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Abstract

Genes with correlated expression across individuals in multiple tissues are
potentially informative for systemic genetic activity spanning these tissues. In
this context, the tissue-level gene expression data across multiple subjects from
the Genotype Tissue Expression (GTEx) Project is a valuable analytical resource.
Unfortunately, the GTEx data is fraught with missing entries owing to subjects
often contributing only a subset of tissues. In such a scenario, standard techniques
of correlation matrix estimation with or without data imputation do not perform
well. Here we propose Robocov, a novel convex optimization-based framework
for robustly learning sparse covariance or inverse covariance matrices for missing
data problems. Robocov produces more interpretable and less cluttered visual
representation of correlation and causal structure in both simulation settings and
GTEx data analysis. Simulation experiments also show that Robocov estimators
have a lower false positive rate than competing approaches for missing data problems.
Genes prioritized based on the average value of Robocov correlations or partial
correlations across tissues are enriched for pathways related to systemic activities
such as signaling pathways, heat stress factor, immune function and circadian
clock. Furthermore, SNPs linked to these prioritized genes provide unique signal for
blood-related traits; in comparison, no disease signal is observed for SNPs linked to
genes prioritized by the standard correlation estimator. Robocov is an important
stand-alone statistical tool for sparse correlation and causal network estimation for
data with missing entries; and when applied to GTEx data, it provides insights
into both genetic and autoimmune disease architectures.

1 Introduction

The gene expression data from nearly 50 tissues across more than 500 post-mortem donor
individuals from Genotype Tissue Expression (GTEx) project has proved to be a valuable
resource for understanding tissue-specific and tissue-shared genetic architecture!-23:4:5:6,
Here we are interested in one specific aspect of tissue-shared gene regulation: the
correlation and partial correlation in gene expression for different tissue pairs based on
individual donor level data. A major challenge in this context is the extensive amount
of missing entries in gene expression data—each donor contributes only a subset of
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tissues for sequencing. Common imputation based methods do not work well here as
reported in ref.”, owing to stringent assumptions about missing entries being close to
some central tendency (median) or adhering to some low-dimensional representation
of the observed entries®%1°. Popular shrinkage and/or sparse correlation or partial
correlation estimators such as corpcor!V1213 GLASSO'* or CLIME® are not designed
for data with missing values.

A recently proposed approach, CorShrink’, co-authored by one of the authors (Dey),
does account for this missing information through adaptive shrinkage!'® of correlations.
CorShrink does not guarantee a positive semidefinite (PSD) matrix as part of its EM-
based framework, and necessitates a post-hoc modification to ensure a PSD correlation
matrix. Also, CorShrink does not extend to conditional graph or partial correlation
estimation. Here, we propose a new approach based on convex optimization, called
Robocov—this applies for both covariance and inverse covariance matrix estimation in
the presence of missing data under the following regularization principles:

e the covariance matrix is sparse (i.e., has a few nonzero entries)
e inverse covariance matrix is sparse.

Robocov does not impute missing values per—sdﬂ—it directly estimates the covariance
or inverse covariance matrices in the presence of missing values. To handle missing
values, we consider a loss function that depends upon the pairwise covariance terms
(computed based on the observed samples) but incorporates an adjustment to guard
against our lack of knowledge regarding the missing observations. For inverse covariance
estimation, Robocov uses a robust optimization based approach!'®!? that accounts for
the uncertainty in estimating the pairwise sample covariance terms (due to the presence
of missing values). Interestingly, both lead to convex optimization formulations that are
amenable to modern optimization techniques?’—they are scalable to moderate-large
scale instances; and unlike conventional EM methods (that lead to highly nonconvex
optimization tasks), our estimators are guaranteed to reach the optimal solution of the
optimization formulations that define the Robocov estimators.

Our simulation experiments suggest that Robocov estimators for correlation and
partial correlation matrices have a lower false positive rate compared to competing
approaches when data has missing entries. When applied to the GTEx gene expression
data comprising of ~ 70% missing data, Robocov produces less cluttered and highly
interpretable visualization of correlation and conditional graph architecture, compared
to standard approaches.

From a biological perspective, a gene with high correlation in expression across
many tissue pairs is potentially reflective of systemic biological processes affecting many
tissues and organs. To this end, we prioritize genes based on the average Robocov
estimated correlation (partial correlation) across all tissue-pairs; we call them Robospan
(pRobospan) genes. A pathway enrichment analysis of Robospan (pRobospan) genes
showed enrichment in systemic functional pathways such as interferon signaling, heat
stress factors, circadian clock and more importantly, the immune system. Subsequently
we generated SNP level annotations for SNPs linked to Robospan (pRobospan) genes
and tested for autoimmune disease informativeness by applying Stratified LD-score
regression (S-LDSC) to 11 common blood-related traits (5 autoimmune diseases and 6
blood cell traits; average N=306K), conditional on a broad set of coding, conserved,

IExpectation Maximization (EM)!7 methods are often used for estimation with missing values,
but (i) they depend upon probabilistic modeling assumptions on the data; and (ii) they lead to
highly nonconvex problems posing computational challenges.
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regulatory and LD-related annotations. Robospan and pRobospan genes showed high
disease informativeness for blood and autoimmune diseases and traits; in comparison;
the analogously defined Corspan genes defined using the standard correlation estimator
was non-informative. This highlights the biological and disease-level significance of our
work.

In Section [2] we present an overview of methods and the underlying optimization
framework for Robocov. Section [3] presents the simulation results and the application
of Robocov to GTEx gene expression data and the downstream application of Robocov
in understanding the autoimmune disease architecture. Finally, Section [4| presents an
overall summary and future directions.

2 Methods and Materials

Let Xy« p be a data matrix with IV samples and P features, where some of the entries
X,p may be missing, denoted here by NA. We let X f denote the fully-observed version
of the partially-observed data matrixﬂ X. We further assume that the fully observed
data vectors X,J:,*, n = 1,...,N are independent and follow a Multivariate Normal
distribution:

X/, ~MVN(0,%) Q=x"! (1)

where X pyp and Qpy p denote the model covariance and the inverse covariance matrices
respectively. Based on the observed entries, we obtain a matrix ¥ of pairwise covariances
such that for all 4,5 € {1,..., P}:

i 1= p— > (Xni — Xi)(Xnj — Xj) (2)
v n: X i ANA, X, ANA

where, X, denotes the sample mean of feature k based on the observed entries; and Nij
is the number of samples n with non-missing entries in both features i and j:

- 1
X =— Z anm Nij = # {Tl X ;é NA’ an 7& NA} . (3)
Tk X £NA

Here ny denotes the number of observed samples (i.e., not missing) for feature k. For our
analysis, we will assumeﬂ that n;; > 2 for all 7, 5. We note that the matrix of all pairwise
covariance terms: ¥ = ((3;;)), as defined in ([2), need not be positive semidefinite due
to the presence of missing values in the data matrix.

2.1 Robocov covariance estimator

We first present the Robocov covariance matrix estimator—this leads to an estimate of
3 via the following regularized criterion:

min Z|E”| s.t. ZEO, |2”—E”‘§C”, VZ,]:].,27,P7 (4)

i<j

2Note that the data matrix X is a restriction of X/ to the observed entries.
3If necessary, as a pre-processing step, we remove features so that the condition ng; > 21is
satisfied for all ¢, j.
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where X is the optimization variable and Y and Cijs are problem data. Note that
Problem minimizes a convex penalty function subject to convex constraints — the
optimization variable ¥ is positive-semidefinite (denoted as ¥ = 0). Hence is a
convex semidefinite optimization problem?’; and can be solved efficiently by modern
semidefinite optimization algorithms for moderately large instances (e.g, P ~ 1000)
using (for example) the SCS solver in CVX software??:21:22:23 The objective function
in . minimizes the ¢;-norm on the entries of ¥; and induces sparsity in the solution?*
The constraint |Z” — 3] < Cyj for all 4,7 is the data-fidelity term — it constrains the
entries of the estimated covariance matrix (i.e., £;;) to be close to the sample covariance
f] —that is, ¥;; € [f]” Cij, Z,J +Cjj]. Here, C;; controls the amount by which 3;; can
dlffer from the sample version E” We compute C;; based on the Fisher’s Z-Score?®26
(for a complete derivation see Supplementary Note):

C;; = 6,0, min (Z,n(nij) {3(1 — R?j) + 2\/§n(nij)})

(ne) Lo, 2
N;i) =
T nij =1 (ng —1)°

where R is the pairwise sample correlation matrix derived from X i.e.,

%
Rij = = Aj

003

Vi,j and &; = S Vi. (6)

Note that criterion can be perceived as a special case of a more general regularized
optimization problem

min £(5;%) +A) 8] st T=0 )

1<J

where, £(3; f]) is the data-fidelity term or loss function measuring the proximity of X
to 3 the second term represents the regularization on ¥; and A is a tuning parameter
that controls the trade-off between data-fidelity and regularization. We can choose

( ) Z’LJ [«”( ijs ”) with L’U(E,J,EU) = maX{\Eij — Zij| — Cij70} for all Z,]
ThlS leads to a regularized convex optimization problem of the form:

o1 o
min X[,(E; X+ Z |41 (8)

i<j

In the limiting case, A — 0+ i.e., 1/\ — oo, estimator obtained from Problem will
reduce to the estimator available from . This is because, for sufficiently large values
of 1/A, an optimal solution to will lead to a zero loss—£(%; %) = 0 which implies
that £;;(X;5; E”) = 0 for all ¢, j — these are the data-fidelity constraints in .

In summary, we note that our proposed Robocov estimator does not impute missing
values per-se — it directly leads to an estimate for the covariance matrix ¥ while taking
into account the presence of missing-values in the data matrix.

Other choices of the loss function £ are also possible — we present one such candidate
in the Supplementary Note that is also derived from the Fisher’s Z-Score setup (which
was key to deriving ) In practice, we found that many of these estimators lead to
similar results on real datasets—therefore, in this paper, we focus our attention on the
basic estimator ().
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From covariance to correlation estimates: Formulation delivers an estimate of
the covariance matrix. To obtain a correlation matrix estimate, one can modify to
deliver a correlation matrix instead of a covariance matrix:

. . A R .o
min Z ‘R”‘ s.t. R i O,R” = I,VZ, |R” - R1J| § CZ(] ), VZ,] = 1, .. .,P, (9)
1<J

where R is the optimization variable, R is defined in (@ and Ci(f) = Yl The derivation

5'7;0']'

of C®) follows from the derivation of C' and appears in the Supplementary Note.

A simple alternative approach to obtain the Robocov correlation matrix estimate, is
to re-scale the Robocov covariance estimator (obtained from Problem ) to a correlation
matrix.

2.2 Robocov inverse covariance estimator

Section discusses a convex optimization-based estimator for the covariance matrix
(X), here we present a method to estimate the inverse covariance matrix (£2) and subse-
quently the partial correlation matrix. We present a regularized likelihood framework to
estimate {2 under a sparsity constraint. An appealing aspect of our estimator is that our
optimization criterion is convex in © (and not ¥ which was the case in Section [2.1]).

Our estimator builds upon the popular ¢;-regularized Gaussian likelihood framework
(aka graphical lasso or GLASSO:27:28) for the fully observed case, and adapts it to
address missing values. We recall the GLASSO procedure which minimizes an £;-norm
regularized negative log-likelihood criterion (fully observed case) given by:

min  —logdet(®) + (5, 9) +)\Z 1€

=L(E) "
where, L(€; %) is the negative log-likelihood (ignoring irrelevant constants) for the
model , 3 is the fully observed sample covariance matrix and A > 0 is the regularization
parameter.

Replacing 3 by the observed matrix S in L($; f]) is problematic due to the error in
estimating the pairwise covariances arising from the missing values (different cell entries
of the sample covariance matrix involve different effective sample sizes n;;s leading to
varying accuracies in estimating flijs). To account for this uncertainty, we use ideas
from robust optimization'®19—to the best of our knowledge, this approach has not been
used earlier in the context of sparse inverse covariance estimation (in the presence of
missing values). Our robust optimization approach minimizes the worst-case loss arising
from the errors in estimating the cell entries f]ijs. This leads to a min-max optimization
problem of the form:

min A:IAmUET?Du {— log det(2) + (Q, X + A)} + )\zij: [€2;5]. (10)

As involves minimization of a pointwise maximum (over A) of convex functions
Q= LG X+ A)+ A3, 945, Problem is convex?? in Q. Convexity ensures that a
global minimum to the problem can be obtained reliably—making our approach different
from traditional missing data techniques based on the EM algorithm'? that often lead
to complex nonconvex optimization tasks with multiple local solutions.

JE


https://doi.org/10.1101/2020.03.16.994020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.16.994020; this version posted March 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

In words, the inner maximization over A in Problem gives the largest (or worst-
case) value of the negative log-likelihood—maxa L(€%; 3 4+ A) where, A captures the
uncertainty involved in estimating the entries of the sample covariance matrix 3 due to
the presence of missing values. The outer minimization problem (wrt ) considers the
minimum of the adjusted worst-case loss function 2 — maxa L(; pIE A), in addition
to an f;-penalization on §2 that encourages a sparse estimate of (2.

The so-called uncertainty set'® in A is given by: |A;;| < D;; (for all i,j) where,
the upper bound D;; arises from a probability computation using the Fisher’s Z-score
criterion (see Supplementary Note for additional details):

Dij = Cl'j + C’ij

- o . (11)
Cj = 6:6; min {2, n(N) {3(1 —R%)+ 2\/§n(N)}} .

To provide some intuition about , the value of the error D;; will be large if n;; is
small, and will be equal to zero when n;; = n (with no missing entries).

The seemingly complicated min-max optimization problem in reduces to a cousin
of the GLASSO criterion (See Supplementary Note for details) — we use a weighted
version of the ¢;-norm penalty on Q:

min § —logdet(®2) +(92,%) +Z(A+Dij)|9ij| . (12)
ij

Problem is a nonlinear semidefinite optimization problem in 2—and the constraint
Q > 0 leads to a positive semidefinite inverse covariance matrixﬂ Problem uses
a weighted ¢;-norm on {2 where the penalty weights are adjusted to account for the
uncertainty due to the presence of missing values. Note that the penalty parameter A
accounts for the sparsity in  arising from our prior sparsity assumption on {2—the
overall penalty weight for the (4, j)-th entry, (A+ D;;) adds further regularization due to
the presence of missing values. In particular, if there is no missing value, then D;; =0
and will reduce to the GLASSO criterion. If n;; is small, then the value of D;; will
be large — therefore, we will place a higher weight on the term |€2;;| to shrink it towards
Zero.

Note that, as in Section the Robocov inverse covariance estimator, bypasses the
task of imputing the missing values. Our main goal is to directly estimate € from a
partially observed data-matrix X. In this way, we can potentially mitigate the limitations
of a sub-optimal imputation procedure. See Section [3| for an empirical validation.

Criterion (12]) leads to an inverse covariance estimator — we use the solution 2 from
Problem (|12 to define a partial correlation estimator W as follows

Both the optimization problems and were solved using R implementation of
the CVX software??:23. This was sufficient for the problem-scales we are dealing with —

Wi' = (13)

4We get a positive semidefinite (PSD) estimate for Q even if 3 is not PSD. In addition, due to
the presence of the log det in the objective, an optimal solution to will be positive definite (i.e, 2
will have full rank).
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for larger instances, specialized algorithms (e.g., based on first order methods)?42%30

may be necessary.

In all our subsequent analysis and numerical results, we use the Robocov correlation
estimator R (see Problem @[)) and partial correlation estimator W .

3 Results

Simulation Experiments: Synthetic and Real Data

We applied Robocov on simulated multivariate normal data from three population
correlation structure models (hub, Toeplitz and 1-band precision matrix) with N samples,
P features and 7 proportion of missing entries randomly distributed throughout the data
matrix (see Supplementary Note for details). For ease of interpretation, the features have
unit variance under all three models, implying that the population covariance matrix is
the same as the correlation matrix.

Figure [1] shows results for all three model-settings with N = 500, P = 50,7 = 0.5.
For every setting, Robocov generated a sparse estimate of the population correlation R
(Section or population partial correlation W (Section [2.2). The Robocov correlation
estimator captured the population structure effectively for all three models, while the
standard pairwise sample correlation estimator (based on the observed entries) showed
comparatively poor performance (Figure . The Robocov partial correlation estimator
accurately captured the causal structure in the hub and 1-band precision matrix models;
for the Toeplitz matrix, it captured the high partial correlation band immediately
flanking the diagonal but failed to capture the other alternating positive and negative
low correlation bands (Figure [1)).

In view of the biological problem of interest, the hub structured population correlation
model is perhaps the most interesting—recent work” has shown hub-like patterns in
expression correlation across tissue pairs for most genes. To this end, we applied
Robocov on simulated data for hub population correlation matrix structure for different
settings of N, P and 7 (see Supplementary Note for details). Two metrics of particular
interest were the false positive rate (FPR) and the false negative rate (FNR) as defined
in Supplementary Note. Using these metrics, we compared the Robocov correlation
estimator with both the pairwise sample correlation estimator and the recently proposed
adaptive shrinkage based approach, CorShrink. Across different (N, P, 7)-settings,
the Robocov correlation estimator had lower FPR than CorShrink. In comparison, for
data with a large number of missing entries (i.e., high 7), FNR for Robocov was worse
compared to CorShrink (Table . We did not compare against other shrinkage-based
correlation estimators such as PDSCE3! and corpcor3?13 as (i) they do not account
for missing entries in the data and (ii) even in the fully observed case (i.e., no missing
values) earlier work” has shown that these methods are outperformed by CorShrink (see
Figure 4 from ref.”).

Next, we assess the performance of the Robocov partial correlation estimator for the
same simulation settings (Table . We are not aware of a sparse conditional graph or
partial correlation estimation method that directly takes into account missing entries.
Nevertheless, we compare the Robocov partial correlation estimator with (i) GLASSO
on the pairwise sample correlation estimator 3 and (ii) CLIME on an imputed data
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matrix where, the imputation is performed using SoftImpute®. Comparisons are made
in terms of FPR and FNR. In the presence of missing data, Robocov partial correlation
estimator showed better FPR and FNR compared to both GLASSO and CLIME-based
estimators (Table . CLIME is found to under-perform in our experiments—this may
largely be due to the error arising from the imputation step (Table .

Next, we evaluated the predictive performance of Robocov with pairwise sample
correlation estimator and CorShrink. We considered the GTEx gene expression data
for a particular gene (ARHGAP30) across 544 donors and 53 tissues with close to 70%
missing data owing to subjects contributing only a small fraction of tissues. We split the
individual by tissue data for the gene into two equal groups and compared the estimated
correlation matrix (we used different estimators: Robocov, CorShrink and pairwise
sample correlation matrix) computed on one half of the individuals with the pairwise
sample correlation matrix computed from the other half. Both Robocov and CorShrink
estimators considerably outperformed the pairwise sample correlation estimator, with
CorShrink having slightly better predictive accuracy (Figure and Table . Due
to the similar predictive performances of Robocov and CorShrink, the former may be
preferable as it results in sparse estimates, leading to better interpretability.

An an alternative to Robocov, we may consider an estimator obtained by first
imputing the missing entries in the data matrix and then estimating the correlation or
partial correlation matrix for the complete data. For the same ARHGAP30 gene, we
performed imputation by either a low rank factorization (SoftImpute®, with or without
scaling) or a median based approach (replacing the missing entries of a feature by the
median value of the observed entries). The correlation matrix obtained by SoftImpute
(both with and without scaling) showed artificial high negative and positive correlation
sweeps between brain and non-brain tissues that were not observed in the pairwise
correlation matrix (Figure . One possible explanation of this is that the data matrices
in our case do not seem to have a low rank representation based on eigenvalue analysis
(Figure . The median based imputation method on the other hand, is prone to
showing false positives—for example, we see a high correlation between Fallopian tube
and Cervix-Ectocervix, which is a consequence of only 3 individuals contributing both
the tissues (Figure . Robocov can effectively get rid of these edge cases and generate
sparser and more robust results compared to these imputation based approaches.

Based on our simulation studies, we conclude that the Robocov correlation estimator
has a lower FPR than both the standard pairwise sample correlation estimator and
CorShrink. In terms of predictive performance, Robocov does better than the standard
estimator and is comparable to CorShrink. We also observe that for data with a large
number of missing entries and no obvious low rank representation as in case of the GTEx
gene expression data, imputation based approaches are sub-optimal and Robocov would
be the preferred option in such a scenario. The Robocov partial correlation estimator, on
the other hand, showed better performance both in terms of FPR and FNR compared to
other competing methods such as GLASSO and CLIME, especially when the proportion
of missing entries in the data matrix is high.

Gene Expression correlation analysis across tissue pairs

We applied Robocov to each of 16,069 cis-genes (genes with at least one significant
cis-eQTL) from the GTEx v6 project®* (see URLs for gene list). For each gene, the
data matrix had 544 rows (post-mortem donors), 53 columns (tissues) and comprised
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of ~ 70% missing entries. The median Robocov correlation estimator showed weak
hub-like association across 13 Brain tissues, 3 Artery tissues, 3 Esophagus tissues, 2
Heart tissues and 2 Skin tissues (Figure . Figure [2| presents a visual comparison of
Robocov correlation and partial correlation estimators with standard pairwise sample
correlation matrix for two example genes (ARHGAP30 and GSTM1)—the Robocov
correlation estimator is sparse and visually less cluttered than the standard approach.
The Robocov correlation structure across tissue pairs varied from one gene to another:
some genes showed high correlation across all tissues (e.g. HBB, RPL9), some showed
little correlation across tissues (e.g. NCCRP1), some showed high intra-Brain correlation
but relatively low inter-Brain correlation (e.g. ARHGAP30) (Figure [3] Figure [S6| and
Figure . Furthermore, two genes with similar correlation profiles may have very
distinct expression profiles. For example, HBB and RPL9 showed high correlation across
all tissue pairs, but they were distinct in their tissue-specific expression profiles. HBB
showed high expression in Whole Blood relative to other tissues, while RPL9 had a more
uniform expression profile across tissues (Figure . A similar pattern was observed also
for two genes with negligible correlation across tissues, NCCRP1 and RPL21P11 (Figure

S6).

Next, we assign to each gene, a prioritizing score defined by the average value of
Robocov correlation (Robospan-score) or partial correlation (pRobospan-score) across
all tissue pairs. Similarly, we also computed the average value of the pairwise sample
correlation (Corspan-score) across tissues. Then we tested and compared these three
gene prioritizations based on how well they capture functional and disease relevant
architecture. None of the three scores showed significant enrichment in 3,804 housekeeping
genes?? (0.84x, 0.72x and 0.4x for Robospan-score, Corspan-score and pRobospan-score
respectively). We compared these 3 gene scores with constraint-based metric of gene
essentiality such as the absence of loss-of-function(LoF) variants (pLI3* and s_het®9).
For each of the 50 quantile bins of pLI and s_het, we computed the median of each of
these scores; and compared with the mid-value of the quantile bin. We observed a slight
negative trend in all 3 scores with increasing quantile bins of both pLI (r = —0.07 for
Robospan-score, —0.13 for pRobospan-score and —0.13 for Corspan-score) and s_het
(r = —0.05 for Robospan-score, —0.10 for pRobospan-score and —0.08 for Corspan-
score) (Figure . One possible explanation may be that genes with highly correlated
expression across all tissues may be driven by tissue-shared regulation machinery which
imposes lower selective constraints on these genes.

The top 10% genes from each of the three gene prioritizing scores were used to
define gene sets; we call them Robospan, pRobospan and Corspan genes. We performed
a pathway enrichment analysis®®3” of these gene sets; the top 5 enriched pathways
included immune system, interferon signaling, heat stress factor (Table . The
magnitude of enrichment was stronger for Robospan and pRobospan genes compared
to Corspan genes. Though not among the top 5 pathways, other interesting significant
pathways included different signaling pathways (interleukin mediated signaling, VEGFA-
VEGFR2, NFkB signaling) and Circadian clock related pathways (see URLs). The
enrichment of immune related pathways was further backed by high enrichment of these
genes in top 10% specifically expressed genes in Whole Blood (SEG-Blood?®) (Robospan:
1.48x, pRobospan: 2.50x, Corspan: 1.45x). One possible conjecture may be that this
enrichment is an artifact caused by contamination of blood with GTEx tissue samples.
This, however, is countered by examples of genes that have high correlation across all
tissues but expression-wise, are specific to tissues that are not Whole Blood (Figure
IS8]). We also see examples of specifically expressed genes in Whole Blood that have
low Robospan-score (Figure [S9)). The other possible reason may be biological; some
highly expressed genes in blood may carry out important systemic functional activity
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across different tissues (cell-cell signaling, transport of substances, immune response)
and therefore show high correlation across tissues.

We conclude that Robocov produces less visually cluttered representation of correla-
tion and partial correlation structure of gene expression across tissue pairs for individual
genes. We also show that genes with high average Robocov correlation or partial correla-
tion across tissue pairs tend to have lower selection constraint and are not enriched for
housekeeping genes. The top genes with highest average Robocov correlation or partial
correlation across tissues are enriched for immune related functionality among other
systemic pathways such as heat stress factors, circadian clock etc. This is further backed
by enrichment of Robospan and pRobospan genes with specifically expressed genes in
Blood.

Heritability analysis of blood-related traits

The strong connection of Robospan, pRobospan and Corspan genes with blood-related
genes and immune related pathways, as reported in the previous subsection, prompted us
to test whether these genes are uniquely informative for blood-related complex diseases
and traits.

For each gene set, we define SNP-level annotations to test for disease heritability.
We define an annotation as an assignment of a numeric value to each SNP with minor
allele count >5 in a 1000 Genomes Project European reference panel3®#Y. For each gene
set X, we generate two binary SNP-level annotations — we assign a value of 1 to a SNP
if it lies within 5kb or 100kb window upstream and downstream of a gene in the gene
set and 0 otherwise; this strategy has been used in several previous works3®41:42,

We assessed the informativeness of the 6 SNP annotations (2 SNP annotations per
gene set) for disease heritability by applying stratified LD score regression (S-LDSC)*°
conditional on 86 baseline annotations comprising of coding, conserved, epigenomic and
LD related annotations (this is called the baseline-LD model; here we use version 2.143).
S-LDSC results were meta-analyzed across 11 relatively independent blood-related traits
(5 autoimmune diseases and 6 blood traits (Table. We considered two S-LDSC metrics
for comparison: enrichment and standardized effect size (7*) (see Supplementary Note
for details). Enrichment is defined as the proportion of heritability explained by SNPs
in an annotation divided by the proportion of SNPs in the annotation’. Standardized
effect size (7*) is defined as the proportionate change in per-SNP heritability associated
with a 1 standard deviation increase in the value of the annotation, conditional on other
annotations included in the model*3**; unlike enrichment, 7* quantifies effects that
are unique to the focal annotation. Here we primarily use 7* as a metric for disease
informativeness like in several previous works”38:41:44:45

All 6 annotations for the 3 gene scores were significantly enriched when meta-analyzed
across 11 blood and autoimmune traits. However, SNP annotations corresponding
to Robospan and pRobospan gene sets showed higher magnitude of enrichment than
Corspan genes (Figureand Table. More importantly, 2 Robospan, 2 pRobospan and
0 Corspan annotations showed significant 7* conditional on the baseline-LD annotations
after Bonferonni correction (Figure |4| and Table . If we restrict our analysis to only
the 5 autoimmune traits, 2 Robospan, 0 pRobospan and 0 Corspan SNP annotations
showed unique signal (Table . Even when these annotations were modeled jointly with
specifically expressed genes in Whole Blood®® (SEG-Blood) and subjected to forward
stepwise elimination similar to ref.*1457 1 Robospan annotation (100kb) still remains
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significantly informative, suggesting unique disease information over SEG-Blood genes.
The same annotation also remains significant in a joint model of just the Robospan,
Corspan and pRobospan annotations.

We conclude that Robospan and pRobospan gene sets constructed from Robocov
correlation and partial correlation estimator show higher enrichment and disease infor-
mative signal compared to the Corspan gene set constructed similarly from the standard
correlation estimator. Additionally, the Robospan gene set shows unique disease infor-
mation (7*) conditional on the specifically expressed gene in blood; this shows that the
study of correlation structure of gene expression across tissues adds value over study of
expression data alone.

4 Discussion

In this paper we present Robocov—a novel convex optimization-based framework for
estimating a sparse covariance (correlation) and inverse covariance (partial correlation)
matrix, given a data matrix with missing entries. Our approach does not rely on
missing data imputation and hence mitigates the possible shortcomings of a sub-optimal
imputation procedure (e.g., based on a low-rank assumption). Instead, Robocov directly
estimates the correlation matrix or partial correlation matrix of interest via a regularized
loss minimization framework. Since Robocov is a stand-alone generic tool that can be
applied to any data with missing entries, it can be used as an exploratory tool for other
missing-data related problems.

We have assessed the significance of our proposed Robocov framework over standard
methods from a methodological, biological and disease analysis perspective. Robocov
leads to sparse estimates and has a lower false positive rate compared to other competing
methods. Robocov estimator is visually more interpretable and less cluttered and
captures more robust biological signal. In terms of disease informativeness, Robospan
and pRobospan gene sets, generated from the Robocov estimated correlation and partial
correlation matrices, perform considerably better than the analogous Corspan gene set
from standard correlation estimator.

There are several directions for future research. First, Robocov may be improved by
incorporating the structure of missing values by using additional covariates. In fact, for
the GTEx expression data, there may be structured missing-ness driven by post-mortem
donor metadata, such as cause of death, age, gender etc. Second, we restrict our study
to gene expression data; alternatively, one could have considered transcript expression
data. However, accounting for patterns of transcriptional diversity for a particular gene
will require more involved modeling assumptions. Robocov can also be used to as an
ingredient in item response models for large scale data, as in UK Biobank, where there
are extensive amounts of missing entries in the response phenotype data6:47-48,

Robocov is implemented as an R package hosted on Github (https://github.com/
kkdey/Robocov)).
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URLs

e Robocov software
https://github.com/kkdey/Robocov

e GTEx v6 data analysis
https://github.com/kkdey/Robocov-pages

e List of all geneshttps://github.com/kkdey/Robocov-pages/tree/master/data/
gene_names_GTEx.txt

o Gene Sets
https://github.com/kkdey/Robocov-pages/tree/master/Gene_Sets

e Pathway enrichments
https://github.com/kkdey/Robocov-pages/tree/master/Pathways

e Annotations analyzed in this study:
https://github.com/kkdey/Robocov-pages/tree/master/Annotations

e Baseline-LD annotations:
https://data.broadinstitute.org/alkesgroup/LDSCORE/

e 1000 Genomes Project Phase 3 data:
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502

e UK Biobank summary statistics:
https://data.broadinstitute.org/alkesgroup/UKBB/

e Other summary statistics:
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
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Tables

Table 1. Simulation results of correlation and partial correlation estima-
tors: Hub population structure model. We report metrics to compare (i) the
Robocov correlation estimator (Cor) against CorShrink and the standard pairwise
sample correlation estimator; and (ii) the Robocov partial correlation estimator
(P.Cor) against estimators available from GLASSO and CLIME. Here, data is gen-
erated from a hub-structured population covariance matrix with different choices of
N (number of samples), P (number of features) and different degrees of missing en-
tries in the data (the fraction 7 of missing data varies from 0% to 50%). The three
metrics are FP2 (False Positive 2-norm), FPR (False Positive Rate) and FNR (False
Negative Rate). See Supplementary Note for the details of the metrics. Results are
averaged over 50 replications from the same model. For all three partial correlation
estimators: Robocov partial correlation, GLASSO and CLIME; the optimal sparsity
inducing parameter A was chosen by cross-validation. See Simulation settings under
Supplementary Note for further details on the simulation model.

Hub: N = 50, P=50
=0 7=0.25 7=0.5
Type Method FP2 FPR FNR FP2 FPR FNR FP2 FPR FNR
Robocov 0.047 0 0 0.14 0 0.14 0.26 0 0.19
Cor CorShrink | 1.4 0.01 0 2.2 0.04 0.03 4 0.07 0.09
Standard | 6.7 0.24 0 8.8 0.30 0 15 0.28 0
Robocov 0.08 0 0.07 0.27 0.01 0.13 0.47 0 0.09
P.Cor | GLASSO | 0.12 0 0.15 0.29 0.01 0.15 0.59 0.02 0.12
CLIME 1.47 0.09 0.07 1.37 0.07 0.08 1.29 0.08 0.07
Hub: N = 100, P=50
=0 7=0.25 7=0.5
Type Method FP2 FPR FNR FP2 FPR FNR FP2 FPR FNR
Robocov 0.046 0 0 0.062 0 0 0.18 0 0.15
Cor CorShrink | 0.9 0 0 1.3 0.02 0 2.9 0.03 0.01
Standard | 4.8 0.17 0 6.2 0.20 0 10 0.31 0
Robocov 0.23 0 0.06 0.21 0 0.09 0.18 0.03 0.11
P.Cor | GLASSO | 0.11 0 0.16 0.23 0 0.22 0.29 0.01 0.24
CLIME 1.83 0.12 0.08 1.77 0.14 0.09 1.78 0.16 0.11
Hub: N = 500, P=50
=0 m=0.25 m=0.5
Type Method FP2 FPR FNR FP2 FPR FNR FP2 FPR FNR
Robocov 0.028 0 0 0.012 0 0 0.077 0 0
Cor CorShrink | 0.21 0 0 0.32 0 0 0.83 0 0
Standard | 2.1 0.01 0 2.8 0.05 0 4.4 0.14 0
Robocov 0.12 0 0.11 0.16 0 0.12 0.11 0 0.14
P.Cor | GLASSO | 0.16 0 0.19 0.29 0 0.20 0.19 0.02 0.20
CLIME 2.11 0.11 0.16 1.99 0.14 0.18 2.04 0.15 0.17

13 f43]



https://doi.org/10.1101/2020.03.16.994020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.16.994020; this version posted March 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Hub Toeplitz 1-band precision
Pop
Corr
Pop
Partial
Corr

Robocov
Corr
[ [ | .

4 08 06 04 02 0 4 08 06 04 02 0 4 98 95 04 02 o

Robocov
Partial
Corr
[ [ |

4 08 06 04 02 0

Figure 1. Simulation results of applying Robocov correlation and partial correla-
tion estimators on Hub, Toeplitz and 1-band precision correlation structures: We
applied Robocov correlation and partial correlation estimators on data generated from Hub,
Toeplitz or 1-band precision matrix based population models (see Simulation settings in Sup-
plementary Note) with N = 500 samples, P = 50 features and m = 0.5 proportion of missing
data. We present the population correlation matrix in the first row, population partial cor-
relation matrix in second row, Robocov correlation matrix in third row and Robocov partial
correlation matrix in last row. The tuning parameter for Robocov correlation matrix (and
partial correlation matrix) estimation was determined by cross-validation.
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Figure 2. Illustrative examples of pairwise sample correlation estimator,

Robocov correlation and partial correlation estimators for 2 genes: (Left column)
ARHGAP3O0 gene and (Right column) GSTM1 gene. Each column shows the (A) pairwise
sample correlation estimator, (B) Robocov correlation estimator and (C) partial correlation
estimator stacked from top to bottom.
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Figure 3. Examples of genes with high average Robocov correlation across all tis-
sue pairs but with distinct expression profiles: (A) RPL9 gene has uniformly high
TPM (transcripts per million) values across most tissues (inset picture). (B) HBB shows
high expression specifically in Whole Blood (inset picture). The expression profile plots for
the genes have been fetched from the GTEx Portal (]https:/ / gtexportal.org/home/l)‘
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Figure 4. Disease informativeness of 5kb and 100kb SNP annotations for
Corspan, Robospan and pRobospan gene sets: (A) Heritability enrichment, conditional

on baseline-LD model (v2.1). The base enrichment level is 1. (B) Standardized effect size
(7*) conditional on baseline-LD model for Corspan (left column, white), Robospan (middle
column, red) and pRobospan (right column, blue) gene sets. Results are meta-analyzed across
11 blood and autoimmune traits. ** denotes annotations that are significant after Bonferonni
correction (P < 0.05/8) where 8 is the total number of SNP annotations tested. Error bars
denote 95% confidence intervals. Numerical results are reported in Table
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Table S1. Predictive comparison of CorShrink, Robocov and sample correla-
tion estimators for a GTEx gene. We report Mean Absolute Deviation (MAD)
and Root Mean Squared Deviation (RMSD) metrics between an estimator (e.g., sam-
ple correlation matrix, CorShrink and Robocov) computed on the gene expression
data (GTEx project) for half of the individuals (training set) and the sample corre-
lation matrix computed from other half (testing set) of all individuals. Results are
averaged over 30 such different training/testing data-splits with the standard errors
reported in brackets.

Method MAD RMSE
Sample-Est | 0.30 (0.01) | 0.47 (0.02)
CorShrink | 0.24 (0.01) | 0.35 (0.01)

Robocov | 0.25 (0.01) | 0.36 (0.01)

18 f43]


https://doi.org/10.1101/2020.03.16.994020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.16.994020; this version posted March 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Table S2. Pathway enrichment analysis of Robospan, pRobospan and Corspan
genes. Pathway enrichment is performed using the ConsensusPathDB database36-37.
Only the top 5 non-redundant and statistically significant (q-value < 0.05) pathways
for a gene set are reported.

‘ Gene Set

Top pathways ‘

Robospan Interferon signaling (1.1e-18), Immune system (3.1e-08),
HSF1 activation (1.1e-07), Antigen processing and presen-
tation (2.4e-07), Allograft rejection (1.5e-06)

pRobospan Immune system (2.7e-21), Interferon signaling (3.4e-15),
Innate immune system (5.1e-12), TNF signaling pathway
(7.9e-11), Neutrophil degranulation (2.0e-10)

Corspan Interferon signaling (1.1e-17), Immune system (1.6e-07),
Antigen processing and presentation (1.2e-05), HSF1 acti-
vation (4.1e-05), Neutrophil degranulation (1e-04),
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Table S3. List of all blood-related traits: List of 11 blood and autoimmune
traits (5 blood traits and 6 autoimmune traits) analyzed in this paper.

‘ Annotation ‘ Traits ‘

Blood traits Red blood Cell Distribu-
tion Width (UKBB*?),
Red blood Cell Count
(UKBB*), White
blood Cell Count
(UKBB*), Platelet
Count (UKBB*?),
Eosinophil Count
(UKBB*?)

Immune traits Ulcerative Colitis®,
Rheumatoid Arthri-
tis®!, Celiac®?, Lupus®?,
Crohn’s disease®®, Auto
Immune and Inflamma-
tory traits
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Table S4. S-LDSC results for SNP annotations corresponding to Robospan,
pRobospan, Corspan and SEG-Blood gene sets for blood and autoimmune
traits.: Standardized Effect sizes (7*) and Enrichment (E) of 8 SNP annotations cor-
responding to 4 gene sets (Robospan, pRobospan, Corspan and SEG-Blood®®) and 2
SNP annotations corresponding to 5kb and 100kb window based SNP-to-gene link-
ing strategies for each gene set. Results for all annotations are conditional on 86
baselineLD-v2.1 annotations. Reports are meta-analyzed across 11 Blood and Au-
toimmune traits.

Robospan
T se(t*) | p(7*) E | se(E) | p(E)
5kb (2.6%) 0.086 0.024 | 0.00048 | 2.7 | 0.16 1.5e-07
100kb (10%) 0.12 0.03 7.9e-05 2.3 | 0.12 2e-09
pRobospan
T* se(T*) | p(7*) E | se(E) | p(E)
5kb (2.3%) 0.096 0.028 | 0.00057 | 3.2 | 0.22 9.3e-08
100kb (9.9%) 0.11 0.034 | 0.0011 24 | 0.12 5.5e-09
Corspan
7 s [ ) [ E [se(B) | p(E)
5kb (2.5%) 0.04 0.024 | 0.093 24 | 0.15 4.8e-07
100kb (9.8%) 0.038 0.02 0.059 2.1 | 0.1 1.7e-08
SEG-Blood
7 s [ pr) [ E [se(B) | p(E)
5kb (2.7%) 0.24 0.036 | 7.6e-11 3.6 | 0.26 8.7e-10
100kb (10.1%) 0.21 0.029 | 1.3e-13 2.4 | 0.095 2.2e-10
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Table S5. S-LDSC results for SNP annotations corresponding to Robospan,
pRobospan, Corspan and SEG-Blood gene sets for 6 autoimmune traits.: Stan-
dardized Effect sizes (7*) and Enrichment (E) of 8 SNP annotations corresponding
to 4 gene sets (Robospan, pRobospan, Corspan and SEG-Blood38) and 2 SNP annota-
tions corresponding to 5kb and 100kb window based SNP-to-gene linking strategies
for each gene set. Results for all annotations are conditional on 86 baselineLD-v2.1
annotations. Reports are meta-analyzed across 6 Autoimmune traits.

Robospan

T se(r)| p(r) | B | se(E) | p(E)

5kb (2.6%) 0.12 0.036 | 0.00074 | 2.7 | 0.25 5.2e-05

100kb (10%) 0.14 0.049 | 0.0051 2.3 | 0.19 2.1e-06
pRobospan

™ [se(r)[p() [ E [se(B) | p(E)

5kb (2.3%) 0.1 0.043 | 0.016 3.3 | 0.39 0.00012

100kb (9.9%) 0.11 0.059 | 0.061 25 | 0.24 le-05
Corspan

7 [se(r)][p() | E | se(B) | p(E)

5kb (2.5%) 0.08 0.035 | 0.021 2.5 | 0.23 0.00011

100kb (9.8%) 0.037 | 0.035 | 0.28 2 0.15 7.9e-06
SEG-Blood

T se(r*) | p(7*) E | se(E) | p(E)

5kb (2.7%) 0.33 0.042 | 5.5e-15 4.2 1 0.25 8.4e-06

100kb (10.1%) 0.3 0.036 | 8.8e-17 2.7 1 0.11 7.4e-06
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Table S6. Joint S-LDSC results for annotations corresponding to Robospan,
pRobospan, Corspan and SEG-Blood gene sets.: Standardized Effect sizes (7*)
and Enrichment (E) of SNP annotations that are significant when all annotations
from Table [S4] are modeled jointly and subjected to forward stepwise elimination.

2 annotations survive in the resulting joint model. The analysis is conditional on

86 baselineLD-v2.1 annotations. Reports are meta-analyzed across 11 Blood and
Autoimmune traits.

I se(7*) | p(7*) E se(F) p(E)
Robospan (IOOkb) 0.11 0.03 0.0001 2.3 | 0.12 1.8e-09
SEG-Blood (100kb) 0.21 0.029 | 2.3e-13 2.4 | 0.095 2.1e-10

5 Supplementary Figures
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Figure S1. Simulation results of standard pairwise correlation estimator for
Hub, Toeplitz and 1-band precision matrices: We applied standard pairwise correla-
tion estimator on data generated from the simulation models from Figure [[}—this comprises
of Hub, Toeplitz or 1-band precision matrix-based population models with N = 500 samples,
P = 50 features and m = 50% proportion of missing data.
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Figure S2. Evaluating the predictive accuracy of Robocov: (Top panel) Robocov cor-
relation estimate of the ARHGAP30 gene. (Middle and bottom panels) We split the data
matrix randomly into 2 equal groups. We compare the Robocov, CorShrink and pairwise
sample correlation estimators from one half of the data with the pairwise sample correlation
matrix on the other half. We use Median Absolute Deviation (MAD) (middle panel) and
Root Mean Squared Error (RMSE) (lower panel) metrics. The results are averaged over 50
such random splits. See Table [S1| for a numerical summary.
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Figure S3. Comparison of the Robocov correlation estimator with correlation es-
timators based on imputed data: We compare the Robocov correlation estimator for the
ARHGAP30 gene with four other estimators. They include the standard pairwise sample
correlation estimator, the sample correlation matrix computed over data imputed by either
a median-based approach (missing entries of a feature replaced by the median of observed
entries), the scaled SoftImpute® approach; and an unscaled SoftImpute® approach.
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Eigenvalue trend for ARHGAP30 gene
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Figure S4. Illustration of high rank for GTEx tissue-tissue correlation matrix:
Plot of eigenvalues sorted from highest to lowest in magnitude for tissue-tissue pairwise cor-
relation matrix for a particular gene (ARHGAP30). The eigenvalues do not show any sharp
drop close to 0 as one would expect if the matrix allowed a low rank (+noise) structure. This
suggests relatively high dimensional structure in the GTEx gene expression data which may
explain why a low rank imputation method such as SoftImpute® performs poorly in
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Figure S5. Median of Robocov correlation estimators: We compute median of
Robocov correlation estimates for each tissue-tissue pair across 16,069 genes studied.
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Gene expression for RPL21P11 (ENSG00000242571.1)
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Figure S6. Examples of two genes with low Robospan-score but having distinct
expression patterns: Examples of two genes, NCCRP1 (top) and RPL21P11 (bottom),
both of which have close to 0 average correlation in expression across tissue-pairs but having
very distinctive expression profiles. NCCRP1 has high expression in a few specific tissues
including Whole Blood, while RPL21P11 has uniformly low expression across all tissues.
The expression profile plots for the genes have been fetched from the GTEx Portal (https:

//gtexportal..org/home/).
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Figure S7. Comparing Robospan-score, pRobospan-score and Corspan-score

with pLI and s_het: Comparison of pLI gene score with (A) Robospan-score, (B)

pRobospan-score and (C) Corspan-score for all genes (See Results section for details). Com-
parison of s_het gene score with (A) Robospan-score, (B) pRobospan-score and (C) Corspan-
score for all genes (See Results section for details).
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pr for HLA-DQB1 9344.16)

Gene expression for LRRC37A4P (ENSG00000214425.7)
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Figure S8. Examples of genes high Robospan-score but not specifically ex-
pressed in blood or uniformly expressed across tissues: The two genes are HLA-
DQB1 (top) and LRRC37A4P (bottom). HLA-DQBL1 is specifically expressed in lym-
phocyte cell line which is related to blood. LRRC37A4P has highest expression in brain
cerebellum and testis. The expression profile plots for the genes have been fetched from the
GTEx Portal (https://gtexportal.org/home/).
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Figure S9. Examples of genes that are specifically expressed in Whole Blood
but do not show high Robospan-score: Examples of two genes, TYROBP (top) and
BID (bottom), that show tissue specific expression in Whole blood and are in top 10%
specifically expressed genes (SEG) as per ref.*®) but do not show consistently high expression
correlation across tissue pairs and hence, do not have high Robospan score. The expression
profile plots for the genes have been fetched from the GTEx Portal (https://gtexportal.

org/home/).
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Supplementary Note

Fisher Z-score

The population Fisher Z-score?® is defined as
[1+ Ry ]
[ 1= Rij |

1

where R is the population correlation matrix. The corresponding empirical Fisher Z-score
is defined as follows

; 1
Zij = §log (15)

For bivariate normally distributed random variables X; and X, the empirical Fisher

Z-score Zij (based on n,;;-many samples) is normally distributed given the population
counterpart Zij%:

. 1 2
Zij|Zij ~ N\ Zij, ; 1
J| J ( J nij — 1 + (nij _ 1)2> ( 6)

and the Z-scores are conditionally independent. Dey and Stephens assume an adaptive
shrinkage prior on the population Fisher Z-scores for each pair of variables. Here we use
property in the context of directly estimating ¥ or €2 with an ¢;-norm penalty.

Derivation of C

Here we show how we derive the analytical form of the upper bound C in appearing
in Problem .
Lemma 1. Let XI{,Xp be the fully observed version of the data matriz X; and let every

sample X,Ji* follow a Multivariate Gaussian distribution with covariance matriz 3 and
correlation matriz R. The samples are independent. Then, for any fized € > 0 and for
sufficiently large n;;, there exists a C;;(€) such that

P (|Rij Ryl < ()

Rij) > (1 - 6) (17)
where

Cite)i=min (2n0mnr0 {0 - 1)+ Z0uwin ) vizs  as)

and

n(ng) = \/nijl_ t (nijQ_ 02 (19)

and M(e€) is a sufficiently large finite number.
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Corollary 1. For e = 0.001, M(e) can be taken to be 3 in Lemma . Then

Pr <|Rij — R”| < C;]

Rij> ~1 (20)
where

’

Cyy = min (2,n(niy) {301 = B3) +2v3n(niy) })  Vi# (21)

If n; and n; are sufficiently large, in which case ¢; = o; and ¢; ~ o}, then Corollary 1
leads to the following probability inequality for the pairwise sample covariance:

Pr (|i” — Eij‘ < Cij

Zij> ~1 (22)
where
Cij = 5’15']0 .

(23)

Proof of Lemma [1] and Corollary

If a random variable W ~ N (0,1), then for any small € > 0, we can get a number M (e)
such that

Pr (W] < M(¢)) > (1 —¢) (24)

Using and , we have

P (|z-j 2| < M(On(nyy)

Z) >(1—e). (25)

The estimated and population correlations Rij and R;; (respectively) can be written

in terms of the Z-scores using as follows:
. 27;:) —1 27;:) —1
Rij _ eXp( _ ]) , Rij — eXp( J) . (26)
exp(2Z;;) + 1 exp(2Z;;) + 1

Applying a Taylor series expansion to R;; as a function of Z;; around Zij, we get:
exp(2Z;) 1 _ exp(2Zy) —1 4 xp(2Zy) (Zi; — Zij)
exp(QZij) +1 exp(2Zij) +1 eXp(2Zij) +1

exp(2)(exp(2§) — 1)
4 s (Zij — Zi;)?
(exp(2¢) +1)
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where £ is a value between Z;; and Zij. We can place an upper bound on the coefficient
of the last term in :

exp(26)(exp(26) ~ D] _ 1

. 28
(exp@) + 17|~ 6V3 2
Using Equations , and , we can write
5 27, X 2 .
[Rij — Rij S4M|sz ~ Zijl + —=2Zi; - Z? (29)
(exp(2Z;;) + 1)2 3v3
Using the definition of ZAZ-j in Equation , we get
exp(2Zy)  _ (1—RY) (30)
(exp(2Z45) + 1) 4
Using the above expression in (29)), we get:
. U 2 .
|Rij — Rij| < (1 - RY)|Z —Zij|+ﬁ|zi_j — Zy|? (31)

Using and , we have:

Pr <|Rz‘j — Rij| < (1= R)M(e)n(ni;) + M?(e)n”(nij)

2
ﬁ RZJ) > (1 — 6). (32)

Since, ]:21-]- and R;; are both correlation terms, they lie between —1 and +1 and hence
with probability one: R
[Rij — Rij| <2 (33)

Combining Equations and , we get

2

Pr (mij ~ Ryl < min {2, (1= )M (ntrns) + 57

AP ns) || 7 )
> (1—¢)
which completes the proof of Lemma

In , if we choose € = 0.001, we have M (e) &~ 3—hence, leads to:
Pr (12 Rl <min {230 = B atog) + 2V} | R ) > (1= (39
which proves Corollary [1} Usually this result holds good?® for any ni; > 3. If however

n;; — oo for all (4, j) pairs, then the bound on |R” — R;j| in approaches 0 and Rij
would be close to R;;.
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A General Likelihood Framework for Robocov Covariance Matrix
Estimation

We propose a generalization of the Robocov covariance matrix estimation framework
presented in Section [2.1} We present a family of loss functions for the regularized
criterion — the loss function presented here is directly motivated by the Fisher’s
Z-score framework discussed above, but differs from that appearing in Section [2.1

Recall that the estimators in Section [2.1] are special cases of the following regularized
loss minimization framework:
min LX) +AE(3) (36)
where L is the data fidelity function and £ is the penalty function. In Section we
consider an {;-penalty on the entries of ¥ — i.e., {(X) = >, |X;;]. We present below
(See (37)) a convex quadratic loss function £(X). While this differs from the loss function
considered in , in practice, the performances of these two estimators were found to be
similar (at least on the datasets we experimented on).

To derive the loss function, we make use of Lemma [2 — which presents the (con-
ditional) mean and variance of R;; (given R;;). This leads to a loss function of the
form:

) (Rij — B(Ryj|Rij))?
o var(Rij|Rij)

Using the expressions for conditional mean/variances from Lemma [2] (see below), in the
above expression, we get:

S (i — (R + Riy(U = B () ) /(= B2 )

j

We set R;; = 3;/(6:6;) above, and obtain

R 2
> (&ia—jRij + 6.6, Rij (1 — B )2 (niy) — zij)
6i65(1 — RZ)n(ngj)

ij

The loss function above is a highly nonconvex function in R;; or ¥;;. To this end, we
approximate the above by replacing some unknown population quantities by their sample
analogues. This results in a loss function:

2

(Eij +345(1 = R?j)HQ(”z‘j) - Zij)
6:65(1 — R2)n(nij)

L) =>

j

; (37)

which is convex in ¥. In words, £(X) above, is a measure of how close X;;s are to the

pairwise covariance terms f)ijs—this critically depends upon the number of observed
samples n;; for every pair (i, j).

We now present Lemma [2] and its proof:

Lemma 2. Assume that all conditions of Lemma hold. If n;; is large so that C’n{f s
negligible for a constant C, we have:

36,[43)
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E (Rij|Rij> ~ Rij + Rij(1 — R};)n (nij) (38)

and

var (Rig|Riy ) ~ (1= R2)%n? (niy) (39)

where n(n;;) is as described in (19).

Proof of Lemma [2]

We re-write f%ij as a function of the Fisher Z-score
R 27;:) — 1

Rij = op(22y) - 1 2 ) (40)
exp(2Z;;) +1

We then expand Rij as a function of Zij around the population Fisher Z-score Z;;
using the 2nd order Taylor series expansion as follows:

. 97.:)—1  Adexp(2Z::) -

Rij ~ Eip( ]) eXp(“ J) (Zij _ Zz)"’
p(2Zz]) +1 exp(?Z”) +1

dexp(2Z;5)(exp(2Zi5) = 1)

Zij — Zi;)?
(exp(2Z;;5) + 1)° 2 )
=Ri; + (1 — R%)(Zij — Zij) + Rij(1 — R%)(Zij — Zij)? (41)

Using the fact that E(Z;;|Ri;) = E(Zij|Zij) = Zij, we get from

B(Rij|Rij) = Ry + Rij (1 = R3)E ((Zy — 23 Ris ) = Rig + Rig(1— B3 )y (42)
and

var (Rij\Rij) ~ (11— Rfj)2772(nij) + C'n;j4 ~ (11— Rfj)an(mj), (43)

where makes use of the fact that Cni_j4 is negligible as per the condition of Lemma
and the cross (covariance) term vanishes as it is the third moment of a Gaussian with
mean zero.

Derivation of D in

Here we discuss how we derive the analytical form of D in in the optimization
framework in .
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Let ¥ be the sample covariance matrix of X/ (i.e., the fully observed version of X)
We implicitly assume that the perturbation amount A is such that ¥ + A is a good
approximation to the unobserved ¥. That is,

|Aij| ~ |8 — Sij] < Dy (44)
We can write

1255 — Bl < (S5 — gl + 1245 — Dy (45)
We propose bounds on each of the two terms on the right using our results from the
Robocov covariance matrix section. ~VVe know that the fi}"st term would be bounded
by C;; from Corollary 1. Note that 3;; is an instance of ;; when n;; = N —i.e., all

samples are observed. Hence, the bound will be similar to C; but with n;; replaced by
N. We therefore define

Qi += Gidy min (2,9(N) {3(1 = R2) +2v3y(N) }) (46)
where R is the correlation matrix corresponding to 3.

When N is reasonably large, [n(N)R? — n(N )RZQJ| is very small since both Rfj and
R2, are bounded between 0 and 1 and n(N) — 0 as N — oo.

]

Therefore we can effectively replace Q;; by C’;j defined as:

/

C,, = 6,6, min (2, (N) {3(1 ~R%)+ 2\/§n(N)}> (47)

This provides a justification for the choice of D appearing in .

Arriving at the Robocov inverse covariance estimator in Section [2.2]

Here we explain how the min-max optimization problem in leads to the optimization

problem in .

To this end, note that:

o {<logdet (€) + (.5 + )}
:A: \Ail;ﬁlgﬁij7v7;7j {_log det (Q) + <Q,E> + <Q,A>}

= —logdet (2) + (2, %) + N IA,;I\?%U,W,ﬁQ’ A)

= —logdet (Q) + (Q, %) + ZD¢j|Qij\
,J

where, the last line follows by noting that
(@A) = Q5055 < 1] A < 1945|D;;
ij ij ij

and an equality above holds when A;; = sign(€;;)|D;;| for all 4, j,
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Using , Problem becomes:

min | max {— log det () + (2,5 + A)} A 2]: 19251
(49)
=5 —logdet () +(2.%) + 3 Dy || +)‘Z|Qij\

,J ij

which is the formulation appearing in .

Simulation settings

The parameter models for the simulated population models in Figure [1| are as follows.

e Hub: The hub matrix population model for both Figure [1| and Table [1| comprised
of correlation blocks of size 5. Each block had all off-diagonal entries equal to 0.7.

e Toeplitz: The Toeplitz matrix population model A in Figure [I| had entries of the
form A;; = max{0,1 —0.1%|i — j|}.

e 1-band precision: The 1-band precision matrix population model in Figure [I] is
of the form A; ;41 = 0.5 an A; ; =0 for j # 4,4+ 1 for each feature 7.

Performance metrics

Three performance metrics were used to compare different correlation and partial
correlation estimators for different simulation settings (Table . They include

e FP2 : False Positive 2-norm: Euclidean distance of the estimated correlation
or partial correlation values for feature pairs with population correlation or partial
correlation equal to 0.

e FPR: False Positive Rate: The proportion of feature pairs with population
correlation (partial correlation) equal to 0 that have estimated correlation (partial
correlation) greater than 0.1.

e FNR: False Negative Rate: The proportion of feature pairs with population
correlation (partial correlation) greater than 0.1 that have estimated correlation
(partial correlation) less than 0.01.

Stratified LD-score regression

Stratified LD score regression (S-LDSC) is a method that assesses the contribution of a
genomic annotation to disease and complex trait heritability??43. S-LDSC assumes that
the per-SNP heritability or variance of effect size (of standardized genotype on trait) of
each SNP is equal to the linear contribution of each annotation
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var (B;) == Zacjrc, (50)

where a.; is the value of annotation ¢ for SNP j, where a.; is binary in our case,
and 7, is the contribution of annotation ¢ to per-SNP heritability conditioned on other
annotations. S-LDSC estimates the 7. for each annotation using the following equation

E[3] =N> I or+1, (51)

where I(j,¢) = >, ackr?k is the stratified LD score of SNP j with respect to annota-
tion ¢ and r;i is the genotypic correlation between SNPs j and k computed using data
from 1000 Genomes Project®® (see URLs); N is the GWAS sample size.

We assess the informativeness of an annotation ¢ using two metrics. The first metric
is enrichment (FE.), defined as follows (for binary and probabilistic annotations only):

K2 (c)

E.= =% (52)

where hf] (¢) is the heritability explained by the SNPs in annotation ¢, weighted by
the annotation values.

The second metric is standardized effect size (7*) defined as follows (for binary,
probabilistic, and continuous-valued annotations):

(& dC
=100 (53)
M

where sd. is the standard error of annotation c, h?] the total SNP heritability and M
is the total number of SNPs on which this heritability is computed (equal to 5,961, 159 in
our analyses). 7 represents the proportionate change in per-SNP heritability associated
to a 1 standard deviation increase in the value of the annotation.
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