

1 Catch composition and life history characteristics of sharks and rays (Elasmobranchii) landed in
2 the Andaman and Nicobar Islands, India.

3

4 Zoya Tyabji^{1,2,*}, Tanmay Wagh², Vardhan Patankar², Rima W. Jabado³, Dipani Sutaria⁴

5 ¹Andaman Nicobar Environment Team, North Wandoor, South Andaman, Andaman and
6 Nicobar Island 744103, India

7 ²Wildlife Conservation Society, 551, 7th Main Road, Rajiv Gandhi Nagar, 2nd Phase, Kodigehalli,
8 Bengaluru, Karnataka 560097, India

9 ³Elasmo Project, P.O. Box 29588, Dubai, United Arab Emirates

10 ⁴College of Science and Engineering, James Cook University, Townsville, Australia

11

12 *Corresponding author

13 Email: zoya.tyabji@gmail.com

14

15 **Running title:** Biological data of elasmobranchs landed in the Andaman and Nicobar Islands

16

17 **Keywords:** fisheries-dependent surveys; elasmobranch; sex ratios; length-weight relationship;
18 management

19

20

21

22 **ABSTRACT**

23 The scientific literature on the diversity and biological characteristics of sharks and rays from the
24 Andaman and Nicobar Archipelago fishing grounds is scarce and compromised by species
25 misidentifications. We carried out systematic fish landing surveys in South Andamans from
26 January 2017 to May 2018, a comprehensive and cost-effective way to fill this data gap. We
27 sampled 5,742 individuals representing 57 shark and ray species. Of the 36 species of sharks
28 and 21 species of rays landed, six species of sharks - *Loxodon macrorhinus*, *Carcharhinus*
29 *amblyrhynchos*, *Sphyrna lewini*, *Carcharhinus albimarginatus*, *Carcharhinus brevipinna*, and
30 *Paragaelus randalli* dominated landings and comprised 83.35 % of shark landings, while three
31 species of rays were most abundant – *Pateobatis jenkinsii*, *Himantura leoparda* and *H. tutul*,
32 and comprised 48.82 % of ray landings. We report size extensions for seven shark species as
33 well as three previously unreported ray species, increasing the known diversity for the islands
34 and for India. For sharks, mature individuals of small-bodied species (63.48 % males of total
35 landings of species less than 1.5 m total length) and immature individuals of larger species
36 (84.79 % males of total landings of species larger than 1.5 m total length) were mostly landed;
37 whereas for rays, mature individuals were predominantly landed (80.71 % males of total
38 landings) likely reflecting differences in fishing patterns as well as habitat preferences and life
39 history stages across species. Further, juvenile sharks and gravid females were landed in large
40 quantities which might be unsustainable in the long-term. Landings were female-biased in *C.*
41 *amblyrhynchos*, *S. lewini* and *P. jenkinsii*, and male-biased in *L. macrorhinus* and *H. leoparda*,
42 indicating either spatio-temporal or gear specific sexual segregation in these species.
43 Understanding these nuances - the composition and biology of sharks and rays landed in
44 different fisheries seasonally will inform future conservation and fishery management measures
45 for these species in the Andaman and Nicobar Islands.

47 **INTRODUCTION**

48 Elasmobranchs (sharks and rays) are recognized as one of the marine taxa with the highest
49 extinction risk and need for urgent conservation measures [1]. Despite considerable inter and
50 intra-specific life history variation [2, 3], most species have relatively low productivity making
51 them highly susceptible to anthropogenic and natural stressors [4]. Populations of many species
52 have drastically declined globally due to overfishing and habitat degradation raising concerns
53 about their long-term survival [1].

54 In the past few decades, India has consistently been one of the top three shark and ray
55 harvesters in the world [5, 6]. Here, sharks and rays are primarily caught as bycatch [7 - 11] in a
56 large fishing fleet of 238,772 registered commercial and artisanal fishing crafts [12]. However, a
57 few targeted shark fisheries that formed in the 1980's remain including in the Andaman and
58 Nicobar Islands [13,14]. Anecdotal information from interviews with fishers on these islands
59 indicate that shark and ray populations have declined [15] but there have been few systematic
60 surveys of landings carried out to assess the current situation. This limited information on
61 species and stocks may have detrimental effects not only on the ecology of these animals but
62 also on the sustainability of these fisheries and the food security they provide as well as the
63 socio-economic dependence of fisher communities [16, 17].

64 Over the years, with growing reports of declining populations of sharks and rays, the
65 Government of India has implemented several conservation policies. In 2001, ten species of
66 sharks and rays, including the Whale shark *Rhincodon typus*, Knifetooth sawfish *Anoxypristes*
67 *cuspidata*, Pondicherry shark *Carcharhinus hemiodon*, Gangetic shark *Glyphis gangeticus*,
68 Speartooth shark *G. glyphis*, Ganges stingray *Himantura fluviatilis*, Freshwater sawfish *Pristis*
69 *microdon* (= *P. pristis*), Green sawfish *P. zijsron*, Giant guitarfish *Rhynchobatus djiddensis*, and
70 Porcupine ray *Urogymnus asperimus* were listed under Schedule I of the Indian Wildlife
71 (Protection) Act, 1972 (WLPA). In 2009, the Andaman and Nicobar Islands Fisheries Regulation

72 declared a 45-day closed season for shark fishing from April 15th to May 31st around the islands
73 through the prohibition of the use of shark and tuna pelagic longlines and trawl nets. In 2013,
74 the Ministry of Environment, Forest and Climate Change (MoEF&CC) declared a 'Fin-attached
75 Policy' where sharks have to be landed whole, with their fins naturally attached to their bodies.
76 In 2015, India's Ministry of Commerce and Industry issued a notification prohibiting the export of
77 all shark fins. While these legislations, if properly implemented, are a positive step for shark
78 conservation in India, there appears to be an agenda mismatch between the MoEF&CC and the
79 Ministry of Animal Husbandry, Dairying and Fisheries, with the latter having recently developed
80 a strategy to expand fisheries and increase yield. This includes developing new schemes and
81 projects to harness fishing potential and create employment opportunities, by issuing additional
82 fishing licenses, building infrastructure such as cold storage centers, blast freezers and ice
83 plants, and increasing introduction of deep-sea, motorized and mechanized boats [18].

84 In order to develop best management practices, basic life-history information such as age,
85 growth, and maturity is required to form the basis of population assessments. However, in many
86 developing countries, landings remain unmonitored and unregulated with little species-specific
87 data collected, which hampers population assessments, and does not provide indication of the
88 status of a population [17]. Additionally, since different species can show variances in biological
89 traits across geographical regions, such as size at birth, size at maturity, maximum size, litter
90 size, and breeding cycle [19 - 21], it is important to undertake region-specific studies so they
91 can inform local management strategies.

92 Most past literature on sharks and rays from the Andaman and Nicobar Islands has been limited
93 to species identification and taxonomy [22 - 27]. A large knowledge gap exists in our
94 understanding of the catch composition of commercial species landed, their population trends,
95 biological characteristics across seasons. Here, we aim to address this gap by assessing sharks
96 and rays landed in the Andaman and Nicobar Islands and exploring 1) the species composition

97 including relative abundance across seasons, 2) the biological information, including size
98 frequency, sex ratio, maturity and length-weight relationships, and 3) the characteristics of
99 fishing gears and grounds where sharks and rays were reportedly fished.

100

101 **MATERIALS AND METHODS**

102 **Study area**

103 The Andaman and Nicobar Islands (6°N–14°N and 92°E–94°E) are located in the Bay of Bengal
104 and constitute 29.7 % of the total Economic Exclusive Zone (EEZ) area of India (Fig 1), covering
105 a coastline of 1,962 km (contributing to 26.10 % of India's coastline) and a continental shelf area
106 of approximately 35,000 km² [18]. The islands experience heavy monsoon from end of May to
107 September when the south-west monsoon sets in as well as intermittent or light to heavy rainfall
108 when the north-east monsoon sets in November. For the duration of our study, we characterized
109 landings according to the following seasons: north-east monsoon (NE) (October–January), dry
110 season (DS) (February–May), and south-west monsoon (SW) (June–September).

111

112 **Fig 1. Map of the sampling sites and fishing grounds of the Andaman and Nicobar**
113 **Islands, India.** Top left: Map of India with the Exclusive Economic Zone boundaries of
114 Andaman and Nicobar Islands demarcated in blue; Bottom left: Map of South Andaman with red
115 triangles indicating sampled fish landing centers; Right: Map of the Andaman and Nicobar
116 Islands showing fishing gear utilization across fishing grounds around the Islands, South
117 Andaman is demarcated by the red inset.

118

119 A total of 2,784 fishing vessels are currently active with 7,034 licensed fishers [18]. Here, sharks
120 and rays are targeted using pelagic and deep-sea longlines; and are caught as bycatch in
121 demersal longlines, trawl nets, gillnets, and hook and line. Pelagic longliners and trawlers are
122 permitted to exclusively fish beyond six nautical miles and up to 12 nautical miles from the
123 coast. Demersal longliners as well as hook and line and gillnet fisheries operate near the coast
124 and shallow seamounts. Fishers from the Andaman Islands fish across the waters of the
125 Andaman and Nicobar Islands while the communities on the Nicobar Islands, due to their
126 seclusion, only fish for subsistence or fishing for sale in local markets [27, 28].

127 Exploratory visits to landing sites in 2016 across South Andaman Islands revealed that the
128 majority of sharks and rays fished throughout the Andaman and Nicobar Islands are landed at
129 Junglighat (Fig 1). Junglighat, located in Port Blair, the main city of the Andaman Islands, is the
130 largest fish landing center of the islands with proximity to storage centers and export facilities
131 (Fig 1). We therefore focused our sampling at this location. However, opportunistic surveys
132 were also undertaken at the fish landing sites of Burmanallah, Wandoor, and Dignabad (Fig 1)
133 when fishers or informants reported landings of sharks and rays to the survey team.

134

135 **Sampling effort**

136 Systematic surveys were undertaken from January 2017 to May 2018 for sharks and from
137 October 2017 to May 2018 for rays. Junglighat was visited every alternate day or when weather
138 permitted from 0600 to 1000 hrs, whereas the remaining site visits were dependent on reports
139 by the informants. As the pelagic longliners from Junglighat directly offload and transport their
140 landings to the processing and storage units, sampling of landings from these vessels was
141 conducted at these units between 1000 to 1400 hrs.

142 Sharks and rays landed were identified to the species level using the available literature and
143 photo-documented [29 - 32]. Rays were often landed with their tails cut, in piles, and, in a few
144 cases, when landings were large, accurate pictures and/or measurements were not possible.
145 Therefore, species which were difficult to differentiate morphologically, such as *Neotrygon* sp.
146 and *Pastinachus* sp. were grouped at the genus level, and have therefore been excluded from
147 the analysis of the full data set.

148 For sharks, guitarfishes, and wedgefishes, the total length (TL, a straight line from the tip of the
149 snout to the tip of the tail, with tail flexed down to midline) was measured, whereas for rays, the
150 disc width (DW, a straight line at the widest region of the disc) was measured to the nearest
151 millimeter [30, 31].

152 Sex was determined by the presence of claspers indicative of males or the absence of claspers
153 indicative of females. For males, the degree of calcification and length of claspers determined
154 the maturity levels. This was categorized from 1 to 3 where (1) refers to immature individuals
155 whose claspers were non-calcified and pliable, and whose length was less than the pelvic fins,
156 (2) refers to maturing individuals whose claspers were partially calcified and semi-pliable, and
157 whose length was longer than the pelvic fins, and (3) refers to fully mature individuals whose
158 claspers were fully calcified and non-pliable.

159 Gravid females were recorded by the presence of emerging embryos or if these could be clearly
160 observed by pressing the stomach. Whenever possible, gravid females were dissected to record
161 the sex and size of embryos. Young-of-the-year (YOY) individuals were identified by the
162 presence of open umbilical scars which usually close after the first few months of life.

163 Weights were recorded to the nearest gram using a hand-held digital weighing balance for
164 smaller individuals or whenever possible, when weights were provided by the fishers using a
165 circular weighing balance for larger individuals (> 50 kg).

166 For each boat that landings were sampled from, we approached fishers for information on the
167 fishing gears used to catch the sharks and rays, and the fishing grounds.

168

169 **Data analysis**

170 A species accumulation curve over time, trends in mean abundance of landings across months,
171 and patterns in species, sex, and sizes caught across various gears were produced in Microsoft
172 Excel 2017. Tentative fishing grounds, including usage of fishing gears, were mapped on QGIS
173 based on locations provided during discussions with fishers.

174 The hypothesis of equal sex ratios for species where ≥ 50 individuals were sampled, was tested
175 using Chi-square where significance was considered at $p < 0.05$ [33]. The hypothesis of shark
176 TL getting equally caught across different fishing gears was tested using one-way ANOVA
177 where significance was considered at $p < 0.05$ [33].

178 For sharks, species where > 150 individuals were sampled, size-class frequency distributions by
179 sex and seasons were plotted while the size at 50 % maturity (TL_{50}) for males was calculated.
180 This was done by fitting the following logistic function to the proportion of mature individuals in
181 10 or 20 cm size categories: $P = 1 / (1 + \exp(-r(LT_{mid} - LT_{50})))$, where P is the proportion of
182 mature fish in each length class, LT_{mid} is the midpoint of the length class, LT_{50} is the mean size
183 at sexual maturity, and r is a constant that increases in value with the steepness of the
184 maturation schedule.

185 Finally, length-weight relationships were determined using regression analysis. The equation
186 $W = aL^b$ was converted into a linear form $\ln(W) = \ln(a) + b \ln(L)$, where W is the weight, L is the
187 length, $\ln(a)$ is the intercept and (b) the slope or regression coefficient. Gravid females were
188 excluded from this analysis.

189

190 **RESULTS**

191 Sampling was conducted on 216 days with landings recorded from 567 boats and a total of
192 5,742 sharks and rays representing 57 species. Of these, 4,632 individuals represented 36
193 shark species from 18 genera and 11 families while 1,110 individuals represented 21 ray
194 species, 14 genera and eight families.

195 The species accumulation curve reached a threshold for sharks but not for rays (Fig 2). A
196 species list and summary of biological data for all specimens is provided in Table 1.

197

198 **Fig 2. Species accumulation curve of sharks and rays landed.** The curve shows the number
199 of cumulative species across 17 months of sampling from January 2017 to May 2018. The
200 dotted line represents both shark and ray species, the grey line represents shark species and
201 the black line represents ray species.

202

Table 1. Summary of biological data for sharks and rays landed. The table includes total number of individuals; International Union for Conservation of Nature (IUCN) Red List of Threatened Species status (as of December 2019), where the categories are CR – Critically Endangered, EN – Endangered, VU – Vulnerable, NT – Near Threatened, LC – Least Concern, DD – Data Deficient, NE – Not Evaluated, and year of assessment in parentheses; and sizes (total length for sharks (TL) and disc width (DW) for rays) by sex (F – female; M – male; UK – unknown), presence of gravid females and young of year (YOY). Results of Chi-square tests of parity in sex ratios for shark and ray species are provided for species with ≥ 50 individuals recorded, and fishing gears used to catch the species are provided where applicable.

Species	Common name	IUCN stat us	n	n by sex of individuals	Size (TL cm / DW cm)	Additional notes
SQUALIFORMES						
Squalidae						
<i>Squalus hemipinnis</i>	Indonesian Shortnose Spurdog	NT (200 8)	1	F: 1	F: 66	Specimen caught using hook and line.
Centrophoridae						
<i>Centrophorus atromarginatus</i>	Dwarf Gulper Shark	DD (200 8)	1	M: 1	M: 72.5	Specimen caught using deep-sea longline.
<i>Centrophorus granulosus</i>	Needle Dogfish	DD (200	6	F: 3, M: 3	F: 93.5 - 103 (97 \pm	All specimens caught using deep-

		6)			5.22) M: 82.5 - 92.5 (87.66 ± 7.68)	sea longline.
ORECTOLOBIFORMES						
Hemiscyllidae						
<i>Chiloscyllium griseum</i>	Grey Bambooshark	NT (200 3)	2	F: 1, M: 1	F: 86, M: 84	Both specimens caught using hook and line.
<i>Chiloscyllium hasseltii</i>	Indonesian Bambooshark	NT (200 8)	1	F: 1	F: 88	Specimen caught using trawl net.
Ginglymostomatidae						
<i>Nebrius ferrugineus</i>	Tawny Nurse Shark	VU (200 3)	8	F: 3, M: 4, UK: 1	F: 198 - 273.5 (247.5 ± 42.88) M: 175.9 - 367.2 (261.15 ± 59.10)	Seven of the eight individuals landed in February and March 2017 and 2018. Size extension by 47.2 cm recorded.
LAMNIFORMES						
Odontaspididae						
<i>Carcharias taurus</i>	Sandtiger Shark	VU	1	F: 1	F: 129.4	

		(200 5)				
Alopiidae						
<i>Alopias pelagicus</i>	Pelagic Thresher	EN (201 8)	28	F: 11, M: 9, UK: 8	F: 131.4 - 272.6 (224.2 ± 66.96) M: 138.8 - 270.5 (215.76 ± 59.67)	Twenty-two of the 28 specimens caught in February. All specimens caught in pelagic longlines.
<i>Alopias superciliosus</i>	Bigeye Thresher	VU (201 8)	6	F: 3, M: 3	F: 210 - 306.5 (258.25 ± 36.12) M: 235 - 292 (266.86 ± 34.41)	Four of the six specimens caught in February. All specimens caught in pelagic longlines.
Lamnidae						
<i>Isurus oxyrinchus</i>	Shortfin Mako	EN (201 8)	2	M: 2	M: 178.5 - 182.5 (180.5 ± 43.97)	Specimens caught in gillnet and pelagic longline.
CARCHARHINIFORMES						

Triakidae							
<i>Hemitriakis indroyonoi</i>	Indonesian Houndshark	NE	2	F: 2	F: 100.6 - 105 (102.8 ± 3.11)	Two females landed in December 2017 and February 2018. Both specimens caught from Campbell Bay in Nicobar using pelagic longlines.	
<i>Mustelus mosis</i>	Arabian Smoothhound Shark	NT (201 8)	7	F: 7	F: 85.2 - 108.5 (97.6 ± 8.60)	Three individuals landed together in March 2017 and four landed together in April 2018. All specimens caught using hook and line.	
Hemigaleidae							
<i>Hemigaleus microstoma</i>	Sicklefin Weasel Shark	VU (200 7)	24	F: 7, M: 15, UK: 2	F: 65 - 109.9 (96.25 ± 17.19) M: 70.8 -	All specimens caught using trawl net, demersal longline and hook and line.	

					103.2 (94.42 ± 9.72)	
<i>Hemipristis</i> <i>elongata</i>	Snaggletooth Shark	VU (201 5)	29	F: 10, M: 18, UK: 1	F: 93.1 - 211.1 (155.94 ± 42.17) M: 95 - 183 (144.11 ± 22.77)	Four specimens caught using hook and line, four in demersal longline and seven in pelagic longlines.
<i>Paragaleus</i> <i>randalli</i>	Slender Weasel Shark	NT (200 8)	169	F: 78, M: 91	F: 46 - 97.5 (86.44 ± 9.57) M: 43.5 - 102.5 (86.34 ± 8.75)	Fourteen gravid females (n = 10 in April) recorded ranging from TL 87.5 to 97.5 cm, dissection of two gravid females revealed a litter size of two; three fully-developed embryos recorded ranging between TL 43.5 to 47.5 cm. Sex ratios of

						landings did not differ significantly from parity (F: M = 1: 1.16, χ^2 [1, n = 169] = 1, p > 0.05). Size extension by 6.7 cm recorded.
Carcharhinidae						
<i>Carcharhinus albimarginatus</i>	Silvertip Shark	VU (201 5)	295	F: 150, M: 137, UK: 8	F: 60.7 - 243.5 (103.41 ± 30.52) M: 21.5 - 249 (105.93 ± 30.49)	One gravid female landed in February measuring TL 199.5 cm and 1 embryo of TL 21.5 cm landed in December, caught in pelagic longline; 25 recorded YOY ranging from TL 60.7 to 94 cm landed in March and April 2017, and Jan, Feb, April 2018. In April, more than 150 YOY of less than

						one meter landed by a pelagic longline - it was not possible to sample all these due to time constraints prior to the auction and only data from 24 specimens were recorded. Sex ratios of landings did not differ significantly from parity (F: M = 1: 0.91, χ^2 [1, n = 287] = 0.588, p > 0.05).
<i>Carcharhinus altimus</i>	Bignose Shark	DD (200 8)	4	F: 1, M: 3	F: 90 M: 103 - 237.5 (156.16 ± 33.49)	Three YOY landed in March and April 2017 ranging from TL 90 to 128 cm. One specimen caught in pelagic longline and one in gillnet.

<i>Carcharhinus amblyrhynchoides</i>	Graceful Shark	NT (200 5)	7	F: 3, M: 2, UK: 2	F: 94 - 167.4 (138.46 ± 39.40)	One specimen caught in pelagic longline, gillnet and trawl net each.
					M: 194 - 206 (200 ± 56.93)	
<i>Carcharhinus amblyrhynchos</i>	Grey Reef Shark	NT (200 5)	1215	F: 652, M: 555, UK: 8	F: 51 - 217 (97.46 ± 30.73)	Four gravid females landed in January and February ranging between TL 157.5 and 186.5 cm. A total of 293 YOY ranging from TL 51 to 101 cm were recorded throughout the year. Significantly more females were landed than males (F: M = 1: 0.85, χ^2 [1, n = 1207] = 7.79, p < 0.05).
<i>Carcharhinus</i>	Pigeye Shark	DD	38	F: 21,	F: 134.5 -	Five gravid

<i>amboinensis</i>		(200 5)	M: 17	295 (222.58 ± 35.98)	females landed in February, July 2017, and April 2018, ranging from TL 217 to 295 cm. Size extension by 15 cm recorded.
<i>Carcharhinus brevipinna</i>	Spinner Shark	NT (200 5)	212	F: 95, M: 116, UK: 1 M: 62.6 - 212 (94.07 ± 32.20)	F: 59.7 - 284.5 (100.93 ± 32.5) One gravid female of TL 206.5 cm and weighing 111 kg landed in April, caught in a gillnet; 49 YOY ranging from 59.7 to 84.7 TL cm landed in March and April. Sex ratios of landings did not differ significantly from parity (F: M = 1: 1.22, χ^2 [1, n = 211] = 2.09, p > 0.05).
<i>Carcharhinus dussumieri</i>	Whitecheek Shark	EN (201	80	F: 47, M: 33	F: 54.5 - 93.1 Six gravid females ranging from TL

		8)			(82.79 ± 35.20)	84.7 to 93.1 cm were landed between November 2017 and February 2018. Sex ratios of landings did not differ significantly from parity (F: M = 1: 0.70, χ^2 [1, n = 80] = 2.45, p > 0.05).
<i>Carcharhinus falciformis</i>	Silky Shark	VU (201 7)	71	F: 34, M: 34, UK: 3	F: 104 - 376.5 (181.69 ± 35.34) M: 121 - 290.8 (180.33 ± 40.54)	One gravid female of TL 235.5 cm landed in February 2017, caught in gillnet. Sex ratios of landings shows parity (F: M = 1: 1, χ^2 [1, n = 68] = 0 p > 0.05). Size extension by 26 cm recorded.
<i>Carcharhinus leucas</i>	Bull Shark	NT (200	32	F: 17, M: 14,	F: 146 - 351	Three gravid females of TL 309

		5)		UK: 1	(265.61 ± 37.48) M: 124.5 - 274.8 (206.6 ± 35.71)	to 351 cm landed in February and March 2018, in pelagic longlines and trawl nets.
<i>Carcharhinus limbatus</i>	Blacktip Shark	NT (200 5)	108	F: 54, M: 53, UK: 1	F: 62.6 - 281 (112.6 ± 35.23) M: 61.5 - 231.8 (106.46 ± 35.34)	Seventeen YOY landed in March and April 2018, with TL 61.5 to 77 cm. Sex ratios of landings did not differ significantly from parity (F: M = 1: 0.98, χ^2 [1, n = 107] = 0.00934, p > 0.05). Size extension by 10 cm recorded.
<i>Carcharhinus longimanus</i>	Oceanic Whitetip Shark	CR (201 8)	19	F: 10, M: 9	F: 99.5 - 200 (137.89 ± 32.91) M: 96 - 198.2	One immature male landed in December of TL 96 cm. All specimens caught in pelagic longlines.

					(141.53 ± 35.74)	
<i>Carcharhinus maclooti</i>	Hardnose Shark	NT (200 3)	5	F: 3, M: 2	F: 81.5 - 88.5 (85 ± 37.24) M: 85 - 85.5 (85.25 ± 36.38)	Two specimens caught in gillnet, one in hook and line.
<i>Carcharhinus melanopterus</i>	Blacktip Reef Shark	NT (200 5)	30	F: 13, M: 20, UK: 2	F: 57.5 - 152.5 (84.88 ± 27.1) M: 57.5 - 129 (86.72 ± 28.98)	One gravid female landed in March 2017 measuring TL 133 cm, caught in a gillnet; four male and two female YOY landed in May with TL 57.5 to 63 cm, six caught by hook and line.
<i>Carcharhinus plumbeus</i>	Sandbar Shark	VU (200 7)	1	M: 1	M: 81	YOY, caught by hook and line.
<i>Carcharhinus sorrah</i>	Spottail Shark	NT (200	48	F: 20, M: 26,	F: 74 - 173.7	Size extension by 3.5 cm recorded.

		7)		UK: 2	(118.37 ± 25.35)	Two specimens caught in trawl net, 17 in pelagic longline, seven in demersal longline, two in hook and line, nine in gillnet.
<i>Loxodon</i> <i>macrorhinus</i>	Sliteye Shark	LC (200 3)	1549	F: 678, M: 852, UK: 19	F: 39.2 - 103.2 (84.24 ± 10.04) M: 25 - 102 (84.46 ± 9.41)	Thirty-four gravid females landed between November 2017 to April 2018, with TL 85.5 to 98 cm; dissection of four gravid females revealed a litter size of two. Six fully-developed embryos pulled out from the gravid female measured TL 45.1 to 49.2 cm; 6 YOY of TL 32.6 to 54 cm, with open umbilical

						scars landed in March 2017 and 2018. Significantly more males than females were landed (F: M = 1: 1.25, χ^2 [1, n = 1530] = 14.3771, p < 0.05). A size extension by 4.3 cm was recorded.
<i>Negaprion acutidens</i>	Sharptooth Lemon Shark	VU (200 3)	9	F: 5, M: 4	F: 66.7 - 265 (165.18 ± 92.62) M: 63.4 - 210 (76.2 ± 16.33)	Three male YOY landed in March ranging from 63.4 to 70.6 TL. Three specimens caught in pelagic longline.
<i>Rhizoprionodon acutus</i>	Milk Shark	LC (200 3)	102	F: 54, M: 47, UK: 1	F: 49.4 - 96.5 (77.69 ± 10.87) M: 66 - 93.7 (76.90 ±	Three gravid females landed ranging from TL 90 to 92.8 cm, one YOY of TL 61.5 cm, with a half healed umbilical

					7.53)	scar landed in March 2018. Sex ratios of landings did not differ significantly from parity (F: M = 1: 0.87, χ^2 [1, n = 101] = 0.485, p > 0.05).
<i>Triaenodon obesus</i>	Whitetip Reef Shark	NT (200 5)	14	F: 6, M: 8	F: 62 - 150.5 (91 ± 31.84) M: 91.5 - 136 (105.75 ± 14.09)	One YOY with healing umbilical scar of TL 62 cm landed in December 2017. Two specimens were caught in gillnet, three in hook and line, one in demersal longline, two in pelagic longline.
Sphyrnidae						
<i>Sphyrna lewini</i>	Scalloped Hammerhead	CR (201 8)	421	F: 229, M:	F: 50 - 276 (100.57 ±	Forty YOY ranging from TL of 61 to 86 cm were observed

			177, UK: 14	35.41)	while no gravid females were recorded. Sex ratios of landings differed significantly from parity towards females (F: M = 1: 0.77, χ^2 [1, n = 406] = 6.66, p < 0.05).
<i>Sphyrna mokarran</i>	Great Hammerhead	CR (201 8)	2	F: 1, M: 1	F: 158.5, M: 64.5
RHINOPRISTIFORMES					
Rhinidae					
<i>Rhynchobatus</i> sp.	Wedgefish	CR (201 9)	3	F: 1, M: 2	Head and fins were cut prior to landing so species- level identification was not possible.
Glaucostegidae					
<i>Glaucostegus</i> <i>typus</i>	Giant Guitarfish	CR (201 9)	14	F: 7, M: 7	F: 187.5 - 230.2 (210.64 ±
					All specimens caught in trawl nets.

					15.51) M: 198.2 - 235.5 (217.4 ± 11.90)	
MYLIOBATIFORMES						
Gymnuridae						
<i>Gymnura poecilura</i>	Longtail Butterfly Ray	NT (200 6)	3	F: 3	F: 98 - 105.1 (90.57 ± 17.36)	Two specimens caught in trawl nets and one in demersal longline.
Dasyatidae						
<i>Himantura</i> <i>leoparda</i>	Leopard Whipray	VU (201 5)	206	F: 83, M: 121, UK: 2	F: 42 - 136.5 (94.24 ± 25.19) M: 41.7 - 153.2 (96.84 ± 19.15)	Sex ratios of landings differed significantly from parity towards males (F: M = 1: 1.45, χ^2 [1, n = 204] = 7.07, p < 0.05). Caught in trawl nets, gillnet, hook and line and demersal longlines.

<i>Himantura tutul</i>	Fine-spotted	NE	95	F: 55, M: 39, UK: 1	F: 26.5 - 145 (119.03 ± 24.39)	Sex ratios of landings did not differ significantly from parity (F: M = 1: 0.70, χ^2 [1, n = 94] = 2.72, p > 0.05). Caught in trawl nets, gillnet, hook and line and demersal longlines.
	Leopard				M: 65.5 – 138.4 (115.2 ± 13.30)	
	Whipray					
<i>Himantura uarnak</i>	Reticulate	VU (201 5)	27	F: 15, M: 12	F: 56.6 – 128 (95.64 ± 23.06)	Caught in demersal longline, hook and line and trawl net.
	Whipray				M: 72 - 123.3 (102.23 ± 15.45)	
<i>Himantura</i> <i>undulata</i>	Honeycomb	VU (201 1)	2	F: 2	F: 108 - 119.1 (113.55 ± 7.84)	Specimens caught in demersal longlines.
<i>Maculabatis</i> <i>gerrardi</i>	Whitespotted				F: 21 - 107 (82.52 ± 29.67)	Five specimens caught in trawl nets.
	Whipray	(200 4)	13	M: 6		

					M: 60 - 81 (72.03 ± 8.03)	
<i>Neotrygon</i> sp.	Blue-spotted Mask Ray	19	F: 7, M: 11, UK: 1	F: 39 - 52.5 (44.82 ± 4.02)	Individuals could not be identified to the species level and likely comprised of three species - <i>N.</i> <i>orientalis</i> , <i>N.</i> <i>caeruleopunctata</i> , <i>N. indica</i> .	
<i>Pastinachus</i> sp.	Cowtail Rays	35	F: 11, M: 23, UK: 1	F: 73 - 126.2 (101.78 ± 19.39)	Individuals could not be identified to the species level and likely comprised of two species - <i>P. ater</i> and <i>P.</i> <i>gracilicaudus</i> .	
<i>Pateobatis fai</i>	Pink Whipray	VU (201 5)	58	F: 31, M: 26, UK: 1	F: 62 - 152.5 (122.61 ± 20.16)	Sex ratios of landings did not differ significantly from parity (F: M = 1: 0.83, χ^2 [1, n =

					194 (122.06 ± 28.95)	57] = 0.43, p > 0.05). Caught in trawl nets, gillnets, hook and line and demersal longline.
<i>Pateobatis jenkinsii</i>	Jenkins Whipray	VU (201 5)	241	F: 144, M: 96, UK: 1	F: 37.5 - 138.5 (98.96 ± 31.56) M: 64.3 - 122.4 (98.94 ± 31.55)	Sex ratios of landings differed significantly from parity towards females (F: M = 1: 0.66, χ^2 [1, n = 240] = 9.6, p < 0.05). Caught in trawl nets, gillnet, hook and line and demersal longlines.
<i>Taeniurus meyeni</i>	Black-blotched Stingray	VU (201 5)	2	F: 1, M: 1	F: 108.5, M: 100.4	Landings in the month of December 2017 and January 2018. Both specimens caught in demersal longline.
<i>Urogymnus</i>	Porcupine Ray	VU	2	F: 1,	F: 109, M:	Landings in the

<i>asperrimus</i>		(201 5)		M: 1	97	month of February and May 2018.
Myliobatidae						
<i>Aetomylaeus vespertilio</i>	Ornate Eagle Ray	EN (201 5)	2	F: 1, M: 1	F: 166, M: 100.4	Landings in the month of January and March 2018. Both specimens caught in trawl nets.
Aetobatidae						
<i>Aetobatus flagellum</i>	Longheaded Eagle Ray	EN (200 6)	2	F: 2	F: 133.5 - 136.5 (135 ± 2.12)	Both specimens caught in demersal longlines.
<i>Aetobatus ocellatus</i>	Ocellated Eagle Ray	VU (201 5)	38	F: 24, M: 13, UK: 1	F: 62.5 - 156.2 (122.03 ± 26.58) M: 89 - 153.5 (118 ± 24.1)	Caught in gillnet, trawl net, hook and line, and demersal longline.
Rhinopteridae						
<i>Rhinoptera jayakari</i>	Oman Cownose Ray	NE	19	F: 9, M: 9, UK: 1	F: 75.2 - 100.5 (98.96 ± 31.60)	One gravid female landed in January measuring DW 96 cm. Two

					M: 84.4 - 96 (99.33 ± 34.19)	specimens were caught in trawl nets, one in gillnet, one in demersal longline.
Mobulidae						
<i>Mobula kuhlii</i>	Shortfin Devil Ray	DD (2007)	8	F: 8	F: 59.5 - 125 (107.36 ± 20.56)	Two specimens caught in gillnets, two in hook and line.
<i>Mobula mobular</i>	Giant Devil Ray	EN (2018)	3	F: 1, M: 2	F: 205 M: 205.5 - 213 (209.25 ± 5.30)	One specimen caught in demersal longline and one in gillnet.
<i>Mobula thurstoni</i>	Bentfin Devil Ray	EN (2018)	13	F: 5, M: 7, UK: 1	F: 78 - 167 (131.32 ± 33.72) M: 126.5 - 158.7 (149.31 ± 10.77)	One specimen caught in demersal longline, one in trawl net.
<i>Mobula</i> sp.	Devil Ray		27	F: 13, M: 9,	F: 113 - 270.5	Individuals could not be identified to

203			UK: 5	(163.76 ± 51.04) M: 112.3 - 218.3 (153.86 ± 38.07)	the species level due to improper photo documentation
-----	--	--	-------	---	--

204 The next section first provides an overview of the information collected on sharks and then rays
205 separately including species composition, species susceptibility to fishing gear, and biological
206 data of the most abundant species recorded.

207

208 **CHONDRICHTHYES: ELAMOBRANCHII: EUSELACHII: SELACHIMORPHA**

209 **Species composition**

210 Species from the Carcharhinidae family dominated landings and accounted for 19 of the 36
211 species (82.98 %). The six most dominant shark species landed were *Loxodon macrorhinus* (n
212 = 1,549, 33.44 %), *Carcharhinus amblyrhynchos* (n = 1,215, 26.23 %), *Sphyrna lewini* (n = 421,
213 9.09 %), *C. albigaratus* (n = 295, 6.36 %), *C. brevipinna* (n = 212, 4.57 %), and *Paragaleus*
214 *randalii* (n = 169, 3.64 %), constituting 83.35 % of all landings.

215 The number of sharks sampled across the year ranged from a mean abundance of 41.61 ±
216 11.58 sharks per day in January to 0.5 ± 0.93 sharks per day in May with landings peaking from
217 November (41.36 ± 11.11 sharks per day) to April (18.90 ± 3.08 sharks per day) (Fig 3).

218

219 **Fig 3. Trends in the mean abundance of daily shark and ray individuals landed across**
220 **months.** Shark abundance is represented in black, and rays in white. The seasons are north-
221 east monsoon (NE) (October–January), dry season (DS) (February–May) and south-west
222 monsoon (SW) (June–September). Error bars indicate standard error.

223

224 **Use of fishing gears and fishing grounds**

225 Twenty-one species were recorded interacting with gillnets, hook and line, and pelagic longlines
226 each, 18 species were recorded interacting with demersal longlines, 14 species with trawl nets
227 and two species (*Centrophorus atromarginatus* (n=1) and *C. granulosus* (n = 6)) with deep-sea
228 longlines.

229 Certain species were only recorded in one type of gear. For example, *Alopias pelagicus* (n =
230 28), *A. superciliosus* (n = 6), *C. longimanus* (n = 19) and *Hemitriakis indroyonoi* (n = 2) were
231 only associated with pelagic longlines; *Mustelus mosis* (n = 7) were only recorded from hook
232 and line; and *S. mokarran* (n = 2) were only recorded in trawl nets.

233 Further, there was a significant difference between the TL of sharks caught depending on the
234 type of fishing gears used ($f(5, 2,146) = 88.66, p < 0.005$). Sharks landed in pelagic longliners
235 had a high TL range from 21.5 to 376.5 cm (mean of 124.90 ± 49.83); those in demersal
236 longlines had a TL range from 42 to 214.5 cm (mean 18.81 ± 93.76); those in deep-sea
237 longlines (>200 m) had a TL range from 72.5 to 103 cm (mean of 88.3 ± 10.80); those in gillnets
238 had a TL range from 25 to 312.5 cm (mean of 97.49 ± 34.26); those in trawl nets had a TL
239 range from 50 to 297.9 cm (mean of 47.67 ± 97.65); and those from hook and line had a TL
240 range of 46 to 266.7 cm (mean of 47.67 ± 97.65) (Fig 4). The fishing grounds with frequency of
241 each fishing gear used across the islands is provided in Fig 1.

242

243 **Fig 4. Total length (in cm) of sharks landed across the different fishing gear used on the**
244 **islands.**

245

246 **Seasonality, size frequency, and length-weight relationships**

247 The following section provides details of the size frequency, seasonality and length-weight
248 relationships of the six dominant shark species landed. Additional information on all species,
249 including sex ratios where applicable and recorded size extensions for seven species, are
250 provided in Table 1. For the non-dominant shark species in landings, of the 2,258 male
251 individuals whose maturity was recorded, 35.93 % of sharks were mature. The majority of
252 specimens from small-bodied species (TL < 1.5 m) were mature (63.48%) whereas the majority
253 of specimens from large-bodied species (TL > 1.5 m) were immature (84.79%).

254

255 CARCHARHINIFORMES - CARCHARHINIDAE - *Loxodon macrorhinus*

256 The size frequency of *L. macrorhinus* followed a unimodal size distribution where mature
257 individuals of TL 85 - 95 cm (n = 830, 54.35 %) were dominantly landed across both sexes (Fig
258 5). Landings were variable across seasons with a peak during the dry season (n = 909) followed
259 by NE monsoon (n = 632) and low landings during the SW monsoon (n = 8) (Fig 6).

260

261 **Fig 5. Size frequency distribution for males and females for the six most commonly**
262 **landed shark species.** (a) *Loxodon macrorhinus*, (b) *Carcharhinus amblyrhynchos*, (c) *Sphyrna*
263 *lewini*, (d) *Carcharhinus albimarginatus*, (e) *Carcharhinus brevipinna*, and (f) *Paragaleus*
264 *randalli*. The black bars represent males and the white bars represent females. The arrows

265 represent the smallest individual representing young of year with the presence of an umbilical
266 scar 'U', 'F' the smallest gravid females recorded, and 'M' the smallest recorded mature males.

267

268 **Fig 6. The seasonal size distribution of male and females for the six most commonly**
269 **landed shark species.** (a) *Loxodon macrorhinus*, (b) *Carcharhinus amblyrhynchos*, (c) *Sphyrna*
270 *lewini*, (d) *Carcharhinus albimarginatus*, (e) *Carcharhinus brevipinna*, and (f) *Paragaleus*
271 *randalli*. The seasons are north-east monsoon (NE) (October–January), dry season (DS)
272 (February–May) and south-west monsoon (SW) (June–September). The black bars represent
273 males and the white bars represent females.

274

275 Of the 852 males, 75.94 % were mature. The smallest immature male was 32.6 cm whereas the
276 largest was 78.1 cm. The smallest mature male was 67.3 cm, whereas the largest was 102 cm
277 with a TL₅₀ of 70.61 cm (Fig 7). Landings of gravid females at various stages of embryo
278 development were observed throughout the year, whereas YOY were observed in the month of
279 March and April 2017 and 2018, with one individual observed in January 2018.

280

281 **Fig 7. Percentage of mature males with total length (TL) for sharks at 50% and 100%**
282 **maturity for the six most commonly landed shark species.** (a) *Loxodon macrorhinus* (n =
283 820), (b) *Carcharhinus amblyrhynchos* (n = 518), (c) *Sphyrna lewini* (n = 176), (d) *Carcharhinus*
284 *albimarginatus* (n = 124), (e) *Carcharhinus brevipinna* (n = 87), and (f) *Paragaleus randalli* (n =
285 91)

286

287 The length-weight relationships differed between sexes, where females showed positive
288 allometry ($b = 3.40$), whereas for males, the weight increased in an almost allometric manner (b
289 $= 2.99$), in proportion with the cube of the length (Fig 8, S1 Table).

290

291 **Fig 8. Length and weight relationships between total body mass (kg) and total length**
292 **(cm) for the six most commonly landed shark species.** (a) *Loxodon macrorhinus*, (b)
293 *Carcharhinus amblyrhynchos*, (c) *Sphyrna lewini*, (d) *Carcharhinus albimarginatus*, (e)
294 *Carcharhinus brevipinna*, and (f) *Paragaleus randalli*.

295

296 CARCHARHINIFORMES - CARCHARHINIDAE - *Carcharhinus amblyrhynchos*
297 Immature individuals of size class TL 61 - 81 cm dominated landings across both sexes ($n =$
298 441, 38.28 %), followed by size class 81 - 100.9 cm ($n = 310, 26.90 %$) (Fig 5). Landings were
299 variable across seasons with a peak during the dry season ($n = 633$) followed by NE monsoon
300 ($n = 559$) and a lower number of individuals landed during the SW monsoon ($n = 23$) (Fig 6).

301 Of the 555 males, 16.19 % were mature. The smallest mature male was TL 126.3 cm whereas
302 the largest was 206 cm. The TL_{50} of males was 131.69 cm (Fig 7).

303 The length-weight relationships did not differ between sexes, where both the sexes showed a
304 positive allometric relationship (female $b = 3.45$; male $b = 3.29$), in proportion with the cube of
305 the length (Fig 8, S1 Table).

306

307 CARCHARHINIFORMES - SPHYRNIDAE- *Sphyrna lewini*

308 Landings of *S. lewini* were dominated by the size class TL 91 to 120.9 cm (n = 204, 50.37 %),
309 followed by size class 61 - 90.9 cm (n = 150, 37.03 %) (Fig 5). Landings were variable across
310 seasons with a peak during the dry season (n = 211) followed by NE monsoon (n = 189)
311 whereas comparatively fewer landings were recorded during the SW monsoon (n = 21) (Fig 6).
312 Of 177 males, 9.65 % were mature. Immature individuals measured 35.5 to 170.4 cm TL,
313 whereas mature individuals measured 177 to 238 cm TL with a TL₅₀ of 173 cm (Fig 7).
314 The length-weight relationships did not differ between sexes, where both the sexes showed a
315 positive allometric relationship (female b = 2.91; male b = 2.60), in proportion with the cube of
316 the length (Fig 8, S1 Table).

317

318 CARCHARHINIFORMES - CARCHARHINIDAE - *Carcharhinus albimarginatus*
319 The size frequency of *C. albimarginatus* followed a unimodal size distribution where immature
320 individuals of size class TL 91 - 121 cm dominated landings (n = 109, 40.37 %) across both
321 sexes (Fig 5). Landings were variable across seasons with a peak during the dry season (n =
322 177), followed by NE monsoon (n = 118) with none recorded during the SW monsoons (Fig 6).
323 Of the 137 males, 4.47 % were mature. The smallest mature male was 173 cm whereas the
324 largest was 249 cm. The TL₅₀ of males was 178.98 cm (Fig 7).
325 The length-weight relationships showed that males and females did not differ significantly in
326 their average weight for a given length, and weight increased in a positive allometric manner
327 (female b = 3.65; male b = 3.55), in proportion with the cube of the length (Fig 8, S1 Table).

328

329 CARCHARHINIFORMES - CARCHARHINIDAE - *Carcharhinus brevipinna*

330 Juveniles of the size class TL 51 - 80.9 cm (n = 110, 52.88 %) dominated landings, followed by
331 size class 81 - 110.9 cm (n = 54, 25.96 %) where male YOY (n = 62) were more abundant than
332 females (n = 48) (Fig 5). Landings were variable across seasons and differed in sex and size.

333 Landings peaked during the dry season (n = 159) followed by NE monsoon (n = 52) with low
334 landings during the SW monsoon (n = 1) (Fig 6).

335 Of the 116 males sampled, 10.11 % were mature. Mature males ranged from TL 172 to 212 cm,
336 whereas immature males ranged from TL 62.6 to 175.78 cm. The TL₅₀ of males was 175.78 cm
337 (Fig 7).

338 The length-weight relationships differed between sexes, where the female showed positive
339 allometry (b = 3.20), whereas for males, the weight increased in a near perfectly allometric
340 manner (b = 3.23), in proportion with the cube of the length (Fig 8, S1 Table).

341

342 CARCHARHINIFORMES - HEMIGALEIDAE - *Paragaleus randalli*

343 The size frequency followed a unimodal distribution where females of size classes TL 81 - 90.9
344 cm (n = 87, 51.47 %) dominated landings, followed by 91 - 100.9 cm (n = 46, 27.2 %) (Fig 5).
345 Landings peaked during the dry season (n = 120) followed by a decrease in NE monsoon (n =
346 49) whereas no landings were observed during the SW monsoons (Fig 6).

347 Of 91 males recorded, 93.4 % were mature. The smallest immature individual measured 43.5 cm
348 whereas the largest measured 76.5 cm. The smallest mature individual measured 74.5 cm,
349 whereas the largest measured 106.2 cm with a TL₅₀ of 69.6 cm (Fig 7).

350 The length-weight relationships showed that males and females did not differ significantly in
351 their average weight for a given length, and weight increased in a positive allometric manner
352 (female b = 2.65; male b = 2.59), in proportion with the cube of the length (Fig 8, S1 Table).

353

354 **RAYS**

355 **CHONDRICHTHYES: ELASMOBRANCHII: BATOIDEA**

356 **Species composition**

357 Species from the *Dasyatidae* family dominated landings, accounting for 11 of the 21 species,
358 and 63.06 % of the total landings. The three most common rays landed were *Pateobatis*
359 *jenkinsii* (n = 241, 21.71 %), *Himantura leoparda* (n = 206, 18.55 %) and *H. tutul* (n = 95, 8.55
360 %); representing 48.82 % of the total ray landings.

361 The number of rays sampled across the year ranged from 11.2 ± 3.45 rays per day in February
362 to 3.07 ± 3.66 rays per day in November with no pattern observed in landings (Fig 3).

363

364 **New species records**

365 Three species of rays, *Aetobatus flagellum*, *H. tutul*, and *P. fai*, were recorded for the first time
366 from the Andaman and Nicobar Islands (Table 1, S1 Fig).

367 Eight species previously not confirmed but reported as possibly occurring on the islands by
368 Kumar et al. [24] have been confirmed: *Aetomylaeus vespertilio*, *Glaucostegus typus*, *H.*
369 *undulata*, *Mobula kuhlii*, *M. tarapacana*, *Pastinachus ater*, *P. jenkinsii*, and *Urogymnus*
370 *asperrimus*.

371

372 **Use of fishing gears and fishing grounds**

373 Sixteen species of rays were captured in demersal longlines, 14 species in trawl nets, ten in gill
374 nets, seven in hook and line, and two in pelagic longlines. No rays were captured in deep-sea

375 longlines. Certain species were caught exclusively in certain gears. For example, *A. vespertilio*
376 (n = 2), and *Maculabatis gerrardi* (n = 13) were only caught in trawl nets.

377

378 **Biological traits for rays**

379 Of the 513 male individuals recorded, 80.71 % were mature. Sex ratios were calculated for four
380 rays, *H. tutul*, *H. leoparda*, *P. fai* and *P. jenkinsii* (Table 1).

381

382 **DISCUSSION**

383 This is the first systematic landing survey carried out for sharks and rays in the Andaman and
384 Nicobar Islands, contributing to the current knowledge of species diversity and biology for the
385 south and south-east Asian region. Three ray species are new records for the Andaman and
386 Nicobar Islands, including one new record for India, increasing the elasmobranch diversity for
387 the Andaman and Nicobar Islands from 103 to 106, and for India to 152 [24]. A threshold was
388 reached in terms of shark species recorded, but additional efforts are required to fully document
389 ray diversity. The diversity and high number of species recorded around the islands reflect the
390 diverse habitats they support and yet that also overlap with important fishing zones.

391 Only two species of deep-sea sharks were recorded in this study despite recent additions of
392 seven new records from the region [14, 23 - 25]. This was due to the logistical difficulties in
393 sampling the large quantities of deep-sea sharks landed, along with time constraints between
394 landings and transport to the storage units. Currently, there is an ongoing targeted deep-sea
395 shark fishery in the Andaman Islands that supplies the demand for shark liver oil [15]. Deep-sea
396 sharks have rates of population increase, that are on average, less than half those of shelf and
397 pelagic species and some of the lowest levels recorded to date [34]. These life history traits do

398 not allow them to sustain intense fishing pressure which can lead to rapid population declines.
399 This has been previously documented in the Indian Ocean region with the collapse of deep-sea
400 fisheries along the west coast of India and the Maldives occurring within a short time period
401 after the beginning of their exploitation [17, 35]. In addition, population recovery rates also
402 decrease with increasing depth, suggesting that these species are most susceptible to
403 overexploitation [34]. Thus, we emphasise the urgency and importance of assessing the status
404 and monitoring the populations of deep-sea sharks as well as determining the socio-economic
405 benefits and impacts of the trade in shark liver oil so that management measures such as catch
406 limits, and spatial or temporal regulations can be put in place in order to avoid a collapse of this
407 fishery.

408 Many rays (e.g., *Neotrygon* sp., *Pastinachus* sp.) could not be identified to the species level due
409 to their tails being cut, difficulty in manipulation due to their weight, or traders transporting them
410 before photo documentation was possible. Ongoing taxonomical uncertainty for many ray
411 species currently exists in India, where there is ambiguity in several species complexes. In order
412 to address and resolve this, a robust taxonomic framework needs to be developed which can be
413 used to better understand diversity and potential impacts from fishing pressure on key species.
414 Thus, in the future, a combination of molecular techniques, and long-term fishery-independent
415 surveys need to be established to gain a holistic picture of diversity as well as population trends
416 in the region.

417 At many sites sampled around the world, smaller size species are predominantly landed, as
418 many of the larger shark species have been overfished [36 - 39]. On peninsular India, shark
419 stocks have also declined over the past decade with smaller, faster-growing shark species
420 displacing larger, slower-growing species [5, 11, 40 - 43]. A decrease in the diversity of species
421 landed has also been documented in areas with high fishing pressure. Indeed, Thailand, closer
422 to Andaman and Nicobar Islands than to mainland India, has recorded a decrease in landings of

423 larger sharks from 41 species in 2004 to 15 species in 2014-15 [44]. Yet our results indicated
424 that this is not yet the case in the Andaman and Nicobar Islands as four of the six dominantly
425 landed sharks are larger bodied shark species. This suggests that we are still at a point where
426 informed management decisions can lead to the conservation of these populations. However,
427 as gravid females, juveniles and YOYs are being fished, the productivity, resilience and
428 sustainability of these populations may have already reduced [45].

429 The largest size range in sharks was recorded in landings from pelagic longlines and gillnets.
430 While gillnets fish up to seven nautical miles from the coast across the Andaman Islands,
431 pelagic longlines fish exclusively beyond seven nautical miles from the coast and within 12
432 nautical miles, and are known to fish in waters from South Andaman to Nicobar. The high range
433 of TL and non-specificity of gear catch could be ascribed to the gear size, fishing grounds, or
434 the activity patterns of the diverse species ecology. In future, size - specificity studies in relation
435 to the catch by gears need to be conducted in order to determine gear modifications best suited
436 for the susceptible life history stages of threatened shark and ray populations.

437 This study emphasizes the overlap between critical habitats and fishing grounds as all life-
438 stages for most species were recording highlighting their susceptibility to fishing pressure.
439 Gravid females of 12 species were reported with fishers confirming that they were fished in the
440 waters of the Andaman and Nicobar Islands. Juveniles of large shark species are being fished
441 intensely, such as *Carcharhinus albimarginatus*, *C. amblyrhynchos*, *C. brevipinna* and *Sphyrna*
442 *lewini*, which is a reason to be concerned as these species exhibit particularly low productivity
443 and growth rates leading to high susceptibility to anthropogenic pressure and are slow to
444 recover from overexploitation [46]. The presence of high abundance of YOY for these species
445 suggests that these species might be using the islands as pupping or nursery grounds.
446 *Carcharhinus brevipinna* and *S. lewini* have been recorded to use inshore nursery areas for

447 their young [47 - 49]. Thus, we recommend that these breeding and nursery grounds need to be
448 identified and evaluated, following which they can be temporally and spatially managed.

449 Sex ratios in landings differed across species and fishing gears, which could be due to
450 confounding factors such as gear selectivity, fishing grounds, season, productivity, currents and
451 bathymetry [51]. Significantly more females than males for *C. amblyrhynchos*, *S. lewini*, and *P.*
452 *jenkinsii* suggests that females of these species dominate the populations in these waters.

453 These are also aggregating species often exhibiting some degree of site fidelity [52 - 56]
454 another ecological character that needs to be considered in spatial management. Similarly, for
455 *L. macrorhinus*, and *H. leoparda*, significantly more males were landed than females, whereas
456 parity was recorded for *C. falciformis*. In future, region-specific studies need to be carried out to
457 assess sex-mediated spatial ecology for sharks and rays. Systematic sampling from fishing
458 vessels across seasons would also be required to get fine-scale overlap between temporal and
459 spatial distribution of shark and rays as well as fishing gear specificity.

460 Landings for sharks peaked from November to April, coinciding with pelagic longlines targeting
461 sharks during this time. Landings in December were unpredictable where sampling differed from
462 the highest number of sharks to a complete absence of sharks resulting in a higher standard
463 error. Seasonal differences during the year could be ascribed to various factors such as the
464 weather, access to fishing grounds, fishing gears used, and the ecology of the species fished.
465 During the SW monsoon (May to September), the absence of landings at the Junglighat site
466 could be due to the weather which makes it risky for fishers to go out fishing or the seasonal
467 ban on trawlers and pelagic longliners.

468 It is noteworthy to highlight species diversity, quantities landed and TL ranges were highest in
469 pelagic longlines. Landings from these gears included threatened species such as *Alopias*
470 *pelagicus*, *A. superciliosus*, *C. falciformis*, *C. longimanus*, and *S. lewini* which are migratory
471 species. These species are listed under Appendix I (*C. longimanus*) and II of the Convention on

472 the Conservation of Migratory Species of Wild Animals (CMS) and the Convention on
473 International Trade in Endangered Species of Wild Fauna and Flora (CITES), for international
474 cooperation for conservation of migratory species and to regulate their trade, respectively. Since
475 India is a signatory to these conventions, there is an urgent need for regional cooperation to
476 ensure their protection as well as trade controls. CITES specifically requires the development of
477 a Non-Detrimental Findings to assure that trade is not adversely impacting populations [59],
478 something that has yet to be done in India. Given India's long coastline of nearly 7,516 km,
479 along with the multi-stakeholder and multi-gear nature of fisheries, it is challenging to
480 comprehensively monitor the trends in landings of sharks and rays. While the Central Marine
481 Fisheries Research Institute (CMFRI) in India has the most comprehensive fisheries database
482 dating back to 1947, it is restricted to peninsular India, with no presence in the Andaman and
483 Nicobar Islands. Here, the monitoring is undertaken by the Andaman and Nicobar Islands
484 Directorate of Fisheries who broadly focuses on commercial fish stocks and does not include
485 species-specific categories for sharks and rays [15]. Additionally, the Zoological Society of India
486 (ZSI), Fisheries Survey of India (FSI) and Central Island Agricultural Research Institute (ICAR)
487 conduct opportunistic surveys to document species diversity. We conducted this study in the
488 Andaman Islands to fill this gap, however, additional studies are required to address ongoing
489 taxonomic ambiguities, improve knowledge of species by expanding fisheries independent
490 monitoring, and to facilitate long-term species-specific monitoring. The latter would benefit the
491 government as it would ensure traceability and control of onward trade. This in turn could help
492 determine management and conservation measures for implementing CITES.

493 Shark and ray species protected under the WLPA were rarely landed (only two individuals of *U.*
494 *asperrimus* were recorded). Most of the species listed in the WLPA are found in estuarine
495 habitats and are not likely to occur around the islands, including *Anoxypristis cuspidata*, *Glypis*
496 *gangeticus*, and *G. glyphis*. *Rhynchobatus djiddensis* listed in the WLPA does not appear to

497 occur in India and the species complex could include *R. australiae* and *R. laevis* [60]. However,
498 the latter two species are not protected under the WLPA. Anecdotal reports from fishers state
499 that a few of these species (e.g., *Pristis* sp.) have not been seen or landed for over a decade (Z.
500 Tyabji unpubl. data). This highlights the urgent need for amending the WLPA and to include
501 Critically Endangered and Endangered species that occur in India to the list of protected
502 species. However, species-selective bans in non-selective multi-gear fishery are difficult to
503 implement, thus amending the WLPA has to be combined with stakeholder engagement and
504 other regulations such as fishing gear modifications and spatial closures.

505 While there exists a 45-day shark fishing ban, there are no regulations for ray fishing, despite
506 them being predominantly threatened species. Of the 19 ray species identified, 15 species
507 (85.17 %) are listed on the IUCN Red List of Threatened Species as threatened (Critically
508 Endangered, Endangered, or Vulnerable), one species (0.4 %) as Near Threatened, one
509 species (1.08 %) as Data Deficient, and two species (13.33 %) have not been evaluated. Rays
510 are extremely susceptible to overexploitation, with wedgefishes and giant guitarfishes being the
511 most imperiled marine taxa globally [1, 60]. Susceptibility studies on the various sharks and ray
512 species in Papua New Guinea, deemed *P. jenkinsii* at the highest risk in trawl fisheries [61].
513 This was one of the most dominant species landed in the Andaman and Nicobar Islands. This is
514 concerning as most ray species utilize coastal areas which overlap with the majority of fisheries.
515 Additionally, there is a developing targeted ray fishery in the islands (Z. Tyabji unpubl. data) due
516 to the local demand for their meat and trade in their skins. Studies regarding the local population
517 status and exploitation rate of rays on the islands are urgently required, following which a
518 prioritizing exercise needs to be conducted which takes into account the life history traits,
519 susceptibility to fishing pressures, and population recovery rate. Based on this, ray species that
520 are most susceptible to overexploitation need to be identified and a management plan needs to
521 be developed and implemented.

522 While sustainability can be attained by a combination of policy changes such as the
523 identification and protection of critical shark and ray habitats and populations, gear
524 modifications, and implementing seasonal and temporal bans, it is a daunting task due to the
525 lack of data on which to base these management strategies. We recommend additional studies
526 and continued long-term monitoring with a focus on threatened species in order to establish
527 appropriate management measures. We also need to understand the socio-economic
528 importance of shark and ray fisheries for the range of stakeholders and communities on the
529 islands; and the role of these fisheries in the supply chain of both domestic and global markets
530 while designing management strategies. It is essential that policy formulation and changes are
531 carried out with the involvement of fishers and local stakeholders for effective implementation.
532 Thus, we suggest adapting science-based management techniques with the inclusiveness of
533 stakeholders involved so as to avoid overexploitation of sharks and rays and aid in their
534 conservation.

535

536 **ACKNOWLEDGEMENT**

537 We would like to thank the fishers, traders and processing unit managers at the study sites for
538 their help and support. We are grateful to Nairika Barucha, Vishwanath K. G., Harsh Narola,
539 Mahi Mankeshwar, Anushka Rege, Evan Nazareth, Mahadev, Sachin Vaishampayan, and
540 Sitara Hussain for helping with data collection. Lastly, we are thankful to Andaman Nicobar
541 Environment Team for their logistical support.

542

543 **REFERENCES**

544 1. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK,
545 Davidson LN, Fordham SV, Francis MP, Pollock CM. Extinction risk and conservation of the
546 world's sharks and rays. *elife*. 2014 Jan 21;3:e00590.

547 2. Compagno L, Dando M, Fowler S. A field guide to the sharks of the world.

548 3. Bradley D, Conklin E, Papastamatiou YP, McCauley DJ, Pollock K, Kendall BE, Gaines SD,
549 Caselle JE. Growth and life history variability of the grey reef shark (*Carcharhinus*
550 *amblyrhynchos*) across its range. *PLoS One*. 2017;12(2).

551 4. Stevens JD, Bonfil R, Dulvy NK, Walker PA. The effects of fishing on sharks, rays, and
552 chimaeras (chondrichthyans), and the implications for marine ecosystems. *ICES Journal of*
553 *Marine Science*. 2000 Jun 1;57(3):476-94.

554 5. Zacharia PU, Kizhakudan SJ, Thomas S, Manojkumar PP, Nair RJ, Najmudeen TM,
555 Purushottama GB, Muktha M, Dash SS, Akhilesh KV, Remya L. *CMFRI Marine Fisheries*
556 *Policy Series No-6; Non-Detriment Findings (NDF) for the export of Shark and Ray species*
557 *listed in Appendix II of the CITES and harvested from Indian waters. CMFRI Marine*
558 *Fisheries Policy Series*. 2017(6):1-02.

559 6. Okes N, Sant G. An overview of major shark traders, catchers and species. *TRAFFIC*,
560 Cambridge, UK.

561 7. Bhargava AK, Somvanshi VS, Varghese S. Pelagic sharks by-catch in the tuna longline
562 fishery of the Indian EEZ. *Management of Scombroid fisheries*. 2002:165-76.

563 8. Jayaprakash AA, Pillai NG, Elayathu MN. Drift gill net fishery for large pelagics at Cochin-A
564 case study on by-catch of pelagic sharks. *Management of Scombroid fisheries*. 2002:155-
565 64.

566 9. Varghese S, Somvanshi VS, Varghese SP. Bycatch of sharks and Incidental catches of sea
567 turtle in the long line fishery of Indian waters as observed during tuna resources survey.
568 Indian Ocean Tuna Commission Working Party on Ecosystems and Bycatch, Victoria,
569 Seychelles. 2007.

570 10. Kar AB, Govindaraj K, Ramalingam L, Prasad GV. Bycatch in tuna longline fishery in the
571 Indian EEZ around Andaman and Nicobar Islands. Indian Ocean Tuna Commission Working
572 Party on Ecosystems and Bycatch. 2011;19.

573 11. Karnad D, Sutaria D, Jabado RW. Local drivers of declining shark fisheries in India. Ambio.
574 2020 Feb 1;49(2):616-27.

575 12. CMFRI. Marine Fisheries Census India Report. 2010. Retrieved from
576 http://eprints.cmfri.org.in/8998/1/India_report_full.pdf

577 13. Rajan PT, Mishra SS, Kumar RR, Basheer VS, Bineesh KK, Venu S. First incidence of three
578 sharks off Andaman Islands, India. Journal of the Andaman Science Association.
579 2016;21(2):221-8.

580 14. Tyabji Z, Jabado RW, Sutaria D. New records of sharks (Elasmobranchii) from the Andaman
581 and Nicobar Archipelago in India with notes on current checklists. Biodiversity data journal.
582 2018(6).

583 15. Advani S, Sridhar A, Namboothri N, Chandi M, Oommen MA. Emergence and
584 transformation of marine fisheries in the Andaman Islands. Dakshin Foundation and ANET.
585 2013:1-50.

586 16. Christensen J, Tull M. Introduction: Historical perspectives of fisheries exploitation in the
587 Indo-Pacific. In Historical Perspectives of Fisheries Exploitation in the Indo-Pacific 2014 (pp.
588 1-12). Springer, Dordrecht.

589 17. Jabado RW, Kyne PM, Pollom RA, Ebert DA, Simpfendorfer CA, Ralph GM, Al Dhaheri SS,
590 Akhilesh KV, Ali K, Ali MH, Al Mamari TM. Troubled waters: Threats and extinction risk of
591 the sharks, rays and chimaeras of the Arabian Sea and adjacent waters. Fish and Fisheries.
592 2018 Nov;19(6):1043-62.

593 18. Andaman and Nicobar Islands Fisheries Policy 2018.
594 <http://www.and.nic.in/pdf/policydocument.pdf>

595 19. Mohamad Kasim H. Shark fishery of Veraval coast with special reference to population
596 dynamics of *Scoliodon laticaudus* (Muller Andhenle) and *Rhizoprionodon acutus* (Ruppell).
597 Journal of the Marine Biological Association of India. 1991;33(172):213-28.

598 20. Yamaguchi A, Taniuchi T, Shimizu M. Geographic variations in reproductive parameters of
599 the starspotted dogfish, *Mustelus manazo*, from five localities in Japan and in Taiwan.
600 Environmental Biology of Fishes. 2000 Feb 1;57(2):221-33.

601 21. Walker TI. Spatial and temporal variation in the reproductive biology of gummy shark
602 *Mustelus antarcticus* (Chondrichthyes: Triakidae) harvested off southern Australia. Marine
603 and Freshwater Research. 2007 Feb 21;58(1):67-97.

604 22. Kumar RR, Venu S, Akhilesh KV. First Report of Magnificent Catshark, *Proscyllium*
605 *magnificum* Last and Vongpanich, 2004 (Proscylliidae: Carcharhiniformes) from Bay of
606 Bengal, Indian EEZ. World Journal of Fish and Marine Sciences. 2015;7(6):479-81.

607 23. Kumar RR, Venu S, Bineesh KK, Basheer VS. New biogeographic data and DNA barcodes
608 for the Indian swellshark, *Cephaloscyllium silasi* (Talwar, 1974) (Elasmobranchii:
609 Carcharhiniformes: Scyliorhinidae), from Andaman waters. Acta Ichthyologica et Piscatoria.
610 2016 Jul 1;46(2).

611 24. Kumar RR, Venu S, Akhilesh KV, Bineesh KK. First report of four deep-sea chondrichthyans
612 (Elasmobranchii and Holocephali) from Andaman waters, India with an updated checklist
613 from the region. Acta Ichthyologica et Piscatoria. 2018;48(3):289-301.

614 25. Pradeep HD, Shirke SS, Nashad M, Sukham MD. A first record of the smallfin gulper shark
615 *Centrophorus moluccensis* Bleeker, 1860 (Chondrichthyes: Squaliformes: Centrophoridae)
616 from the Andaman & Nicobar waters, Indian EEZ. Journal of Threatened Taxa. 2017 Nov
617 26;9(11):10899-903.

618 26. Pradeep HD, Swapnil SS, Ramachandran S, Pattnayak SK. Report of the crocodile shark
619 *Pseudocarcharias kamoharai* (Matsubara, 1936) from deep waters of the Andaman Sea.
620 Marine Biodiversity. 2017 Jun 1;47(2):535-8.

621 27. Jaini M, Advani S, Shanker K, Oommen MA, Namboothri N. History, culture, infrastructure
622 and export markets shape fisheries and reef accessibility in India's contrasting oceanic
623 islands. *Environmental Conservation*. 2018 Mar;45(1):41-8.

624 28. Patankar V, D'Souza E, Alcoverro T, Arthur R. Erosion of traditional marine management
625 systems in the face of disturbances in the Nicobar Archipelago. *Human ecology*. 2015 Oct
626 1;43(5):697-707.

627 29. Ebert DA. *A pocket guide to sharks of the world*. Princeton University Press; 2015.

628 30. Jabado RW, Ebert DA. *Sharks of the Arabian Seas: an identification guide*. IFAW, Dubai.
629 2015.

630 31. Last P, Naylor G, Séret B, White W, de Carvalho M, Stehmann M, editors. *Rays of the
631 World*. CSIRO publishing; 2016.

632 32. Jabado RW. *Wedgefishes and giant guitarfishes: a guide to species identification*. Wildlife
633 Conservation Society, New York. 2019.

634 33. Zar JH. *Biostatistical analysis*. Pearson Education India; 1999.

635 34. Simpfendorfer CA, Kyne PM. Limited potential to recover from overfishing raises concerns
636 for deep-sea sharks, rays and chimaeras. *Environmental Conservation*. 2009 Jun;36(2):97-
637 103.

638 35. Akhilesh KV, Ganga U, Pillai NG, Vivekanandan E, Bineesh KK, Shanis CR, Hashim M.
639 Deep-sea fishing for chondrichthyan resources and sustainability concerns—a case study
640 from southwest coast of India. NISCAIR-CSIR; 2011.

641 36. Henderson A, Al-Oufi H, McIlwain J. Survey, status and utilization of the elasmobranch
642 fishery resources of the Sultanate of Oman. Sultan Qaboos University, Muscat. 2007.

643 37. Valinassab T, Daryanabard R, Dehghani R, Pierce GJ. Abundance of demersal fish
644 resources in the Persian Gulf and Oman Sea. *Journal of the Marine Biological Association
645 of the United Kingdom*. 2006 Dec;86(6):1455-62.

646 38. Jabado RW, Al Ghais SM, Hamza W, Henderson AC, Spaet JL, Shivji MS, Hanner RH. The
647 trade in sharks and their products in the United Arab Emirates. *Biological Conservation*.
648 2015 Jan 1;181:190-8.

649 39. Hasan MDM. Threatened shark biodiversity in the Bay of Bengal, Bangladesh: conservation
650 needs *Journal of Aquatic Marine Biology*. 2018;7(3):136.

651 DOI: [10.15406/jamb.2018.07.00199](https://doi.org/10.15406/jamb.2018.07.00199).

652 40. Mohanraj G, Rajapackiam S, Mohan S, Batcha H, Gomathy S. Status of elasmobranchs
653 fishery in Chennai, India. *Asian Fisheries Science*. 2009;22(2):607-15.

654 41. Karnad D, Gangal M, Karanth KK. Perceptions matter: how fishermen's perceptions affect
655 trends of sustainability in Indian fisheries. *Oryx*. 2014 Apr;48(2):218-27.

656 42. Mohamed KS, Veena S. How long does it take for tropical marine fish stocks to recover after
657 declines? Case studies from the Southwest coast of India. *Current Science*. 2016 Feb
658 25:584-94.

659 43. Barnes A, Sutaria D, Harry AV, Jabado RW. Demographics and length and weight
660 relationships of commercially important sharks along the north-western coast of India.
661 *Aquatic Conservation: Marine and Freshwater Ecosystems*. 2018 Dec;28(6):1374-83.

662 44. Arunrugstichai S, True JD, White WT. Catch composition and aspects of the biology of
663 sharks caught by Thai commercial fisheries in the Andaman Sea. *Journal of fish biology*.
664 2018 May;92(5):1487-504.

665 45. Smith WD, Cailliet GM, Cortés E. Demography and elasticity of the diamond stingray,
666 *Dasyatis dipterura*: parameter uncertainty and resilience to fishing pressure. *Marine and*
667 *Freshwater Research*. 2008 Aug 14;59(7):575-86.

668 46. Branstetter S. Age and growth estimates for blacktip, *Carcharhinus limbatus*, and spinner, *C.*
669 *brevipinna*, sharks from the northwestern Gulf of Mexico. *Copeia*. 1987 Dec 9:964-74.

670 47. Castro JI. The sharks of North American waters. College Station: Texas A & M University
671 Press; 1983 Mar.

672 48. Simpfendorfer CA, Milward NE. Utilisation of a tropical bay as a nursery area by sharks of
673 the families Carcharhinidae and Sphyrnidae. *Environmental Biology of Fishes*. 1993 Aug
674 1;37(4):337-45.

675 49. Duncan KM, Holland KN. Habitat use, growth rates and dispersal patterns of juvenile
676 scalloped hammerhead sharks *Sphyrna lewini* in a nursery habitat. *Marine Ecology Progress Series*
677 Series. 2006 Apr 24;312:211-21.

678 50. Heupel MR, Carlson JK, Simpfendorfer CA. Shark nursery areas: concepts, definition,
679 characterization and assumptions. *Marine Ecology Progress Series*. 2007 May 14;337:287-
680 97.

681 51. Moore AB, McCarthy ID, Carvalho GR, Peirce R. Species, sex, size and male maturity
682 composition of previously unreported elasmobranch landings in Kuwait, Qatar and Abu
683 Dhabi Emirate. *Journal of Fish Biology*. 2012 Apr;80(5):1619-42.

684 52. Stevens JD. Life-history and ecology of sharks at Aldabra Atoll, Indian Ocean. *Proceedings*
685 of the Royal society of London. Series B. Biological sciences. 1984 Jul 23;222(1226):79-
686 106.

687 53. McKibben JN, Nelson DR. Patterns of movement and grouping of gray reef sharks,
688 *Carcharhinus amblyrhynchos*, at Enewetak, Marshall Islands. *Bulletin of Marine Science*.
689 1986 Jan 1;38(1):89-110.

690 54. Vianna GM, Meekan MG, Meeuwig JJ, Speed CW. Environmental influences on patterns of
691 vertical movement and site fidelity of grey reef sharks (*Carcharhinus amblyrhynchos*) at
692 aggregation sites. *PloS one*. 2013;8(4).

693 55. Economakis AE, Lobel PS. Aggregation behavior of the grey reef shark, *Carcharhinus*
694 *amblyrhynchos*, at Johnston Atoll, Central Pacific Ocean. *Environmental Biology of Fishes*.
695 1998 Feb 1;51(2):129-39.

696 56. Naless E, Hearn A, Sosa-Nishizaki O, Steiner T, Antoniou A, Reid A, Bessudo S, Soler G,
697 Klimley AP, Lara F, Ketchum JT. Movements of scalloped hammerhead sharks (*Sphyrna*

698 *Iewini*) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical
699 Pacific. *PLoS one*. 2019;14(3).

700 57. Stevens JD, McLoughlin KJ. Distribution, size and sex composition, reproductive biology
701 and diet of sharks from northern Australia. *Marine and Freshwater Research*.
702 1991;42(2):151-99.

703 58. Robinson L, Sauer WH. A first description of the artisanal shark fishery in northern
704 Madagascar: implications for management. *African Journal of Marine Science*. 2013 Mar
705 1;35(1):9-15.

706 59. Hacohen-Domené A, Polanco-Vásquez F, Estupiñan-Montaño C, Graham RT. Description
707 and characterization of the artisanal elasmobranch fishery on Guatemala's Caribbean coast.
708 *PLoS one*. 2020 Jan 13;15(1):e0227797.

709 60. Kyne PM, Jabado RW, Rigby CL, Gore MA, Pollock CM, Herman KB, Cheok J, Ebert DA,
710 Simpfendorfer CA, Dulvy NK. The thin edge of the wedge: extremely high extinction risk in
711 wedgefishes and giant guitarfishes. *bioRxiv*. 2019 Jan 1:595462.

712 61. White WT, Baje L, Simpfendorfer CA, Appleyard SA, Chin A, Sabub B, Rochel E, Naylor GJ.
713 Elasmobranch bycatch in the demersal prawn trawl fishery in the Gulf of Papua, Papua New
714 Guinea. *Scientific reports*. 2019 Jun 25;9(1):1-6.

715

716 **SUPPORTING INFORMATION**

717 **S1 Table. Maximum likelihood estimates of length and weight regression parameters for**
718 **the six commonly landed shark species.**

719 **S1 Fig. 1) *Aetobatus flagellum* (a) dorsal view (b) ventral view of the mouth; 2) Two**
720 **colourations of *Himantura tutul* (a) dorsal view (b) denticles on the nuchal area (c) dorsal**
721 **view (d) denticles on the nuchal area; 3) *Pateobatis fai* (a) dorsal view (b) ventral view (c) tail**

722 **S2 Fig. Sharks and rays landed at the fish landing sites.** Clockwise from top left: Deep-sea
723 sharks caught from deep-sea longline landed at Burmanallah; Fishers take out sharks from the
724 pelagic longline boats at Junglighat; Shark fins kept to dry; Landed rays are weighed, following
725 which they will be transported to the storage units; Adult and juvenile sharks of various species
726 landed at Junglighat.

727

728 **AUTHOR CONTRIBUTIONS**

729 Conceptualization: ZT, VP, DS

730 Data Curation: ZT

731 Formal Analysis: ZT

732 Funding Acquisition: ZT

733 Investigation: ZT, TW

734 Methodology: ZT, RWJ, DS

735 Project Administration: ZT

736 Resources: ZT

737 Software: ZT, RWJ

738 Supervision: RWJ, DS

739 Validation: RWJ, DS

740 Visualization: ZT, TW

741 Writing – Original Draft Preparation: ZT

742 Writing – Review & Editing: ZT, TW, VP, RWJ, DS

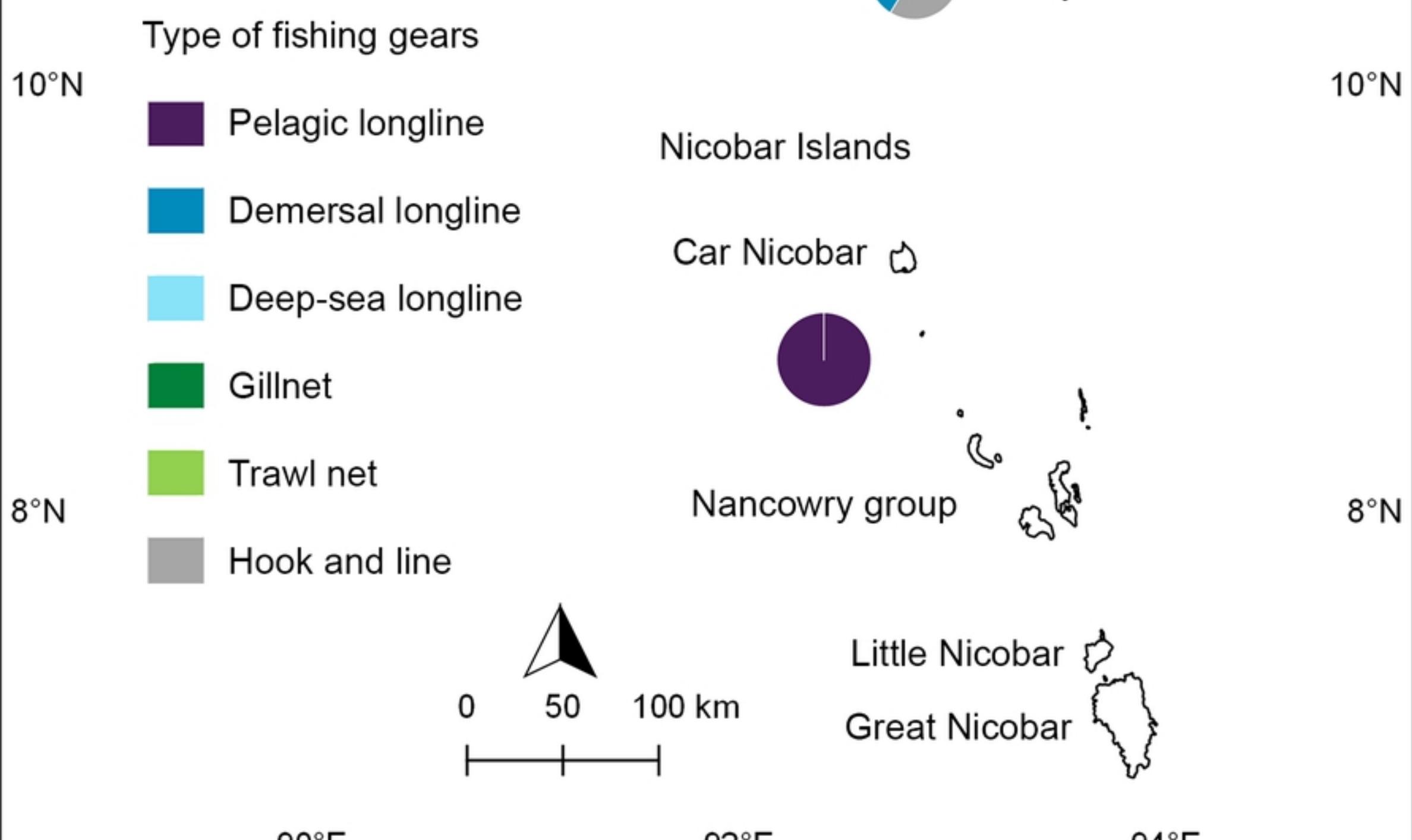
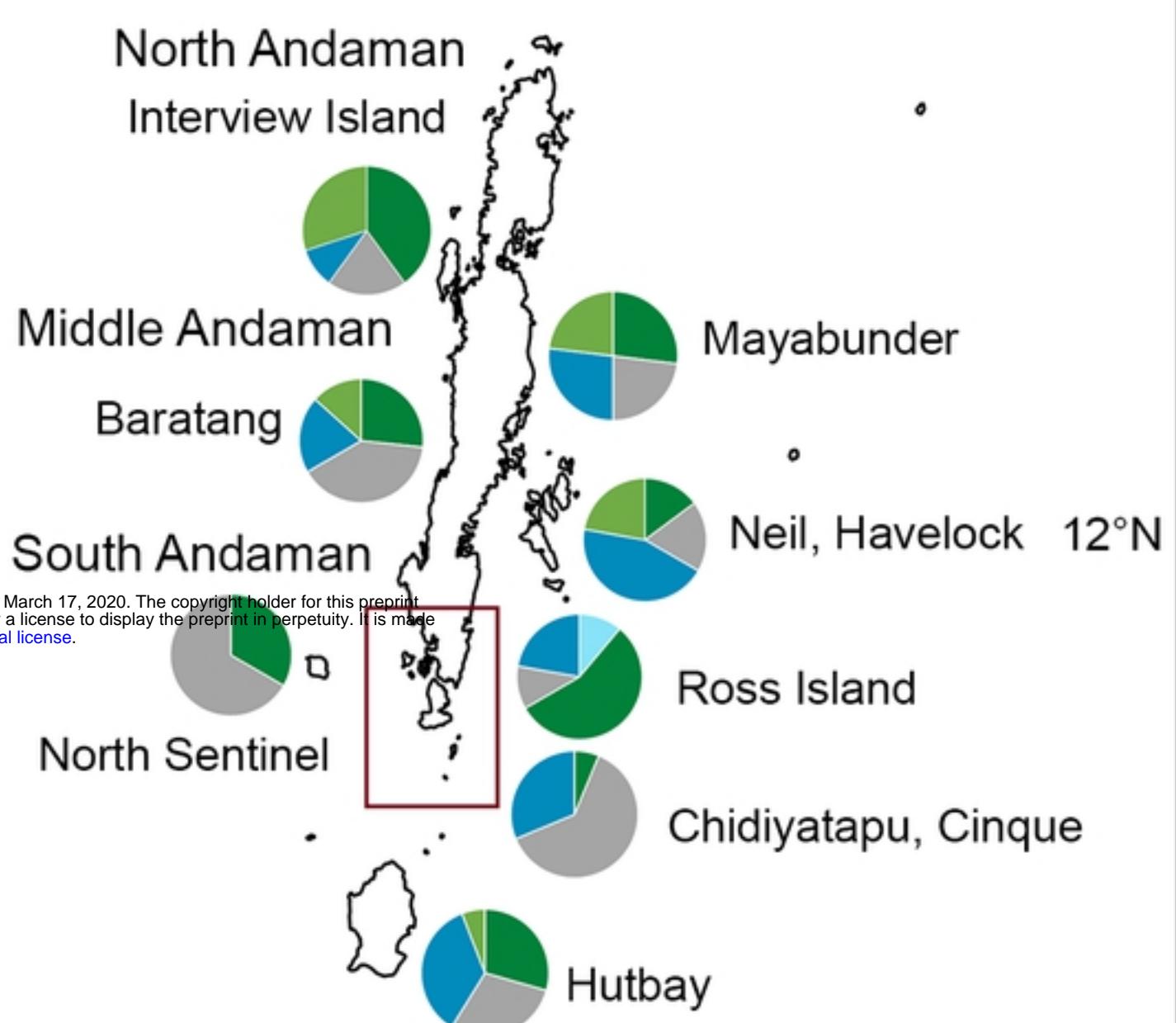
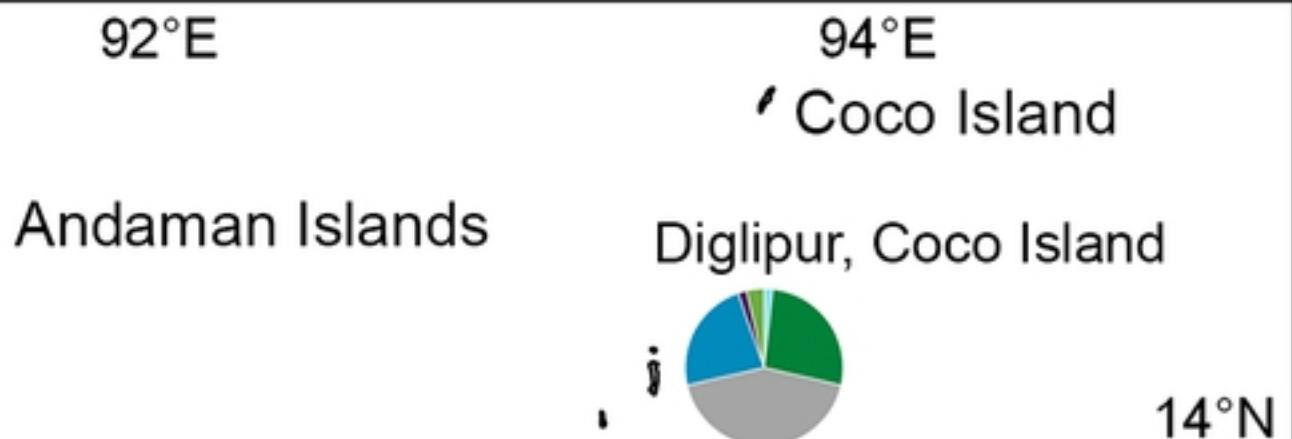
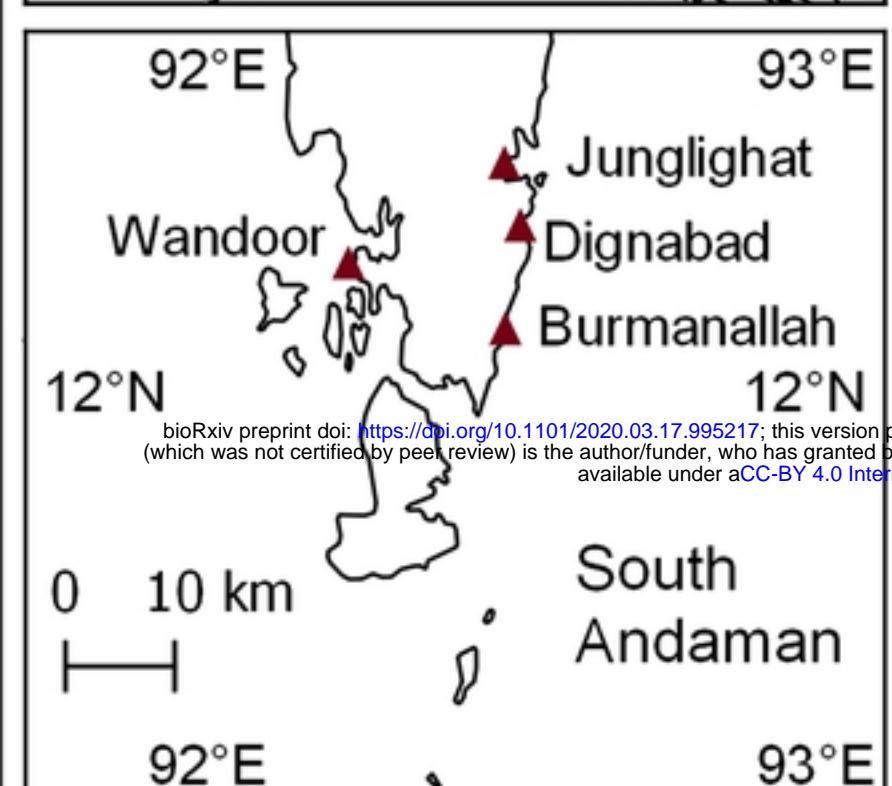
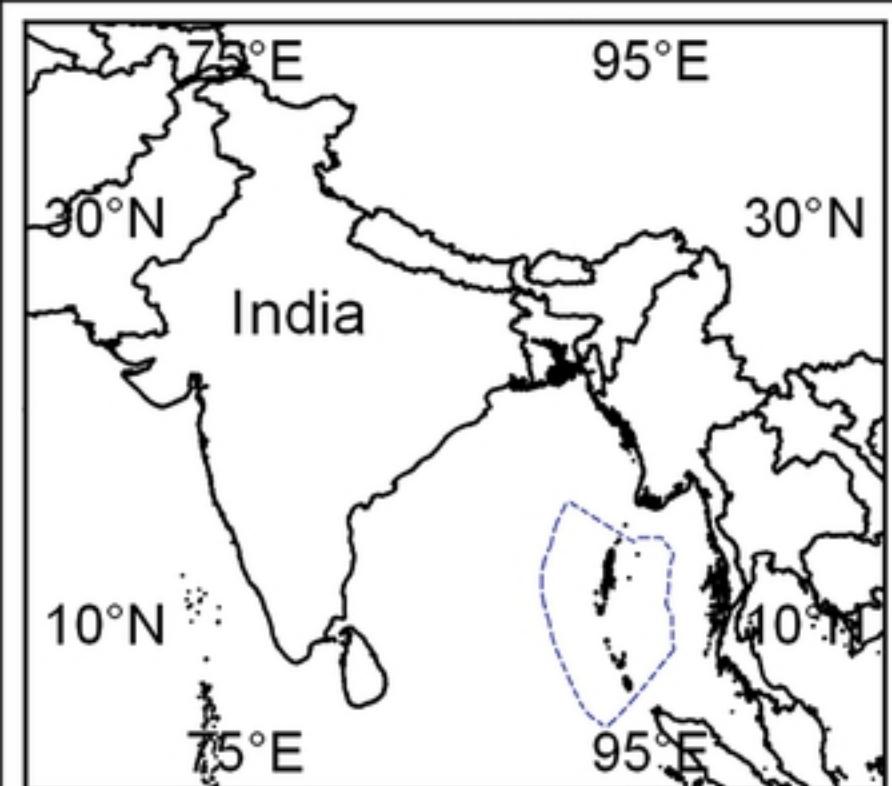






Fig 1. Map of the sampling sites and fishing grounds of the Anda

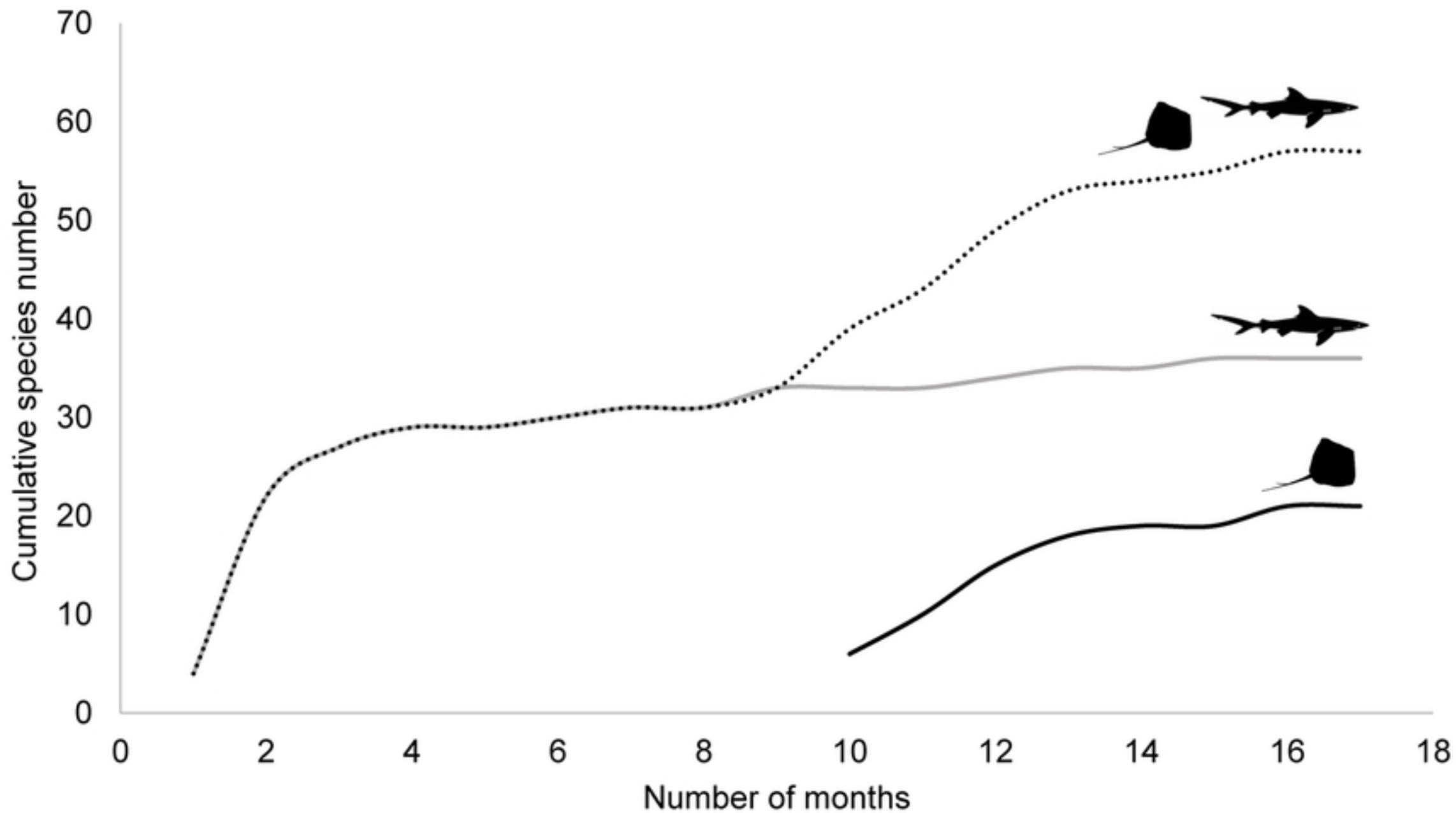


Fig 2. Species accumulation curve of sharks and rays landed

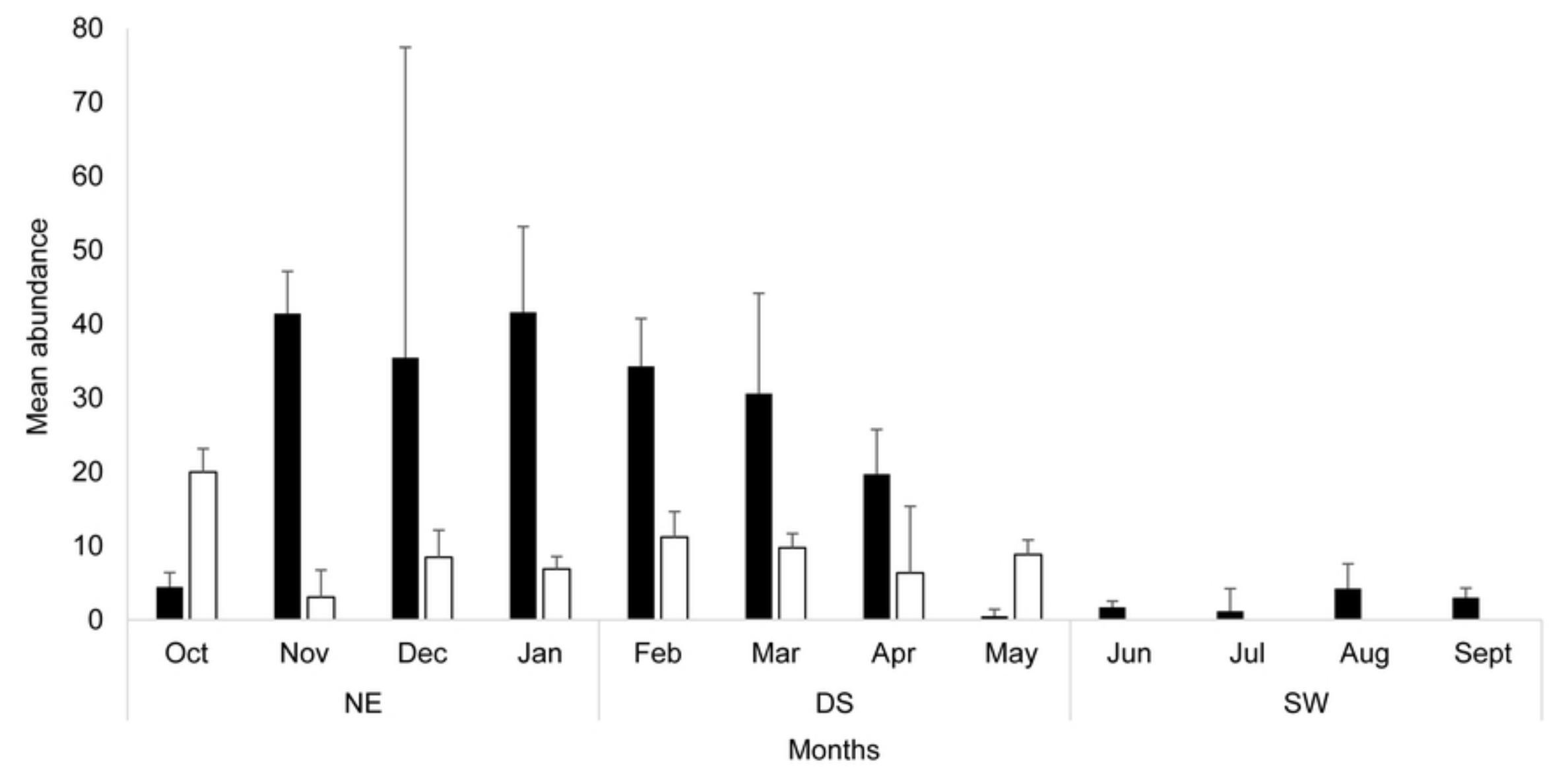


Fig 3. Trends in the mean abundance of daily shark and ray individuals.

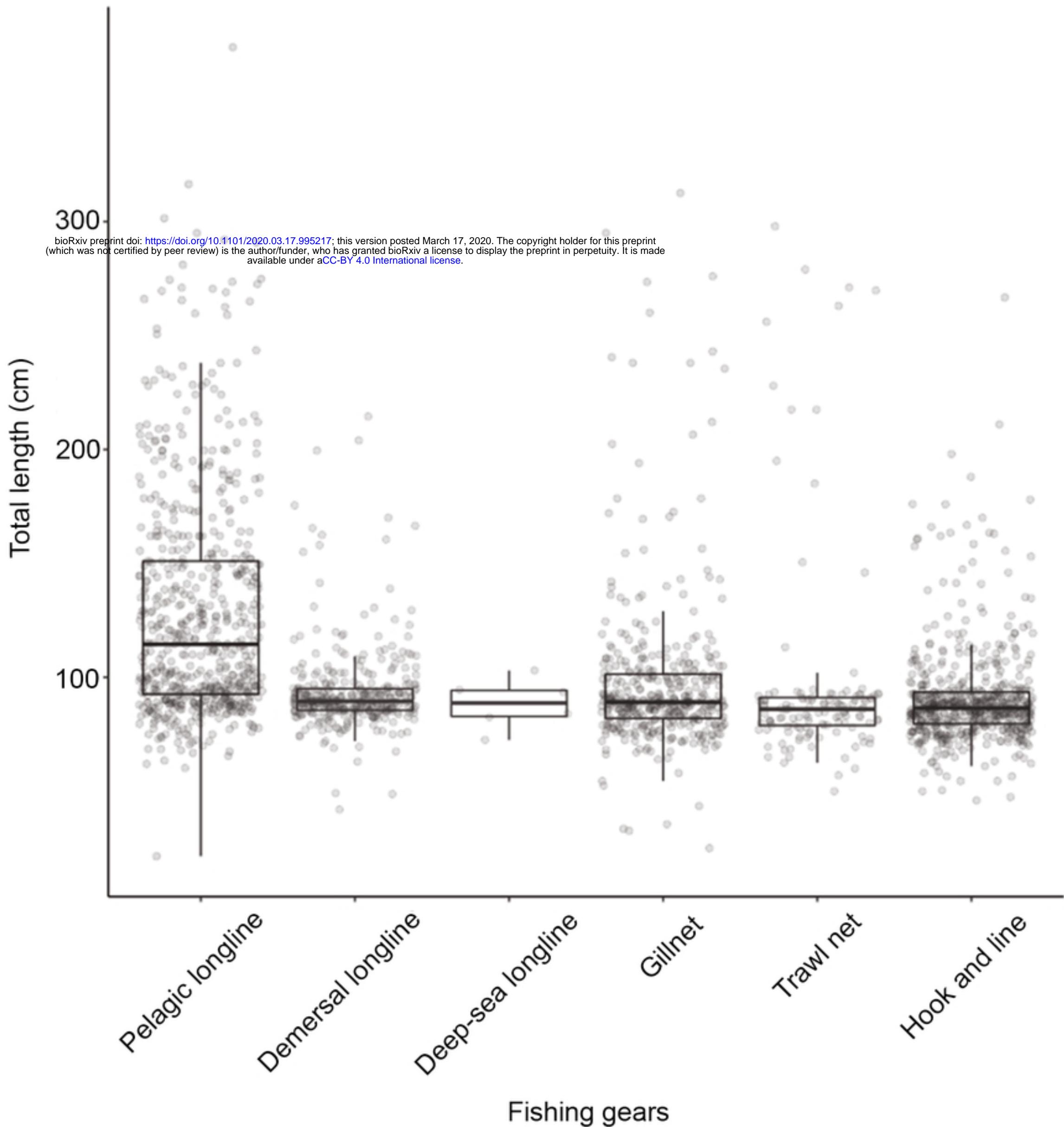
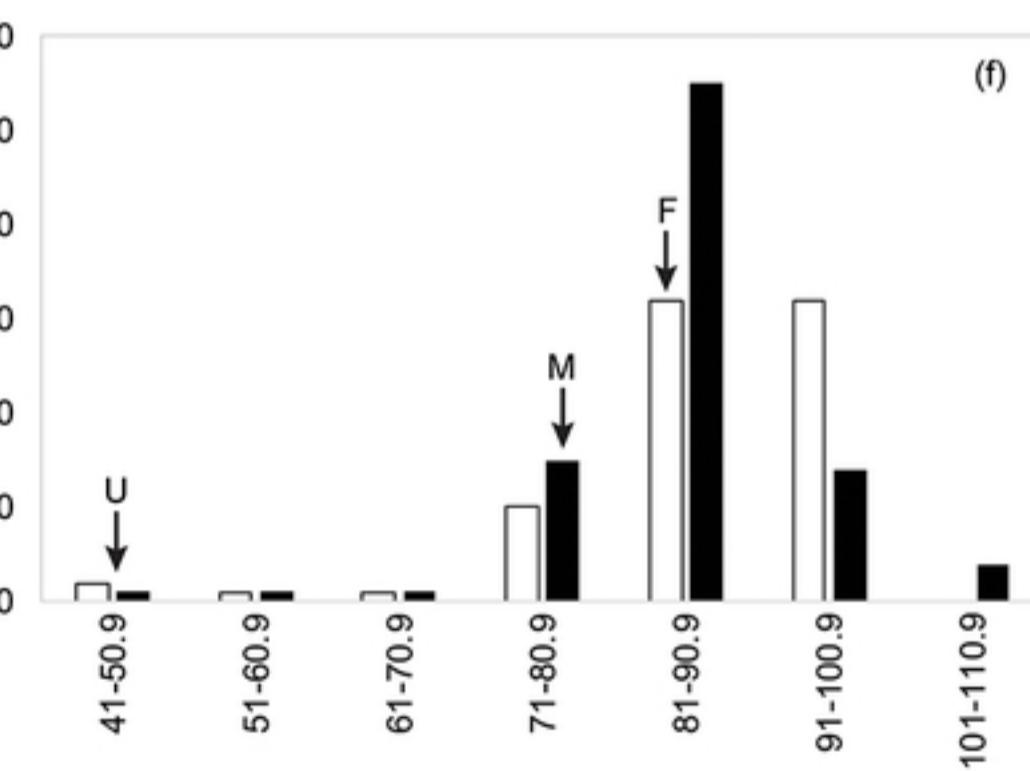
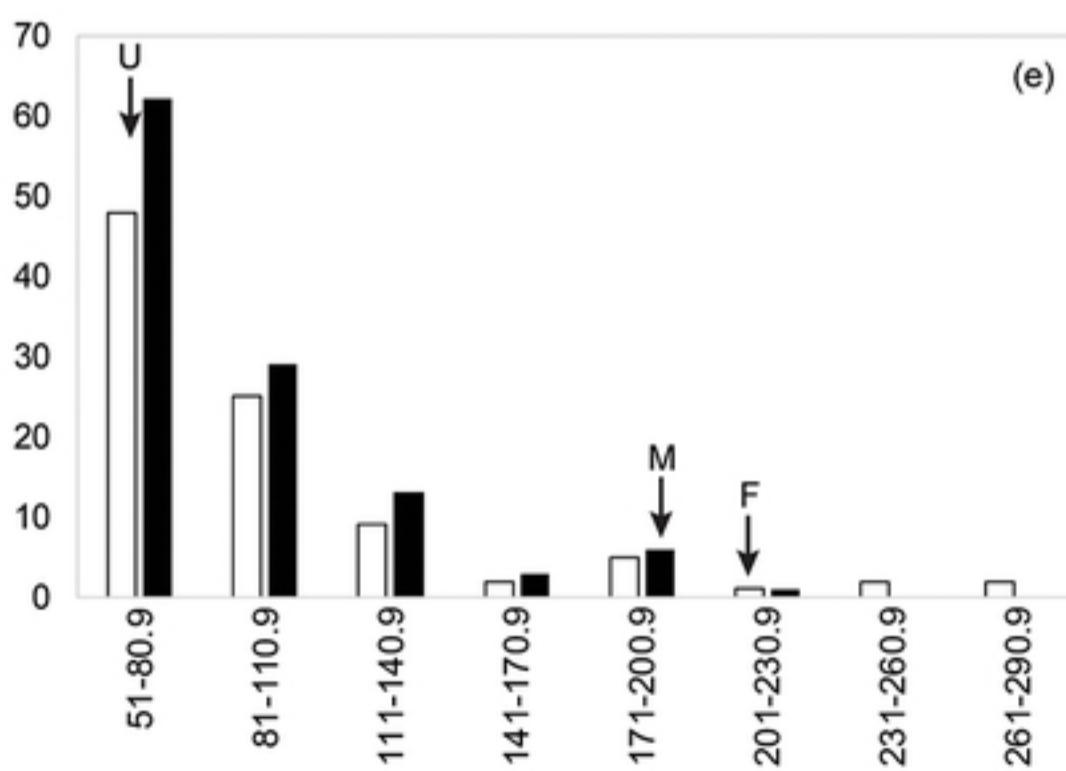
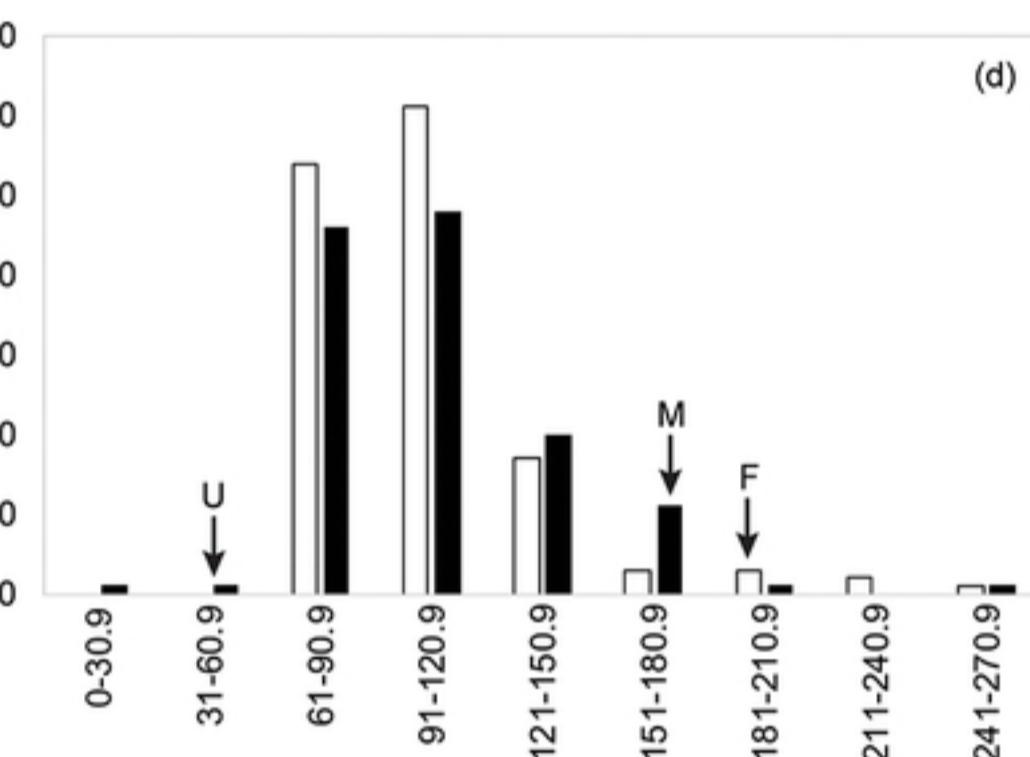
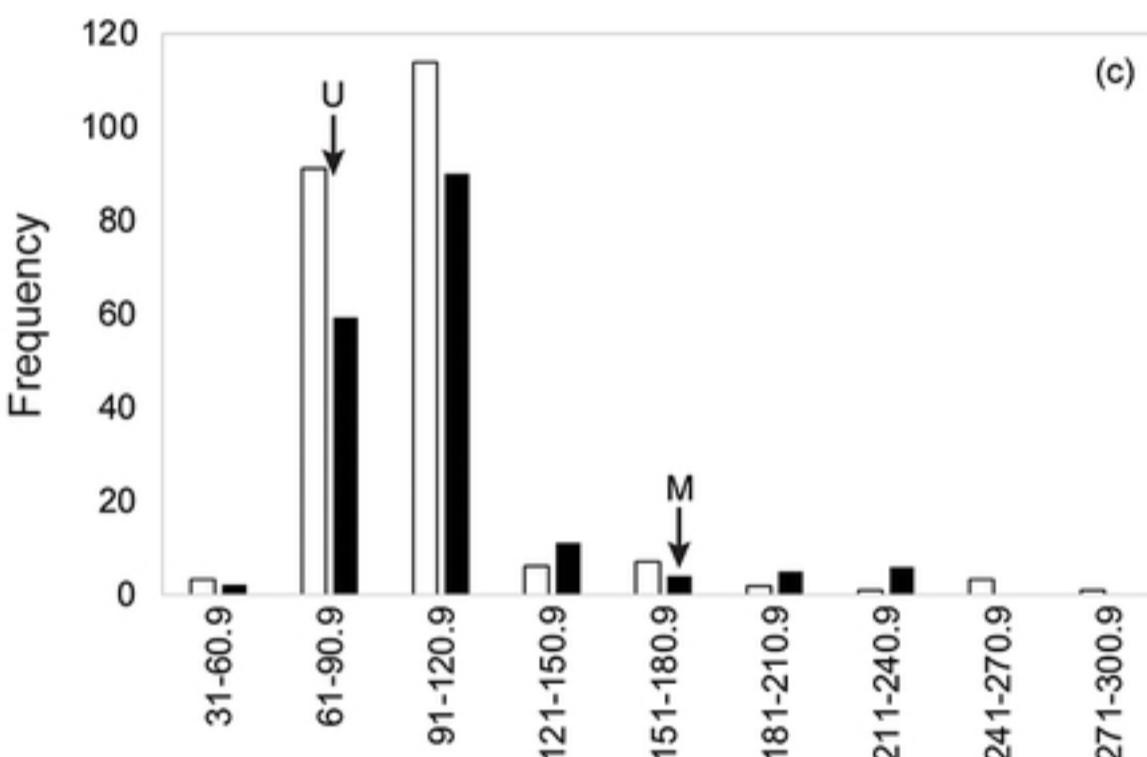
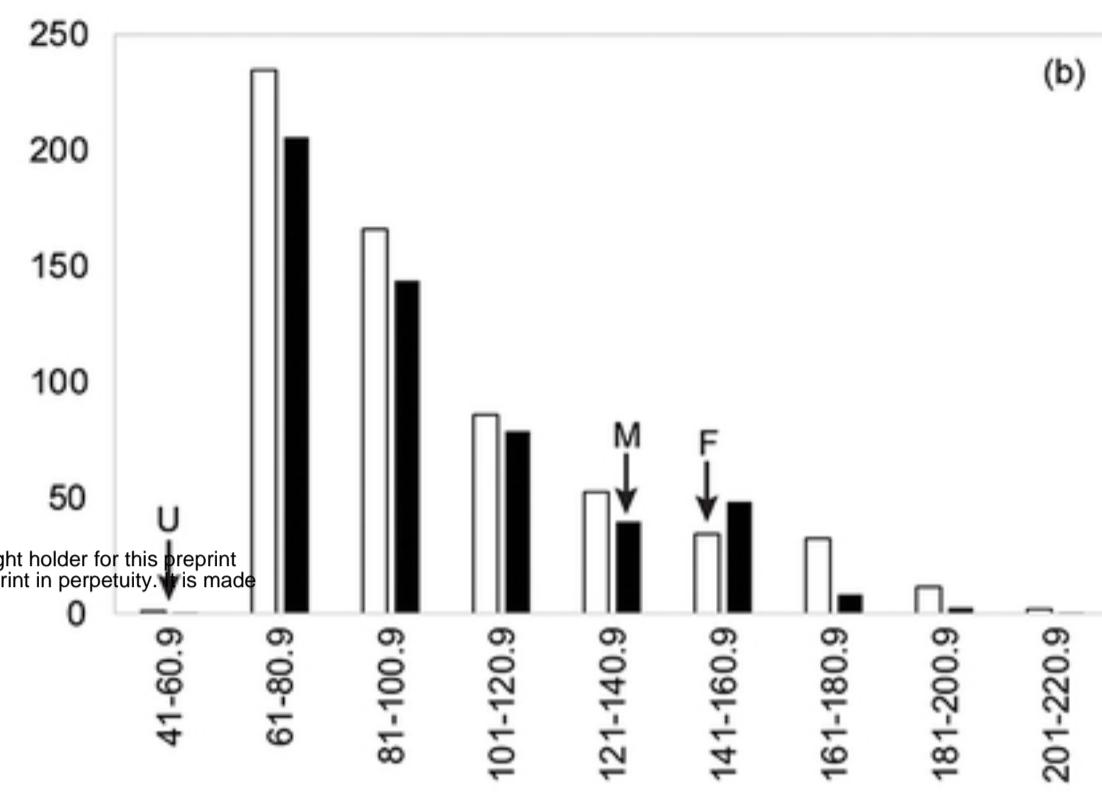
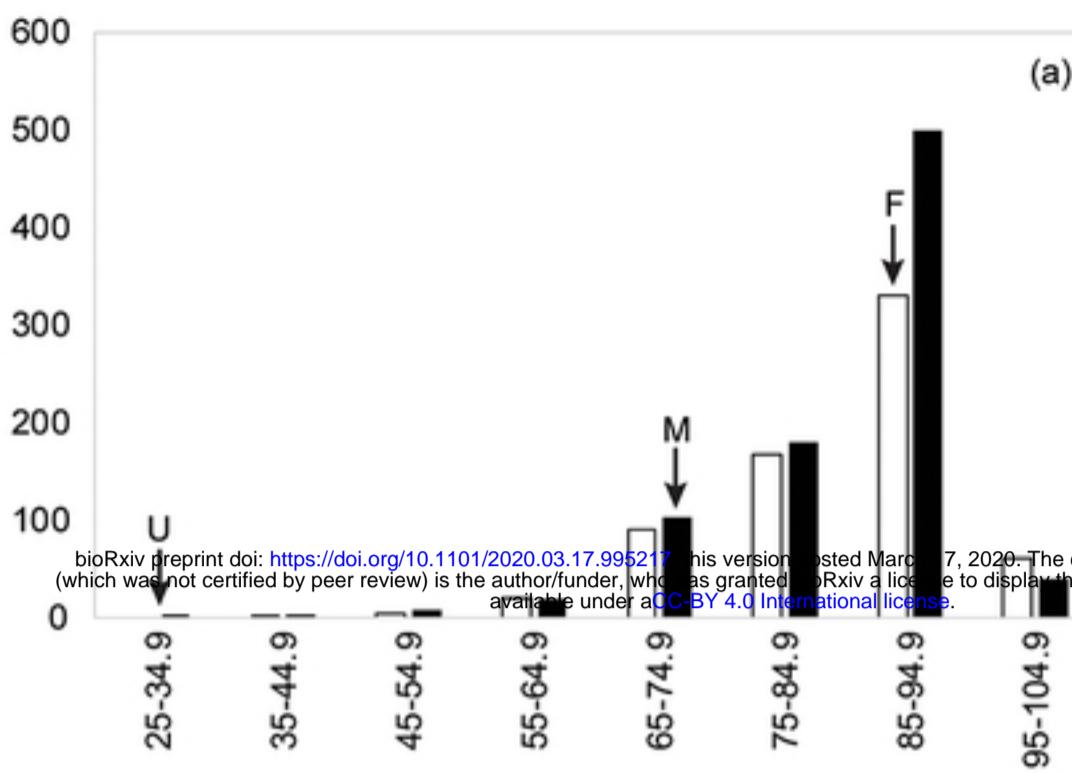
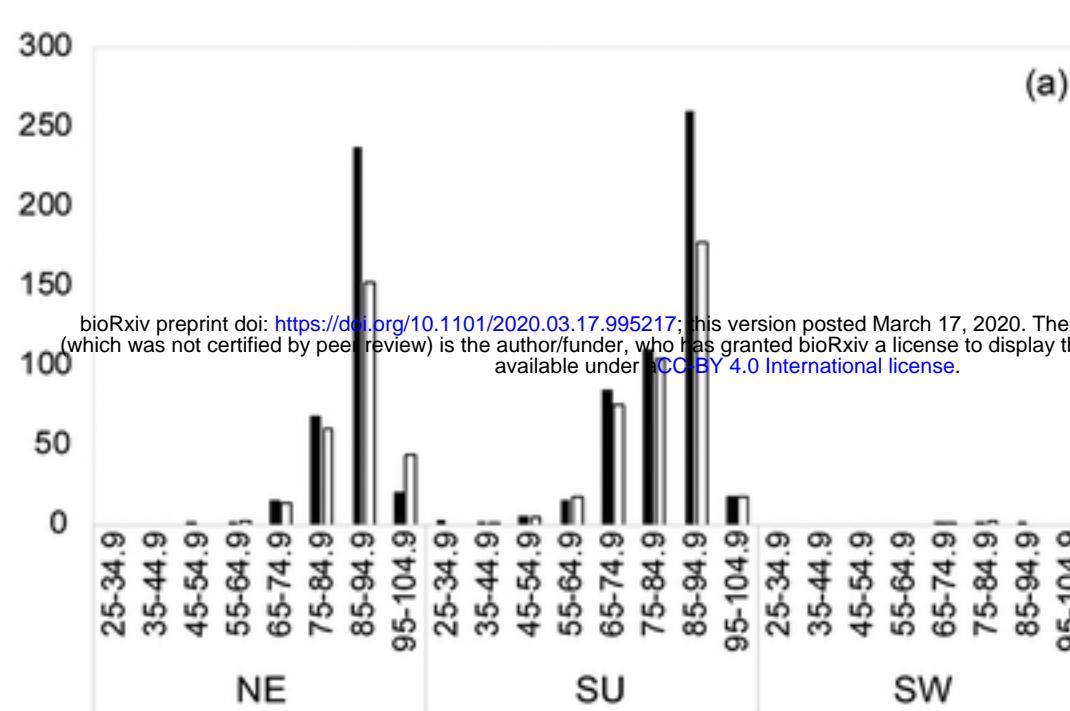
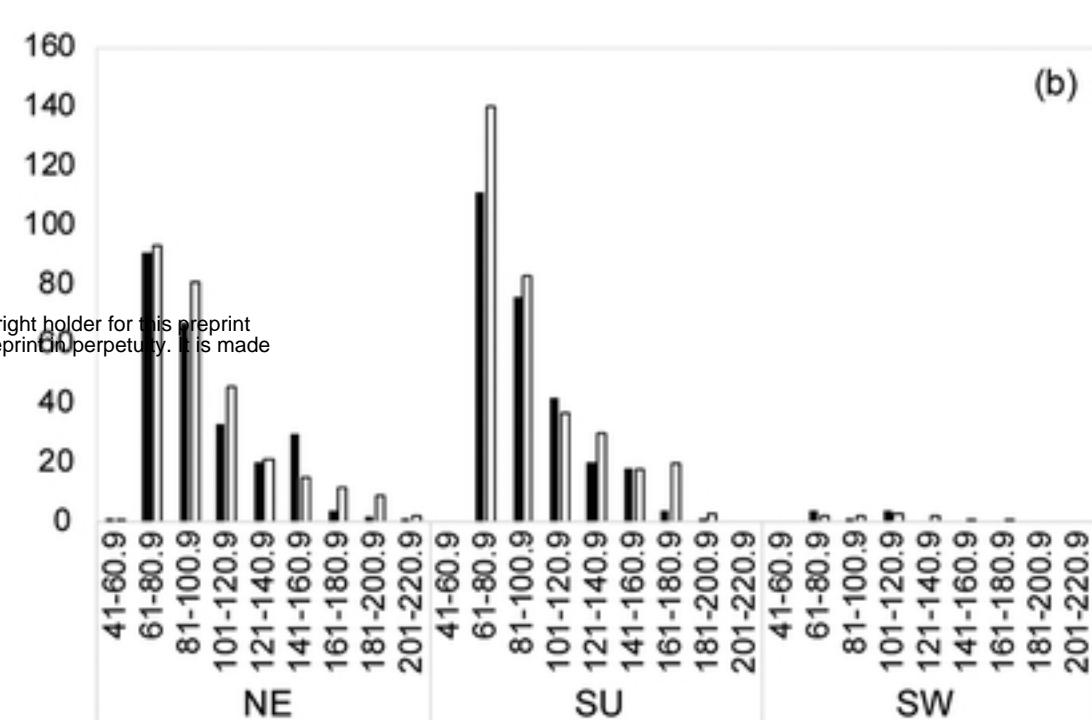
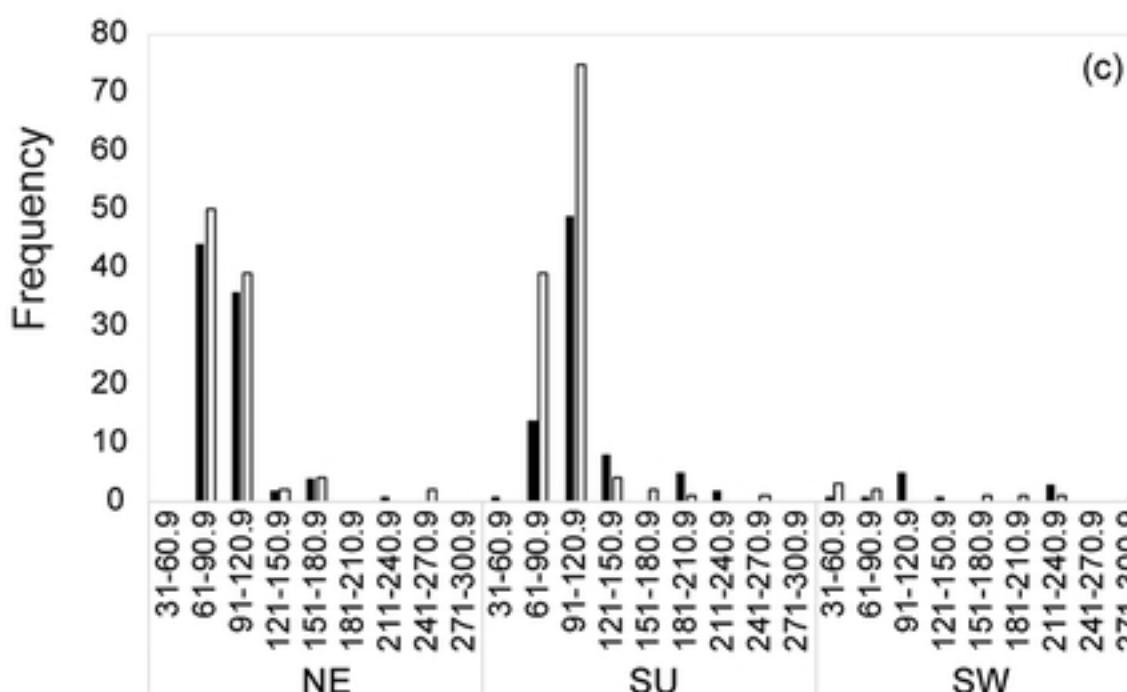
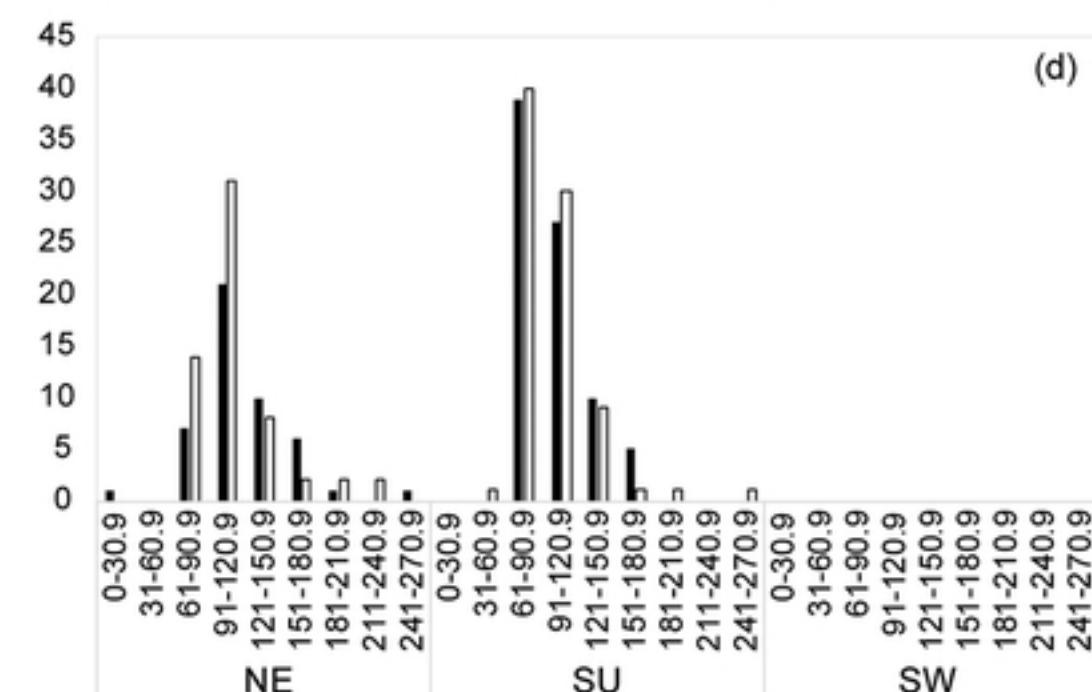









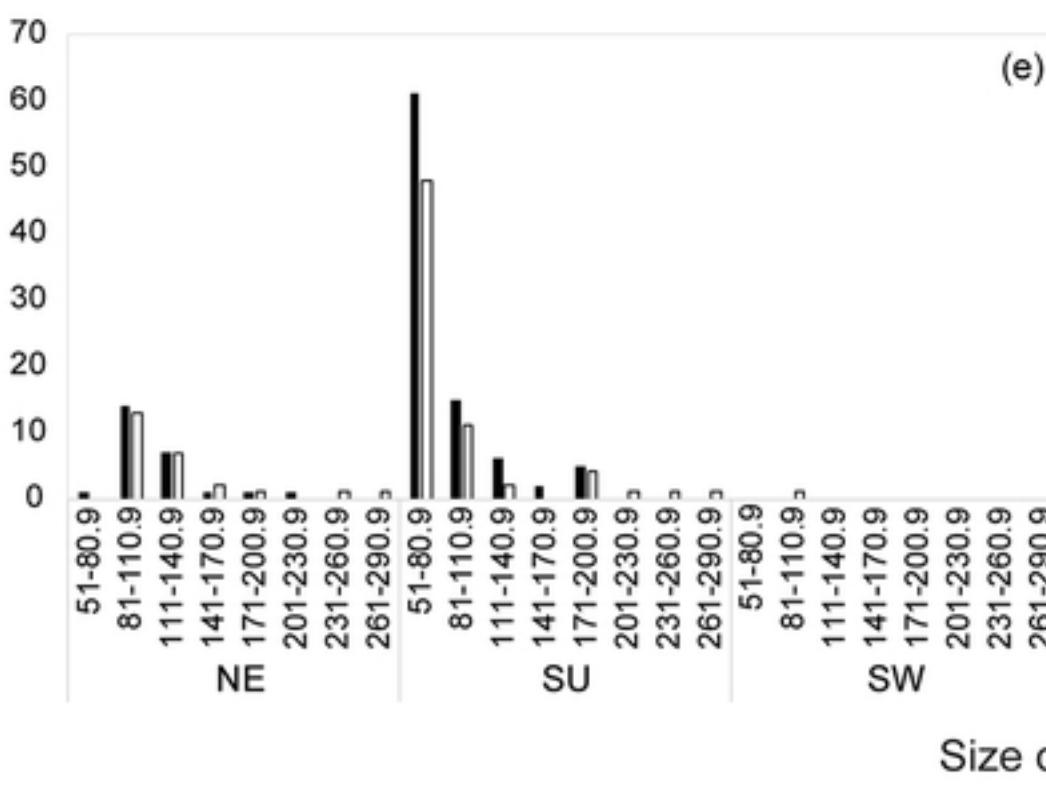
Fig 4. Total length of sharks landed across the different fishing g

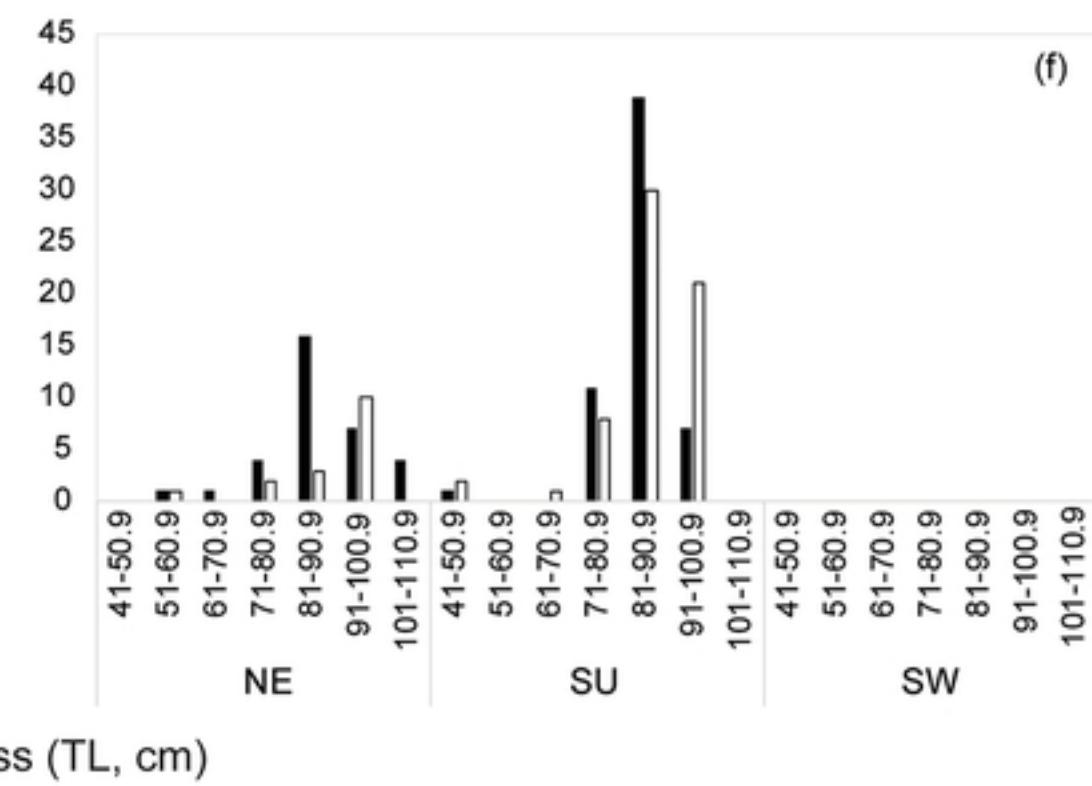


Size class (TL, cm)

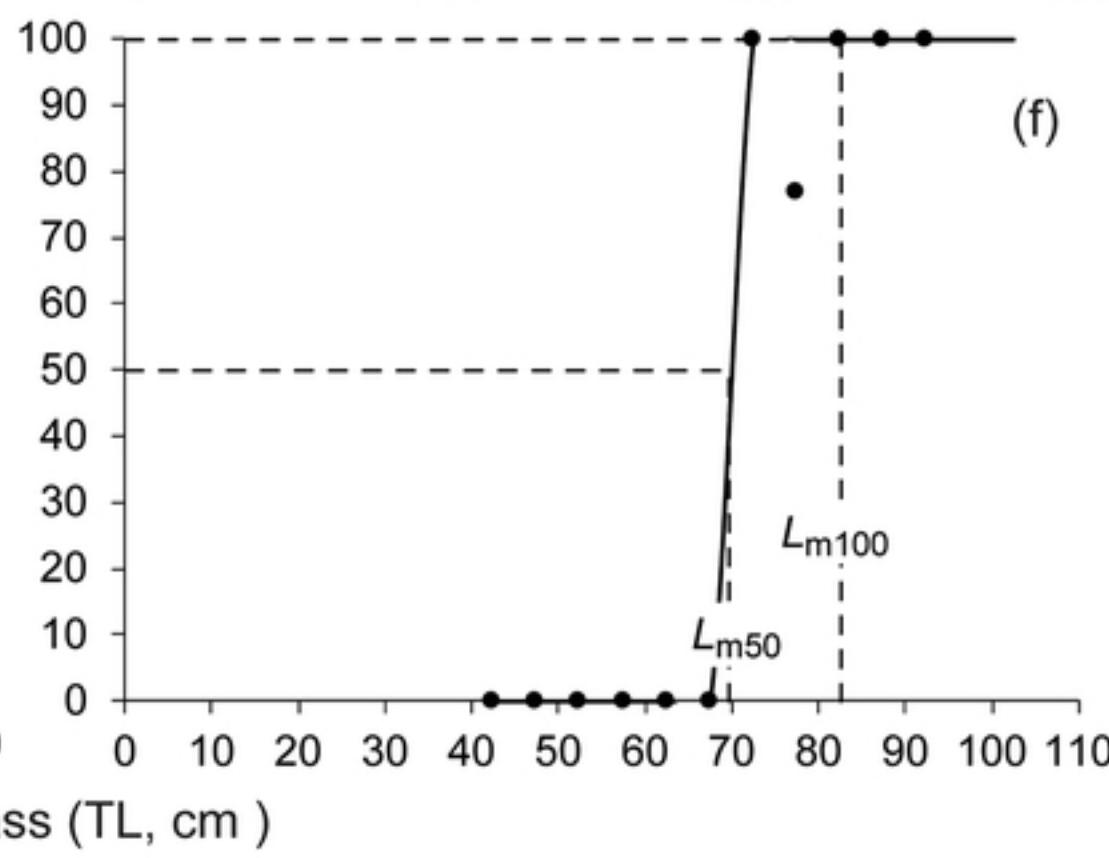
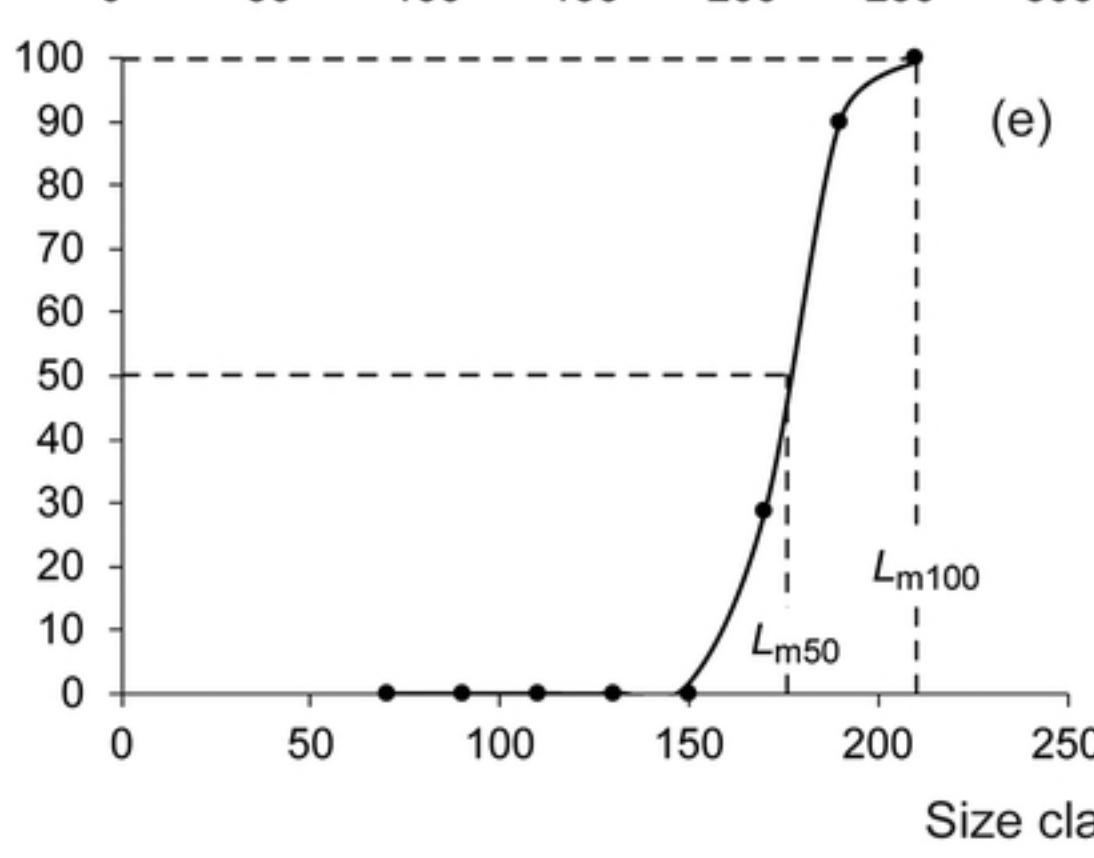
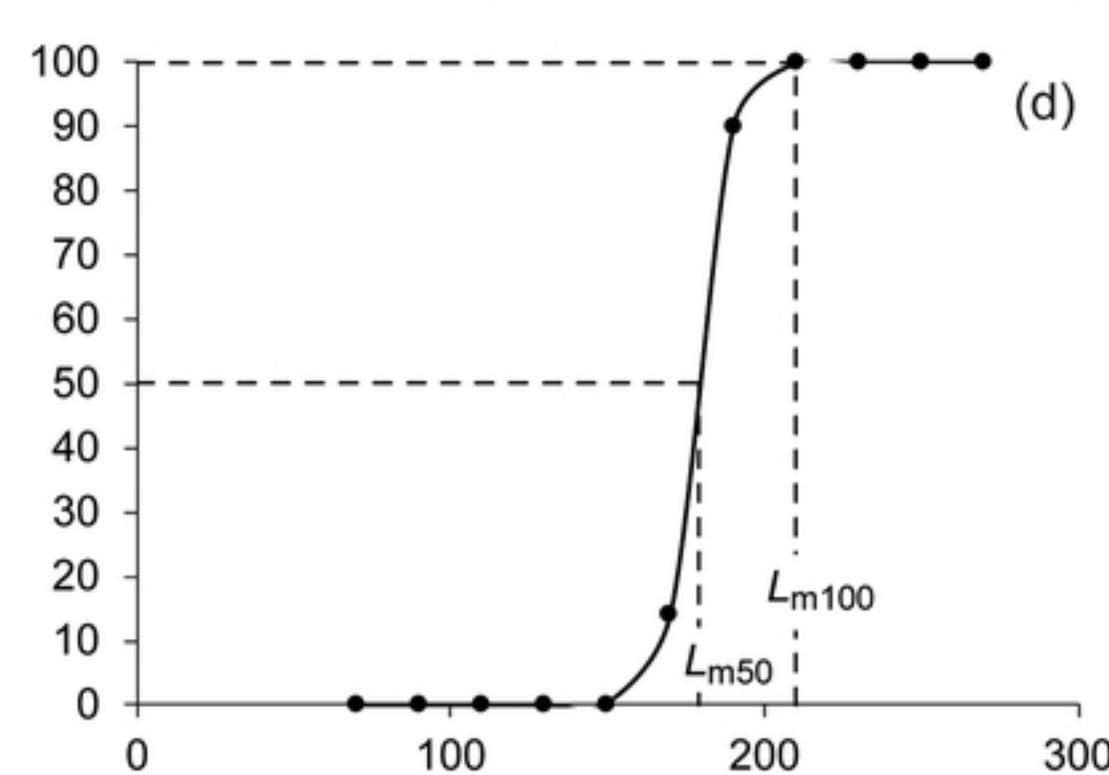
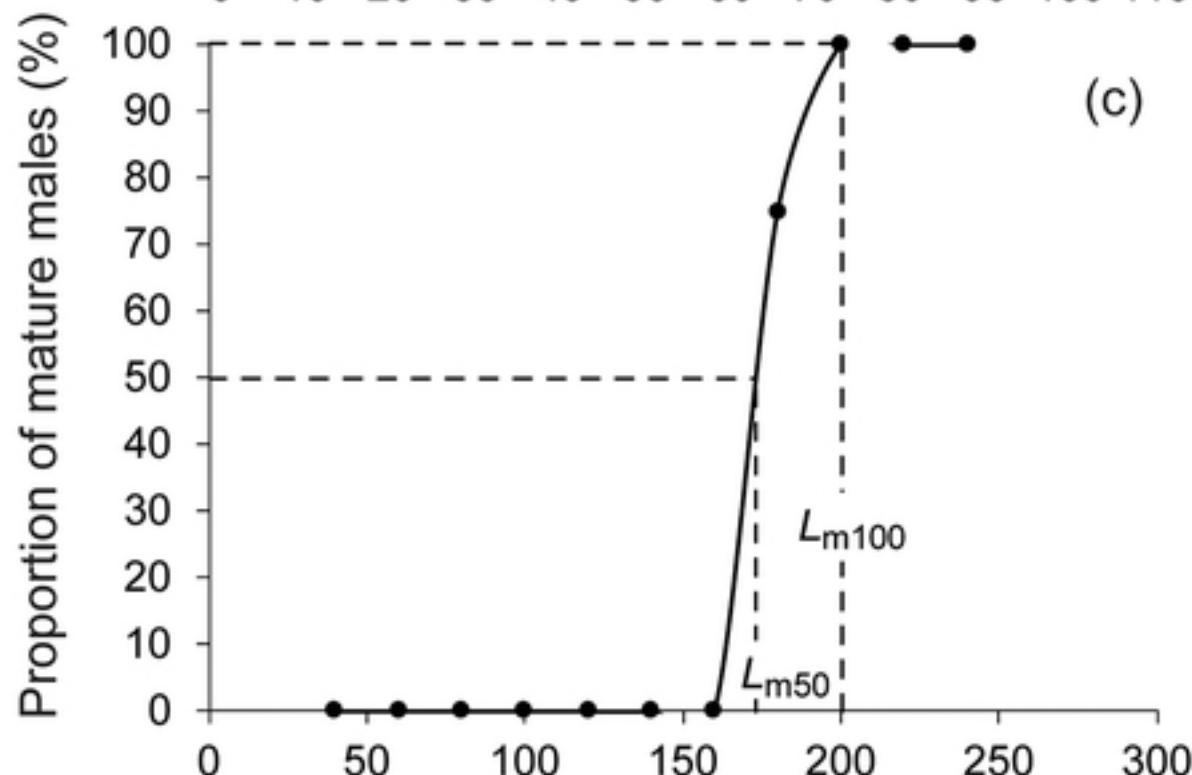
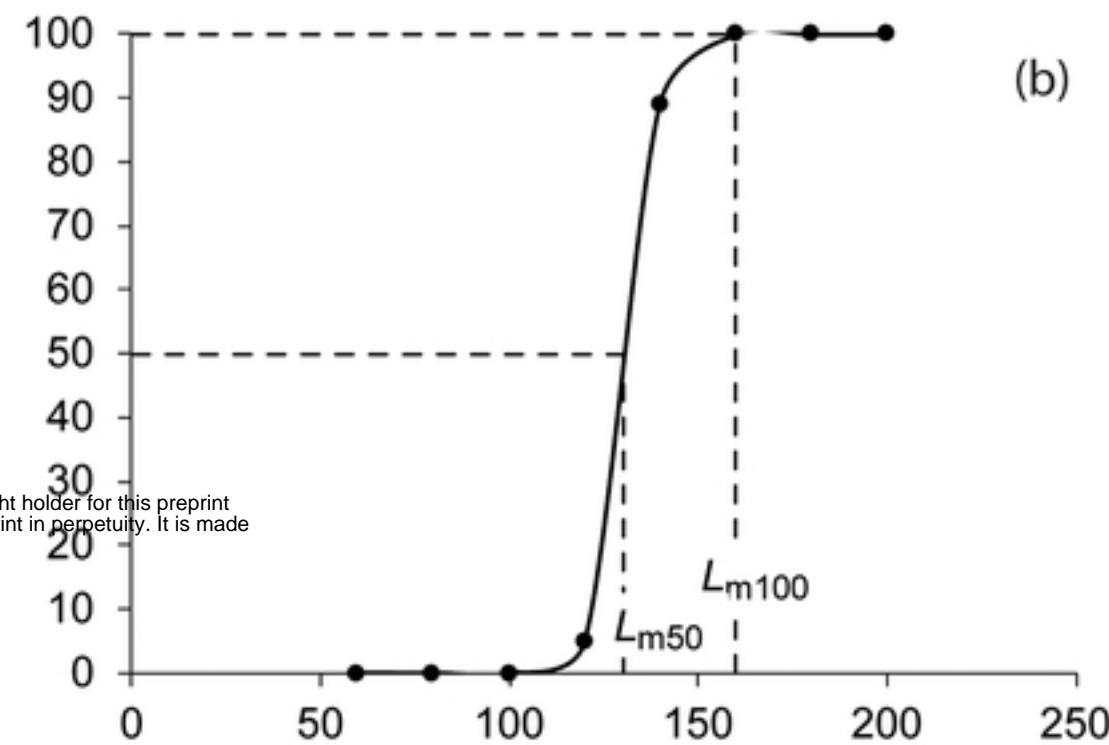
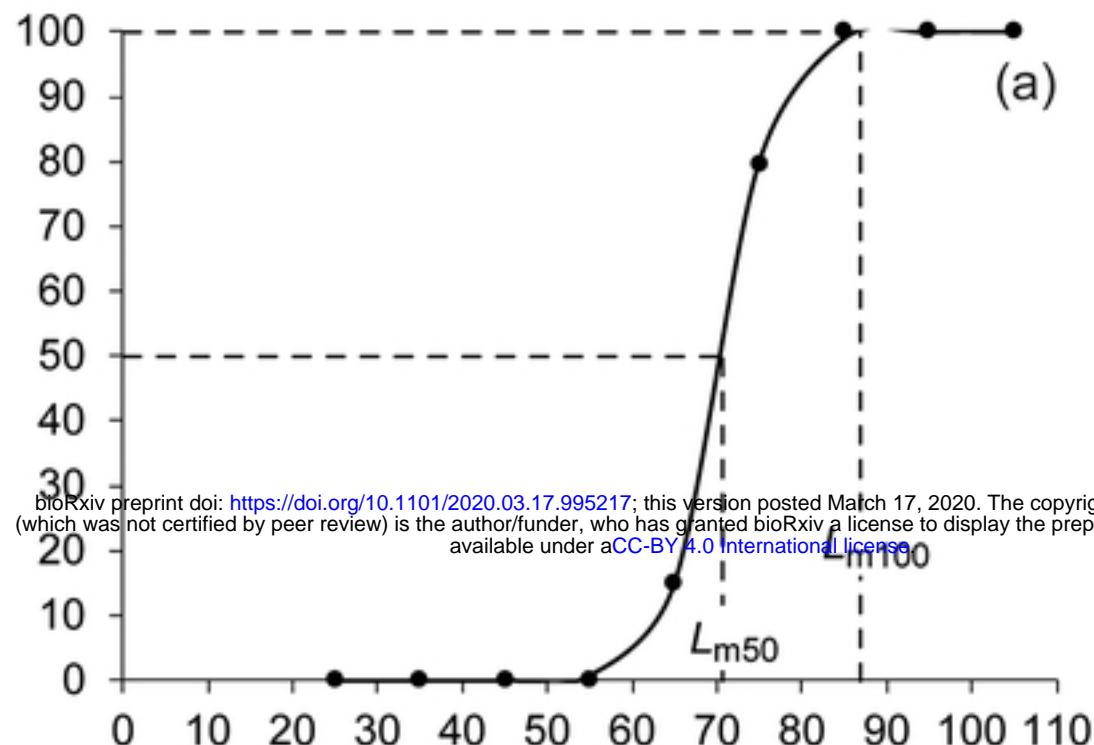

Fig 5. Size frequency distribution for males and females for the s


(a)


(b)


(c)

(d)

(e)

(f)

Fig 6. The seasonal size distribution of male and females for the

Size class (TL, cm)

Fig 7. Percentage of mature males with total length (TL) for shark

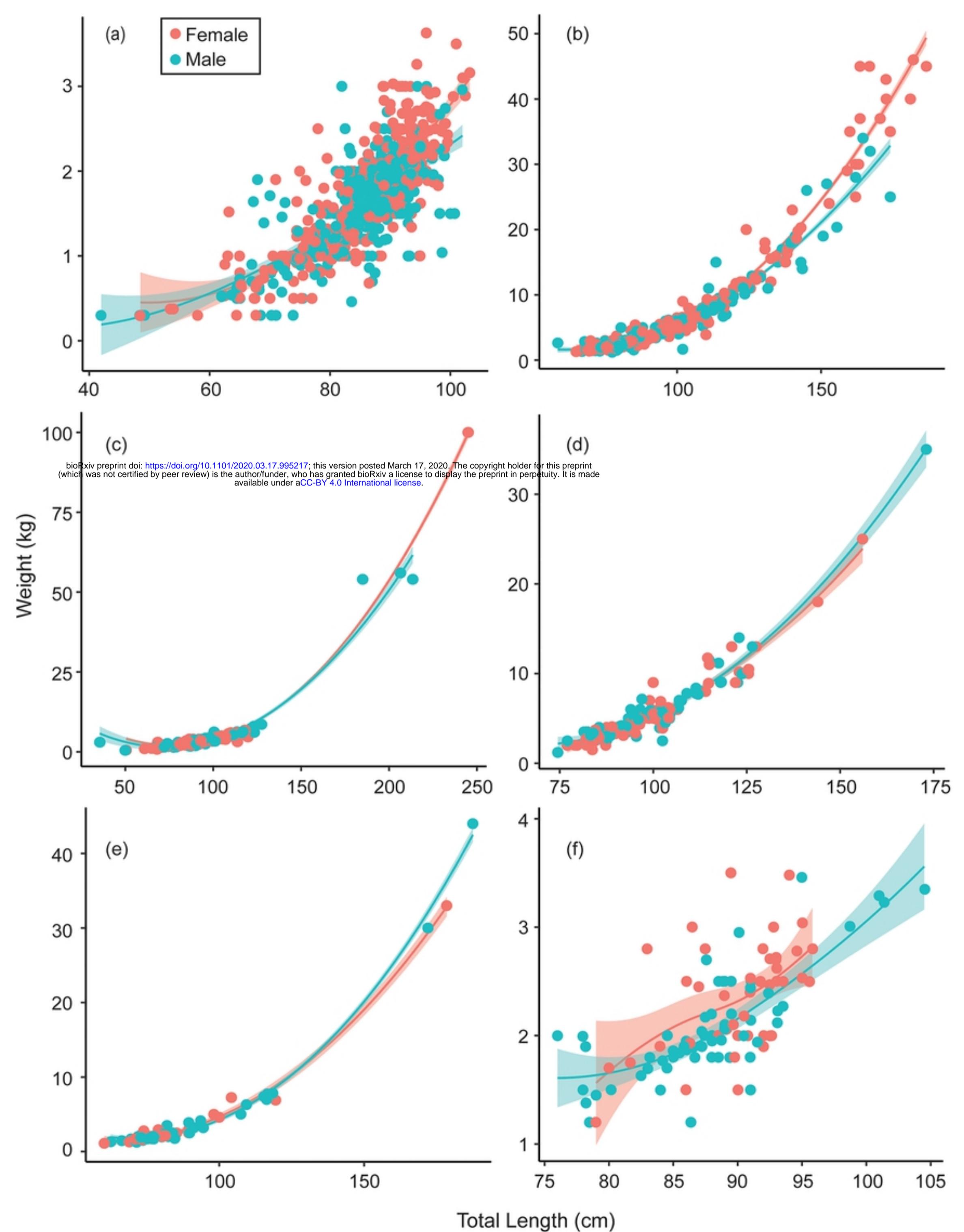


Fig 8. Length and weight relationships between total body mass