansion, with 4,953 families expanding and 1,923 families
434 contracting since the species last shared common ancestor with coast redwood (*Sequoia*
435 *sempervirens*; Sese).

436 The expansions and contractions were further examined to identify nodes that
437 experienced particularly rapid evolution. Many representatives of the Pinaceae have thousands of
438 gene families that experienced rapid evolution since their lineages diverged (Figure 4). Along the
439 branch to giant sequoia (Segi), 4,176 orthologous groups evolved rapidly. The majority of these
440 4,176 orthogroups are moderately represented in the giant sequoia dataset (e.g. with two to four
441 members in an orthogroup), while others contain dozens of paralogs, up to over a hundred
442 orthogroup members. Extracting the longest sequence from each of these yielded functional
443 annotation with EnTAP for 3,994 of the rapidly evolving orthogroups. Rapidly expanding
444 families were associated with primarily metabolic processes (GO:0090304, GO:0006796,
445 GO:0044267) and macromolecule synthesis(GO:0009059, GO:0034645), in addition to
446 molecular functions including metal-ion binding (GO:0046872), purine nucleotide
447 (GO:0017076) and nucleoside (GO:0001883) binding, and kinase activity (GO:0016301).
448 Rapidly contracting families were associated with biological processes such as protein
449 (GO:0036211) and macromolecule modification (GO:0043412

450 and metabolic processes (GO:0044267, GO:0006796), and molecular functions including purine
451 binding with nucleotides (GO:0017076) and nucleosides (GO:0001883), and phosphotransferase
452 activity (GO:0016773).

453

454 *NLR genes in the giant sequoia genome*

455 NLR proteins are structurally modular, typically containing an N-terminal coiled-coil (CC)
456 domain, a Toll/interleukin-1 receptor (TIR) domain, or more rarely an RPW8-like CC domain; a
457 conserved nucleotide binding domain (NB-ARC); and a C-terminal region comprising a variable
458 number of leucine-rich repeats (LRRs) (Monteiro and Nishimura, 2018). NLR genes in giant
459 sequoia 2.0 were identified by first running the genomic sequence through the NLR-Annotator
460 pipeline (Steuernagel et al., 2018). Importantly, this pipeline does not require masking of
461 repetitive regions and does not rely on gene model predictions. NLR-Annotator outputs are
462 categorized as either ‘complete’ or ‘partial’ depending on whether all canonical domains
463 (CC/TIR, NB-ARC, LRR) are present, and then further categorized as ‘pseudo-’ if a stop codon
464 is predicted in any domain. All categorizations should be interpreted with care because the
465 NLR-Annotator algorithm does not take intron/exon boundaries into account.

466 A total of 984 NLR genes were predicted by NLR-Annotator, of which 442 were
467 identified as complete, 332 complete pseudo-, 88 partial, and 122 partial pseudo-. Seven hundred
468 and twelve included intact NB-ARC domains with fewer than 50% gaps in the alignment.
469 NLR-gene coordinates of all NLR gene sequences, and the relationships of the 712 based on an
470 NB-ARC domain maximum likelihood tree are included in Supplementary Table S5, S6, and S7
471 as well as Supplementary Figure S1. This number is roughly twice the number found in

472 cultivated rice (Zhou et al., 2004; Read et al., 2020) and is consistent with other conifers (Van
473 Ghelder et al., 2019).

474 NLR-Annotator identifies all suspected NLR motif-encoding regions of the genome.
475 This likely includes true pseudogenes or gene fragments, both of which are important from an
476 evolutionary perspective, but do not reflect the functional NLR arsenal. The NLR-Annotator
477 output was cross-referenced with the giant sequoia genome annotation to identify the NLR genes
478 that are supported by the annotation and therefore likely part of this arsenal; we refer to these
479 315 genes as consensus NLR genes. Of these, 211 were categorized by NLR-Annotator as
480 complete, 65 as complete pseudo-, 29 as partial, and 10 as partial pseudo-. Two hundred and fifty
481 seven of the 315 consensus NLR genes encode NB-ARC domains that met our criteria (see
482 Methods); a maximum likelihood tree was generated using these domains (Figure 5).
483 Coordinates of the genes and their NB-ARC sequences are included in Supplementary Table S5
484 and S7. NLR-Annotator predicted, non-consensus NLR genes may represent genes missed by the
485 annotation, pseudogenes, or false positives.

486 To investigate the evolution of NLR genes in giant sequoia, the list of consensus NLRs
487 was compared with orthogroup assignments. Overall, consensus NLRs had membership in 63
488 orthogroups. Assessing the change in orthogroup size along each branch of the phylogeny
489 revealed rapid expansion in NLR-associated orthogroups across the tree (Figure 6). Along the
490 branch leading to giant sequoia (Segi), 34 NLR orthogroups expanded rapidly. The shared
491 ancestors of giant sequoia and its closest relative, coast redwood (Sese), experienced rapid
492 expansion in 11 NLR orthogroups. After the divergence of the California redwoods, five
493 additional NLR orthogroups rapidly expanded in coast redwood, compared to the 34 rapidly

494 expanding NLR orthogroups in giant sequoia. This pattern, a larger number of NLR orthogroups
495 rapidly expanding in giant sequoia compared to coast redwood, is consistent with the numbers of
496 all rapidly evolving orthogroups in each lineage (Figure 4).

497 While the shared and unique NLR orthogroups identified in giant sequoia, coast redwood,
498 and their common ancestors are perhaps associated with the observed pest resilience in both
499 species, further work will be necessary to fully characterize the evolutionary patterns and
500 functional roles of NLR gene families in redwoods and conifers as a whole.

501

502 **SUMMARY AND CONCLUSIONS**

503 The high quality of this assembly demonstrates the value of combining multiple sequencing
504 technologies and leveraging a unique biological feature of conifers (sufficient haploid
505 megagametophyte tissue for sequencing), along with the value of incorporating
506 chromosome-conformation capture libraries to allow improvements in scaffolding. The giant
507 sequoia genome assembly presented here provides a robust foundation for ongoing genomic
508 studies to identify groves with evidence of local adaptation, with a focus on not only NLR genes
509 but the many other genes and gene families potentially useful in conservation and management.

510 For the future, inferences about the evolutionary trajectory of conifers (and
511 gymnosperms) will require a broadening of taxonomic focus. As the vast majority of conifer
512 genomic research is centered on Pinaceae, developing resources in understudied conifer families
513 is essential for meaningful comparative genomic work that could further inform conservation and
514 management for iconic species..

515

516

ACKNOWLEDGEMENTS

517

This project was supported by a grant from Save The Redwoods League for the Redwood Genome Project (to DN), and by grants from the National Institute of Food and Agriculture of the U.S. Department of Agriculture (<http://nifa.usda.gov>; 2018-67011-28025 to AR and 2018-67015-28199 to AZ). Illumina and PacBio sequencing were carried out by the DNA Technologies and Expression Analysis Cores at the UC Davis Genome Center, supported by NIH Shared Instrumentation Grant 1S10OD010786-01. Part of this research project was conducted using computational resources at the Maryland Advanced Research Computing Center (MARCC) and at the Computational Biology Core, Institute for Systems Genomics, University of Connecticut. Professor Stephen C. Sillett and his group at Humboldt State University made this project possible by climbing SEGI 21 and obtaining cones and foliage for sequencing. Marc Crepeau's skill at megagametophyte dissection, DNA extraction, and library prep is well appreciated. Bill Libby provided valuable support for this project, in the form of scientific guidance and both enthusiasm and expertise in giant sequoia genetics. Thank you to Sequoia/Kings Canyon National Park for allowing us to conduct research inside the park.

531

532

533

534

REFERENCES

535

536 Albert, V. A., Barbazuk, W. B., Depamphilis, C. W., Der, J. P., Leebens-Mack, J., Ma, H.,
537 ... & Soltis, D. E. (2013). The Amborella genome and the evolution of flowering
538 plants. *Science*, 342(6165), 1241089.

539

540 Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic acids*
541 *research*. 1999;27(2):573-80

542

543 Buchholz, J. T. (1939). The generic segregation of the sequoias. *American Journal of*
544 *Botany*, 26(7), 535-538.

545

546 Burns, E.B., Campbell, R., & Cowan, P.D. (2018). State of Redwoods Conservation
547 Report.

548

549 Bush, S.J., Castillo-Morales, A., Tovar-Corona, J.M., Chen, L., Kover, P.X., and Urrutia,
550 A.O. (2013). Presence–absence variation in *A. thaliana* is primarily associated with
551 genomic signatures consistent with relaxed selective constraints. *Mol. Biol. Evol.* 31,
552 59-69.

553 Caballero, M., & Wegrzyn, J. (2019). gFACs: Gene Filtering, Analysis, and Conversion
554 to Unify Genome Annotations Across Alignment and Gene Prediction
555 Frameworks. *Genomics, proteomics & bioinformatics*, 17(3), 305-310.

556

557 Cook, L.F. (1961) The Giant Sequoias of California.

558 DeSilva, R., & Dodd, R. (2014). Development and characterization of microsatellite
559 markers for giant sequoia, *Sequoiadendron giganteum* (Cupressaceae). *Conservation*
560 *genetics resources*, 6(1), 173-174.

561

562 Dodd, R. S., & DeSilva, R. (2016). Long-term demographic decline and late glacial
563 divergence in a Californian paleoendemic: *Sequoiadendron giganteum* (giant
564 sequoia). *Ecology and evolution*, 6(10), 3342-3355.

565

566 Douglass, A. E. (1919). *Climatic cycles and tree-growth* (Vol. 289). Carnegie Institution
567 of Washington.

568 Elliott-Fisk, D.L., Stephens, S.L., Aubert, J.E., Murphy, D., Schaber, J. “Mediated
569 Settlement Agreement for Sequoia National Forest, Section B. Giant Sequoia Groves: an
570 evaluation.” In *Sierra Nevada Ecosystem Project: Final report to Congress: status of the*
571 *Sierra Nevada*. Davis, CA: Centers for Water and Wildland Resources, University of
572 California, 1997.

573 Emms, D. M., & Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole
574 genome comparisons dramatically improves orthogroup inference accuracy. *Genome
575 biology*, 16(1), 157.

576

577 Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
578 comparative genomics. *Genome biology*, 20(1), 1-14.

579

580 Falk T., Herndon N., Grau E., Buehler S., Richter P., Zaman S., Baker E.M., Ramnath R.,
581 Ficklin S., Staton M., Feltus F.A., Jung S., Main D., Wegrzyn J.L. (2018). Growing and
582 cultivating the forest genomics database, TreeGenes. Database, Volume 2018
583 doi:10.1093/database/bay084

584

585 Fins, L., & Libby, W. J. (1982). Population variation in Sequoiadendron: seed and
586 seedling studies, vegetative propagation, and isozyme variation. *Silvae Genet*, 31(4),
587 102-110.

588

589 G. Gremme, V. Brendel, M.E. Sparks, and S. Kurtz. Engineering a software tool for gene
590 structure prediction in higher organisms. *Information and Software Technology*,
591 47(15):965-978, 2005

592

593 Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing.
594 arXiv preprint arXiv:1207.3907 [q-bio.GN] 2012

595 Guan, R., Zhao, Y., Zhang, H., Fan, G., Liu, X., Zhou, W., ... & Fu, Y. (2016). Draft
596 genome of the living fossil *Ginkgo biloba*. *Gigascience*, 5(1), s13742-016.

597

598 Han, M. V., Thomas, G. W., Lugo-Martinez, J., & Hahn, M. W. (2013). Estimating gene
599 gain and loss rates in the presence of error in genome assembly and annotation using
600 CAFE 3. *Molecular biology and evolution*, 30(8), 1987-1997.

601

602 Hart, A. J., Ginzburg, S., Xu, M., Fisher, C. R., Rahmatpour, N., Mitton, J. B., ... &
603 Wegrzyn, J. L. (2019). EnTAP: bringing faster and smarter functional annotation to
604 non-model eukaryotic transcriptomes. *Molecular Ecology Resources*.

605

606 Hizume, M., Kondo, T., Shibata, F., & Ishizuka, R. (2001). Flow cytometric
607 determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and
608 Sciadopityaceae. *Cytologia*, 66(3), 307-311.

609

610 Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M. and Stanke, M. (2015). BRAKER1:
611 unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS.
Bioinformatics, 32(5):767-769.

612 Hoff, K.J., Lomsadze, A., Borodovsky, M. and Stanke, M. (2019). Whole-Genome
613 Annotation with BRAKER. Methods Mol Biol. 1962:65-95, doi:
614 10.1007/978-1-4939-9173-0_5.

615 Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J,
616 Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M,
617 Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Gil L,
618 Gupta P, Hammond-Kosack KE, Haskell E, Hunt SE, Jaiswal P, Janacek SH, Kersey PJ,
619 Langridge N, Maheswari U, Maurel T, McDowall MD, Moore B, Muffato M, Naamati G,
620 Naithani S, Olson A, Papatheodorou I, Patricio M, Paulini M, Pedro H, Perry E, Preece J,
621 Rosello M, Russell M, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevanion SJ,
622 Urban M, Wei S, Ware D, Williams G, Yates AD, Flicek P. Ensembl Genomes
623 2020-enabling non-vertebrate genomic research. *Nucleic Acids Research* 2019
624
625 Jensen, H., & Levan, A. (1941). Colchicine-induced tetraploidy in *Sequoia*
626 *gigantea*. *Hereditas*, 27(3–4), 220-224.
627
628 Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., ... & Pesseat, S.
629 (2014). InterProScan 5: genome-scale protein function
630 classification. *Bioinformatics*, 30(9), 1236-1240.
631
632 Jupe, F., Pritchard, L., Etherington, G.J., Mackenzie, K., Cock, P.J., Wright, F., Sharma,
633 S.K., Bolser, D., Bryan, G.J., Jones, J.D., and Hein, I. (2012). Identification and
634 localisation of the NB-LRR gene family within the potato genome. *BMC Genomics* 13,
635 75. PMC3297505: 22336098.

636 Kim D, Langmead B, and Salzber SL. HISAT: a fast spliced aligner with low memory

637 requirements. *Nature Methods* 2015.

638 Leslie, A. B., Beaulieu, J., Holman, G., Campbell, C. S., Mei, W., Raubeson, L. R., &

639 Mathews, S. (2018). An overview of extant conifer evolution from the perspective of the

640 fossil record. *American journal of botany*, 105(9), 1531-1544.

641

642 Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the

643 display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44,

644 W242-W245. PMC4987883: 27095192.

645

646 Li, H. (2018). Minimap2: pairwise alignment for nucleotide

647 sequences. *Bioinformatics*, 34:3094-3100. doi:10.1093/bioinformatics/bty191

648 Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with

649 BWA-MEM. arXiv:1303.3997v1 [q-bio.GN]

650

651 Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of

652 occurrences of k-mers. *Bioinformatics*. 2011 Mar 15;27(6):764-70.

653

654 Monteiro, F., and Nishimura, M.T. (2018). Structural, functional, and genomic diversity

655 of plant NLR proteins: an evolved resource for rational engineering of plant immunity.

656 *Annu. Rev. Phytopathol.* 56, 243-267. 29949721.

657

658 Mosca, E., Cruz, F., Gómez-Garrido, J., Bianco, L., Rellstab, C., Brodbeck, S., ... &

659 Gömöry, D. (2019). A reference genome sequence for the european silver fir (*abies alba*
660 mill.): a community-generated genomic resource. *G3: Genes, Genomes, Genetics*, 9(7),
661 2039-2049.

662

663 Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno,
664 C., ... & Casola, C. (2017). The Douglas-fir genome sequence reveals specialization of
665 the photosynthetic apparatus in Pinaceae. *G3: Genes, Genomes, Genetics*, 7(9),
666 3157-3167.

667

668 Neale, D.B., Wegrzyn, J.L., Stevens, K.A. *et al.* Decoding the massive genome of
669 loblolly pine using haploid DNA and novel assembly strategies. *Genome Biol* 15, R59
670 (2014). <https://doi.org/10.1186/gb-2014-15-3-r59>

671

672 Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C,
673 Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ. Decoding the massive
674 genome of loblolly pine using haploid DNA and novel assembly strategies. *Genome
675 biology*. 2014 Mar;15(3):R59.

676

677 O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B,
678 Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova

679 O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta
680 T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P,
681 McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD,
682 Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan
683 AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts
684 P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status,
685 taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan
686 4;44(D1):D733-45.

687

688 Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A,
689 Hartley PD, Sugnet CW, Haussler D. Chromosome-scale shotgun assembly using an in
690 vitro method for long-range linkage. *Genome research.* 2016 Mar 1;26(3):342-50.

691

692 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing
693 genomic features. *Bioinformatics*, 26(6), 841-842.

694

695 Read, A.C., Moscou, M.J., Zimin, A.V., Pertea, G., Meyer, R.S., Purugganan, M.D.,
696 Leach, J.E., Triplett, L.R., Salzberg, S.L., and Bogdanove, A.J. (2020). Genome assembly
697 and characterization of a complex zfBED-NLR gene-containing disease resistance locus
698 in Carolina Gold Select rice with Nanopore sequencing. *PLoS Genet.* 16, e1008571.
699 31986137.

700

701 Schatz, M.C., Maron, L.G., Stein, J.C., Wences, A.H., Gurtowski, J., Biggers, E., Lee, H.,
702 Kramer, M., Antoniou, E., Ghiban, E., Wright, M.H., Chia, J.-m., Ware, D., McCouch,
703 S.R., and McCombie, W.R. (2014). Whole genome de novo assemblies of three divergent
704 strains of rice, *Oryza sativa*, document novel gene space of aus and indica. *Genome Biol.*
705 15, 506.

706

707 Schlarbaum, S. E., & Tsuchiya, T. (1984). Cytotaxonomy and phylogeny in certain
708 species of Taxodiaceae. *Plant systematics and evolution*, 147(1-2), 29-54.

709

710 Schmid, R. & Farjon, A. 2013. *Sequoiadendron giganteum* . The IUCN Red List of
711 Threatened Species 2013:
712 e.T34023A2840676. <https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34023A2840676.en>. Downloaded on 25 January 2020.

714

715 Scott, A. D., Stenz, N. W., Ingvarsson, P. K., & Baum, D. A. (2016). Whole genome
716 duplication in coast redwood (*Sequoia sempervirens*) and its implications for explaining
717 the rarity of polyploidy in conifers. *New Phytologist*, 211(1), 186-193.

718

719 Sillett, S. C., Van Pelt, R., Carroll, A. L., Kramer, R. D., Ambrose, A. R., & Trask, D. A.
720 (2015). How do tree structure and old age affect growth potential of California
721 redwoods?. *Ecological Monographs*, 85(2), 181-212.

722

723 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:
724 assessing genome assembly and annotation completeness with single-copy orthologs.
725 *Bioinformatics*. 2015 Oct 1;31(19):3210-2.
726 Smit, AFA, Hubley, R. *RepeatModeler Open-1.0*.
727 2008-2015 <<http://www.repeatmasker.org>>.
728
729 Smit, AFA, Hubley, R & Green, P. *RepeatMasker Open-4.0*.
730 2013-2015 <<http://www.repeatmasker.org>>.
731
732 Stahl, E., Hilfiker, O., and Reymond, P. (2018). Plant-arthropod interactions: who is the
733 winner? *Plant J.* 93, 703-728. 29160609.
734
735 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and
736 post-analysis of large phylogenies. *Bioinformatics* 30, 1312-1313. PMC3998144:
737 24451623.
738
739 Stanke, M., Diekhans, M., Baertsch, R. and Haussler, D. (2008). Using native and
740 syntenically mapped cDNA alignments to improve de novo gene finding. *Bioinformatics*,
doi: 10.1093/bioinformatics/btn013.
741 Stanke, M., Schöffmann, O., Morgenstern, B. and Waack, S. (2006). Gene prediction in
742 eukaryotes with a generalized hidden Markov model that uses hints from external
743 sources. *BMC Bioinformatics* 7, 62.

744 Stephenson, N. L., Das, A. J., Ampersee, N. J., Cahill, K. G., Caprio, A. C., Sanders, J.
745 E., & Williams, A. P. (2018). Patterns and correlates of giant sequoia foliage dieback
746 during California's 2012–2016 hotter drought. *Forest ecology and management*, 419,
747 268-278.

748

749 Stephenson, N. L. (1994, July). Long-term dynamics of giant sequoia populations:
750 implications for managing a pioneer species. In *Proceedings of the symposium on giant*
751 *sequoias: Their place in the ecosystem and society'.*(Tech. coord. P Aune) pp (pp. 56-63).

752

753 Steuernagel, B., Witek, K., Krattinger, S.G., Ramirez-Gonzalez, R.H., Schoonbeek, H.-j.,
754 Yu, G., Baggs, E., Witek, A.I., Yadav, I., Krasileva, K.V., Jones, J.D.G., Uauy, C., Keller,
755 B., Ridout, C.J., and Wulff, B.B.H. (2018). Physical and transcriptional organisation of
756 the bread wheat intracellular immune receptor repertoire. *bioRxiv*, 339424.

757

758 Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., ... &
759 Martínez-García, P. J. (2016). Sequence of the sugar pine megagenome. *Genetics*, 204(4),
760 1613-1626.

761

762 The UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge.
763 Nucleic Acids Res. 47: D506-515.

764

765 Van Ghelder, C., Parent, G.J., Rigault, P., Prunier, J., Giguere, I., Caron, S., Stival Sena,
766 J., Deslauriers, A., Bousquet, J., Esmenjaud, D., and MacKay, J. (2019). The large
767 repertoire of conifer NLR resistance genes includes drought responsive and highly
768 diversified RNLS. *Sci Rep* 9, 11614. PMC6691002: 31406137.

769

770 Wan, T., Liu, Z. M., Li, L. F., Leitch, A. R., Leitch, I. J., Lohaus, R., ... & Wang, W. C.
771 (2018). A genome for gnetophytes and early evolution of seed plants. *Nature Plants*, 4(2),
772 82-89.

773

774 Warren, R. L., Keeling, C. I., Yuen, M. M. S., Raymond, A., Taylor, G. A., Vandervalk,
775 B. P., ... & Robertson, G. (2015). Improved white spruce (*Picea glauca*) genome
776 assemblies and annotation of large gene families of conifer terpenoid and phenolic
777 defense metabolism. *The Plant Journal*, 83(2), 189-212.

778

779 Wegrzyn, J. L., Liechty, J. D., Stevens, K. A., Wu, L. S., Loopstra, C. A., Vasquez-Gross,
780 H. A., ... & Holt, C. (2014). Unique features of the loblolly pine (*Pinus taeda* L.)
781 megagenome revealed through sequence annotation. *Genetics*, 196(3), 891-909.

782

783 Wegrzyn J.L., Staton M.A., Street N. R., Main D., Grau E., Herndon N., Buehler S., Falk
784 T., Zaman S., Ramnath R., Richter P., Sun L., Condon B., Almsaeed A., Chen
785 M., Mannapperuma C., Jung S., Ficklin S. Cyberinfrastructure to Improve Forest Health

786 and Productivity: The Role of Tree Databases in Connecting Genomes, Phenomes, and
787 the Environment, TreeGenes. Database, Volume 2019. doi:10.3389/fpls.2019.00813

788

789 Wu, T. D., & Watanabe, C. K. (2005). GMAP: a genomic mapping and alignment
790 program for mRNA and EST sequences. *Bioinformatics*, 21(9), 1859-1875.

791

792 Wu, T. D., & Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and
793 splicing in short reads. *Bioinformatics*, 26(7), 873-881.

794

795 Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L.,
796 Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K.,
797 Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J., and Wang, W.
798 (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for
799 identifying agronomically important genes. *Nat. Biotechnol.* 30, 105-111.

800

801 Yanagisawa, M., Zhang, C., & Szymanski, D. B. (2013). ARP2/3-dependent growth in
802 the plant kingdom: SCARs for life. *Frontiers in Plant Science*, 4, 166.

803

804 Y. Zhang, Y. Zhang, J. M. Burke, K. Gleitsman, S. M. Friedrich, K. J. Liu, and T. H.
805 Wang, A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for
806 High-Molecular-Weight DNA Extraction. *Adv Mater* (2016). PubMed PMID: 27862402

807

808 Yi, F., Ling, J., Xiao, Y., Zhang, H., Ouyang, F., & Wang, J. (2018). ConTEdb: a
809 comprehensive database of transposable elements in conifers. *Database*, 2018.
810

811 Yu, P., Wang, C., Xu, Q., Feng, Y., Yuan, X., Yu, H., Wang, Y., Tang, S., and Wei, X.
812 (2011). Detection of copy number variations in rice using array-based comparative
813 genomic hybridization. *BMC Genomics* 12, 372. PMC3156786: 21771342.
814

815 Zhang M, Zhang Y, Scheuring CF, Wu CC, Dong JJ, Zhang H Bin. 2012. Preparation of
816 megabase-sized DNA from a variety of organisms using the nuclei method for advanced
817 genomics research. *Nat Protoc* 7: 467–478.
818

819 Zheng, L.-Y., Guo, X.-S., He, B., Sun, L.-J., Peng, Y., Dong, S.-S., Liu, T.-F., Jiang, S.,
820 Ramachandran, S., and Liu, C.-M. (2011). Genome-wide patterns of genetic variation in
821 sweet and grain sorghum (*Sorghum bicolor*). *Genome Biol.* 12, R114.
822

823 Zhou, T., Wang, Y., Chen, J.-Q., Araki, H., Jing, Z., Jiang, K., Shen, J., and Tian, D.
824 (2004). Genome-wide identification of NBS genes in japonica rice reveals significant
825 expansion of divergent non-TIR NBS-LRR genes. *Mol. Genet. Genomics* 271, 402-415.
826

827 Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D,
828 Roberts M, Wegrzyn JL, de Jong PJ, Neale DB. Sequencing and assembly of the 22-Gb
829 loblolly pine genome. *Genetics*. 2014 Mar 1;196(3):875-90.

830

831 Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA

832 genome assembler. *Bioinformatics*. 2013 Aug 29;29(21):2669-77.

833

834 Zimin AV, Puiu D, Luo MC, Zhu T, Koren S, Marçais G, Yorke JA, Dvořák J, Salzberg

835 SL. Hybrid assembly of the large and highly repetitive genome of *Aegilops tauschii*, a

836 progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. *Genome research*.

837 2017 May 1;27(5):787-92.

838

839

840

841

842

Table 1. Data used for the giant sequoia assemblies from four library types.

Type	Number of reads	Average read length (bp)	Estimated coverage
Illumina paired end	7,752,481,576	2x151	135x
Oxford Nanopore MinION	24,360,895	7,484	21x
Dovetail Chicago	2,592,465,290	2x151	47x
Dovetail Hi-C	4,202,954,328	2x151	76x

Table 2. Assembly statistics for the initial contig assembly giant sequoia 1.0 and the final scaffolded assembly giant sequoia 2.0.

Assembly	Sequence (bp)	N50 contig	N50 scaffold	Number of contigs	Number of scaffolds
Giant sequoia 1.0	8,122,145,191	347,954	490,521	49,651	39,821
Giant sequoia 2.0	8,125,622,286	347,954	690,549,816	52,886	8,125

Table 3. Summary of largest scaffolds in giant sequoia 2.0 and presence of centromeric and telomeric repeat regions

Scaffold ID	Length (bp)	Centromere?	Number of telomeres
chr1	986,618,365	Y	1
chr2	873,713,311	Y	2
chr3	843,110,718	Y	1
chr4	722,823,090	Y	2
chr5	690,549,816	Y	2
chr6	676,903,824	Y	1
chr7	659,235,867	Y	2
chr8	649,867,199	Y	2
chr9	641,211,466	Y	1
chr10	632,191,860	Y	2
chr11	443,565,592	Y	2
Sc7zsyj_3574	171,454,409	N	1

Table 4. Completeness of assembly and gene sets assessed with BUSCOv3.0.2.

	Giant sequoia v2.0	Giant sequoia v2.0 ($\geq 3\text{kbp}$)	Transcriptome	High-confidence gene set
Number of input sequences	8215	8120	25859	37936
Complete BUSCOs (C)	559	553	1139	766
Complete and single-copy BUSCOs (S)	515	508	1076	683
Complete and duplicated BUSCOs (D)	44	45	63	83
Fragmented BUSCOs (F)	133	131	66	149
Missing BUSCOs (M)	748	756	235	525
Total BUSCO groups searched	1440	1440	1440	1440
Percentage found	38.82%	38.40%	79.10%	53.19%

Table 5. Comparison of giant sequoia v2.0 assembly and annotation to selected gymnosperm genome projects. 5a shows assembly statistics as reported in referenced manuscripts. 5b shows annotation statistics as calculated using gFACs on most recent annotations available at TreeGenes. Annotation statistics for *Picea glauca* are reported as in referenced manuscript.

5a	<i>Sequoiadendron giganteum</i>	<i>Abies alba</i>	<i>Picea glauca</i>	<i>Pinus lambertiana</i>	<i>Pinus taeda</i>	<i>Pseudotsuga menzesii</i>	<i>Ginkgo biloba</i>	<i>Gnetum montanum</i>
Reference		Mosca et al., 2019	Warren et al., 2015	Stevens et al., 2016	Neale et al., 2014	Neale et al., 2017	Guan et al., 2016	Wan et al., 2018
Genome size (Mbp)	8,114	18,167	20,000	31,000	20,613	15,700	10,610	4,110
Chromosomes	11	12	12	12	12	12	12	22
TE content (%)	79	78	N/A	79	81	72	77	86
N50 scaffold size (kb)	690,549.82	14.05	71.50	246.60	107.04	340.70	1,360.00	475.17
5b	<i>Sequoiadendron giganteum</i>	<i>Abies alba</i>	<i>Picea glauca</i>	<i>Pinus lambertiana</i>	<i>Pinus taeda</i>	<i>Pseudotsuga menzesii</i>	<i>Ginkgo biloba</i>	<i>Gnetum montanum</i>
Number of genes	37,936	94,209	14,462	38,518	51,751	46,688	41,840	27,493
Average overall CDS size	1,084	629	1,421	1,102	1,131	1,180	1,186	1,290
Average size multiexonic introns	4,067	315	603	11,468	5,596	4,685	7,884	1,769
Maximum intron length (kb)	1,399.11	36.01	119.32	1,254.69	758.52	351.90	1,272.92	342.13

Table 6: Gene models proposed by BRAKER2, before and after filtering. Intermediate set was filtered by removing monoexonic models, models with greater than 50% of their length in a masked region, models annotated as retrodomains, and models lacking functional annotation with EnTAP. The high-confidence set includes the intermediate set, plus mono- and multi-exonic models derived from transcript evidence, removing any fully nested gene models.

	Initial model set	Intermediate filtered set	High-confidence set
Total Genes	1,460,545	32,360	37,936
Average CDS length	613.90	1099.08	1083.00
Average number of exons	2.78	4.22	4.5
Average intron length (bp)	2,362	2,233	4,066
Max intron length	385,133	159,979	1,399,110
Total monoexonics	941,659	-	5,163
Total multiexonics	518,886	32,360	32,773

Table 7. BUSCO completeness for 20 gymnosperm taxa and an angiosperm outgroup (*Amborella trichopoda*)

TreeGenes code	Abba	Gibi	Gnmo	Megl	Pama	Pial	Piba
taxon	<i>Abies balsamea</i>	<i>Ginkgo biloba</i>	<i>Gnetum gnemon</i>	<i>Metasequoia glyptostroboides</i>	<i>Picea mariana</i>	<i>Pinus albicaulis</i>	<i>Pinus banksiana</i>
	Balsam fir	Ginkgo	Gnemon/milinjo	Dawn redwood	Black spruce	White pine	Jack pine
Unigene set							
Data source(s)	transcriptome	annotation, transcriptome	annotation	transcriptome	transcriptome	transcriptome	transcriptome
Number of unigenes	21,250	110,296	21,887	19,237	22,876	27,226	21,278
Average length of unigenes	396.46	269.39	351.69	343.17	376.93	338.76	381.58
BUSCOv4.0.2							
Complete	1419	1437	1301	1109	1429	1453	1342
Complete & single copy	1357	1292	1265	1068	1377	1398	1283
Complete & duplicated	62	145	36	41	52	55	59
Fragmented	52	89	82	206	66	48	93
Missing	143	88	231	299	119	113	179
Total searched	1614	1614	1614	1614	1614	1614	1614
% complete	87.92%	89.03%	80.61%	68.71%	88.54%	90.02%	83.15%

Table 7. BUSCO completeness for 20 gymnosperm taxa and an angiosperm outgroup (*Amborella trichopoda*)

TreeGenes code	Pice	Pien	Pila	Pima	Pimn	Pipt	Pist
taxon	<i>Pinus cembra</i>	<i>Pinus canariensis</i>	<i>Pinus lambertiana</i>	<i>Pinus massoniana</i>	<i>Pinus monticola</i>	<i>Pinus patula</i>	<i>Pinus strobus</i>
	Swiss stone pine	Canary island pine	Sugar pine	Chinese red pine	Western white pine	Mexican weeping pine	Eastern white pine
Unigene set							
Data source(s)	transcriptome	transcriptome	annotation, transcriptome	transcriptome	transcriptome	transcriptome	transcriptome
Number of unigenes	17,994	22,631	42,256	33,891	17,447	46,563	21,697
Average length of unigenes	411.38	327.27	357.80	322.13	388.92	348.04	372.89
BUSCOv4.0.2							
Complete	1300	1183	1369	1415	1202	1526	1338
Complete & single copy	1250	1147	1276	1367	1163	1435	1296
Complete & duplicated	50	36	93	48	39	91	42
Fragmented	119	226	88	84	146	28	95
Missing	195	205	157	115	266	60	181
Total searched	1614	1614	1614	1614	1614	1614	1614
% complete	80.55%	73.30%	84.82%	87.67%	74.47%	94.55%	82.90%

Table 7. BUSCO completeness for 20 gymnosperm taxa and an angiosperm outgroup (*Amborella trichopoda*)

TreeGenes code	Pita	Pnte	Psme	Segi	Sese	Thoc	Amtr
taxon	<i>Pinus taeda</i>	<i>Pinus tecunumanii</i>	<i>Pseudotsuga menziesii</i>	<i>Sequoiadendron giganteum</i>	<i>Sequoia sempervirens</i>	<i>Thuja occidentalis</i>	<i>Amborella trichopoda</i>
	Loblolly pine	Tecun Uman Pine	Douglas-fir	Giant sequoia	Coast redwood	Eastern white cedar	
Unigene set							
Data source(s)	annotation, transcriptome	transcriptome	annotation, transcriptome	annotation	transcriptome	transcriptome	annotation
Number of unigenes	45255	22287	70036	42325	21798	19208	24753
Average length of unigenes	392.03	450.75	289.17	328.80	303.28	338.63	318.60
BUSCOv4.0.2							
Complete	1090	1517	1152	1113	1064	1187	1303
Complete & single copy	1000	1453	1030	1057	1030	1149	1292
Complete & duplicated	90	64	122	56	34	38	11
Fragmented	161	22	253	232	221	172	49
Missing	363	75	209	269	329	255	23
Total searched	1614	1614	1614	1614	1614	1614	1614
% complete	67.53%	93.99%	71.38%	68.96%	65.92%	73.54%	80.73%

*Not a TreeGenes code; Amtr peptide data were downloaded from Ensembl (Howe et al., 2019).

Table 8. Orthogroup assignment summary for 20 gymnosperm taxa and an angiosperm outgroup (*Amborella trichopoda*; Amtr).

	Abba	Gibi	Gnmo	Megl	Pama	Pial	Piba
	<i>Abies balsamea</i>	<i>Ginkgo biloba</i>	<i>Gnetum gnemon</i>	<i>Metasequoia glyptostroboides</i>	<i>Picea mariana</i>	<i>Pinus albicaulis</i>	<i>Pinus banksiana</i>
Number of genes	21250	24753	110296	21887	19237	22876	27226
Number of genes in orthogroups	20397	19981	76213	19648	18318	21197	24571
Number of unassigned genes	853	4772	34083	2239	919	1679	2655
Percentage of genes in orthogroups	96	80.7	69.1	89.8	95.2	92.7	90.2
Percentage of unassigned genes	4	19.3	30.9	10.2	4.8	7.3	9.8
Number of orthogroups containing species	12169	10832	27140	10875	12029	13090	14212
Percentage of orthogroups containing species	27.2	24.2	60.6	24.3	26.9	29.2	31.7
Number of species-specific orthogroups	29	757	6081	531	13	57	94
Number of genes in species-specific orthogroups	64	4029	20762	2482	28	150	216
Percentage of genes in species-specific orthogroups	0.3	16.3	18.8	11.3	0.1	0.7	0.8

Table 8. Orthogroup assignment summary for 20 gymnosperm taxa and an angiosperm outgroup (*Amborella trichopoda*; Amtr).

	Pice	Pien	Pila	Pima	Pimn	Pipt	Pist
	<i>Pinus cembra</i>	<i>Pinus canariensis</i>	<i>Pinus lambertiana</i>	<i>Pinus massoniana</i>	<i>Pinus monticola</i>	<i>Pinus patula</i>	<i>Pinus strobus</i>
Number of genes	17994	22631	48172	33891	17447	46563	21697
Number of genes in orthogroups	17772	21501	44729	29596	16858	40872	21005
Number of unassigned genes	222	1130	3443	4295	589	5691	692
Percentage of genes in orthogroups	98.8	95	92.9	87.3	96.6	87.8	96.8
Percentage of unassigned genes	1.2	5	7.1	12.7	3.4	12.2	3.2
Number of orthogroups containing species	11602	12880	16398	17568	11767	19669	12951
Percentage of orthogroups containing species	25.9	28.8	36.6	39.2	26.3	43.9	28.9
Number of species-specific orthogroups	5	29	763	238	7	678	15
Number of genes in species-specific orthogroups	10	62	2756	529	25	1643	32
Percentage of genes in species-specific orthogroups	0.1	0.3	5.7	1.6	0.1	3.5	0.1

Table 8. Orthogroup assignment summary for 20 gymnosperm taxa and an angiosperm outgroup (*Amborella trichopoda*; Amtr).

	Pita	Pnte	Psme	Segi	Sese	Thoc	Amtr
	<i>Pinus taeda</i>	<i>Pinus tecunumanii</i>	<i>Pseudotsuga menziesii</i>	<i>Sequoiadendron giganteum</i>	<i>Sequoia sempervirens</i>	<i>Thuja occidentalis</i>	<i>Amborella trichopoda</i>
Number of genes	42848	22287	70036	42325	21798	19208	24753
Number of genes in orthogroups	39461	21901	59920	38934	20070	17835	19981
Number of unassigned genes	3387	386	10116	3391	1728	1373	4772
Percentage of genes in orthogroups	92.1	98.3	85.6	92	92.1	92.9	80.7
Percentage of unassigned genes	7.9	1.7	14.4	8	7.9	7.1	19.3
Number of orthogroups containing species	14166	13044	18538	15665	13230	11612	10832
Percentage of orthogroups containing species	31.6	29.1	41.4	35	29.5	25.9	24.2
Number of species-specific orthogroups	479	14	1616	607	47	54	757
Number of genes in species-specific orthogroups	1441	33	7261	3364	103	123	4029
Percentage of genes in species-specific orthogroups	3.4	0.1	10.4	7.9	0.5	0.6	16.3

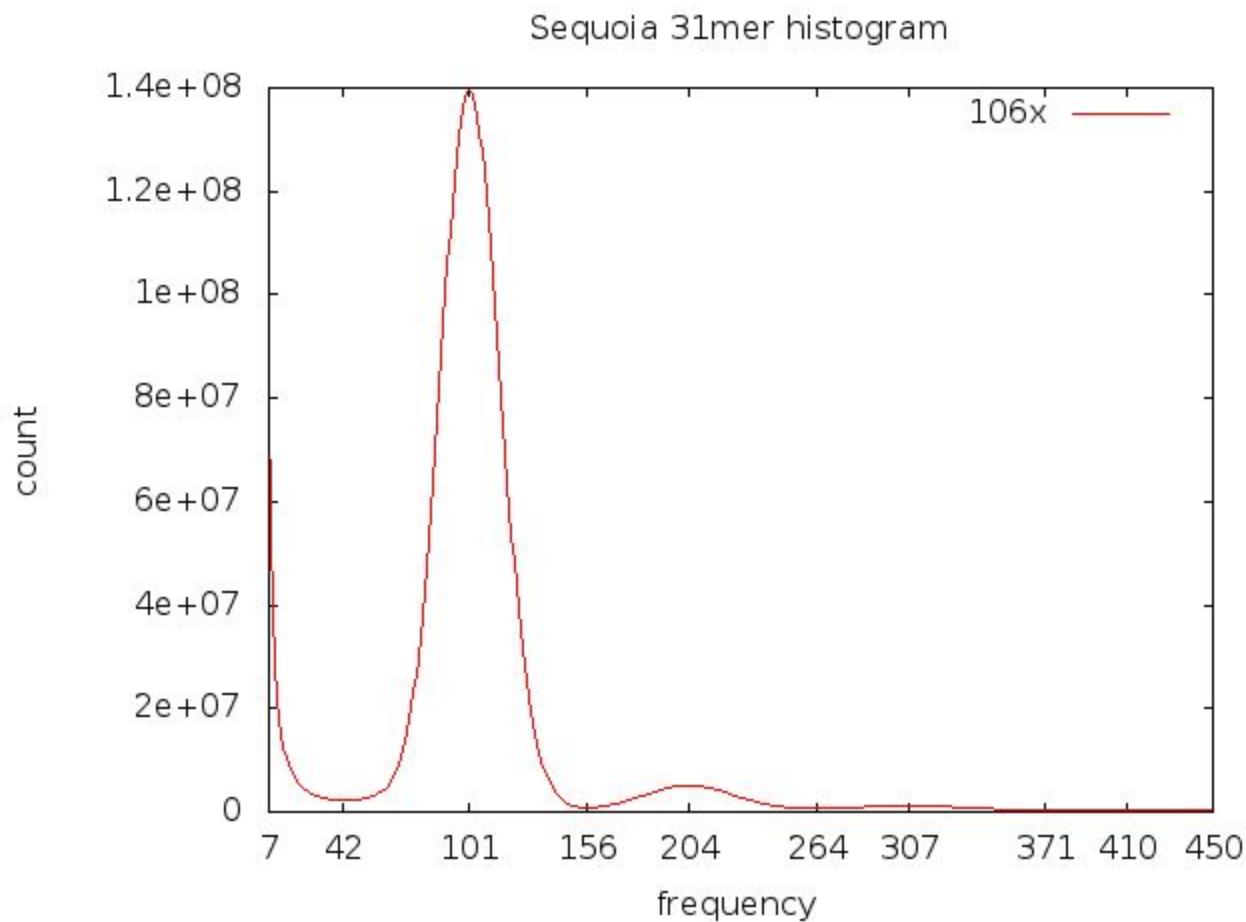


Figure 1. The histogram of 31-mer count in Illumina paired end reads. The red curve shows the number of 31-mers that are present in the reads X times, where X is the frequency plotted on horizontal axis. The main peak is at 101.

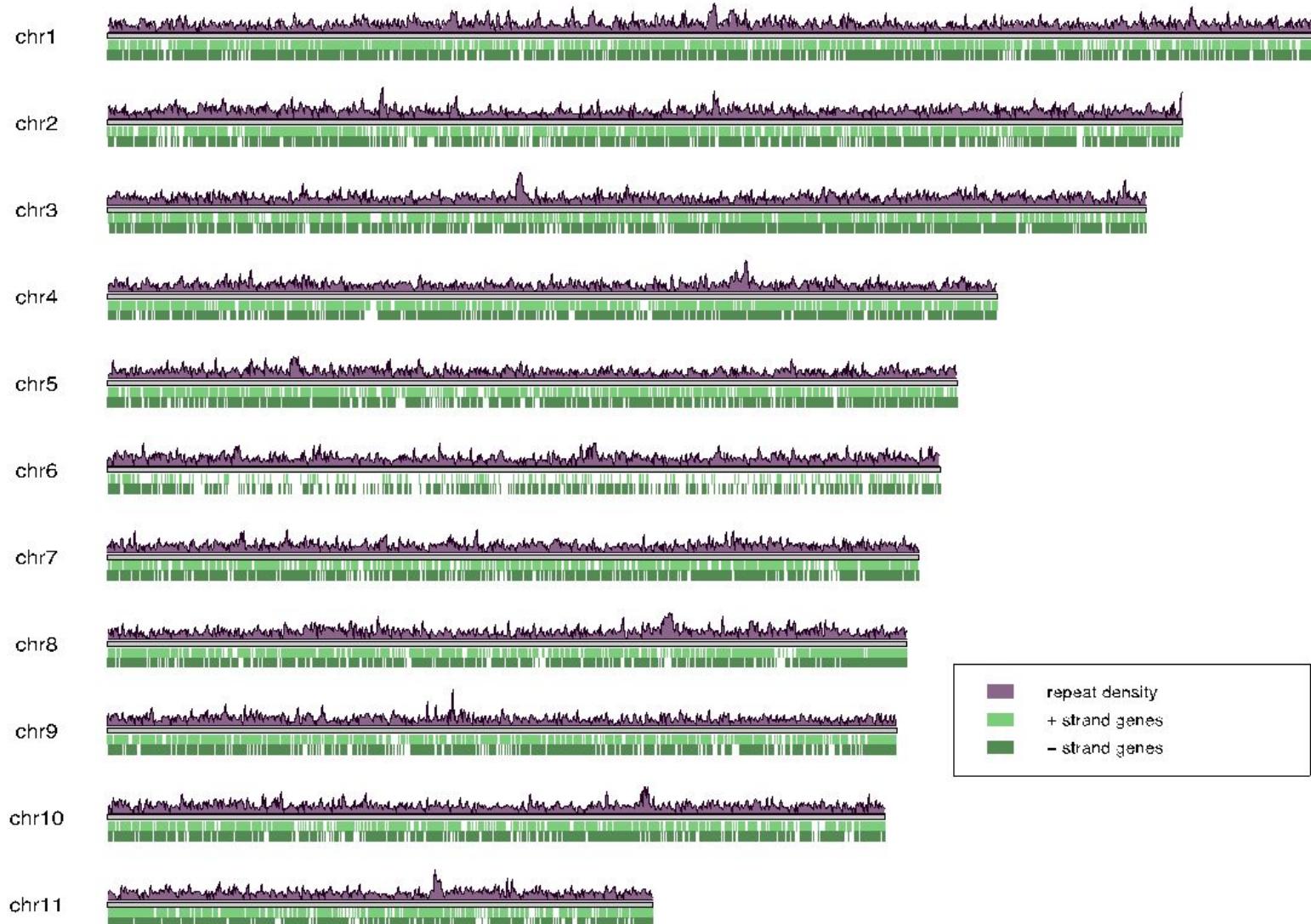


Figure 2. Repeat density and gene content of giant sequoia 2.0. Light green bars are + strand genes, dark green bars are - strand genes. Repeat density in purple, plotted in 1kb windows.

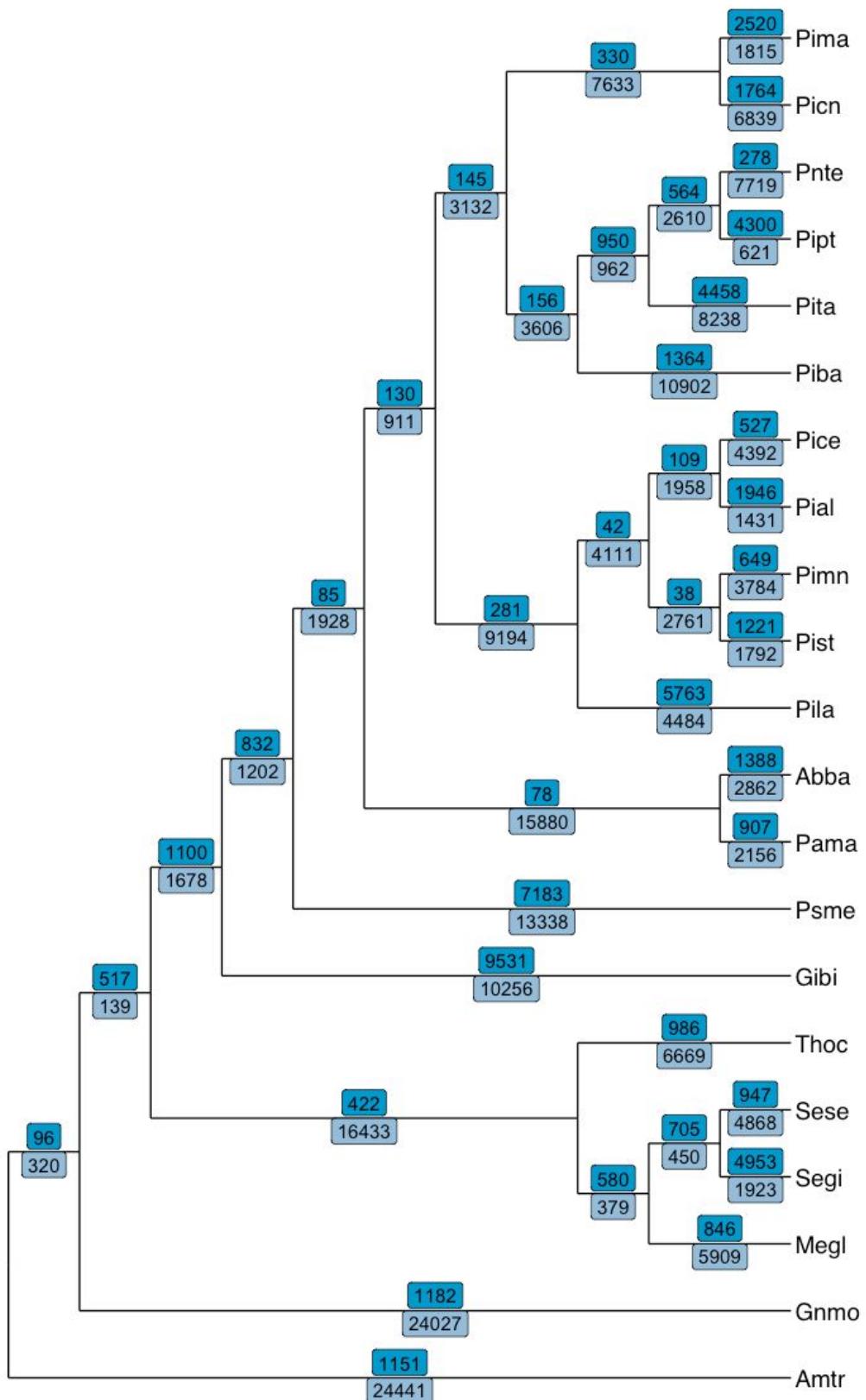


Figure 3: Gene family evolution along a gymnosperm cladogram. Numbers of expanded (bright blue, above branches) and contracted (light blue, below branches) orthogroups indicated along each branch. Giant sequoia (Segi) experienced an overall expansion, with 4,953 orthogroups expanding and 1,923 contracting.

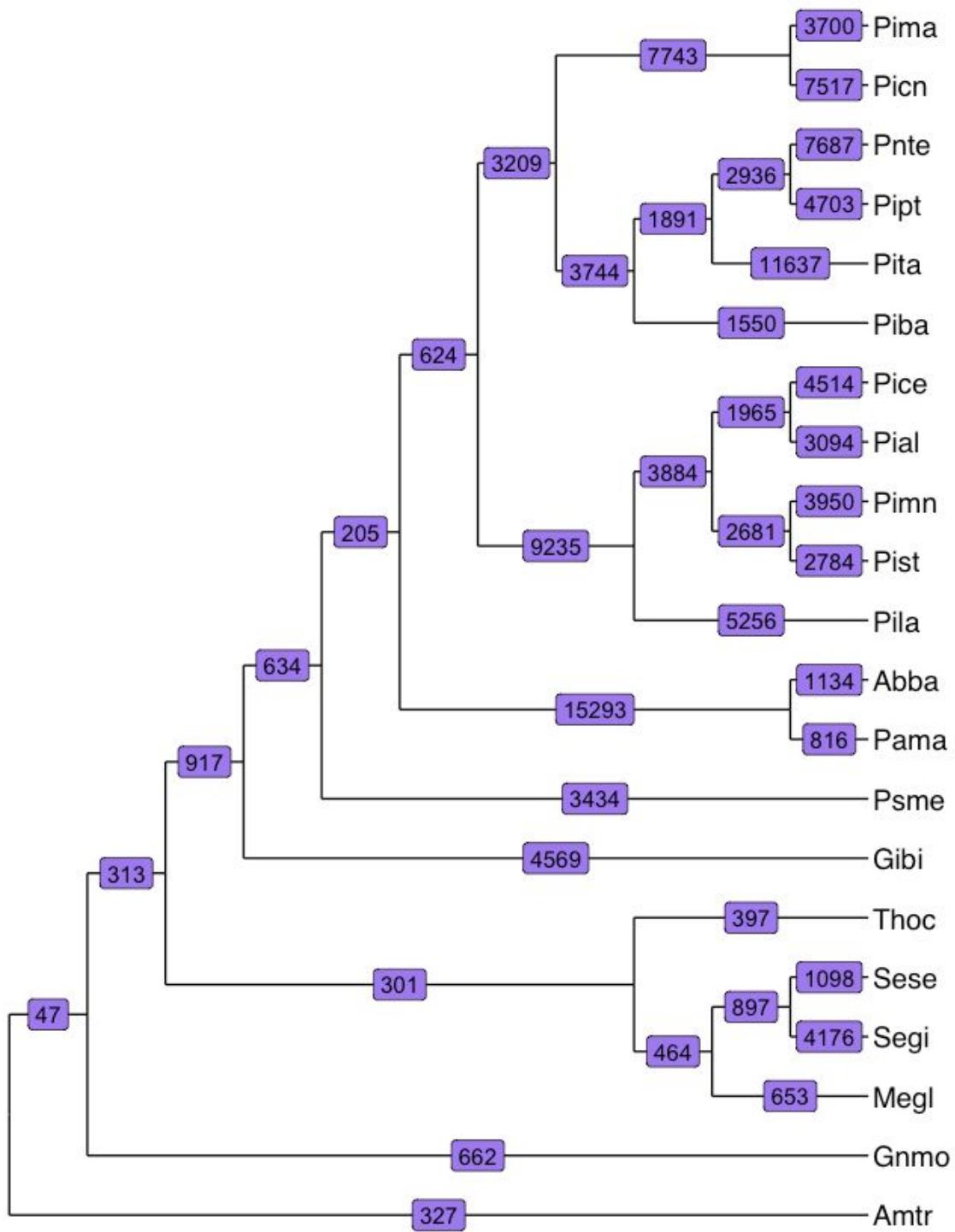


Figure 4: Rapid evolution along a gymnosperm cladogram. Numbers on each branch indicate the number of rapidly evolving gene families. Giant sequoia (Segi) has experienced rapid evolution in 4,176 gene families.

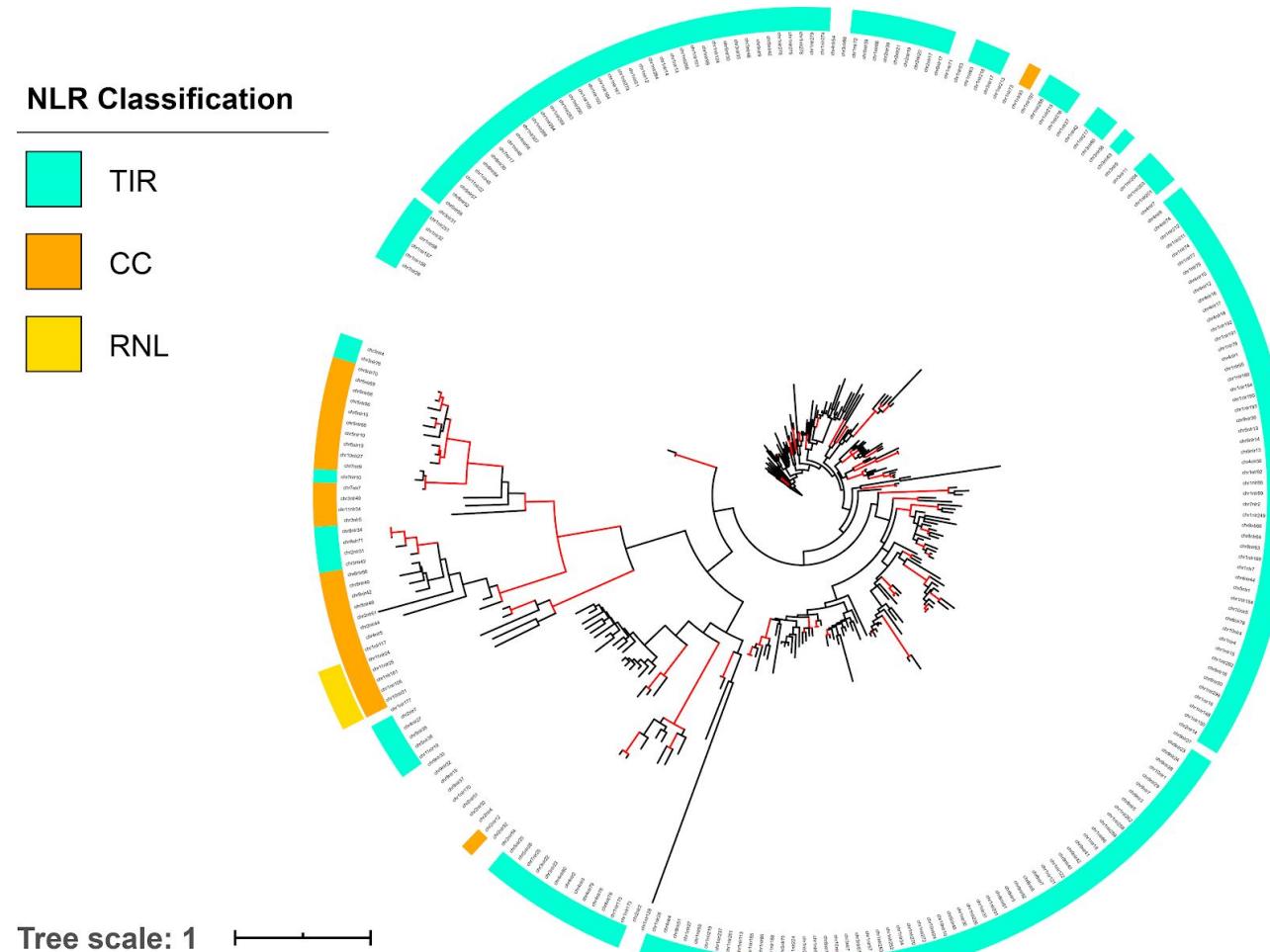


Figure 5: Maximum likelihood tree of NB-ARC domains of the 257 consensus NLR genes detected in the Segi assembly. Red branches indicate bootstrap support greater than 70%. The inner ring indicates predicted N-terminal TIR (blue) or CC (orange) domains. The outer ring indicates presence of an RPW8 motif present in the RNL sub-group of CC-NLRs. Tree is available at: <http://itol.embl.de/shared/acr242>

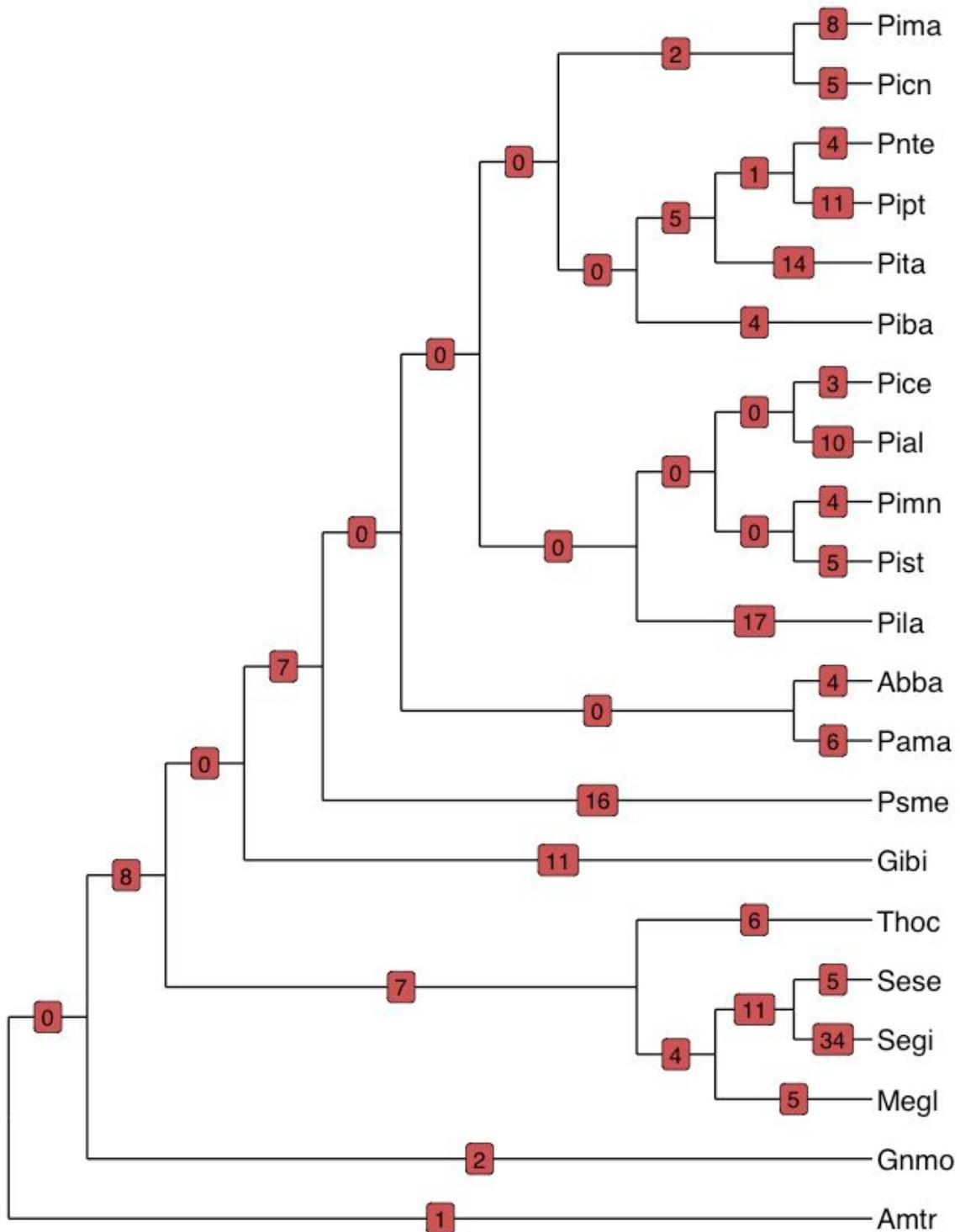


Figure 6: Rapid expansion in NLR-associated orthogroups along a gymnosperm cladogram. Numbers (red) on each branch indicate the number of rapidly expanding NLR orthogroups. Giant sequoia (Segi) has experienced rapid expansion in 34 NLR-associated orthogroups.

Table S1. Completeness of conifer genome assemblies assessed with BUSCOv3.0.2. Giant sequoia 2.0 is consistent with completeness of other conifer assemblies.

	<i>Sequoiadendron giganteum</i>	<i>Picea glauca</i>	<i>Picea abies</i>	<i>Pinus lambertiana</i>	<i>Pinus taeda</i>	<i>Pseudotsuga menziesii</i>
	Giant sequoia	White spruce	Norway spruce	Sugar pine	Loblolly pine	Doug fir
Complete BUSCOs (C)	611	443	505	396	636	484
Complete and single-copy BUSCOs (S)	575	316	434	349	508	412
Complete and duplicated BUSCOs (D)	36	127	71	47	128	72
Fragmented BUSCOs (F)	192	182	150	172	102	110
Missing BUSCOs (M)	811	815	785	872	702	846
Total BUSCO groups searched	1614	1440	1440	1440	1440	1440
Percentage found	37.86%	30.76%	35.07%	27.50%	44.17%	33.61%

Table S2. Classification and associated percentage of genome masked by repetitive elements in giant sequoia 2.0

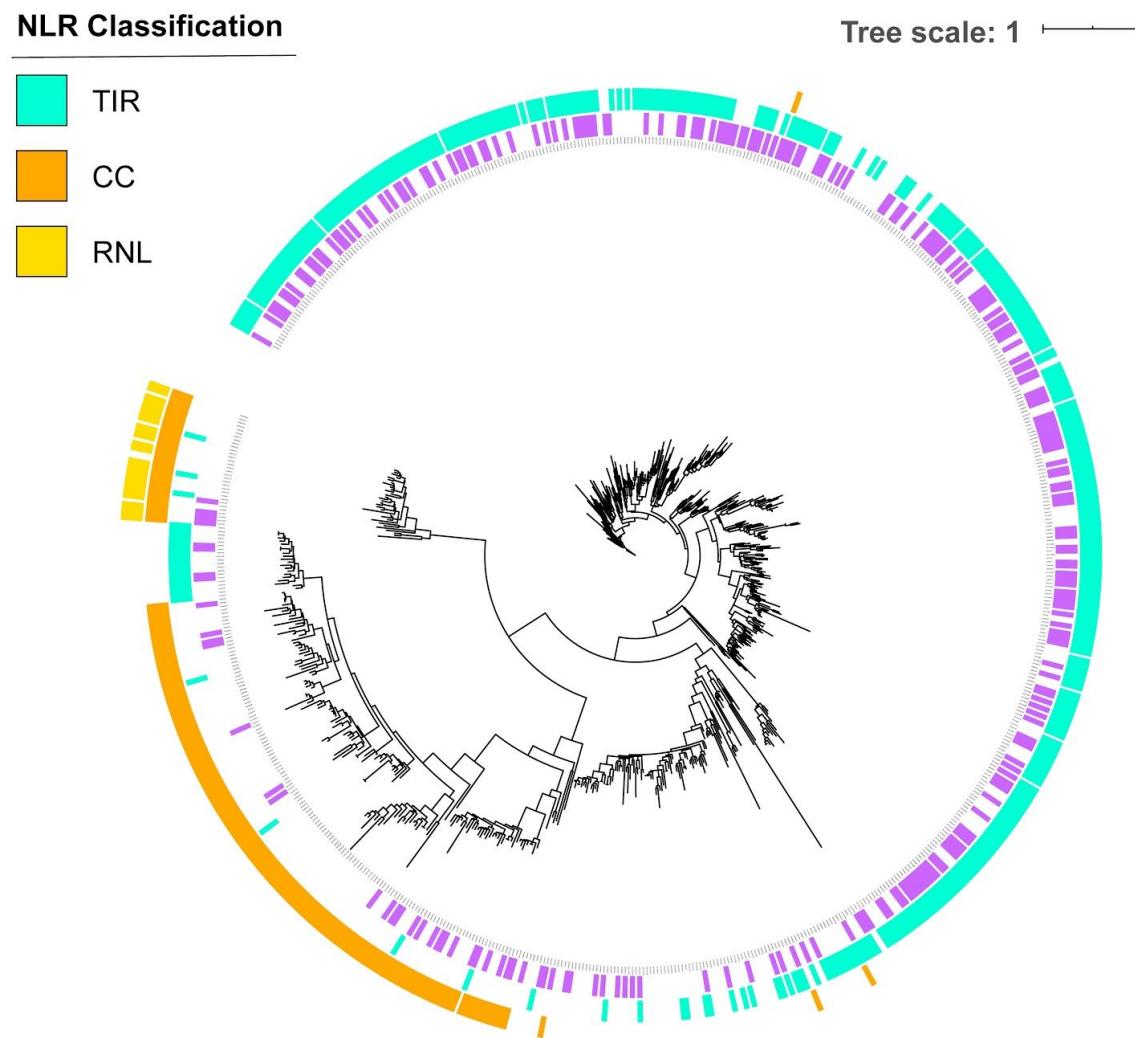

Repeat Class	Masked % of genome
DNA	
DNA/CMC-EnSpm	0.36161
DNA/MuLE-MuDR	1.55370
DNA/Sola	0.77113
DNA/TcMar-Fot1	0.05913
DNA/hAT-Tag1	0.47514
DNA/hAT-Tip100	0.13902
<i>DNA total</i>	3.35974
LINE	
LINE/L1	1.77165
LINE/L1-Tx1	0.40261
LINE/Penelope	0.02434
LINE/RTE-X	0.11875
LINE/Tad1?	0.00674
<i>LINE total</i>	2.32409
LTR	
LTR	0.21792
LTR/Copia	8.05066
LTR/ERVK	0.46223
LTR/Gypsy	19.62522
<i>LTR total</i>	28.35604
Low_complexity	0.16773
RC/Helitron	0.07451
Satellite	0.00005
Simple_repeat	2.03401
Unknown	42.34551

Table S3 Orthogroup clustering of 695,700 protein sequences from twenty gymnosperms plus an outgroup (*Amborella trichopoda*)

Number of species	21
Number of genes	695700
Number of genes in orthogroups	611441
Number of unassigned genes	84259
Percentage of genes in orthogroups	87.9
Percentage of unassigned genes	12.1
Number of orthogroups	44797
Number of species-specific orthogroups	12121
Number of genes in species-specific orthogroups	45127
Percentage of genes in species-specific orthogroups	6.5
Mean orthogroup size	13.6
Median orthogroup size	4
G50 (assigned genes)	30
G50 (all genes)	27
O50 (assigned genes)	4762
O50 (all genes)	6250
Number of orthogroups with all species present	5953
Number of single-copy orthogroups	206

Table S4. Annotation summary for 607 species-specific giant sequoia orthogroups

Total Sequences:	607
Similarity Search	
Total unique sequences with an alignment	218
Total unique sequences without an alignment	389
Gene Families	
Total unique sequences with family assignment	528
Total unique sequences without family assignment	79
Total unique sequences with at least one GO term	429
Total unique sequences with at least one pathway (KEGG) assignment	124
Totals	
Total unique sequences annotated (similarity search alignments only)	8
Total unique sequences annotated (gene family assignment only)	318
Total unique sequences annotated (gene family and/or similarity search)	536
Total unique sequences unannotated (gene family and/or similarity search)	71

Supplemental Figure 1: Maximum likelihood tree of NB-ARC domains of all NLR-Annotator detected NLR genes. The purple ring represents consensus NLR genes. N-terminal domains are indicated in the outer rings (TIR- light blue, CC- orange, RNL- yellow).