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Abstract: 

The obligate intracellular bacterial pathogen Chlamydia trachomatis (Ctr) is reliant on an unusual 

developmental cycle consisting of two cell forms termed the elementary body (EB) and the reticulate body 

(RB). The EB is infectious and utilizes a type III secretion system and preformed effector proteins during 

invasion, but does not replicate. The RB replicates in the host cell but is non-infectious. This developmental 

cycle is central to chlamydial pathogenesis. In this study we developed mathematical models of the chlamydial 

developmental cycle that account for potential factors influencing the timing of RB to EB cell type switching 

during infection. Our models predicted that two broad categories of regulatory signals for RB to EB 

development could be differentiated experimentally; an “intrinsic” cell autonomous program inherent to each 

RB or an “extrinsic” environmental signal to which RBs respond. To experimentally differentiate between these 

hypotheses, we tracked the expression of Ctr developmental specific promoters using fluorescent reporters 

and live cell imaging. These experiments indicated that EB production was not influenced by increased MOI or 

by superinfection, suggesting the cycle follows an intrinsic program that is not influenced by environmental 

factors. Additionally, live cell imaging of these promoter constructs revealed that EB development is a multistep 

process linked to RB growth rate and cell division. The formation of EBs followed a cell type gene expression 

progression with the promoters for euo and ihtA active in RBs, while the promoter for hctA was active in early 

EBs/intermediate cells and finally the promoters for the true late genes, hctB, scc2, and tarp active in the 

maturing EB. 

 

Importance: Chlamydia trachomatis is an obligate intracellular bacteria that can cause trachoma, cervicitis, 

urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells Chlamydia must 

complete a multi cell type developmental cycle. The developmental cycle consists of two specialized cells; the 

EB which mediates infection of new cells and the RB which replicates and eventually produces more EB cells 

to mediate the next round of infection. By developing and testing mathematical models to discriminate between 

two competing hypotheses for the nature of the signal controlling RB to EB cell type switching. We 

demonstrate that RB to EB development follows a cell autonomous program that does not respond to 

environmental cues.  Additionally, we show that RB to EB development is a function of cell growth and cell 

division. This study serves to further our understanding of the chlamydial developmental cycle that is central to 

the bacterium’s pathogenesis. 

 

Introduction: 

Chlamydiae are bacterial pathogens responsible for a wide range of diseases in both animal and human hosts 

(1). Chlamydia trachomatis (Ctr), a human pathogen, is comprised of over 15 distinct serovars causing both 

trachoma, the leading cause of preventable blindness, and sexually acquired infections of the urogenital tract 

(2). According to the CDC, Ctr is the most frequently reported sexually transmitted infection in the United 

States, costing the American healthcare system nearly $2.4 billion annually (3, 4). These infections are 
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widespread among all age groups and ethnic demographics, infecting ~3% of the human population worldwide 

(5). In women, untreated genital infections can result in pelvic inflammatory disease, ectopic pregnancy, and 

infertility (6–8). Every year, there are over 4 million new cases of C. trachomatis STI infections in the United 

States (6, 9) and an estimated 92 million cases worldwide (10).  

 Chlamydia-related disease is entirely dependent on the establishment and maintenance of the unique 

intracellular niche, the chlamydial inclusion, where the bacteria replicate and carry out a biphasic 

developmental cycle. This cycle generates two unique developmental cell forms: the elementary body (EB) and 

the reticulate body (RB). The EB cell type mediates host cell invasion via pathogen mediated endocytosis while 

the RB cell type is replication competent but cannot initiate host cell infection (11). For C. trachomatis serovar 

L2, the cycle begins when the EB binds to a host cell and initiates uptake through the secretion of effector 

proteins by the Type III secretion system (12). During entry, the EB is engulfed by the host cell plasma 

membrane forming a vacuole that is actively modified by Chlamydia to block interaction with the host 

endocytic/lysosomal pathway (13). This vacuole, termed the chlamydial inclusion, continues to mature as the 

EB cell form transitions to the RB cell form. The time from host cell contact to the formation of the mature 

inclusion containing replication competent RBs is ~11 hours (14). The formation of infectious EB cells occurs 

reliably between 18-20 hours post infection (HPI) (15). Regulatory control of the transition between the RB and 

EB is critical for the chlamydial life cycle as Chlamydia must balance replication vs. production of infectious 

progeny. How Chlamydia regulates this process is currently unclear although there have been multiple 

hypotheses proposed to explain the control of the developmental cycle. Regulatory mechanisms such as RB 

access to, or competition for, inclusion membrane contact (16), reduction in RB size (14) or responses to 

changes in nutrient availability (17) have all been proposed to control or influence RB to EB cell switching.  

 In this study we used mathematical modeling to guide experiments to distinguish between factors that 

influence RB to EB development. The chlamydial life cycle was modeled using systems of differential 

equations.  Each model was tested under simulated conditions which indicated that environmental vs. intrinsic 

control of EB development could be distinguished experimentally. In order to test the model predictions, a live 

cell imaging system in combination with promoter reporter constructs was developed to follow the 

developmental cycle in real time. We show here that neither the limiting membrane hypothesis nor 

environmental nutrient limiting mechanisms are consistent with our experimental results, and that EB 

development likely follows a cell autonomous program. Additionally, we show that this intrinsic program is 

dependent on RB growth and cell division. 

 

Results: 

 

Modeling chlamydial development. 

We developed two mathematical models to represent potential driving forces in promoting EB development. 

The models are systems of ordinary differential equations (ODE) that track RBs, intermediate bodies, and EBs 
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over time (Fig. 1, S1). In these models, development of the EB is controlled by an inhibitory “signal” that is 

either intrinsic to each bacterium or environmental, i.e., shared between the bacteria (Fig. 1A and B). We did 

not specify the nature of the signal beyond an inhibitory effect on EB production at high concentrations and it’s 

consumption by RBs. In each case the signal is consumed by the bacteria over time, and, once depleted, RB 

to EB conversion commences. The models differ in whether all the RBs in the inclusion compete for one pool 

of this signal or whether each RB contains an independent internal pool of the inhibitory signal. The output of 

both models mimic the general kinetics of the chlamydial developmental cycle. Both models produced identical 

outputs when a multiplicity of infection (MOI) of 1 was simulated (Fig. 1C). When a change in the replication 

rate of Chlamydia was simulated, the two models again responded similarly, showing that an increased 

replication rate leads to earlier EB production while a decreased replication rate resulted in delayed EB 

production (Fig. 1D). However, the models produced dramatic kinetic differences with a simulated increase in 

MOI or time-delayed superinfection. Both simulated conditions caused EB formation to occur sooner in the 

environmental signal model but had no effect on the intrinsic signal model (Fig. 1E). These data suggest it is 

possible to experimentally differentiate between whether an environmental signal or an intrinsic program 

triggers EB development. 

 

Development of a live cell reporter system to follow the chlamydial developmental cycle. 

In order to experimentally differentiate between these possible mechanisms, we developed a live cell imaging 

system using promoter constructs to follow the chlamydial developmental cycle. The reporter constructs were 

designed using the promoters of chlamydial genes that are differentially regulated between the RB and EB 

forms (18). To generate an RB reporter, the promoter of the sRNA IhtA which is expressed early upon infection 

and negatively regulates the EB specific gene hctA, was used to drive EGFP expression (19). To generate an 

EB reporter, the promoter and first 30nts of the late gene hctA was used to drive the expression of the GFP 

variant Clover. HctA is a small histone like protein that is involved in the condensation of the chlamydial 

genome to form the compact nucleoid characteristic of the EB (20). The upstream promoter region as well as 

the first 10 codons of the ORF of HctA were used to construct this reporter as regulation of HctA involves both 

the promoter and the IhtA binding site contained in the beginning of the ORF (21). Each reporter was 

transformed into Ctr, generating the strains Ctr ihtAprom-EGFP and Ctr hctAprom-Clover. The chlamydial 

transformants were used to track the developmental cycle of each strain using live cell time lapse microscopy 

and particle tracking to quantify the fluorescent expression of individual inclusions over time (22). In order to 

verify that the fluorescent reporters accurately reflected the developmental cycle, total chlamydial growth was 

determined by measuring genomic copy by qPCR and EB production by a replating assay to quantify inclusion 

forming units (IFU). GFP expression from the ihtA promoter was first detected at ~10 HPI and started to level 

off at ~28 HPI (Fig. 2A). The initial expression from the ihtA promoter was in good agreement with the initiation 

of RB cell division as demonstrated by genome copy numbers (Fig. 2A). The initiation of RB replication signals 

the end of the EB to RB transition after cell entry. Imaging of the hctA promoter reporter revealed that the 
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Clover signal could first be detected at ~18 HPI and increased linearly until ~38 HPI (Fig. 2B). Again this was in 

good agreement with the production of infectious progeny as EBs were first detected at ~20 HPI (Fig. 2B). We 

measured >50 individual inclusions per strain and found very little inclusion to inclusion variability in the timing 

of initiation of expression (Fig. 2C and D). This uniformity in developmental timing can be appreciated in a live 

cell time lapse movie of Ctr hctAprom-Clover (Fig. M1). The close agreement between classic methods for 

following the chlamydial developmental cycle (IFU and genomic copy number) and the single inclusion based 

fluorescent reporter system described here demonstrates that this system accurately reflects the 

developmental cycle. 

 

Chlamydial development is growth rate dependent. 

Both models predicted that changes in growth rate would be reflected in EB production times and rates (Fig. 

1D). There is generally a linear relationship between temperature and the square root of growth rate in bacteria 

(23). Therefore, to validate the predictions of our two models, we followed the live cell reporters at three 

temperatures; 35ºC, 37ºC (control), and 40ºC. As expected, at the lower temperature of 35ºC the EB to RB lag 

time increased dramatically and ihtAprom-EGFP expression increased more slowly than the 37ºC control (Fig. 

3A). The lower replication rate at 35ºC was also reflected in the qPCR genome counts (Fig. 3B). Conversely, 

the lag time to fluorescence detection was reduced and increased faster than the control when grown at 40ºC 

(Fig. 3A). As predicted by our models, time to EB production was also shifted by changes in growth rate as 

hctAprom-Clover expression began earlier at 40ºC and was delayed at 35ºC (Fig. 3C). These results were 

verified by measuring the production of infectious progeny (Fig. 3D). Taken together, these data provide strong 

evidence that the cycle is growth rate dependent and that our experimental system accurately detected 

changes in chlamydial development. 

 

EB development is controlled by intrinsic factors and not environmental factors. 

The two mathematical models differ principally in the source of the EB development signal: internal vs. 

environmental. The models produced divergent outcomes under conditions where bacteria are competing for a 

host cell or intra-inclusion signal vs. a signal internal to each RB. Simulations predicted that the time to EB 

production would be measurably affected by increasing the MOI  if the signal was environmental (competitively 

consumed) but would be unchanged if the signal was intrinsic (internal to each RB) (Fig. 1E). To measure this 

we used live cell imaging to assess the effect of MOI on EB production. To more accurately assay EB 

development, two additional EB gene reporters were constructed. The promoters and first 30nts of hctB, and 

scc2 were inserted upstream of Clover. Like HctA, HctB is a small histone-like protein that is involved in EB 

nucleoid formation (24) while Scc2 is a chaperone for Type III secretion effector proteins (25). Our published 

RNA-seq data showed that the transcripts for hctB and scc2 were expressed late, corresponding to the timing 

of EB production (18). Cells were infected with MOIs ranging from 1 to 32 infectious EBs per cell and imaged 

every 30 minutes for 40 hours. The MOI was calculated by infecting with a two-fold dilution series and back 
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calculating from an MOI of 1. The fluorescent signals were normalized by MOI. Expression initiation of the RB 

reporter, ihtAprom, did not vary as a function of MOI (Fig. 4A). Expression initiation of the EB promoter 

reporters, hctAprom, hctBprom and scc2prom, also did not vary as a function of MOI (Fig. 4B-D). The lack of 

MOI response for the expression of EB genes corresponds closely with EB production as measured by a 

reinfection assay (Fig. 4E). We also noticed a dramatic difference in the timing of expression between the late 

genes; hctAprom-Clover expression was initiated at ~18 hour post infection while hctBprom-Clover and 

scc2prom-Clover expression was initiated ~3 hours later at ~ 21 hour post infection (HPI). 

 Our models predicted that both MOI and superinfection conditions would differentiate between cell 

autonomous development and environmentally influenced development (Fig. 1E). The MOI data suggested 

that RB to EB developmental switching is not influenced by the host intra-cellular or intra-inclusion environment 

but rather, is triggered by an intrinsic signal. To further differentiate between these possibilities, we measured 

RB and EB gene expression under superinfection conditions. The chlamydial inclusion is derived from the 

plasma membrane and interaction with the endocytic membrane system is actively blocked by Chlamydia (13). 

When multiple EBs infect a cell they each create individual inclusions that traffic to the microtubule-organizing 

center (MTOC) of the cell (26). This trafficking, along with the expression of the fusogenic protein IncA at ~12 

HPI, culminates in homotypic inclusion fusion resulting in a single chlamydial inclusion per cell (27, 28). Our 

extrinsic model predicted that the developmental cycle of Chlamydia under superinfection conditions would be 

dramatically altered (decreased time to EB production) as a function of the developmental stage of the initial 

infection. To test this, cells were infected with unlabeled Ctr L2 for either 6, 12 or 18 hrs prior to a second 

infection with Ctr L2 containing the reporter plasmids, and imaged starting at 9 hrs post secondary infection. 

Fluorescent signals were measured for inclusions that were verified to be superinfected by imaging both DIC 

and fluorescence, i.e. inclusions containing both labeled and unlabeled Chlamydia (Fig. 5A). Superinfection at 

any time post initial infection had no effect on the timing of the expression of either ihtAprom-EGFP or 

hctAprom-Clover (Fig. 5B and C). Although the time of gene expression was unchanged, there did appear to 

be an effect on carrying capacity that was time-dependent, suggesting an upper limit in total EB production per 

cell (Fig. 5C). The lack of effect on late gene expression was verified with two other late promoter reporters, 

hctBprom-Clover and scc2prom-Clover, twelve hours post superinfection (Fig. 5D and E). We verified that 

superinfection had no effect on the production of infectious progeny by performing a replating assay in the 

presence of spectinomycin (Fig. 5F).  

To further examine any effect of the intra-inclusion environment versus the host intra-cellular 

environment, we took advantage of a Chlamydia mutant that does not express IncA and is therefore defective 

in homotypic inclusion fusion (27). Cells were pre-infected with an isogenic mutant pair, either Ctr J (incA 

positive and fusogenic (29)) or Ctr Js (incA negative and non fusogenic (29)) for 18 hours and were then 

superinfected with Ctr L2 containing the reporter plasmids (Ctr L2 prom) and imaged starting at 10 hrs post 

superinfection (Fig. 5G). Again, there was no apparent change in growth rate for either infection alone (no 

superinfection), superinfection with inclusion fusion or superinfection without fusion (Fig. 5H and I). 
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Interestingly, total signal for the late genes was reduced for both Ctr Js and Ctr J superinfections as compared 

to Ctr L2 prom strains alone suggesting that carrying capacity is likely defined by the host intra-cellular 

environment and not the intra-inclusion environment (Fig. 5H and I). Taken together these data suggest that 

the timing of RB to EB development is an intrinsic pre-programmed property of Chlamydia and does not 

respond to environmental signals.  

 

Cell division is required for EB development. 

Time to EB development responded to RB growth rate suggesting that cell division may be critical for 

development (Fig. 3). To test the role of cell division in EB development, RB replication was halted by treating 

infected cells with penicillin (Pen). C. trachomatis does not use peptidoglycan as a structural sacculus and Ctr 

does not contain a peptidoglycan cell wall. Instead, peptidoglycan aids cell septation by forming a ring at the 

cleavage furrow (30). Therefore, Pen treatment blocks cell septation but not cell growth. Cells infected with Ctr 

ihtAprom-EGFP or Ctr hctAprom-Clover were treated with Pen at 14 HPI and imaged for a further 34 hrs. The 

fluorescent signal for individual inclusions was measured using single inclusion tracking. The ihtAprom signal 

after Pen treatment continued to increase as did the size of the RB cells (Fig. 6A and Fig. 8A-B). This 

increased signal intensity initially tracked that of untreated cells but the fluorescence intensity in Pen treated 

inclusions increased more rapidly as compared to untreated (Fig. 6A). IhtAprom expression in the presence of 

Pen also matched the increase in genome copies which, as previously reported (31), was also Pen insensitive 

(Fig. 6B). Unlike ihtAprom-EGFP expression, the hctAprom-Clover signal was dramatically affected by Pen 

treatment. hctAprom expression was initially repressed by Pen treatment at 14 HPI, however expression was 

initiated ~9 hrs after treatment (Fig. 6C and D). We explored this expression behavior further using three other 

late gene promoter reporters, hctBprom-Clover, scc2prom-Clover and tarpprom-Clover (Fig. 6C-D and S2). 

The expression pattern driven by hctBprom, scc2prom and tarpprom were dramatically different from hctAprom 

as none showed Clover expression in the Pen treated samples (Fig. 6D and S2). The lack of hctBprom, 

scc2prom and tarpprom gene expression corresponded with the lack of production of infectious progeny during 

Pen treatment suggesting that these genes can be considered true “EB” genes (Fig. 6E). 

To further investigate the role of cell division in EB development, we tested the effects of a second 

antibiotic that targets peptidoglycan synthesis, D-cycloserine (DCS). DCS is a cyclic analogue of D-alanine and 

acts against two enzymes important in peptidoglycan synthesis: alanine racemase (Alr) and D-alanine:D-

alanine ligase (Ddl)  (32). GFP expression in single inclusions was measured over time after DCS treatment at 

14 HPI. An additional early gene promoter reporter, euoprom-Clover, was included to explore RB expression 

behavior further. EUO (early upstream ORF) is a transcriptional repressor that selectively regulates promoters 

of Ctr late genes (33). Both early gene promoter strains treated with DCS expressed fluorescence with similar 

kinetics to Pen treated and untreated samples (Fig. 7A-C). The expression kinetics of the late gene reporters 

after DCS treatment also mimicked Pen treatment. DCS treated inclusions never expressed Clover from 

hctBprom or scc2prom reporters but did express from the hctAprom reporter with a similar ~9 hour delay (Fig. 
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7 D-F). Although the kinetics were similar to Pen treatment among all reporters, the aberrant RBs did not grow 

as large as those treated with Pen (Fig. 8B and C). 

Treatment with penicillin has been reported to induce a metabolic state termed persistence as the 

aberrant RBs continue to metabolize but do not produce infectious progeny (34, 35). Pen, other antibiotic 

treatments, and nutrient limitation are all reported to induce a persistent growth state in Chlamydia (36). 

Therefore we explored the effect of interferon-gamma (IFN-γ) induced persistence on cell type gene 

expression. While Pen and DCS induce persistence through their effects on peptidoglycan synthesis, IFN-γ 

causes a persistent state by starving Chlamydia of tryptophan (37). HeLa cells were used as opposed to Cos7 

cells as they respond well to hIFN-γ. Cells were treated with IFN-γ 24 hrs prior to infection with Ctr ihtAprom-

EGFP or Ctr HctAprom-Clover strains. Imaging of these constructs showed that no signal was produced from 

either promoter construct after IFN-γ treatment suggesting a dramatic reduction in overall metabolic activity 

(Fig 9).  

The Pen and DCS data support a role for cell division in chlamydial development. To further explore 

this observation, cells were treated with Pen every two hours starting at 16 HPI. To visualize both RBs and 

EBs in the same inclusion during the developmental cycle, two dual promoter constructs were developed, 

hctAprom-mKate2/ihtAprom-mNeonGreen and hctBprom-mKate2/euoprom-Clover. Cells were infected with 

the dual promoter strains and imaged every 30 minutes after addition of Pen at the indicated times (Fig. 10). 

The responses of the promoters to Pen treatment were strikingly different. The euoprom signal increased in 

comparison to untreated infections almost immediately after Pen was added, regardless of timing of treatment 

(Fig. 10A). The hctBprom signal was completely inhibited but only after an ~10 hour delay, again regardless of 

when Pen was added (Fig. 10B). Conversely, hctAprom signal was inhibited very quickly after Pen treatment 

but expression resumed after an ~ 9 hour delay (Fig. 10C). Pen treatment blocks chlamydial cell septation 

resulting in the formation of large aberrant cells. Confocal images of Pen treated cells indicated that ihtAprom-

mNeonGreen and euoprom-Clover expression was evident only in the large aberrant cells (Fig. 11). However, 

there was a striking difference in cell type expression location between the late promoters hctAprom and 

hctBprom. Like ihtAprom and euoprom, hctAprom-mKate2 expression was localized to the large aberrant cells. 

In contrast, hctBprom-mKate2 expression was restricted to non-aberrant small cells that resembled EBs (Fig. 

11). 

 

Discussion. 

Infection of vertebrate hosts by Chlamydia is dependent on the transition between two specific cell types, the 

RB and EB, that each have specialized functions. The RB undergoes cell division although it is not yet clear 

whether this division occurs by binary fission (14) or polarized division (38). The EB form is responsible for 

mediating invasion of eukaryotic host cells and does not undergo cell division. The EB does however 

metabolize nutrients to maintain its infectious phenotype (18). This division of labor presents an interesting 
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dilemma for Chlamydia as increasing cell numbers through RB division must be balanced with production of 

infectious EBs. How Chlamydia regulates this balance is currently unknown. 

Proposed mechanisms for the control of RB to EB development can be divided into two broad 

categories; a response to extrinsic environmental cues or an intrinsic developmental program. By developing 

mathematical models and running simulations of infection conditions, we determined that these two 

possibilities could be differentiated by generating competition between RBs for environmental signals or 

nutrients. To explore these models experimentally, we developed a live cell reporter system to follow cell type 

switching in real time at the single inclusion level. Cell-type specific promoters were used to drive the 

expression of fluorescent proteins in order to follow RB growth (ihtAprom and euoprom) and EB development 

(hctAprom, hctBprom, scc2prom and tarpprom). Growth and development curves generated using the live cell 

reporter constructs were comparable to developmental data generated using qPCR and reinfection assays. 

Competition for nutrients by increasing MOI and time delayed superinfections, both of which generate 

competition for host cell and intra-inclusion signals, did not alter time to EB development.  These data strongly 

suggest that development from RB to EB is independent of the intra-inclusion or host environment, but rather is 

responsive to one or more intrinsic cell autonomous signals. Although timing of RB to EB development was 

unchanged by environmental conditions, a reduction in maximum hctAprom gene expression in the L2 18hr 

superinfection and serovar J and Js superinfection experiments was notable, indicating that infected cells have 

an overall carrying capacity. Interestingly, total hctAprom gene expression during Ctr J (fusogenic) and Ctr Js 

(non fusogenic) superinfections were similar suggesting that the carrying capacity is controlled at the host cell 

level.   

The use of live cell promoter reporters to interrogate cell type switching dramatically improved the 

resolution for following development. Reporter expression was measured every 30 minutes at the single 

inclusion level which led to the identification of two different classes of late promoters. hctB, scc2 and tarp were 

all expressed ~22 HPI, and are therefore considered a class of true late genes. However, our data suggest that 

hctA should be considered an early late gene as its promoter is induced hours before the other late genes 

tested and responds differently to inhibition of cell division. This differential timing in expression between HctA 

and the late genes is corroborated by our published RNA-seq data that demonstrated that the transcript 

encoding HctA was upregulated at 18 HPI while the transcripts for HctB, Scc2 and Tarp were not detected until 

24 HPI (18).  

Our data also showed that the developmental program is linked to both growth rate and cell division. 

Chlamydia grown at 35ºC replicated slower and EB development was delayed compared to those grown at 

37ºC. Conversely, Chlamydia incubated at 40ºC replicated faster and EB development was initiated earlier 

compared to those grown at 37ºC. In addition to growth, cell division was also required to trigger EB 

development. Penicillin and DCS both target peptidoglycan synthesis at different points in the pathway 

resulting in a block in cell septation during chlamydial replication (39). Both treatments, when added early in 

infection (prior to 12 HPI), inhibited EB formation as measured by production of infectious particles and 
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expression of late gene promoter reporters (hctA, hctB, scc2, and tarp). However, the effect of these drugs on 

hctAprom-Clover expression differed significantly from the effects seen on hctB, scc2, and tarp. Although 

hctAprom-Clover expression was initially inhibited, expression was eventually initiated in the aberrant forms 

after an approximate 9 hr delay.  

Pen addition at all times tested (two hour intervals from 16h-28h) resulted in an immediate overall 

increase in euoprom-Clover expression and an immediate overall decrease in hctAprom-Clover expression in 

inclusions compared to untreated samples. In contrast, hctBprom expression kinetics was similar to untreated 

controls for approximately 10 h post Pen addition, at which point further expression was inhibited. Additionally, 

hctBprom fluorescence was only evident in small cell forms indicating expression was restricted to EBs while 

hctAprom expression was evident in the RB like aberrant forms suggesting expression in an intermediate cell 

form. These data suggest that inhibiting cell division blocks RBs from switching off euoprom expression and 

switching on hctAprom gene expression. However, if a cell is already committed to EB formation (hctAprom 

positive), EB gene expression continues (Pen insensitive) until the EB is fully mature (maximal hctBprom 

signal), which our data indicates takes about 10 hours.  

Treatment of Chlamydia-infected cells with antibiotics or nutrient limitation causes a growth phenotype 

termed persistence (36). Persistence is characterized by aberrant RB forms which are larger in comparison to 

untreated RBs, do not undergo cell division, and do not produce infectious progeny (36). Although all these 

treatments cause aberrant RBs, the phenotypes vary (37, 40). Pen and DCS treatment cause persistence by 

inhibiting cell division through inhibiting peptidoglycan synthesis, while IFNγ treatment causes persistence by 

inducing the enzyme indoleamine-2,3-dioxygenase in the host cell which serves to deplete tryptophan levels in 

the cell, thus starving Chlamydia of this essential amino acid (37). Comparing the live cell imaging data from 

these different persistence inducers revealed that the IFNγ treated Chlamydia never expressed Clover from 

any promoters tested early or late. This dramatic difference in gene regulation suggests different mechanisms 

are likely involved and that persistence is not a phenotype associated with a specific gene expression profile.  

Overall, our data support a model that RB to EB development follows a cell autonomous pre-

programmed cycle that requires cell division. Our initial mathematical model assumed an inhibitory signal that 

at high concentrations inhibited RBs from differentiating into EBs. The concentration of this signal was depleted 

by metabolic utilization and RB to EB differentiation occurred. We have now updated this model to reflect our 

current data supporting an intrinsic signal linked to cell growth and division. This model proposes an internal 

signal in the nascent RB that at high concentrations inhibits RBs from differentiating into EBs, and that the 

signal concentration is depleted through dilution via 3-5 cell divisions and not metabolic utilization. After the 

inhibitory signal is reduced below a threshold, RBs are capable of transitioning to EBs (Fig. 12). Of the current 

proposed models in the literature, (nutrient limitation (41), inclusion membrane limitation (42), and RB size 

(14)) only the model based on RB size is consistent with our data. The RB size model described by Dr. Tan 

and colleagues at the University of California Irvine proposes that RB growth rate is lower than the division rate 

leading to a size reduction (depletion of signal) of the RBs after each division (14). After several rounds of 
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division, a size threshold is reached and EB development is triggered (14). This proposed mechanism also fits 

our model as size would act as the inhibitory signal that is reduced through cell division. It should be noted that 

although we propose the dilution of an inhibitor as the intrinsic signal to control cell type switching, it is equally 

valid that a positive signal linked to cell division such as the development of asymmetry/polarity could act as an 

EB promoting signal. 

Chlamydial development can be considered to occur in two steps, an RB exponential growth step 

starting ~ 12 HPI (Ctr serovar L2) and an asynchronous EB production step starting at ~ 18 HPI (Ctr serovar 

L2)  (43, 44). Although the size reduction model and our model explain some of the gene expression patterns 

that control cell type switching, it is clear that EB development is more complicated than these simple switch 

models. The output of the models fit the switch between the RB exponential growth phase and the beginning of 

EB development, but they do not adequately explain the continued requirement for cell division during 

asynchronous EB production. Our data show that Pen treatment blocks the euo to hctA gene expression 

switch even when added late in infection (28 HPI), well after the time of initial EB formation (~18HPI). Further 

evidence for a dilution independent second step is the observation that the euoprom to hctAprom switch is 

initially blocked by both DCS treatment and Pen treatment, yet this inhibition is eventually overcome and 

hctAprom-Clover is expressed after a 9 hour delay. Unlike Pen treatment where RBs continue to increase in 

size, DCS impacts cell growth resulting in smaller RBs thus limiting the effect of dilution. These observations 

support a second developmental regulatory step that is independent of inhibitor dilution suggesting cell division 

itself is an important step in committing to the EB cell type.  

Our interpretation of these data is that EB formation is multifactorial and requires multiple steps to form 

a final infectious EB. The first step is the loss of the inhibitory signal in the RB through multiple rounds of 

division where RBs (RBR) divide 3-5 times by binary fission, eventually becoming competent to transition to an 

EB (RBE). This is followed by a second step that is dependent on asymmetric cell division creating two cells 

with different expression profiles. One daughter cell becomes an RBE (euoprom positive) and the second 

daughter cell becomes committed to EB formation (IB, hctAprom positive) (Fig. 12). The committed IB cell 

(hctAprom positive) does not divide and matures into the infectious EB (hctBprom, scc2prom and tarpprom 

positive). Further divisions of the RBE cell produces one RBE and one IB leading to a linear increase in EBs.  

Additional support for asymmetric EB production is the observation that hctAprom signal (IB production) 

follows a near perfect linear trajectory and is not logarithmic during the EB production phase (24 HPI - 40 HPI, 

Fig 6C and S3). This observation was also true for the hctBprom signal, although linear expression lagged 

about 5 hrs as compared to the hctAprom signal, again suggesting a maturation delay in EB formation. In 

contrast the euoprom signal (RB growth) transitions from log to linear to limited continued growth (Fig 6C and 

S3). These observations suggest that the RBR cell population expands by exponential growth followed by a 

transition to the RBE cell type. The RBE then divides asymmetricity leading to EB production with no gain in 

RBE numbers. Other studies have provided evidence for asymmetric cell division. These studies showed that 
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the cell division machinery assembles asymmetrically potentially leading to polarized division (38, 39). 

Additionally, The EB itself is asymmetric demonstrating hemispherical projections that can be seen by EM (45) 

Our data show that the combination of mathematical modeling and live cell gene reporter imaging is a 

powerful tool to tease apart the molecular details of cell type development. Continued revision and testing of 

our models of development will lead to an expanded understanding of cell type development in this important 

human pathogen. 

 

Materials and Methods: 

 

Organisms and cell culture. Cos-7 and HeLa cells were obtained from (ATCC). Cos-7 cells were used for all 

experiments unless specified. Both Cos-7 and HeLa cells were maintained in a 5% CO2 incubator at 37°C 

(unless otherwise indicated) in RPMI 1640 (Cellgro) supplemented with 10% fetal plex and 10g/ml gentamicin. 

All Ctr-L2 (LGV 434) strains were grown in and harvested from Cos-7 cells. For cell division experiments 

chlamydial cell division was inhibited by the addition of 1 U/ml penicillin-G or 40 µg/ml D-cycloserine to the 

media. To starve Chlamydia of tryptophan HeLa cells were incubated for 24 h in media containing 2 ng/ml 

recombinant human IFN-γ (Invitrogen: PHC4033) prior to infection. Elementary bodies were purified by density 

centrifugation using 30% MD-76R 48 hours post infection (18). Purified elementary bodies were stored at -

80°C in sucrose-phosphate-glutamate buffer  (10 mM sodium phosphate [8 mM K 2HPO 4, 2 mM KH 2PO 4], 

220 mM sucrose, 0.50 mM L-glutamic acid; pH 7.4). E. coli ER2925 (dam/dcm-) was utilized to produce 

unmethylated constructs for transformation into Chlamydia.  

 

Reporter plasmids. The backbone for all promoter-reporter constructs was p2TK2SW2 (46). Promoters were 

amplified from Ctr-L2 genomic DNA using the primers indicated in table ST1. Each promoter sequence 

consisted of ~100 base pairs upstream of the predicted transcription start site for the specified chlamydial 

genes plus the UTR and the first 30nt (10aa) of the respective ORF. Promoter sequences were inserted into 

p2TK2SW2 downstream of the ColE1 ORI. Fluorescent reporters (EGFP/Clover/mKate2) were ordered as 

gene blocks from Integrated DNA Technologies (IDT) and inserted in frame with the first 30nt of the chlamydial 

gene. Each ORF was followed by the incD terminator. The bla gene was replaced by the aadA gene 

(Spectinomycin resistance) from pBam4. The final constructs reported in this study were p2TK2-ihtAprom-

EGFP, p2TK2-hctAprom-Clover, p2TK2-hctBprom-Clover,  p2TK2-scc2prom-Clover, p2TK2-euoprom-Clover, 

p2TK2-tarpprom-Clover, p2TK2-hctBprom-mKate2/euoprom-Clover and p2TK2-hctAprom-mKate2/ihtAprom-

mNeonGreen. 

 

Chlamydial transformation and isolation. Transformation of Ctr-L2 was performed as previously described 

(46) and selected using 500ng/ul spectinomycin. Clonal isolation was achieved via successive rounds of 
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inclusion isolation (MOI <1) using a micro-manipulator. The plasmid constructs were purified from chlamydial 

transformants, transformed into E. coli and sequenced. 

 

Replating and IFUs. hctAprom-Clover EBs were obtained from infected Cos-7 cells by scraping the host 

monolayer and pelleting via centrifugation for 30 min at 17200 rcfs. The EB pellets were resuspended in RPMI 

via sonication. For reinfection, Cos-7 cells were plated to confluency in clear polystyrene 96-well microplates. 

EB reinfections consisted of 2-fold dilutions. Infections were incubated for 30 min at 37°C. Infection medium 

was then washed 3X with HBSS and replaced with complete RPMI 1640 + cycloheximide. Spectinomycin was 

added to superinfection experiments to prevent wt Ctr-L2 growth. Infected plates were incubated for 29 hours. 

Cells were fixed with methanol and stained with DAPI. The DAPI stain was used for automated microscope 

focus and visualization of host cell nuclei, GFP-Clover for visualization of EBs and inclusion counts. Inclusions 

were imaged using a Nikon Eclipse TE300 inverted microscope utilizing a scopeLED lamp at 470nm and 

390nm, and BrightLine bandpass emissions filters at 514/30nm and 434/17nm. Image acquisition was 

performed using an Andor Zyla sCMOS in conjugation with μManager software. Images were analyzed using 

ImageJ software (47) and custom scripts.  

 

Genome number quantification. Chlamydial genomic DNA was isolated from infected host cells during active 

infections using an Invitrogen Purelink genomic DNA mini kit.  An ABI-7900HT RT-PCR system was utilized for 

quantification of genomic copies. A DyNAmo Flash SYBR Green qPCR kit and hctA-specific primer was used 

for detection. 

 

Fluorescent microscopy. Cos-7 monolayers were infected with Ctr-L2-prom EBs and incubated for 30 min at 

37°C. Infection medium was then washed 3X with HBSS and replaced with complete RPMI 1640 + 

cycloheximide. Live infections were grown in an OKOtouch CO2/heated stage incubator. Infections were 

imaged using a Nikon Eclipse TE300 inverted microscope. A ScopeLED lamp at 470nm and 595nm, and 

BrightLine Bandpass filters at 514/30nm and 590/20nm were used for excitation and emission. DIC was used 

for focus. Image acquisition was performed using an Andor Zyla sCMOS camera in conjugation with μManager 

software (48). Images were taken at 30 min intervals from 10 to 48 hours after Ctr-L2-prom infection, unless 

otherwise stated. Live-cell infections were performed in 24 or 96 well glass-bottom plates allowing treatments 

to vary between wells. Multiple fields were imaged for each treatment. Fluorescent intensities for individual 

inclusions were monitored over time using the Trackmate plug-in in ImageJ (22). Inclusion fluorescent 

intensities were then analyzed, and graphed using pandas, matplotlib, and seaborn in custom Python 

notebooks.  

For confocal microscopy, samples were fixed with paraformaldehyde, washed with phosphate-buffered 

saline, and mounted with MOWIOL. Confocal images were acquired using a Nikon spinning disk confocal 

system with a 60x oil-immersion objective, equipped with an Andor Ixon EMCCD camera, under the control of 
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the Nikon elements software. Images were processed using the image analysis software ImageJ 

(http://rsb.info.nih.gov/ij/). Representative confocal micrographs displayed in the figures are maximal intensity 

projections of the 3D data sets, unless otherwise noted.  

 

Statistical analysis. Each set of experiments was repeated a minimum of three times. 

 

Data Availability. 

All data, bacterial strains and methodologies are available upon request. 
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Figure Legends: 

 

Fig. 1. Schematic and simulations of extrinsic and intrinsic models. Both models assume that the 

mechanism of RB/EB conversion is in response to signal concentration. High signal concentration prevents 

RB/EB conversion and RB replication continues. As RBs replicate, the signal is consumed and, once the signal 

is depleted passed a given threshold, RBs convert to IBs (I: blue) which then convert to EBs (E: red). A. 

Schematic of the environmental factor model. The RBs compete for a single pool of signal (S).  B. Schematic 

of the intrinsic model. Each RB contains its own signal, eliminating competition between RBs. C. Simulations of 

the two models (extrinsic and intrinsic) using a multiplicity of infection (MOI) of 1 and a RB generation time of 

2.27 hours produced results that mimic the kinetics of the chlamydial cycle and were indistinguishable from 

each other. D. Simulations of RB doubling times of 1.13 (½ the measured RB doubling time) hours and 4.54 

hours (2x the measured RB doubling time) resulted in a reduced time to EB production and an increased time 

to EB production, respectively.  However, both models produced the same outcome. E. Simulations using an 

MOI of 10 predicted EB conversion to occur more rapidly in the environmental factor model but to remain 

unchanged in the intrinsic model. Similarly, simulations of the models using a time delayed superinfection 

resulted in RB to EB conversion occurring more rapidly in the environmental factor model but remaining 

unchanged in the intrinsic model.  

 

Fig. 2. Live-cell fluorescent imaging of chlamydial development. Cell-type specific fluorescent reporters 

were created to track chlamydial development in real-time. Infections with purified Ctr-L2-prom EBs were 

synchronized and fluorescence microscopy and GE/IFU experiments were run simultaneously.  A-B. The 
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average of ihtAprom-EGFP (RB) and hctAprom-Clover (EB) expression intensities from >50 individual 

inclusions monitored via automated live-cell fluorescence microscopy throughout the developmental cycle 

compared to genome copy number and IFU, respectively. C-D. The fluorescence intensities of >50 individual 

inclusion tracked via live-cell microscopy throughout the developmental cycle indicated that initiation of 

fluorescence was fairly uniform. GE and IFU cloud represents 95% ci, fluorescent intensity cloud represents 

SEM. 

 

Fig. 3. RB replication and EB conversion are growth rate dependent. The ability of the promoter reporter 

system to monitor differences in RB replication and EB conversion was tested by altering the growth 

temperature (35ºC: blue, 37ºC: grey, and 40ºC: red). A-B. The average of ihtAprom-EGFP (RB) and hctAprom-

Clover (EB) expression intensities from >50 individual inclusions monitored via live-cell fluorescence 

microscopy from 9-48 HPI. C. GEs were measured hourly between 9 and 48 HPI by qPCR. D. EB conversion 

(IFU) was quantified via reinfection assay. Each set of experiments was run in triplicate. GE and IFU cloud 

represents 95% ci, fluorescent intensity cloud represents SEM. 

  

Fig. 4. MOI does not affect RB to EB conversion. Host cells were infected with purified Ctr-L2-prom EBs at 

an MOI of 1-32. A-D: The average of ihtAprom-EGFP (RB) and hctAprom-Clover, hctBprom-Clover, and 

scc2prom-Clover (EB) expression intensities from >50 individual inclusions monitored via automated live-cell 

fluorescence microscopy throughout the developmental cycle. Fluorescent intensities were normalized by 

respective MOI. E. EB development (IFU) was measured at MOIs from 1-20 and was quantified via a 

reinfection assay.  EBs were harvested at two-hour intervals from 15-25 HPI. IFU data was normalized by 

respective MOI. Each set of experiments was run in triplicate. IFU cloud represents 95% ci, fluorescent 

intensity cloud represents SEM. 

 

Fig. 5. Superinfection does not affect RB to EB conversion. Host cells were initially infected with non-

fluorescent Ctr EBs followed by secondary infections with Ctr-L2-prom EBs at 6, 12, or 18 HPI and the 

fluorescent output compared to cells that had not been infected with a primary infection (None). Infections were 

imaged starting at 9 hours post infection with the Ctr-L2-prom strains. A. Live-cell fluorescence/DIC image of 

18 hr L2 superinfection with Ctr-L2-hctAprom-Clover at 20X magnification (30 hours post Ctr-L2-hctAprom 

infection). Fluorescent signals were measured in inclusions containing both GFP expressing Ctr (arrowhead) 

and non fluorescent Ctr (arrow). Scale bar = 10μm. B-C. The average of ihtAprom-EGFP (RB) and hctAprom-

Clover (EB) expression intensities from >50 individual inclusions monitored via automated live-cell 

fluorescence microscopy during no superinfection, 6, 12, and 18 hour Ctr-L2 superinfections. D-E. The 

average fluorescent intensities of >50 individual inclusions using Ctr-L2-hctBprom-Clover or Ctr-L2-scc2prom-

Clover measured with no superinfection (None) or 12 hour Ctr-L2 superinfection. F. EBs were harvested at 

two-hour intervals from 15-25 hours post Ctr-L2-prom infection and quantified by reinfection assay. G. Live-cell 
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fluorescence/DIC image of cells infected with Js and superinfected with Ctr-L2-hctAprom-Clover. Image was 

taken 30 hours post Ctr-L2-hctAprom-Clover infection at 20X magnification. Fluorescent signals were 

measured from inclusions in cells that contained both fluorescent Ctr (arrowhead) and unfused non fluorescent 

Ctr (arrow). Scale bar = 10μm. H-I. The average of >50 individual inclusions containing ihtAprom-EGFP (RB) 

and hctAprom-Clover (EB) fluorescent intensity measured with no superinfection (None), Ctr-J, or Ctr-Js 

superinfections. Each set of experiments was repeated three times. IFU cloud represents 95% ci, fluorescent 

intensity cloud represents SEM. 

 

Fig. 6. Inhibition of cell division inhibits EB conversion. Host cells were infected with purified Ctr-L2-prom 

EBs followed by addition of penicillin-G at 14HPI (arrow) or vehicle only. A. The average of ihtAprom-EGFP 

(RB) expression intensities from >50 individual inclusions monitored via automated live-cell fluorescence 

microscopy in the absence (UNT) or presence of penicillin (Pen). B. Genome copy numbers measured using 

qPCR. C-D. The average of hctAprom-Clover, hctBprom-Clover and scc2prom-Clover (EB) fluorescence 

intensities from >50 individual inclusions monitored via automated live-cell fluorescence microscopy in the 

absence (UNT) or the presence of penicillin (Pen). E. EBs were harvested at four-hour intervals for each 

treatment and quantified by reinfection assay. Each set of experiments was repeated four times. GE and IFU 

cloud represent 95% ci, fluorescent intensity cloud represents SEM. 

 

Fig. 7. Effects of an alternative developmental inhibitor on RB/EB conversion. Host cells were infected 

with Ctr-L2-prom EBs followed by treatment with penicillin-G, D-cycloserine, or vehicle only at 14HPI. A-C. The 

average of RB (ihtAprom-EGFP, euoprom-Clover) expression intensities from >50 individual inclusions 

monitored via automated live-cell fluorescence microscopy in vehicle only (UNT), penicillin (PEN), or D-

cycloserine (DCS) treated cells, respectively. D-F. The average of hctAprom-Clover, hctBprom-Clover and 

scc2prom-Clover (EB) fluorescent intensities from >50 individual inclusions in UNT, PEN, or DCS treated cells, 

respectively. Each set of experiments was repeated four times. Cloud represents SEM. 

 

Fig. 8. D-cycloserine and penicillin-G induces aberrant cell forms. Host cells were infected with Ctr-L2-

hctAprom-Clover EBs followed by treatment with PEN or DCS at 14HPI. Live-cell fluorescence images were 

aquired at 40 HPI. A) Untreated, vehicle only B) Penicillin treated (PEN) and C) D-cycloserine treated (DCS). 

Magnification, 40X. Scale bar = 10μm. 

 

Fig. 9. Effect of interferon-gamma on RB/EB conversion. HeLa cells were treated with interferon-gamma 

(IFN-γ) 24 hrs prior to infection with Ctr-L2-prom EBs. A. The average of ihtAprom-EGFP (RB) expression 

intensities from >50 individual inclusions monitored via automated live-cell fluorescence microscopy in the 

absence (UNT) and presence of IFN-γ. B.  Plots represent the average hctAprom-Clover (EB) fluorescent 
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expression from >50 individual inclusions. Each set of experiments was repeated four times, cloud represents 

SEM.  

 

Fig. 10. Inhibiting cell-division inhibits further EB conversion. Host cells were infected with Ctr-L2-prom 

EBs followed by treatment with Pen at two-hour intervals starting at 16 HPI or without treatment (UNT). Arrows 

and vertical dotted lines indicate the addition of Pen. A. The average of euoprom-Clover (RB) expression 

intensities from >50 individual inclusions monitored via automated live-cell fluorescence microscopy for each 

penicillin treatment (time series starting at 16HPI) and untreated (UNT). B. The average of hctBprom-mKate2 

(EB) fluorescence from >50 individual inclusions. Horizontal solid lines indicate time to maximum expression. 

C. The average of hctAprom-mKate2 (EB) fluorescence from >50 individual inclusions. HctAprom-mKate2 

graphs are separated for clarity. Horizontal solid lines indicate time to reinitiation of expression. Each set of 

experiments was repeated three times. Cloud represents SEM. 

 

Fig. 11. Confocal fluorescence microscopy of cell-type promoter expression upon inhibition of cell 

division. Host cells were infected with Ctr-L2-hctAprom-mKate2/ihtAprom-mNeongreen (red and green 

respectively) or Ctr-L2-hctBprom-mKate2/euoprom-Clover (red and green respectively) followed by treatment 

with Pen at 20 HPI. Samples were fixed at 24HPI. Fixed samples were imaged by confocal microscopy and 

maximum intensity projections are shown. Scale bars = 5μm. 

 

Fig. 12. Schematic of concentration dependent RB/EB conversion model. Schematic shows diminishing 

signal concentration within RBs (dark to light blue) upon cell division. Depletion of the signal permits RBs to 

produce IBs (yellow) which then convert to EBs (red). RBRs divide into two subsequent RBs. RBEs are 

competent to make EBs and divide into a RB and an IB. Each cell form has predicted associated promoter 

expression phenotypes. RB (RBR and RBE): euo/ihtA, IB: hctA, EB: hctB/scc2/tarp. 

 

Supplemental figures 

 

S2. Inhibition of cell division inhibits tarpprom expression. Host cells were infected with purified Ctr-L2-

tarpprom-Clover EBs followed by treatment penicillin at 14HPI (arrow). A. The average of tarpprom-Clover 

(EB) expression intensities from >50 individual inclusions monitored via automated live-cell fluorescence 

microscopy in the absence (UNT) and presence of penicillin (Pen). Experiment was repeated four times. Cloud 

represents SEM.  

 

S3.  EB production follows a linear trajectory. Host cells were infected with purified Ctr-L2-prom EBs. A-B. 

The average fluorescent intensities from >50 individual inclusions over time expressing euoprom-Clover (RB) 

and hctAprom-Clover (EB) plotted on both a logarithmic plot and linear plot. C-D. The average fluorescent 
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intensities from >50 individual inclusions over time expressing euoprom-Clover (RB) and hctBprom-Clover 

(EB) plotted on both a logarithmic plot and linear plot. Red lines are drawn to highlight the linear region of 

expression for hctAprom (A-B) and hctBprom (C-D) (straight line region on linear plot and curved line region on 

log plot). Cloud represents SEM. 

 

M1. Live cell time lapse movie of inclusion development and hctAprom-Clover expression. Host cells 

were infected with purified Ctr-L2-hctAprom-Clover EBs. Automated live-cell DIC and fluorescence microscopy 

was used to capture images every thirty minutes from 10-48 HPI. 
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