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Abstract

A physiologically based three-dimensional (3D) hemodynamic model is used to
predict the experimentally observed blood oxygen level dependent (BOLD) responses
versus the cortical depth induced by visual stimuli. Prior 2D approximations are re-
laxed in order to analyze 3D blood flow dynamics as a function of cortical depth.
Comparison of the predictions with experimental data for typical stimuli demonstrates
that the full 3D model matches at least as well as previous approaches while requiring
significantly fewer assumptions and model parameters.

1. Introduction

Functional MRI (fMRI) is widely used to indirectly capture brain function through
changes in blood flow and oxygenation that accompany changes in neural activity; via
the blood oxygen level dependent (BOLD) signal. The biophysical and physiolog-
ical mechanisms underlying the BOLD signal have been studied previously (Buxton
et al., 1998; Friston et al., 2000; Kim and Ogawa, 2012), which have been incorporated
in a cortical spatiotemporal hemodynamic model that can accurately predict induced
BOLD responses to a stimulus (Drysdale et al., 2010; Aquino et al., 2012, 2014). The
model has shown that certain stimuli can induce both local responses and hemody-
namic waves that propagate throughout the cortex due to the intrinsic spatial couplings
present between adjacent regions (Aquino et al., 2012; Lacy et al., 2016; Pang et al.,
2016, 2018).

In early analyses of the abovementioned model, several approximations were made
in order to simplify the calculations. One of the most important of these approxima-
tions was to simplify the three-dimensional (3D) structure of the cortex into a 2D
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cortical sheet by averaging the BOLD response over the cortical depth (Aquino et al.,
2012, 2014). At that time, fMRI resolutions were not fine enough to resolve cortical
depths reliably, so averaging over the different depths not only makes the resulting
calculations much more tractable but also did not affect the accuracy of the predic-
tions of the model compared to experimental data. Moreover, it was able to produce
key findings such as astrocyte-induced hemodynamic time delays (Pang et al., 2017),
origins of resting-state fMRI spectrum (Pang and Robinson, 2019), and techniques for
imaging ocular dominance and orientation preference maps (De Oliveira et al., 2019).

However, recent advances in MRI technology, including increased accessibility to
ultra-high field human scanners (7T and above), have improved experimental designs
to achieve submillimeter voxel resolution (Balchandani and Naidich, 2015). Hence, it
is now possible to measure the BOLD response as a function of cortical depth z called
laminar fMRI [e.g., (Koopmans et al., 2010; De Martino et al., 2013; Kashyap et al.,
2018; Finn et al., 2019; Huber et al., 2020)], but challenges remain regarding accu-
rate interpretations of the underlying neurophysiological mechanisms of the obtained
BOLD responses. This can be addressed by developing a laminar-specific hemody-
namic model. Recent studies have attempted to develop this type of hemodynamic
model, including Markuerkiaga et al. (2016) who proposed a two-compartment BOLD
model on top of a vascular model of the cortex, Heinzle et al. (2016) who proposed
a balloon-based model with two cortical depths, Havlicek and Uludag (2020) who
proposed a multi-compartment balloon-based model, and Puckett et al. (2016) who
proposed distinct spatiotemporal hemodynamic response function per cortical depth.
The problem with the first three models is that they only considered temporal varia-
tions in the BOLD signal across the cortical depth, disregarding any spatial effects.
This cannot be used to explain hemodynamic waves in the brain (Aquino et al., 2012;
Gao et al., 2015; Gravel et al., 2017; Hindriks et al., 2019). On the other hand, the
work of Puckett et al. (2016) was based on our cortical hemodynamic model but intro-
duced advancements by not implementing averaging over z, allowing estimations of
BOLD versus levels of the cortical depth and with each level defined by independent
spatiotemporal hemodynamic processes. This has natural advantages especially for de-
termining when the BOLD response peaks in certain layers because the main arterial
inflows of blood are localized close to the surface (Lauwers et al., 2008). For exam-
ple, because the full thickness of the cortex is approximately 3 mm, and the speed of
hemodynamic waves is in the order of 1-4 mm/s (Aquino et al., 2014), this means that
there should be a noticeable delay in the peak in the BOLD response for layers other
than layer IV. In addition, modeling the full cortical thickness allows for the properties
of the cortex to vary between layers, instead of assuming that it is homogeneous, as is
done when averaging over z.

In this paper, we extend the work of Puckett et al. (2016) by explicitly modeling
the BOLD response versus the cortical depth with each z level interacting in space
and time as a continuum. This allows for better physiological understanding of the
depth-dependence of the response, and for a better determination of how the physical
properties of the brain (such as the elasticity of the blood vessels) vary with z. We also
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demonstrate the accuracy of the predictions by comparing the predicted response with
experimental data and fits from Puckett et al. (2016).

2. Theory and Methods

In this section, the physical principles used to derive the hemodynamic model link-
ing visual stimuli with the measured BOLD response are stated, along with the equa-
tions derived from them, and the new generalizations to model the response throughout
the cortical layers are explained.

2.1. Hemodynamic Model

Here we outline the model used, whose detailed derivation and discussion have
been presented elsewhere (Drysdale et al., 2010; Aquino et al., 2012; Lacy et al., 2016;
Pang et al., 2018), and explain briefly how each equation is derived from physiology.

Neural activity drives hemodynamic activity. Here, we assume a profile for the
neural drive and then determine the BOLD response Y(R, ) at position R and time ¢,
which can be measured in an fMRI scanner if a stimulus that produces that drive is
applied. This can then be compared to experimentally induced drives.

Physically, we consider a block of cortical tissue shown in Fig. 1. The main blood
inflows are assumed to occur at a depth z; ~ 0.8 mm below the surface (Lauwers
et al., 2008). The cortical tissue is approximated as a poroelastic medium perfused by
blood (Drysdale et al., 2010). This means that the local concentration of blood within
the cortex is related to the local pressure (Wang, 2000). In addition, small-scale effects
(smaller than approximately 0.5 mm in linear scale) are averaged over, which thus
makes our model a mean-field model.

Z,

Figure 1: Cross-section of the block of cortical tissue, showing how the coordinates are defined, with x
and y in the direction of the cortical surface and z perpendicular to it. The cortical surface is defined to
be at z = L, while the gray-white matter boundary is at z = 0.

The arterial blood inflow rate (Buxton, 2009) F'(R,t) is modeled as having a
damped harmonic response driven by the neural drive ((R,t), with (Friston et al.,
2000; Drysdale et al., 2010; Ress et al., 2009)

D*F(R,t) N KaF(R, t)
ot? ot

+ ’Y[F(R’ t) - FO] = C(Rv t)? (D
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where k, 7, and F{ are the blood flow signal decay rate, the flow-dependent elimination
constant, and the arterial blood inflow with no applied stimulus, respectively.

The total mass density of the brain is the sum of contributions due to the brain
tissue and blood. The mass density of blood in the cortical tissue =(R,t) is calculated
by relating it to the blood pressure using conservation of mass and momentum of blood
within the tissue. The pressure within blood vessels P(R, t) is related to Z(R,t) via the
constitutive equation (Aquino et al., 2012)

P(R,t) = .= (R,1), 2)

where [ is the elasticity exponent of the blood vessels and c¢; is an empirically derived
constant of proportionality. This gives the pressure in terms of blood mass density,
assuming that the tissue is a continuum. A value of 5 = 1 corresponds to the vessels
being elastic, while a value of 5 & 3.23 used here [from the inverse of Grubb’s expo-
nent, which relates cerebral blood flow to cerebral blood volume (Grubb et al., 1974)]
implies that the vessels are hyperelastic (i.e., more resistant to stretching than perfectly
elastic vessels). The value of 5 depends on the type of vessel being considered (arteri-
oles are more elastic than veins, and so have a higher 3). Hence, since our model is a
mean-field model, we can take an average value for all vessels.
Conservation of blood mass within the brain implies (Aquino et al., 2014)

OZ(R, 1)
ot

which relates the rate of change of the blood mass density within the cortical tissue to
inflows p¢[g(2)F(R,t)] and outflows —ps[cpP(R,t)] of blood (p; is the blood mass
density), and where v(R, t) is the average velocity of blood. The inflow function g(z)
is set as a Gaussian centered at 2y = 0.8 mm to reflect the higher level of inflow near
that depth, with full width at half maximum (FWHM) of approximately 0.92 mm.
The dependence of =(R,t) at equilibrium on z is determined by measuring the total
vascular volume (Lauwers et al., 2008) and then finding a profile that matches the
measured values.

Momentum is also conserved for the blood. By equating the forces acting on the
blood with the rate of change of momentum density, one obtains

Ov(R, 1)
where ¢, /pyis the constant of proportionality between blood acceleration and pressure
gradients in the medium and D quantifies damping due to blood viscosity.

From Eqgs (3) and (4), one obtains the following nonlinear equation for Z(R,?)
(Aquino et al., 2012, 2014):

H2Z(R, 1) _ DOE(R1)
ot? Pf ot

+p,V V(R ) = prlg(2) F(R, 1) — cpP(R, 1)), 3)

= —[e,VP(R,t) + Dv(R, t)], “4)

o D
5+ o) PR —enP(R t(>51)

—V2P(R,t) = ps <
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which relates Z(R,?) to F(R,t), because P(R,?) is a function of =(R,t) via Eq. (2).

The concentration of deoxyhemoglobin (dHb) Q(R,?) can be determined by re-
lating its time derivative to its flux into nearby regions, its rate of increase from the
consumption of oxygen from oxyhemoglobin (oHb) by neurons, and its rate of de-
crease due to outflows of blood (Drysdale et al., 2010). This gives an equation that
relates Q(R,t) to =(R,t) and the boundary conditions of the system, with the rate of
flow out of the cortical tissue determining how fast dHb is cleared from the brain. So,
hemoglobin conservation yields (Lacy et al., 2016)

IQ(R, 1) Q(R, 1)
ot E(R,1)/ps

where ) is the ratio of hemoglobin concentration to blood density in mol/kg in SI units
and 1) is the fractional oxygen consumption rate per unit time in s~* in SI units. As in
Lacy et al. (2016), we assume that the divergence term, which is needed in a typical
continuity/conservation equation, can be neglected because the blood flows within the
tissue will mostly be from arterioles and will contain very little dHb.

Finally, the BOLD signal Y(R,t) is determined from =(R,#) and Q(R,t) using a
semiempirical relation derived from the properties of the fMRI scanner such as the
magnetic field strength and the method of signal acquisition (Stephan et al., 2007).
This gives

= (1 B8 o - B0 o 12801

= [wE(Ra t) - Q(R’ t)]77 - g(Z)CPP(R7 t)’ (6)

where Vj is the resting blood volume fraction, Q, is the resting dHb content per unit
volume, and k1, ko, and k3 are parameters that depend on the fMRI scanner being used
and the experimental protocol (Obata et al., 2004; Stephan et al., 2007). Note that the
nominal values of the parameters are defined elsewhere (Aquino et al., 2012, 2014;
Pang et al., 2017, 2018).

2.2. Modeling Procedure

Because we want to compare the full 3D model directly to the results of Puckett
etal. (2016) who used a 2D layered model, which is discussed in more detail below, we
model the same neural drive as in their paper. The visual stimulus used in Puckett et al.
(2016) was a thin, black and white flickering ring, which induces a strong response for
all parts of the primary visual cortex (V1) for a particular eccentricity in the visual
field. This corresponds to approximately a straight line being excited in V1.

The length of the stimulated line means that the response perpendicular to the line
will be approximately constant along its length due to the translational symmetry of
the system (Aquino et al., 2014). This means that when simulating the stimulus, we
can take advantage of this symmetry and ignore the direction parallel to the stimulated
line, leaving only two spatial dimensions, i.e., z (for the direction corresponding to
the depth) and « (for the remaining direction perpendicular to z). This significantly
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hastens the computations and allows for more accurate simulations by allowing more
computational memory to be devoted to the other spatial dimensions. However, for
more general stimuli, this approximation cannot be made and it is necessary to model
all three spatial dimensions.

To try and reproduce the results of Puckett et al. (2016) accurately, while taking into
account the full 3D nature of the system, we apply a 4 s visual stimulus correspond-
ing to a single point in the x-dimension, with the blood inflows in the z-dimension a
Gaussian centered at approximately z = 2.4 mm with a FWHM in z of approximately
0.92 mm (values chosen to closely match the data), resulting in most blood inflows be-
ing confined to near the surface. A closed boundary is applied at z = 3.2 mm (because
blood can’t flow through the cortical surface), and also at z = —0.8 mm, in the white
matter. All inflows and outflows occur within the main body of the tissue.

Schematic diagrams of the 2D and 3D models are shown in Fig. 2. The figure
shows the main point of contrast, in that the 2D model in Fig. 2a has all blood flows
confined in each z layer, while the 3D model in Fig. 2b allows for blood flows to occur
in any direction. Furthermore, due to the layered property of the 2D model, the relative
sizes of inflows in different layers must be input as a model parameter. On the other
hand, the 3D model naturally predicts the changes in BOLD in each layer relative to
each other by taking into account how far that depth is from the main inflow depth.

a 2D model b 3D model

Superficial
z=3.2mm

z=-0.8 mm
Deep

Figure 2: Schematic diagrams of 2D and 3D models of how blood inflows spread throughout the cortex.
(a) 2D model used in Puckett et al. (2016), where inflows are confined to a fixed z and only propagate
laterally. v is the velocity of propagation in a particular layer. (b) 3D model proposed in this work,
where inflows are localized to a much smaller range of depths and blood is allowed to flow freely to
different z’s. vg is the general velocity of hemodynamic waves, which is the same in all directions,
causing isotropic spreading.

The baseline value for the blood mass density = changes with z due to the different
numbers of blood vessels. Therefore, to include this in the model, we change the base-
line = according to the baseline percentage of blood vessels at each depth estimated
by Duvernoy et al. (1981). Similarly, other properties of the cortical tissue (e.g., 5 that
is related to the elasticity of the blood vessels) are likely to change with z, but these
are more difficult to determine precisely due to them not being directly measurable. In
fact, because some parameters are very difficult to determine noninvasively in general,
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fitting the modeled response to a measured BOLD signal could actually help narrow
down the ranges of these properties in a subject via fMRI alone.

2.3. Experimental Setup

The main details of the experiment being compared to were discussed in Puckett
et al. (2016), but are briefly outlined here. Six subjects had MRI scanning performed
upon them with a Siemens MAGNETOM Trio 3 T MRI scanner. Several T1-weighted
anatomical images were collected and then aligned through a rigid body transformation
to allow for estimation of distances along the cortex. The functional data were obtained
using a gradient-echo sequence with a matrix size of 240 x 240 and an FOV of 192 mm,
resulting in an in-plane resolution of 0.8 mm x 0.8 mm.

Visual stimulation was done on a white screen viewed via a mirror. The stimulus
itself was a ring stimulus with a checkerboard pattern at an eccentricity of 2 degrees,
flickering every 250 ms. This was presented for 4 s, before being removed for 16.5 s.
This cycle was repeated 8 times per run, giving a 3 min run, and 18-25 runs were
collected per subject. Retinotopic maps were also obtained to ensure accurate mapping
of the activity onto the cortex; this was done using a rotating bowtie stimulus, as in
Schira et al. (2009), for 2 runs of 6 min each.

3. Results

In this section, we use the model discussed above to predict the BOLD responses
to stimuli in the visual cortex. We then compare the modeled responses with the results
of Puckett et al. (2016) and demonstrate its accuracy and advantages.

3.1. Model Predictions

Figure 3 shows the predicted BOLD responses of the 3D hemodynamic model for
the same stimulus input as was used in the experiment by Puckett et al. (2016). Each
frame is an z-t cross-section of the measured response at a different z (going from
the surface at z = 3.2 mm to 2 = —0.8 mm 1n steps of 0.8 mm, with the gray-white
matter boundary at z = 0 mm). The general pattern at each z is an initial increase in the
induced response as the stimulus is applied, reaching a maximum after approximately
5 s, before decreasing rapidly and giving an undershoot in the BOLD signal that peaks
at approximately 11 s in each frame (0 s is defined as the start of the stimulus). The
main difference between frames are the magnitudes of the positive peak and negative
trough in the response, which are largest for 2 = 3.2 mm and decrease as one moves
away from that depth. In addition, the peaks and troughs both consistently decrease in
magnitude while moving away from z = 3.2 mm.
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Figure 3: Cross-sections of the predicted BOLD response induced by a line stimulus using the 3D
model. The responses are shown for z = 3.2, 2.4, 1.6, 0.8, 0, and —0.8 mm (as labeled) vs. transverse
distance z and time ¢.

In addition to examining the different depths separately, we next show how the
response appears through all the cortical depths as a function of time; the results are
shown in Fig. 4. Each frame is an -z cross-section of the measured response at a fixed
time from 1 to 8 s.

Figure 4 shows that the response starts off increasing mostly near the cortical sur-
face (z = 3.2 mm), before spreading deeper and across the cortex. Eventually, when
the stimulus is removed, the response decreases and then undershoots. This demon-
strates how the changes in BOLD signal deeper in the cortex can be caused by blood
flow changes closer to the surface, due to spreading hemodynamic waves.
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Figure 4: Cross-sections of the predicted BOLD response vs. the transverse distance x and the depth 2
at times from 1 to 8 s (as labeled) using the 3D model. The color scale is the same as in Fig. 3.

3.2. Experimental Data

We now compare the simulated response with the experimentally measured re-
sponse from Puckett et al. (2016) shown in Fig. 5. The experimental response are
formatted similarly to Fig. 3, which shows the induced BOLD response averaged over
all 6 subjects (Fig. 5 left) and for one particular subject (Fig. 5 right) due to a 4-s
line stimulus. At all depths there is an initial increase in the BOLD response near to
where the stimulus is applied, followed by spreading into nearby areas. Moreover, the
response tends to decrease as z decreases going closer to the gray-white matter bound-
ary. However, the experimental results have slight differences compared to Fig. 3, with
regard to which z depth has the highest response and the exact time taken to reach a
maximum response, but these are small and can be explained by small differences in
physical parameters such as [ between subjects [it is well within the variation between
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subjects seen in Puckett et al. (2016)].
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Figure 5: Group-averaged (left) and single-subject (right) experimental BOLD responses relative to the
distance from the gray-white matter boundary at z = 0 mm. The color scale is the same as in Fig. 3.
Figure reproduced from Puckett et al. (2016).
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We then compare our results with those predicted using the 2D model, where each
depth is considered as a separate 2D system [similar to the modeling results in Puckett
etal. (2016)]. For the 2D model in Puckett et al. (2016), the spatial spreading, the peak
amplitude, the hemodynamic velocity, and the damping rate were estimated for each
depth from the experimental data in Fig. 5. These estimates are shown in Fig. 6, where
a linear fit vs. depth is shown for each. The fits were used to make 2D model predic-
tions at each depth, thereby yielding Fig. 7. This shows the predicted spatiotemporal
response in the same format as the experimental response in Fig. 5, with the spatial
spreading, amplitude of response, and hemodynamic velocity being adjusted at each
depth to fit the data.

The results in Fig. 7 reproduce those in Fig. 5 closely, with the same overall shape,
time to peak, and decreasing amplitude as z decreases. However, many free parameters
are involved in fitting the 2D layered model to the experimental data. Specifically,
Fig. 6 involves linear fits of each of the 4 parameters, giving 8 degrees of freedom, so
it is unsurprising that a good fit was obtained this way.

HRF Properties Across Cortical Depth
Spatial Spread Peak Amplitude

s |
E6 ] :-?". I l
E l 1.0 'I 1
<
3 ] [ 1
» I 0.5
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Figure 6: Measured values of some properties of the induced hemodynamic response versus the cortical
depth. The properties considered are: spatial spread dz, peak amplitude A, velocity v, and damping I.
Note that the velocity here corresponds to v in Fig. 2a. The dots represent mean values and the vertical
lines represent standard errors. The gray lines represent linear fits. Figure reproduced from Puckett
etal. (2016).
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Figure 7: Predicted BOLD response using the 2D model. The maximum BOLD response in each z
layer is adjusted to lie on a Gaussian with maximum at z = 3.2 mm.
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3.3. Comparison of 3D model to 2D layered model

Figure 3 shows a close reproduction of the responses in Fig. 5 using our conceptu-
ally simpler and physically more realistic 3D model. However, to show that it is a sig-
nificant improvement over the previously used 2D layered model, we need to compare
the predictions more directly. The main prediction of the full 3D model is that blood
flows isotropically out of a localized inflow area instead of inflows being located at all
depths. Hence, we rescale Figs 4 and 7 so that they are in the same format, and likewise
reformat the experimental data in Fig. 5 to show the time-varying cross-sectional x-z
responses (see supplementary video at https://ars.els-cdn.com/content/image/1-s2.0-
S1053811916302543-mmc1.mp4) so that it is directly comparable.

The results of the above rescalings are shown in Fig 8, where Fig. 8a shows the
predictions of the 3D model, Fig. 8b shows the predictions of the 2D layered model,
and Fig. 8c shows the experimental data. Each column shows a gradual increase in
BOLD signal over several seconds before peaking at about 5—6 s, and then a decrease
before undershooting. In addition, all show the spreading of the response out from
x = 0, with the response decreasing with distance. However, there are also significant
differences, primarily between Fig. 8b and the other two. In the 3D model in Fig. 8a,
the response spreads isotropically from the initial main inflow location because there
is no preferred direction for the blood flow. This is very similar to what occurs in
the experiment in Fig. 8c, which is also consistent with isotropic spreading. However,
in the 2D model in Fig. 8b, the extent to which the response spreads in the z- and
x-directions are not the same because the spatial spreading in each direction is a free
parameter. Given how the 2D layered model incorporates the variation in parameters
vs. z, there is no prior reason for the wavefronts to appear to be approximately spheri-
cal. This behavior is easy to explain with the 3D model due to the spreading having no
preferred direction, thus explaining more properties of the system while having fewer
assumptions and parameters. The behavior of the response for deep z is also of interest
for future studies because the 3D model predicts that there should be a detectable wave
induced there 1-2 s after a short stimulus due to a time delay for hemodynamic flows
to reach small z, which is not predicted by the 2D layered model where changes in the
source are simultaneous at all depths.
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Figure 8: Predicted and experimental BOLD responses. (a) Predicted responses using the 3D model.
The panels are the same as in Fig. 4 but with the axes adjusted to remove spatial distortion. (b) Predicted
responses using the 2D layered model. The responses are produced by setting model parameters that
match those used in Fig. 4 of Puckett et al. (2016). (c) Experimental responses from Puckett et al.
(2016). For a, b, and c, the rows are arranged from top to bottom to show the responses from ¢ = 1 to
8 s, respectively. Moreover, the color scale for each panel is the same as in Fig. 3.

In addition to explaining the isotropic spreading of the BOLD response, we also
examine the parameters used in the 2D layered model shown in Fig. 6 to determine
whether their variation with z can also be explained by the 3D model. In the 3D model,
the physical parameters are independent of z (apart from a change in 3 introduced near
the gray-white matter boundary). However, Fig. 6 shows that there are discernible
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changes in several of the hemodynamic properties of the 2D layered BOLD signal as
z varies, except for the damping rate I'. The explanation of these changes is that the
variations of these inferred parameters of the 2D layered model are caused by fitting
them to mimic the actual isotropic 3D blood flows. At depths far from the inflow depth,
the separation between the inflows and the point being considered is significantly larger
than the distance to the x = 0 location at that depth. By Pythagoras’ theorem, we have

d= /224 (2 — 21n)%, (8)

where d is the physical separation of the point at (x, z) from the primary inflow source
and z;, is the depth of inflows. This means that for z ~ 0, which is near the gray-white
matter boundary, d will be significantly larger than x, and so this means the apparent
values of most parameters in Fig. 6 (i.e., the 2D layered parameters that most closely
mimic the 3D effects) will change as a result. As the method of determining the spatial
spreading in Puckett et al. (2016) is to assume a Gaussian profile, the spatial spreading
will be adjusted by a factor of z/d as the distance measured in the 2D system is z,
while the separation in 3D space is d. Given the isotropic spreading of the response,
the peak amplitude of the response in each layer of the 2D model, A, should follow
the same profile as the BOLD response in the z-direction. Finally, the hemodynamic
velocity v will appear smaller by a factor of z/d due to the delay induced by the
response propagating diagonally through 2z as well. This is complicated by the effect
shown in Fig. 9, where due to an initial delay in the wavefronts reaching deep z, the
initial apparent horizontal velocity of the wave can be significantly higher than v,
with it then appearing to slow down as it moves to larger . Each wavefront has a
regular spacing and is moving at a constant speed outward from the source, but the
apparent motion along the x-direction can be significantly higher and vary due to how
the spherical wavefronts intersect a horizontal plane. This is seen clearly in Fig. 9, as
the distance between the intersection points of the circular waves and the planes in the
x-direction (shown for the highest layer with a blue line) are significantly larger than
the separation of the waves along a line perpendicular to all the wavefronts (shown
by a red line). However, for Puckett et al. (2016), the fitting used to determine the
velocity was done from the peak of the BOLD response in each layer, which should
mostly mitigate this effect (it will be strongest at the leading edge of the wavefronts).
Most importantly, we conclude that both Ax and v will vary with x in the 2D model.
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S

Figure 9: TIllustration of how the apparent velocity of a wave along a plane can vary if not measured
along the direction of travel. The blue line shows the apparent separation of two wavefronts as observed

along the highest z layer, while the red line is the actual distance the wave has travelled. The z- and
z-directions are labelled on the right.

In Puckett et al. (2016), the spatial spreading Az (the FWHM of the response, fitted
as a Gaussian) was calculated by determining the FWHM of the response when the
BOLD response peaked, while v was calculated using the method from Aquino et al.
(2012) by fitting lines from =z = 0 at the time when the response peaks to outgoing
wavefronts at least 2 mm from the localized response. Hence, using this information,
and estimates of Az, A, and v at z = z,, we use the full 3D model to infer the
2D parameters that will be needed to mimic the 3D effects, which gives Fig. 10. In
this figure, we can see the data for each of the 2D layered values of Az, A, and v,
along with the curve corresponding to the values of each parameter predicted using the
isotropic 3D model. We see that the predictions for Ax and A are very close to the
observed values, while the predictions for v fit most of the depths well, except perhaps
at the = = 3.2 mm point (which could be due to the hard boundary at the cortical
surface requiring the blood flow to accelerate as it is constricted). These accurate
predictions demonstrate that most of the variations in these 2D layered parameters can
be explained as resulting from evoked 3D blood inflows being localized to a specific
depth near the surface of the cortex, rather than strong increases in evoked multilayer
inflows along with layer-dependent hemodynamic properties as well.
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Figure 10: Same as Fig. 6 but now includes predicted curves, assuming that the the variation is due to
effects induced by 3D blood inflows.

4. Summary and Discussion

A nonlinear 3D spatiotemporal model of hemodynamics for predicting induced
BOLD response was introduced, thereby relaxing assumptions made in earlier works
such as the previous 2D layered model used in Puckett et al. (2016). The new model
was solved numerically and the results were compared to data from the experiments
of Puckett et al. (2016) and with parameter estimates obtained from those experiments
under a 2D layered approximation. The main results are:

(i) The decrease in BOLD amplitude and spatial spread at depths farther from the
cortical surface can be explained by the main blood inflows due to the neural drive lo-
calized to z near the cortical surface, with hemodynamic changes propagating isotropi-
cally, including down through the cortex, as predicted by the 3D hemodynamic model.

(i) The main features of the induced BOLD response to a line stimulus in V1
can be accurately reproduced via the 3D physiologically based model. Using the full
3D model increases predictive power, while simultaneously decreasing the number of
parameters and assumptions required compared to the 2D layered model.

(111) The observed apparent changes in properties of the BOLD response by the 2D
layered model such as the transverse spatial spread Ax and apparent hemodynamic
velocity v can be explained, within standard error, by the effects of trying to treat
properties of a 3D system by examining 2D slices of that system. The transverse
components of the spreading and velocity appear to be lower farther from the surface
in the 2D model due to the larger separation points at that depth from the inflow source,
unless this effect is specifically corrected for. No such correction is necessary in the
3D model and the experimental results are consistent with isotropic spreading.
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Future experiments could explore the effects of the isotropic spreading of the
BOLD response throughout the cortex by designing stimuli appropriately and imaging
the entire thickness of the cortex at high resolution, via advanced laminar fMRI proto-
cols (Norris and Polimeni, 2019). In particular, if a short stimulus is applied and then
removed, a 2D layered model would predict that the response deep in the cortex would
peak simultaneously with the response near the surface. However, the 3D model pre-
dicts that a sufficiently short stimulus will induce a wave traveling isotropically within
the cortical sheet from the source depth, and so should lead to a measurable time delay
on the peak BOLD response for deep layers. Observing this directly would conclu-
sively show that the changes in BOLD signal with depth are primarily due to vertical
transmission of the hemodynamic waves. However, care would need to be taken to
avoid any possible nonlinearities in the response to short, strong stimuli required to
observe such an effect (Birn and Bandettini, 2005), although these would not be likely
to affect its isotropy.

Finally, MATLAB codes to simulate the model in this study are available at
https://github.com/BrainDynamicsUSY D/hemodynamics-layers.
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