

1 Discrimination among *Cryptococcus deneoformans*, *C. neoformans* and interspecies 2 hybrids using MALDI-TOF Mass Spectrometry

3 **Running title:** *Cryptococcus* species identification by MALDI-TOF MS

4 Margarita Estreya Zvezdanova^{1,2}, Manuel J. Arroyo³, Gema Méndez³, Jesús Guinea^{1,2,4}, Luis
5 Mancera³, Patricia Muñoz^{1,2,4,5}, Belén Rodríguez-Sánchez^{1,2*}, Pilar Escribano^{1,2*}

¹Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain. ²Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. ³Clover Bioanalytical Software, Av. de la Innovación, 1 18016 Granada, Spain ⁴CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain. ⁵Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain

11 **Corresponding Author:** Belén Rodríguez-Sánchez, PhD. Servicio de Microbiología-
12 Enfermedades Infecciosas. Hospital General Universitario Gregorio Marañón. Dr Esquerdo 46.
13 28007 Madrid, Spain. Phone: +34- 91- 426 9595, Fax: +34- 91- 586 8767

14 E-mail: mbelen.rodriguez@iisgm.com

15 *These authors have contributed equally to the study

16

17

18

19

20

21

22 **ABSTRACT**

23 **Background:** Differentiation of the species within the *Cryptococcus neoformans* complex (*C. deneoformans*, *C. neoformans* and *C. neoformans* interspecies hybrids –*C. deneoformans* x *C. neoformans*-) is important to define the epidemiology of the infection.

26 **Objectives:** In this study we attempted the discrimination of three *C. neoformans* species using
27 MALDI-TOF MS coupled with an in-house library.

28 **Methods:** All *Cryptococcus* spp. isolates were identified by AFLP markers. An in-house database
29 was constructed 26 well characterized *C. deneoformans*, *C. neoformans* and interspecies hybrids.
30 Forty-four *Cryptococcus* spp. isolates were blindly identified using MALDI-TOF MS (Bruker
31 Daltonics) and the expanded library. Their protein spectra were also submitted to hierarchical
32 clustering and the resulting species were verified via Partial Least Squares Differential Analysis
33 (PLS-DA) and Support-Vector Machine (SVM).

34 **Results:** MALDI-TOF MS coupled with the in-house library allowed 100% correct identification of
35 *C. deneoformans* and *C. neoformans* but misidentified the interspecies hybrids. The same level of
36 discrimination among *C. deneoformans* and *C. neoformans* was achieved applying SVM. The
37 application of the PLS-DA and SVM algorithms in a two-step analysis allowed 96.95% and 96.55%
38 correct discrimination of *C. neoformans* from the interspecies hybrids, respectively. Besides, PCA
39 analysis prior to SVM provided 98.45% correct discrimination of the 3 species analysed in a one-
40 step analysis.

41 **Conclusions:** Our results indicate that MALDI-TOF MS could be a rapid and reliable tool for the
42 correct discrimination of *C. deneoformans* and *C. neoformans*. The correct identification of the
43 interspecies hybrids could only be achieved by hierarchical clustering with other protein spectra
44 from the same species.

45 **Key Words:** *Cryptococcus* spp, MALDI-TOF MS, in-house library, AFLP, hierarchical clustering

46 **INTRODUCTION**

47 The genus *Cryptococcus* has classically comprised two sibling species with great
48 importance from the clinical point of view: *Cryptococcus neoformans* and *C. gattii*, the causative
49 agents of cryptococcosis. Whilst *C. neoformans* complex has been associated with meningitis in
50 immunosuppressed patients, *C. gattii* has been shown to cause disease in both immune competent
51 and immunocompromised population^{1,2}. Species differentiation is important in order to establish the
52 epidemiology, virulence and susceptibility pattern to the commonly used antifungal drugs³⁻⁶. So far,
53 species assignment is achieved by morphology analysis of the colonies grown on specific culture
54 media and serological tests⁷. The availability of DNA-based methodologies as restriction fragment
55 length polymorphism (RFLP) analysis⁸, amplified fragment length polymorphism (AFLP) analysis⁹,
56 multilocus microsatellite typing -MLMT-¹⁰, and multilocus sequence typing -MLST-¹¹ has allowed
57 the identification of *Cryptococcus* species and molecular types in the last years⁸⁻¹³. Genotyping
58 methods have identified the following major molecular types: AFLP1/VNI, AFLP1A,
59 AFLP1B/VNII for *C. neoformans*; AFLP2/VNIV for *C. deneoformans*, AFLP3/VNIII for the
60 interspecies hybrid *C. neoformans* *neoformans* x *C. deneoformans*; and AFLP4/VGI, AFLP5/VGIII,
61 AFLP6/VGII, AFLP7/VGIV and AFLP10/VGIV, VGII for *C. gattii* compex^{14,15}.

62 Molecular techniques have shown to be accurate and robust although the whole procedure
63 is cumbersome, time consuming, and delays the final identification. Although genomic analysis is
64 currently the gold standard for *Cryptococcus* identification, its high requirements in hands-on time
65 and expertise has led to the evaluation of alternative tools.

66 Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF
67 MS) has emerged as a promising technology for the rapid and reliable identification of yeasts¹⁶⁻¹⁸.
68 Isolates belonging to the *Candida* genus have been shown to be easily identified at the species level

69 either from single colonies or directly from clinical samples using MALDI-TOF MS¹⁹. However,
70 non-Candida yeasts still represent a challenge for this technology, especially when trying to identify
71 genera poorly represented or even lacking in the commercial databases²⁰. In this case, expanded in-
72 house databases containing protein spectra from the underrepresented species and genera have
73 shown to overcome this drawback¹⁶. Although this approach has worked before for the
74 discrimination between *C. neoformans* and *C. gatti* complexes^{21,22}, the available information about
75 MALDI-TOF discrimination within the *C. neoformans* complex is still limited²³.

76 In this study, MALDI-TOF has been applied for the discrimination between *C.*
77 *deneoformans*, *C. neoformans* and the interspecies hybrids. For this purpose, two approaches have
78 been applied: a database was built using well-characterized isolates and automated peak analysis
79 was performed.

80

81 MATERIALS AND METHODS

82 Isolates and molecular identification

83 We retrospectively selected 70 *Cryptococcus* spp. isolates from clinical samples (n=70)
84 belonging to 67 patients admitted to Hospital Gregorio Marañón (Madrid, Spain) from 1994 to
85 2007. Isolates sourced from cerebrum spinal fluids (51%), blood (33%), respiratory samples (10%),
86 and others (6%). They were morphologically identified on Columbia agar + 5% sheep blood plates
87 (Biomérieux Marcy L'étoile, France) at 35 ° C, and by means of the ID 32C system (bioMérieux,
88 Marcy l'Etoile, France). All isolates were stored at -80°C in water until further analysis. All isolates
89 were previously identified by AFLP analysis²⁴ and were stored at -80°C in water until further
90 analysis. Molecular identifications were considered as the reference in our study.

91

92 **Database construction**

93 Twenty-six *Cryptococcus* isolates - *C. neoformans* (n=12), interspecies hybrids (n=10) and
94 *C. deneoformans* (n=4)- were processed according to the manufacturer's instructions and added to
95 the in-house database (HGM library) as individual Main Spectra (MSPs).

96 The procedure for adding new entries to an in-house library has already been described²⁵.
97 Briefly, the instrument was calibrated before spectra acquisition using freshly prepared BTS;
98 *Cryptococcus* isolates were processed as explained below and then spotted onto eight positions in
99 the MALDI target plate and each position was read three times. Twenty-four protein spectra were
100 thus achieved, 20 of which had to be identical in order to be accepted by the software (Biotyper,
101 Bruker Daltonics, Bremen, Germany) as a MSP and added to the extended library.

102 **MALDI-TOF identification**

103 Forty-four *Cryptococcus* spp. isolates were blindly analysed using an LT Microflex
104 benchtop MALDI-TOF mass spectrometer (Bruker Daltonics) for spectra acquisition, using default
105 settings. For the identification of the protein spectra, the updated BDAL database containing 8223
106 MSPs (Bruker Daltonics) was applied. This database contains 12 reference MSPs from *C.*
107 *neoformans* and 7 from *C. deneoformans*. Besides, the expanded in-house HGM library developed
108 in this study was used in combination with the commercial database.

109 The sample processing method applied consisted of a mechanical disruption step followed
110 by a standard protein extraction. Briefly, a few colonies were picked, re-suspended in 300 µl water
111 HPLC-grade and 900µl ethanol, and submitted to 5 min vortexing. After a brief spin, the
112 supernatant was discarded and the pellet allowed drying completely at RT. Protein extraction with
113 formic acid and acetonitrile was performed and 1µl of the supernatant was spotted onto the MALDI

114 target plate in duplicates. Once the spots were dry, they were covered with 1 μ l HCCA matrix
115 (Bruker Daltonics), prepared following the manufacturer's instructions (Figure 1).

116 The identifications provided by MALDI-TOF MS were compared at the species level with
117 those provided by AFLP analysis regardless of their score value (Table 1). Besides, score values
118 ≥ 2.0 were considered as "high-confidence" scores and those ≥ 1.7 as "low-confidence" ones. Score
119 values below 1.6 were only considered when consistent over the four top identifications, otherwise
120 they were considered as "not reliable".

121 Peak Analysis

122 For the classification of the three species of *Cryptococcus* their protein spectra were
123 processed using Clover MS Data Analysis software (Clover Biosoft, Granada, Spain) with the
124 parameters shown in Table S1 in order to achieve a peak matrix with a representative mass list in
125 the range 2400m/z to 12000m/z. Furthermore, spectra alignment was performed. First, the replicates
126 from the same isolate were aligned in order to get an average spectrum. Finally, all average spectra
127 were aligned together.

128 The rate of presence for the biomarker peaks was calculated for each species and then
129 compared among species. Receiver Operating Characteristic (ROC) curve with Area under the
130 Curve –AUC- higher than 0.99 were used as quality indicators to measure the sensibility and
131 specificity of a selected biomarker.

132 Once the putative biomarkers were selected and analysed, a peak matrix was built
133 containing all the aligned spectra from all *Cryptococcus* isolates, processed as described in Table
134 S2. This peak matrix was constructed with ten species-specific biomarkers and it was used as input
135 for a dendrogram obtained measuring Euclidean distance from Principal Component Analysis
136 (PCA) scores.

137 Over the peak matrix, two approaches were applied in order to discriminate the three
138 *Cryptococcus* species. The first one was a two-step method in which the discrimination of *C.*
139 *deneoformans* from the other two species was performed as a first step and it was replicated by
140 means of two machine learning algorithms on the same peak matrix: supervised PLS-DA and SVM.
141 Results were validated using k-fold cross validation method. In the second step, a new peak matrix
142 was performed in order to achieve a better discrimination of *C. neoformans* from the interspecies
143 hybrids. A second dendrogram was performed using the above mentioned parameters. Again, PLS-
144 DA and SVM was performed to this second peak matrix to replicate the classification and the k-fold
145 cross validation method was applied. The two-step method was further improved by the exclusion
146 from the peak matrix of peaks that did not provide enough discrimination.

147 In order to simplify the workflow, a one-step method was assayed so that the capacity of
148 the algorithms to discriminate the three *Cryptococcus* species at the same time was tested. In this
149 case, only one peak matrix with spectra from the three species was built and 5 species-specific
150 biomarkers were included. The alignment and processing parameters were the same as in the two-
151 steps approach. The one-step method was evaluated using the peak matrix generated as input data
152 for PLS-DA analysis and SVM analysis. Besides, the validation in both cases was performed using
153 k-fold confusion matrix.

154 **Ethic Statement**

155 The hospital Ethics Committee approved this study and gave consent for its performance
156 (Code: MICRO.HGUGM.2017-003). Since only microbiological samples were analysed, not
157 human products, all the conditions to waive the informed consent have been met.

158

159 **RESULTS**

160 Genotyping of the isolates detected three different genotypes. The most common genotype
161 was AFLP1/1B (*C. neoformans*, n=34; 49%), followed by AFLP3 (interspecies hybrids, n=29;
162 41%) and AFLP2 (*C. deneoformans*, n=7, 10%).

163 The application of MALDI-TOF MS and the commercial database allowed the correct
164 identification of 18/22 *C. neoformans* isolates (81.8%) and 1/3 *C. deneoformans* isolates (33.3%);
165 the remaining *C. neoformans* isolates -n=4- could not be reliably identified and for 2 *C.*
166 *deneoformans* isolates MALDI-TOF did not provide the species identification (Table 1). The
167 identification of the interspecies hybrids (n=19) was not achieved using the commercial database
168 due to the lack of representation of this microorganism. These isolates were identified as *C.*
169 *neoformans* complex in 9 cases (score \geq 2.0, n=7; score>1.7, n=1; score<1.6, n=1), as *C.*
170 *deneoformans* in 7 cases (score>1.7, n=4; score<1.6, n=3) and as *C. neoformans* in 3 cases
171 (score>1.7) –Table 1-.

172 Only two isolates (8.0%) were correctly identified at the species level with high-confidence
173 score values (\geq 2.0) whilst 52.3% of the samples were identified with low-confidence scores (>1.7) -
174 Table 1-. Another 4 isolates were reliably identified to the species level, although with scores values
175 ranging between 1.7 and 1.6 and, finally, 8 isolates obtained scores below 1.6. The latter can be
176 considered as unreliable identifications.

177 Using the in-house library all *C. neoformans* and *C. deneoformans* isolates were correctly
178 identified by MALDI-TOF MS at the species level (Table 1). Moreover, 21/25 isolates (84.0%)
179 were identified with score values \geq 2.0 which indicates a high-confidence level. The reliability of the
180 identification was further demonstrated by the fact that the top 4-5 identifications were identical in
181 all cases. In all but two cases these top reference isolates belonged to the HGM in-house library.

182 However, the implementation of the expanded HGM library only allowed the correct
183 identification of 12/19 interspecies hybrids, 7 of them with score values above 2.0. The high

184 closeness of the interspecies hybrids with the other two *Cryptococcus* species made it difficult for
185 MALDI-TOF MS to discriminate among them and misidentified 7 interspecies hybrids as *C.*
186 *neoformans* (Table 1).

187 To improve the identification of the interspecies hybrids and their discrimination from *C.*
188 *deneoformans* and *C. neoformans*, peak analysis was performed. The search for species-specific
189 biomarker peaks yielded a list of 10 peaks that allowed the differentiation of the *Cryptococcus*
190 species analysed, with 5 of them showing higher discriminative power (Table 2). The two-step
191 method allowed correct differentiation of the interspecies hybrids which clustered distinctly in the
192 dendograms built using two different hierarchical clustering variations (Figure 2 and Figure S2).
193 These dendograms showed three different clusters where *Cryptococcus deneoformans* isolates
194 were clearly separated from *Cryptococcus neoformans* and the interspecies hybrids. Accurate
195 differentiation among the 3 *Cryptococcus* species was achieved using the peak matrix built upon the
196 5 most discriminative peaks, with only one spectrum from an interspecies hybrid misallocated in the
197 *C. neoformans* cluster (Figure 2B). *C. neoformans* and the interspecies hybrids showed close
198 relatedness between them based on their protein spectra.

199 The validation of the method yielded a k-fold (k=10) score of 96.92% for PLS-DA
200 performed over the peak matrix with 10 biomarkers and 98.46% for the analysis with 5 biomarkers.
201 However, SVM algorithm achieved 100% discrimination in both cases when PCA was applied
202 (Table S3).

203 A second dendrogram was performed using hierarchical clustering analysis. It showed two
204 well-defined clusters for *Cryptococcus neoformans* and the interspecies hybrids (Figure S2). In this
205 step only the 3 biomarkers to differentiate *C. deneoformans* from interspecies hybrids were used
206 (5453.91, 5552.90 and 7103.00 m/z). Furthermore, this second dendrogram was validated by PLS-
207 DA and SVM algorithms. K-fold (k=10) was applied achieving 95.55% efficacy in both analyses.

208 In the single-step method, the peak matrix built with 5 biomarkers was used as an input for
209 PLS-DA and SVM analysis in order to achieve the discrimination of the 3 *Cryptococcus* species
210 simultaneously. PLS-DA analysis could not classify correctly the three varieties at the same time
211 due to the low k-fold (k=10) values obtained. However, PCA performance prior to SVM allowed
212 98.46% correct classification of the three *Cryptococcus* species (Figure 3). The efficacy of the
213 method was tested by k-fold (k=10) cross validation analysis was above 95.0%. (Figure 3, Table
214 S3)

215 As a result of this analysis, a visual method for the differentiation of the analyzed
216 *Cryptococcus* species can be applied based on the presence of the 6688.67 m/z peak in the *C.*
217 *neoformans* isolates and their absence in *C. deneoformans* isolates, where the peaks 6576.08 m/z
218 and 7103.01 m/z could be detected. On the other hand, both sets of peaks are present in the
219 interspecies hybrids although some of them (2842.14, 3084.11 and 8636.24 m/z) were detected in
220 100% of the spectra from this species (Table 3). The visual detection of these biomarker peaks
221 could provide a rapid and accurate identification of the *Cryptococcus* species prior to a more in-
222 depth peak analysis using *ad-hoc* software.

223

224 **DISCUSSION**

225 Accurate identification of *Cryptococcus* species within the *Cryptococcus neoformans*
226 complex provides valuable information about their epidemiology, sensitivity to commonly used
227 antifungal drugs or virulence. Our results show that discrimination among the three *Cryptococcus*
228 species analyzed—*C. deneoformans*, *C. neoformans* and interspecies hybrids- can be performed
229 successfully using MALDI-TOF MS.

230 The implementation of the in-house database built in our laboratory allowed 100% correct
231 species-level identification of the 25 *Cryptococcus deneoformans* and *C. neoformans* isolates used

232 to challenge it. Apart from the reliable identification of the analyzed *Cryptococcus* species, the in-
233 house library also provided high confidence identifications in 63.6% of the cases (Table 1).
234 Furthermore, these results showed consistency along the 10 top identifications provided by the mass
235 spectrometry instrument, even for the hybrids. This fact is of great importance in the routine of the
236 microbiology laboratory in order to transfer reliable information to the clinicians.

237 The results obtained are in agreement with those obtained by other authors²¹⁻²³. However,
238 the in-house library did not provide enough discrimination between the above-mentioned species
239 and the interspecies hybrids. This goal was only fulfilled completely when peak analysis was
240 performed and the three *Cryptococcus* species analyzed in this study distinctively clustered together
241 (Figure 2). Other authors have provided species-level discrimination in 98.1-100% of the cases^{21, 23,}
242 ²⁶. Although some of these studies were performed on higher number of isolates, our results also
243 reflect the improvements made on the commercial database during the last years.

244 The available commercial database has demonstrated to provide high species-level
245 resolution for *C. deneoformans* and *C. neoformans*-76.0%- although score values <1.7 were
246 obtained in 21.0% of the cases and species-level identification was not provided for 2 *C.*
247 *deneoformans* isolates. These data supported the need of building expanded databases. However,
248 even improvements in the reference databases proved not to be enough to differentiate the
249 interspecies hybrids. This may be due to the algorithms used by the mass spectrometry instrument
250 for species assignment and to the fact that the hybrids show peaks present of both parental species.
251 Therefore, peak analysis using *ad-hoc* software was performed. A list of 10 biomarker peaks was
252 achieved as the input for species classification (Table 2). The implementation of PLS-DA analysis
253 in a two-step approach allowed the discrimination of *C. deneoformans* isolates in the first place and,
254 subsequently, the correct classification of *C. neoformans* isolates and the interspecies hybrids in
255 96.92% of the cases. Furthermore, the accuracy of this method increased when the number of
256 biomarker peaks used was reduced to the five most discriminative ones (98.46%).

257 In order to simplify the analysis, a one-step method was proposed in order to classify the
258 three species simultaneously. In this case, PLS-DA provided correct classification in less than
259 75.0% of the cases but the application of SVM after PCA analysis allowed 96.92% correct
260 discrimination of the analyzed isolates. This analysis provided a set of species-specific peaks for the
261 *Cryptococcus* species within the *C. neoformans* complex that may be detected by visual inspection,
262 representing a rapid and inexpensive approach for their discrimination.

263 In summary, our results demonstrate the usefulness of MALDI-TOF MS when applied in
264 the microbiology laboratory for rapid and reliable identification of non-*Candida* yeasts. Although
265 the updated commercial library provided correct species-level identification for a high number of *C.*
266 *deneoformans* and *C. neoformans* isolates (43.2%), the identification of these species was missing
267 or not reliable in 20.5% 18.2% of the cases, respectively. Moreover, the detection of the interspecies
268 hybrids is not possible with the Biotype database. However, the expanded in-house library allowed
269 correct species-level identification for all *C. deneoformans* and *C. neoformans*, either by
270 conventional identification with MALDI-TOF MS or by peak analysis (Figure 3). The interspecies
271 hybrids required hierarchical clustering for their correct identification since their close relatedness
272 with the other species made it difficult for MALDI-TOF to differentiate them from the other two
273 species in a routine manner. This approach and the detection of species-specific peaks are
274 recommended for the reliable discrimination of the three analyzed species.

275

276 **Conflict of Interest Statement**

277 The authors report no conflicts of interest. The authors alone are responsible for the content
278 and the writing of the paper.

279

280 **Acknowledgements**

281 The authors want to thank Álvaro Gómez-González for his assistance with Bruker
282 Daltonics databases. This study has been supported by the Miguel Servet Program (ISCIII-MICINN
283 CP14/00220) and by the projects PI16/01012 (PE) and PI18/00997 (BRS) from the Health Research
284 Fund (FIS) of the Carlos III Health Institute (ISCIII), Madrid, Spain, partially financed by the by
285 the European Regional Development Fund (FEDER) ‘A way of making Europe.’ BRS
286 (CPII19/00002), PE (CPI15/00115) and JG (CPII15/00006) are recipients of a Miguel Servet
287 contract supported by the FIS program. The funders had no role in the study design, data collection
288 and analysis, decision to publish, or preparation of the manuscript.

289

290 **Figure Legends**

291 **Figure 1.** Workflow of the sample preparation method used in this study to obtain proteins from
292 *Cryptococcus* spp. isolates for their identification by MALDI-TOF MS.

293 **Figure 2.** Clustering of 65 *Cryptococcus* isolates included in this study. Five isolates could not be
294 recovered from culture for further analysis.

295 **Figure 3.** Classification of the three *Cryptococcus* species by SVM in the one-step approach, using
296 5 biomarker peaks.

297

298

299

300

301 **REFERENCES**

302 **1. Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A. et al.**

303 *Cryptococcus neoformans* and *Cryptococcus gattii*, the etiologic agents of cryptococcosis. Cold

304 Spring Harb Perspect Med. 2014;4:a019760.

305 **2. D'Souza CA, Kronstad JW, Taylor G, Warren R, Yuen M, Hu G. et al.** Genome variation in

306 *Cryptococcus gattii*, an emerging pathogen of immunocompetent hosts. mBio 2011;2:e00342–10.

307 **3. Trilles L, Meyer W, Wanke B, Guarro J, Lazéra M.** Correlation of antifungal susceptibility

308 and molecular type within the *Cryptococcus neoformans/C. gattii* species complex. Med Mycol.

309 2012;50:328-32.

310 **4. Chong HS, Dagg R, Malik R, Chen S, Carter D.** In vitro susceptibility of the yeast pathogen

311 *Cryptococcus* to fluconazole and other azoles varies with molecular genotype. J Clin Microbiol.

312 2010;48:4115-20.

313 **5. Kwon-Chung KJ, Bennett JE.** Epidemiologic differences between the two varieties of

314 *Cryptococcus neoformans*. Am J Epidemiol. 1984;120:123-30.

315 **6. Iqbal N, DeBess EE, Wohrle R, Sun B, Nett RJ, Ahlquist AM, et al.** Correlation of genotype

316 and in vitro susceptibilities of *Cryptococcus gattii* strains from the Pacific Northwest of the United

317 States. J. Clin. Microbiol. 2010;48:539–544.

318 **7. Perfect JR, Bicanic T.** Cryptococcosis diagnosis and treatment: What do we know now. Fungal

319 Genet Biol. 2015;78:49-54.

320 **8. Feng X, Yao Z, Ren D, Liao W.** Simultaneous identification of molecular and mating types

321 within the *Cryptococcus* species complex by PCR-RFLP analysis. J Med Microbiol. 2008;57:1481-

322 90.

323 **9. Pakshir K, Fakhim H, Vaezi A, Meis JF, Mahmoodi M, Zomorodian K, et al.** Molecular
324 epidemiology of environmental *Cryptococcus* species isolates based on amplified fragment length
325 polymorphism. *J Mycol Med.* 2018;28:599-605.

326 **10. Hanafy A, Kaocharoen S, Jover-Botella A, Katsu M, Iida S, Kogure T, Gono T, Mikami
327 Y, Meyer W.** Multilocus microsatellite typing for *Cryptococcus neoformans* var. *grubii*. *Med
328 Mycol.* 2008;46:685-96.

329 **11. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al.** Consensus
330 multi-locus sequence typing scheme for *Cryptococcus neoformans* and *Cryptococcus gattii*. *Med
331 Mycol.* 2009;47:561-70.

332 **12. Franzot SP, Salkin IF, Casadevall A.** *Cryptococcus neoformans* var. *grubii*: separate varietal
333 status for *Cryptococcus neoformans* serotype A isolates. *J. Clin. Microbiol.* 1999;37:838-840.

334 **13. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E.** Molecular typing of
335 IberoAmerican *Cryptococcus neoformans* isolates. *Emerg Infect Dis.* 2003;9:189-95.

336 **14. Hagen F, Hare Jensen R, Meis JF, Arendrup MC.** Molecular epidemiology and in vitro
337 antifungal susceptibility testing of 108 clinical *Cryptococcus neoformans* sensu lato and
338 *Cryptococcus gattii* sensu lato isolates from Denmark. *Mycoses.* 2016;59:576-84

339 **15. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al.** Recognition of
340 seven species in the *Cryptococcus gattii*/*Cryptococcus neoformans* species complex. *Fungal Genet
341 Biol.* 2015;78:16-48.

342 **16. De Carolis E, Vella A, Vaccaro L, Torelli R, Posteraro P, Ricciardi W, et al.** Development
343 and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight
344 mass spectrometry-based yeast identification using a fast protein extraction procedure. *J Clin
345 Microbiol.* 2014;52:1453-8.

346 **17. Jamal WY, Ahmad S, Khan ZU, Rotimi VO.** Comparative evaluation of two matrix-assisted
347 laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the
348 identification of clinically significant yeasts. *Int J Infect Dis.* 2014;26:167-70

349 **18. Fraser M, Brown Z, Houldsworth M, Borman AM, Johnson EM.** Rapid identification of
350 6328 isolates of pathogenic yeasts using MALDI-ToF MS and a simplified, rapid extraction
351 procedure that is compatible with the Bruker Biotyper platform and database. *Med Mycol.*
352 2016;54:80-8.

353 **19. Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, Ruggeri A, et al.** Direct maldi-tof
354 mass spectrometry assay of blood culture broths for rapid identification of *Candida* species causing
355 bloodstream infections: an observational study in two large microbiology laboratories. *J Clin*
356 *Microbiol.* 2012;50:176-9.

357 **20. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M.** Improved clinical
358 laboratory identification of human pathogenic yeasts by matrix assisted laser desorption ionization
359 time-of-flight mass spectrometry. *Clin Microbiol Infect* 2011;17:1359–1365.

360 **21. McTaggart LR, Richardson SE, Seah C, Hoang L, Fothergill A, Zhang SX.** Rapid
361 identification of *Cryptococcus neoformans* and *Cryptococcus gattii* by matrix-assisted laser
362 desorption ionization- time of flight mass spectrometry. *J. Clin. Microbiol.* 2011;49:3050 –3053.

363 **22. Firacative C, Trilles L, Meyer W.** MALDI-TOF MS Enables the Rapid Identification of the
364 Major Molecular Types within the *Cryptococcus neoformans/C. gattii* Species Complex. *PLoS One.*
365 2012;7:e37566.

366 **23. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR, Posteraro P, Sanguinetti M,**
367 **Tortorano AM.** Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based

368 method for discrimination between molecular types of *Cryptococcus neoformans* and *Cryptococcus*
369 *gattii*. *J Clin Microbiol.* 2012;50:2472-6.

370 **24. Guinea J, Hagen F, Peláez T, Boekhout T, Tahoune H, Torres-Narbona M. et al.**
371 Antifungal susceptibility, serotyping, and genotyping of clinical *Cryptococcus neoformans* isolates
372 collected during 18 years in a single institution in Madrid, Spain. *Med Mycol.* 2010;48:942-8.

373 **25. Zvezdanova ME, Escribano P, Ruiz A, Martínez-Jiménez MC, Peláez T, Collazos A, et al.**
374 Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a
375 simplified sample processing and an in-house library. *Med Mycol.* 2018. doi:
376 10.1093/mmy/myx154.

377 **26. Siqueira LPM, Gimenes VMF, de Freitas RS, Melhem MSC, Bonfietti LX, da Silva AR Jr,**
378 *et al.* Evaluation of Vitek MS for Differentiation of *Cryptococcus neoformans* and *Cryptococcus*
379 *gattii* Genotypes. *J Clin Microbiol.* 2019;57(1). pii: e01282-18.

380

Table 1. Identification of *Cryptococcus neoformans*, *C. deneoformans* and interspecies hybrids using MALDI-TOF MS and the Biotyper library alone or in combination with the in-house HGM database. ¹Identified as *C. neoformans* complex (n=2); ²Identified as *C. neoformans* complex (n=7); ³Identified as *C. neoformans* complex (n=1), *C. deneoformans* (n=4) and *C. neoformans* (n=3); ⁴Identified as *C. neoformans* complex (n=1) and *C. deneoformans* (n=3); ⁵Identified as *C. neoformans* (n=7)

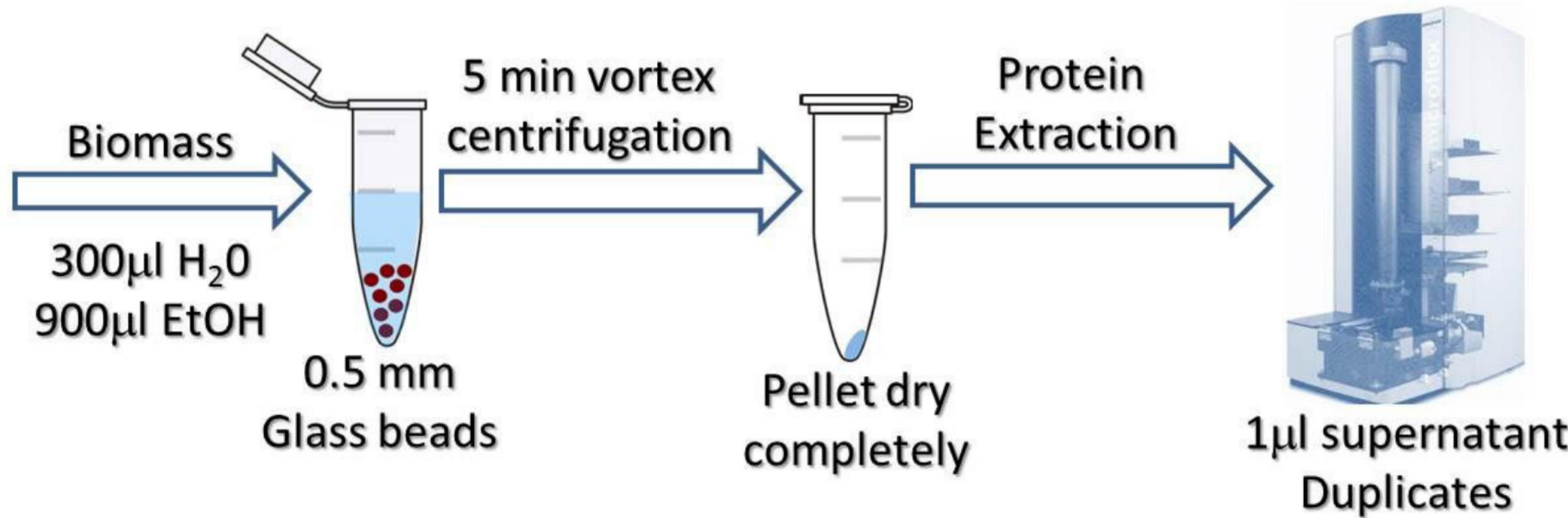

IDENTIFICATION BY DNA SEQUENCING	Isolates analyzed	<i>Cryptococcus spp. ISOLATES IDENTIFIED BY BIOTYPER WITH 8223 MSPs (%)</i>				<i>Cryptococcus spp. ISOLATES IDENTIFIED BY BIOTYPER 8223 MSPs + HGM LIBRARY (%)</i>		
		Score ≥ 2.0	Score ≥ 1.7	Score ≥ 1.6	Score < 1.6	Score ≥ 2.0	Score ≥ 1.7	Score ≥ 1.6
<i>Cryptococcus neoformans</i>	22	2	13	3	4	18	4	0
<i>Cryptococcus deneoformans</i>	3	0	2 ¹	1	0	3	0	0
Interspecies hybrids	19	7 ²	8 ³	0	4 ⁴	7	12 ⁵	0
TOTAL	44	9	23	4	8	28	16	0

Table 2. List of the 10 representative mass peaks of *Cryptococcus* spp. Identified as potential biomarkers. These peaks were used for the construction of dendrograms and PLS-DA and SVM models. The 5 peaks marked with asterisks (*) were selected for the simplified models. CV= Coefficient of Variation.

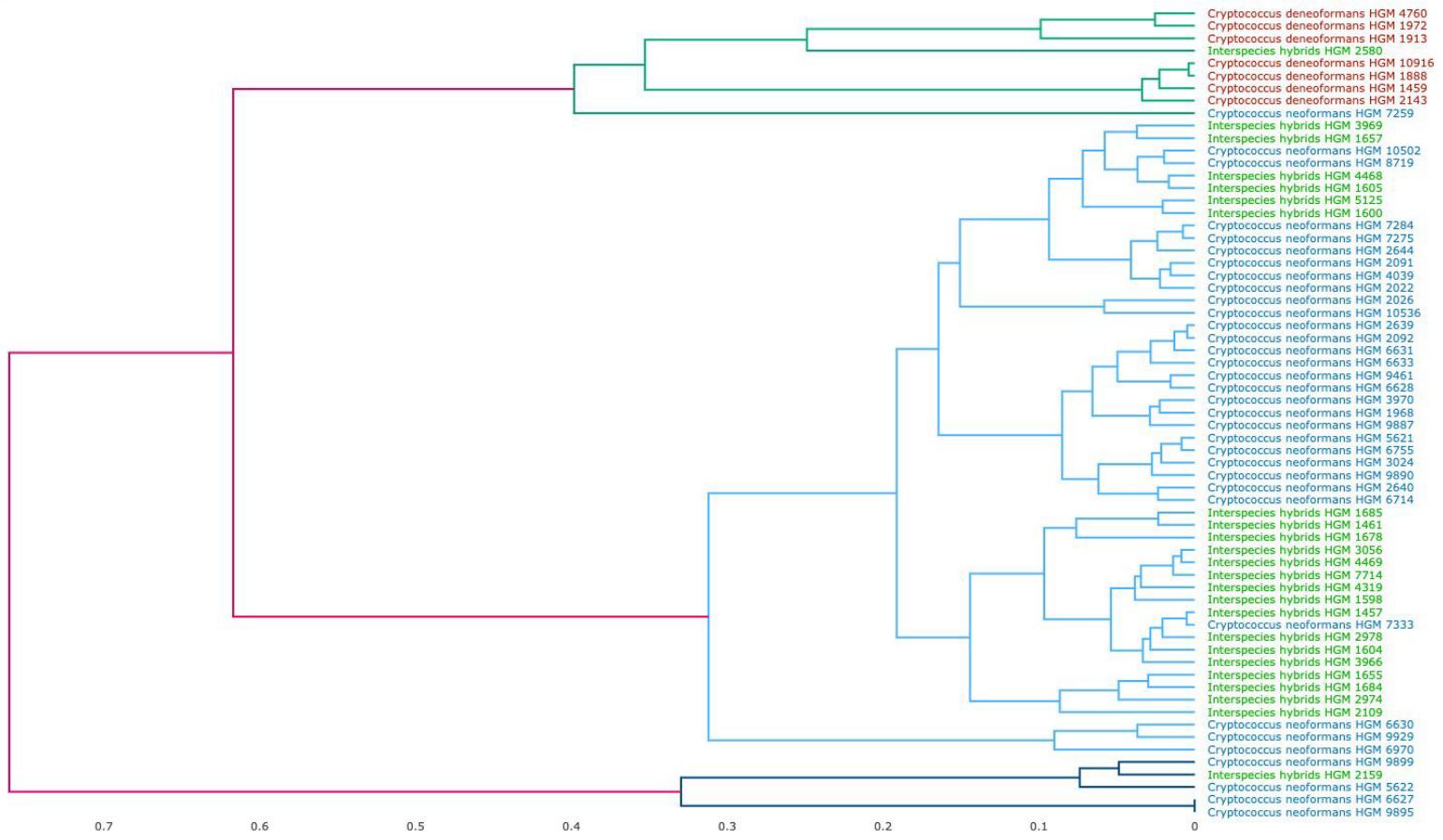
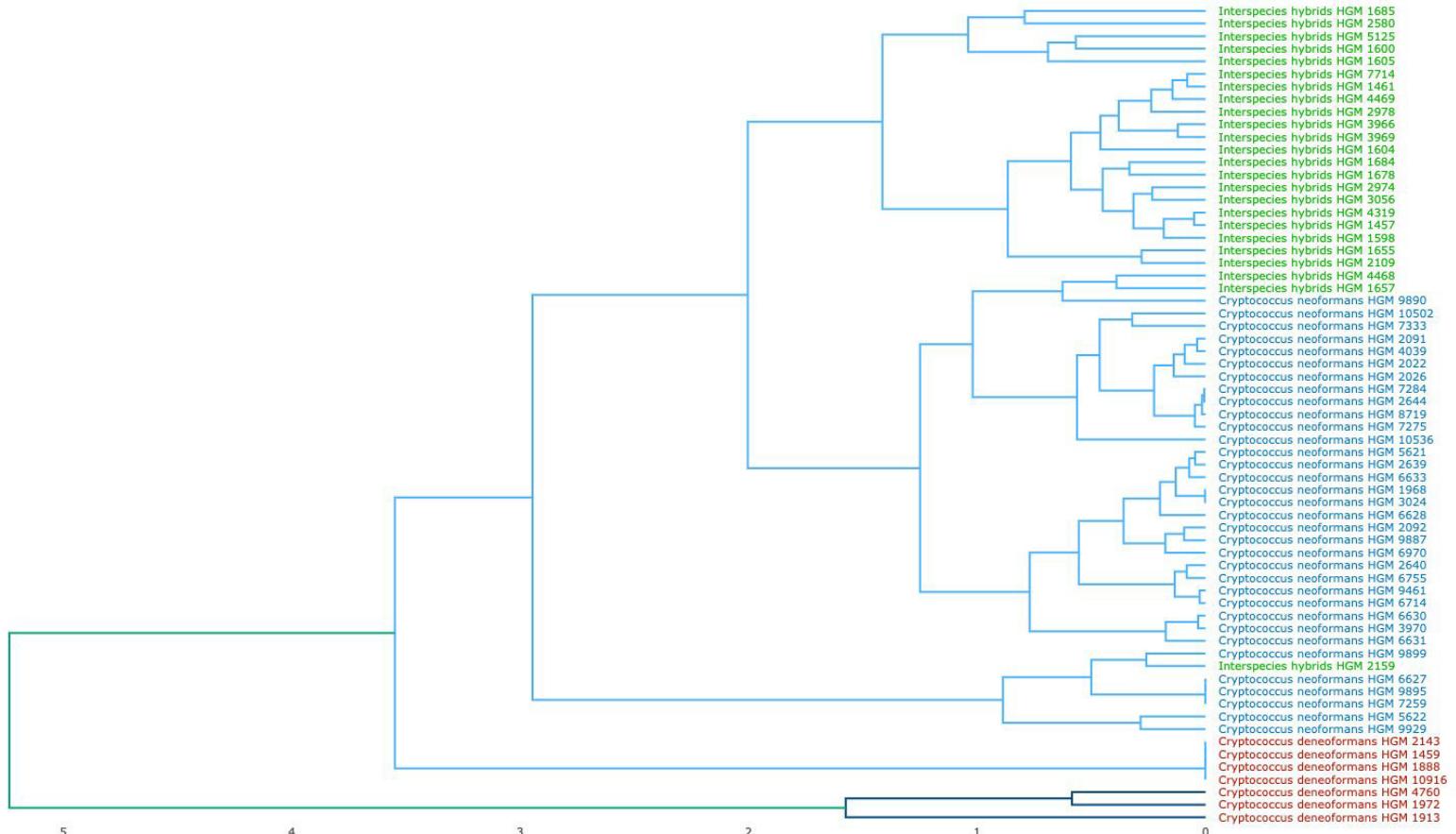
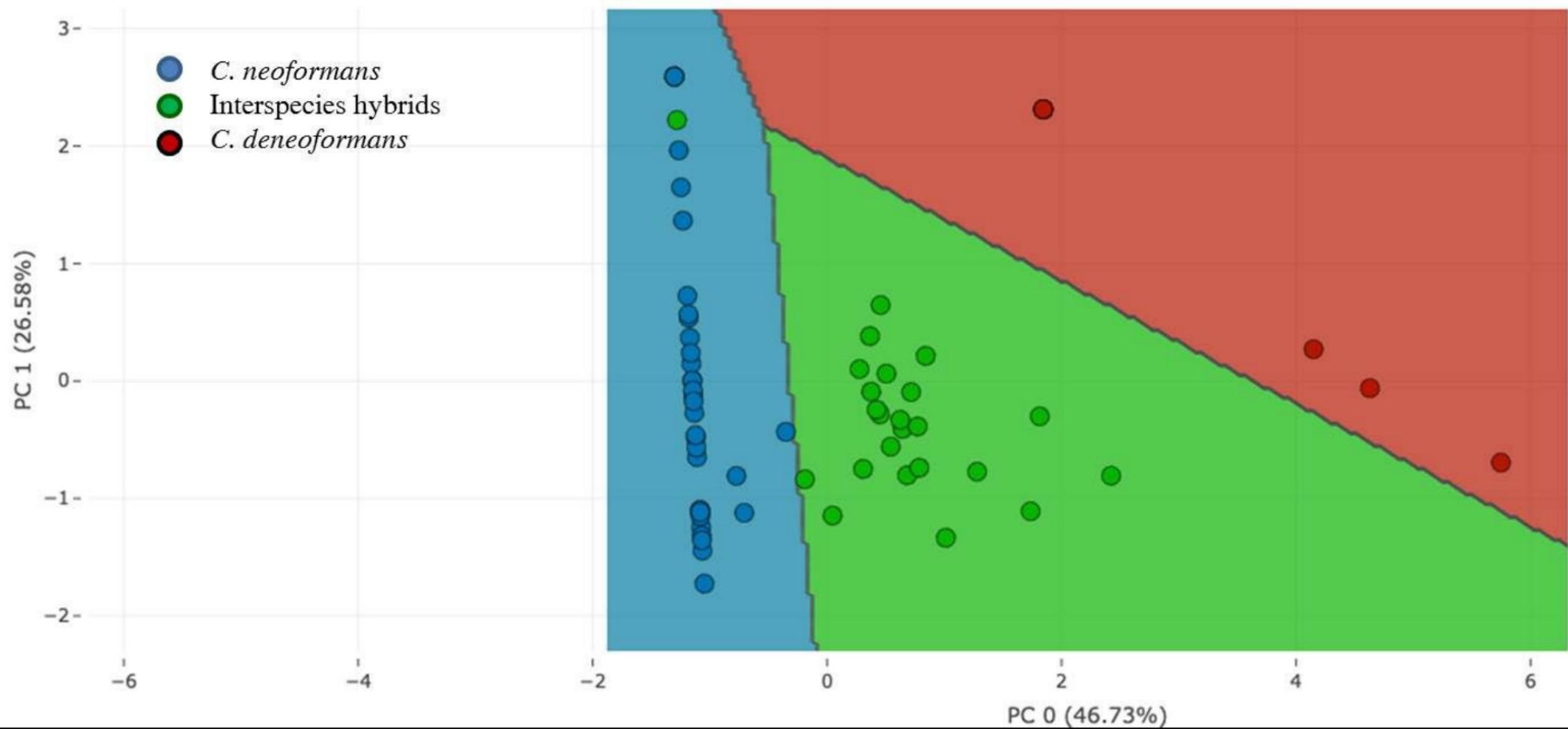

Mass (m/z)								<i>C. deneoformans</i> (mean)		
								<i>C. deneoformans</i> (CV)		
2488.07	54	30/34	88.749 %	4.401.767	24/24	69.617 %	2.811.789	0/7	-	-
2842.14	53	29/34	78.206 %	2.202.128	24/24	79.602 %	2.235.196	0/7	-	-
*3084.11	55	31/34	98.458 %	7800.06	24/24	89.283 %	5.969.393	0/7	-	-
*5453.91	27	1/34	0.0 %	72.906	23/24	65.081 %	731.902	3/7	12.654 %	748.872
*5552.90	27	1/34	0.0 %	558.307	23/24	73.624 %	1.418.905	3/7	47.3 %	2.763.278
6576.08	23	0/34	-	-	16/24	63.172 %	457.978	7/7	56.698 %	685.58
*6688.67	57	34/34	95.69 %	4.420.907	23/24	88.388 %	3.556.217	0/7	-	-
*7103.01	31	1/34	0.0 %	24.32	23/24	122.759 %	1.484.767	7/7	52.14 %	4.155.275
7830.42	18	0/34	-	-	11/24	46.494 %	719.13	7/7	39.831 %	449.704
8636.24	43	19/34	101.061 %	2.887.856	24/24	87.315 %	1.832.722	0/7	-	-

Table 3. Differentiation of the analyzed *Cryptococcus* species based on the absence/presence of biomarker peaks. Figures indicate the percentage (%) of isolates showing the indicated peak.

	m/z	2842.14	3084.11	6576.08	6688.67	7103.01	8636.24
<i>C. deneoformans</i>		0	0	100	0	100	0
<i>C. neoformans</i>		85.3	91.2	0	100	0	55.9
<i>Interspecies hybrids</i>		100	100	66.7	95.8	4.3	100



A



B

5 Biomarkers Peak Matrix - PCA applied. Distance: Euclidean. Metric: Average

SVM - 5 Biomarkers Peak Matrix - PCA

