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Abstract

Identifying  single  organisms in  environmental  samples  is  one of  the key  tasks of  metagenomics.

During the last  few years,  third generation sequencing technologies have enabled researchers to

sequence much longer molecules, but at the expense of sequencing accuracy. Thus, new algorithms

needed to be developed to cope with this new type of data. With this in mind, we developed a tool

called MetaG. An intuitive web interface makes the software accessible to a vast  range of  users,

including those without extensive bioinformatic expertise. Evaluation of MetaG’s performance showed

that  it  makes nearly  perfect  classifications of  viral  isolates using simulated short  and long reads.

MetaG also outperformed current state-of-the-art algorithms on data from targeted sequencing of the

16S and 28S rRNA genes. Since MetaG’s output is also supplemented with information about hosts

and antibiotic resistances of pathogens, we expect it to be especially useful to the healthcare sector.

Moreover,  the  outstanding  accuracy  of  the  taxonomic  assignments  will  make  MetaG  a  serious

alternative  for  anyone  working  with  metagenomic  sequences.  MetaG  can  be  accessed  at

http://bioinformatics.uni-muenster.de/tools/metag/.
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Microorganisms are ubiquitous: archeae and bacteria make up almost 14% of all  biomass on this

planet (humans: ca. 0.01%) as measured by mass of carbon (Bar-On et al. 2018). Consequentially,

they are frequently used as markers in ecological studies to assess the status of habitats, e.g. (Bruni

et al. 1997; Smith et al. 2015), or for bioremediation (Lovley 2003; Gihring et al. 2011). Additionally, the

industry strives for discovering novel enzymes by metagenomics (Maurer 2004) and consequently 332

relevant enzymes were discovered between 2014 and 2017 (Berini et al. 2017). Microorganisms also

impose  a  significant  threat  to  human  health  (https://www.who.int/healthinfo/global_burden_disease

/GHE_DthWBInc_Proj_2016-2060.xlsx?ua=1)  and  metagenomics  is  becoming  increasingly  popular

among medical practitioners  (Forbes et al. 2018). In the healthcare sector, metagenomics improves

the diagnoses of patients with ambiguous symptoms (Wilson et al. 2014). Furthermore, it is critical for

antibiotic resistance studies (Crofts et al. 2017).

To  fuel  discovery  in  healthcare,  ecology  and  economy,  downstream  analyses  need  to  be

liberated. While sequencing technology is taking the first steps in this direction (see speed, price and

portability  of  Nanopore  devices  (Loose  2017)),  bioinformatics  analyses  are  lagging  behind:

Metagenomic  programs often suffer  from excessive  hardware requirements,  e.g.  using the native

database  of  Kraken  requires  70 GB  of  RAM  (Wood  and  Salzberg  2014),  and  limited  access.

Additionally,  the  command  line  approach  is  a  massive  obstacle  to  less  computer  literate  users.

Established metagenomics programs often fail to handle the distinct sequencing error profiles of both

short and long-read technologies (Santos et al. 2020). Although specific pipelines for Nanopore data

already exist, they are mostly focused on specific usage cases (Santos et al. 2020).

MetaG  was  developed  with  these  challenges  in  mind.  An  intuitive  web  interface  allows

researchers from different fields to run their analyses. The only requirement is an internet connection.

However,  for  users  working  in  more  remote  areas,  we  provide  a  local  version  of  the  software.

Advanced users can customize their local runs to improve speed and/or accuracy to their needs. The
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source code of the core algorithm is publicly available at https://github.com/IOB-Muenster/MetaG/tree/

master/metag_src to allow constant improvement by the community.

We compared MetaG to several state-of-the-art  competitors using long and short  reads of

bacteria,  archaea and fungi.  In most  cases,  MetaG provided significantly  improved classifications,

especially  at  the  species  and  strain  levels.  Additionally,  short  and  long  reads  from three  human

pathogenic viral isolates were nearly perfectly classified. For each read type and database standard

parameters are available.
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Figure 1: The core algorithm of MetaG exemplified by an analysis starting from fasta reads. Reads are first aligned to one

(grey) of three available databases. The alignments are then filtered by an e-value cutoff (ec) and an alignment score cutoff

(ac). Reads passing this filter are assigned with a taxonomic label and are subsequently filtered by a confidence cutoff (cc).

Reads failing at any filter stage or failing the alignment itself  are written to separate files for optional reanalysis. Taxon

abundances of passing reads are presented as a table and as an interactive graph. Pathogen predictions and metadata are

also shown as graphs. Raw data for plots and tables, the plots themselves and the taxonomic assignments on a per-read-

basis are provided as raw data. This diagram was created with the online version of draw.io (https://www.draw.io/).
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Results

The core algorithm

MetaG uses LAST (Kiełbasa et al. 2011) to compare the user’s query reads to a database. Optionally,

ambiguous  alignments  are  filtered  using  LAST-SPLIT  (Frith  and  Kawaguchi  2015).  However,  the

analysis  may  also  start  from  precomputed  alignments  given  in  MAF  format

(https://genome.ucsc.edu/FAQ/FAQformat.html#format5).  At  the  time  of  writing,  the  employed

databases are a customized version of RDP release 11.5 (Cole et al. 2014), a modified MTX database

derived from the software METAXA 2.2  (Bengtsson et  al.  2011) and the virus metadata resource

(VMR)  (https://ictv.global/vmr/)  release  MSL34  (version  November  27)  from  the  ICTV  database

(Walker et al. 2019) (see Supplemental Materials). These databases allow for analyses of bacterial,

archaeal,  fungal  and viral  samples.  To assign the correct  taxonomy to the reads,  alignments are

filtered based on user-given settings (see Figure 1). After removing alignments with too high e-values,

the alignment scores per query read are analyzed (see Figure 1). Based on a relative threshold, only

the alignments with an alignment score of at least T * maximum score, where T is a user-given fraction

of one, are considered for downstream analysis.

MetaG then assigns a taxonomic label to each read, starting at the broadest taxonomic level

(see Figure 1). For this, the taxon given by most hits is used. The analysis progresses until multiple

taxa are backed up by the same number of database hits of equal quality or a confidence threshold is

violated (see Figure 1).  The confidence threshold provides a measure of statistical support for the

most abundant taxon that also reflects the quality of the underlying alignments (see Supplemental

Materials). Reads failing to meet the assignment criteria are assigned to the unmatched class (see

Figure 1).

MetaG provides information about taxonomic assignment at the level of individual reads and of

the whole sample (see Figure 1). The numbers of input reads, matched reads and unassigned reads
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are supplemented with information about the run time and parameters. Users can access the number

of reads assigned to an individual taxon and its average confidence value (see Figure 1). Unmatched

read sequences at each taxonomic rank are written to separate files for further analysis. Reads that

were filtered by the alignment process or e-value cutoff are written to a separate file (see Figure 1).

This allows for reanalysis of these reads using a different database or different settings.

Found taxa and predicted pathogens are visualized in interactive graphs using  KronaTools

(Ondov et al. 2011) (see Figure 1). Where applicable, predicted pathogens are supplemented with

host predictions and antibiotic resistance predictions. Bacterial and archaeal predictions are made at

the species level, due to improved naming consistency across databases (data not shown). MetaG

uses PATRIC  (Wattam et  al.  2017) to search for  data on bacterial  and archaeal pathogens.  Viral

pathogen data is derived from the same database as the taxonomy. Thus, predictions can be made at

isolate level.

MetaG can be accessed via a web interface or installed locally.  The latter  version targets

experienced  users  or  those  who  want  to  perform  analyses  in  remote  areas  without  an  internet

connection.  However,  an  installation  script  helps  users  to  setup  our  program  and  most  of  its

dependencies. The software was tested on Ubuntu 18.04.3 LTS, macOS 10.15.3 and FreeBSD 12.1. It

depends on LAST 963, Perl v5.26.1 and KronaTools 2.7 or later versions. Users who are unfamiliar

with  a  command line  interface are  encouraged  to  use the online  version.  Since  calculations  are

performed on our servers, an internet connection is the only requirement. Due to its target audience,

both versions of MetaG are supplemented with concise tutorials and standard parameters, which were

specifically trained for short and long-read sequencing technologies. Reads can be supplied in fasta or

fastq format.
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Benchmarking

After  designing  the  algorithm  we  were  curious  to  see  how  MetaG  would  perform  on  realistic

sequencing data generated from representative approaches in metagenomics. For this, whole genome

analyses of viruses and metaprofiling of 16S and 28S rRNA gene sequences were performed. Since

the transition of short  to long read sequencing data is one of the major challenges in the field of

bioinformatics, both experiments used each of the two sequencing data types. Using metaprofiling

data, we also wanted to assess MetaG’s performance in comparison to the current gold standard

algorithms in the field.

Whole genome analyses of viruses

We simulated MiSeqV3 sequencing of three pathogenic viral isolates at equal frequencies, including

the generation of artifact reads. Using these data, MetaG made perfect classifications down to the

isolate level. All reads which had been simulated as artifacts were not assigned (see Table 1). The

found abundances of each virus were equal to the expected ones (see Table 1) and no additional

isolates had been identified (data not shown).

Table 1: Percentage of reads assigned to an individual virus relative to the expectation in samples sequenced by the Illumina

MiSeqV3 (in silico) and the MinION (in vitro). The UNMATCHED class represents reads which should not be assigned to any

viral isolate.

Taxon MiSeqV3 Nanopore

Dengue virus 45AZ5 100 % 101 %

Dengue virus 16681 100 % 99 %

Yellow fever virus 17D 100 % 99 %

UNMATCHED 100 % 117 %

Subsequently, we used genuine Nanopore data of the same isolates created by participants of

the 2019 GRAID workshop in Sapporo, Japan (http://bioinformatics.uni-muenster.de/graid/education/

workshops/hokkaido-2019-07/). Due to the nature of these data, the abundance of artifact reads was

8

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.991190doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.991190
http://creativecommons.org/licenses/by/4.0/


not available. We approximated the abundance of artifacts as the number of reads failing the initial

LAST alignment.  From the aligned reads, one-third was expected to come from each isolate (see

Methods  section).  The  observed  abundance  of  the  expected  viruses  deviated  slightly  from  our

expectations  (see  Table  1).  This  is  partially  due  to  the  removal  of  reads  during  post-alignment

processing in MetaG (see also Table 1). We also found 44 unexpected isolates, accounting for a total

of 179 reads (data not shown).

Simulated marker gene analyses

We were  interested in  how MetaG would  perform in  comparison  to  other  established  classifiers.

Where possible,  we wanted to analyze the differences between the RDP and MTX database for

different algorithms (see Methods section). In a recent study of 16S rRNA data, Parallel-META v2.4.1

and QIIME v1.9.1 outperformed their competitors at the genus level (Escobar-Zepeda et al. 2018). For

this  reason,  we chose to  compare the  performance  of  MetaG to  these two  programs.  The  RDP

Classifier  (Wang et al. 2007) is a lightweight program that can also be used online with pre-trained

parameters. As we expected it to be optimized for the RDP database, we used it for our comparison.

We employed the latest versions of the programs at the time of our analysis. QIIME 2 was run using

its BLAST and Classifier workflow, respectively (see Methods section).

Matthew’s Correlation Coefficient (MCC) (Matthews 1975) (see Methods section) was used as

an overall measure of the performance of MetaG and its competitors on MiSeq and Nanopore data. To

use this measure, the exact origin of each read needed to be known (see Methods section). Thus, we

simulated  MiSeq  and  Nanopore  sequencing  of  27  reference  16S  rRNA and  28S  rRNA gene

sequences from bacteria, archaea and fungi.
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For the most part, the MCC was highest at the most general ranks and then decreased. After

an increase, it  reached a local maximum at the family or genus level, before dropping again (see

Figures 2 and 3). From here on, this pattern will be called a wave-like pattern.

Figure 2: MCC from domain to species for classifiers using their chosen settings to analyze a sample containing bacteria,

archaea and fungi. The sample was subject to simulated MiSeq sequencing. 16S is the 16S rRNA training set 16 of the RDP

Classifier. The MCC for the RDP Classifier with the 16S database supplemented with LSU11 and WARCUP2, was undefined

at species level. An MCC of one indicates perfect classifications. The MCC is minus one in case all taxonomic assignments

were wrong.

Using MiSeq data,  the QIIME 2 Classifier and the RDP Classifier performed worst for most

ranks up to the family level (see Figure 2). We could observe the same, but more pronounced, trend

for Nanopore data. In this case, the performance was lowest up to the genus level (see Figure 3).

Mostly, MetaG and QIIME 2 BLAST had the highest MCC up to the family level when using MiSeq

reads. However, at the lower ranks, MetaG MTX was the most accurate program (see Figure 2). The

results for our algorithm were even more promising for Nanopore data. This time, MetaG was always

the best algorithm, as rated by MCC (see Figure 3). Using MTX, our program had the only positive

MCC at species level, regardless of sequencing technology (see Figures 2 and 3). QIIME 2 BLAST
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MTX and the QIIME 2 Classifier performed substantially better using MiSeq data than Nanopore data

(see Figures 2 and 3).

Figure 3: MCC from domain to species for classifiers using their chosen settings to analyze a sample containing bacteria,

archaea and fungi. The sample was subject to simulated nanopore sequencing. 16S is the 16S rRNA training set 16 of the

RDP Classifier. The MCC for the RDP Classifier with the 16S and LSU11 database was undefined at species level. An MCC

of one indicates perfect classifications. The MCC is minus one in case all taxonomic assignments were wrong.

Naturally, the performance of algorithms was dependent on the database. This can be seen

from the results of MetaG and QIIME 2 BLAST for which both RDP and MTX could be tested. When

using MTX,  algorithms generally  performed better  than when using RDP (see Figures  2  and 3).

However, at family and genus level, this was inverse for QIIME 2 BLAST (see Figures 2 and 3). While

these trends held true for both samples, we observed that RDP was slightly more beneficial than MTX

for MetaG at the family level of Nanopore data.

Analysis of a MinION mock sample

After the promising results from the previous analyses, we reanalyzed genuine Nanopore sequences

from a bacterial community with a known abundance distribution. The data generated by Cuscó and
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coworkers had been previously analyzed by the authors using the Nanopore specific What’s in my Pot

(WIMP) workflow (Cuscó et al. 2018; Juul et al. 2015).

We compared the expected bacterial abundances to the results by WIMP, MetaG and Parallel-

META 3. The WIMP workflow underestimated the abundance of all expected taxa and overestimated

the  abundance  of  other  taxa  to  a  great  extent  (see  Figure  4).  Parallel-META 3  using  its  native

database performed even worse, except in the case of Staphylococcus aureus (see Figure 4). Due to

its performance on the simulated Nanopore data, MetaG was run using the MTX database. Notably,

this  workflow  was  always  closest  to  the  expected  abundance  of  taxa  with  the  exception  of

Lactobacillus  fermentum  and Enterococcus  faecalis where  the  WIMP workflow  was  closest  (see

Figure 4).
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Figure 4:  Bacterial  classifications in  the  ZymoBIOMICS Microbial  Community  DNA Standard  D6306 sequenced by the

MinION.   Relative abundances given by MetaG MTX, Parallel-META 3 and the WIMP workflow of Cuscó and coworkers

(Cuscó  et  al.  2018) are  compared  to  the  expected  classifications  for  the  mock  sample

(https://files.zymoresearch.com/protocols/_d6305_d6306_zymobiomics_microbial_community_dna_standard.pdf).  The

OTHER class sums up all taxa which were not expected.

Discussion

When starting the development of MetaG, we recognized that especially usability and portability of

algorithms in  the  field  were  in  need  of  improvement.  Accordingly,  we  set  the  following  goals  for

ourselves. Firstly, in order to fuel biological discoveries, we aimed to create a software which is open

to as many researchers as possible. Secondly, by allowing free online analysis on our servers, we

enable  researchers  with  tight  budgets  or  older  hardware  and  bioinformatic  novices  to  run  their

analyses. Researchers who are familiar with command line, use state-of-the-art hardware or who are

working in more remote areas without an internet connection are encouraged to try the local version of

MetaG. An installation script makes the setup as simple as the installation of any regular software.
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While the online version is virtually independent of the operating system, for the local version, we took

great care to support most of the operating systems used in bioinformatics. The installer was tested on

macOS 10.15.3, Ubuntu  18.04.3 LTS and  FreeBSD 12.1. Running the local version also allows for

speeding up the process by assigning more computational resources. Additionally, our program allows

for a high level of customization. Unlike Parallel-META 3 (see  Methods section),  MetaG allows for

analysis  using  any  correctly  formatted  database.  Parameters  for  custom  databases  or  future

sequencing technologies can be obtained by using our training routine (see Methods section). Users

are encouraged to improve the algorithm or even run their own publicly available MetaG server.

We aimed to create a software that is both easy to use and shows high performance. By using

simulations and real  sequencing data,  we have shown that  MetaG is  capable of  performing very

precise assignments. Whole genome sequencing of three human pathogenic viruses showed perfect

classifications  for  MiSeq  data  and  near-perfect  classifications  for  MinION  data  (see  Table  1).

Comparing species identifications of in vitro 16S rRNA gene reads, we demonstrated that MetaG was

overall ahead of the competition by predicting the most realistic species abundances (see Figure 4).

Strikingly, the study, which produced the in vitro reads (Cuscó et al. 2018), used the WIMP workflow

which was published specifically for the MinION (Juul et al. 2015). Thus, MetaG is powerful enough to

beat algorithms at their own game.

When analyzing bacteria,  archaea and fungi,  the same trend was apparent  and especially

pronounced at the lower ranks: MetaG using MTX was the only software with a positive MCC at the

species level  (see Figures 2 and 3).  Since the pathogenicity of  Escherichia coli  varies within the

species (Johnson 2002), precise identifications at the strain level are desirable for most applications of

metagenomics.
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In most cases, the alignment-based algorithms, MetaG and QIIME2 BLAST, displayed a better

performance than the kmer-based approaches, namely the QIIME2 and RDP classifiers (see Figures

2 and 3). This is in line with previously identified problems with the kmer-based approaches (Gao et al.

2017). Additionally, the used databases also influenced the outcomes. In most cases, using MTX was

preferable over RDP (see Figures 2 and 3). This is likely due to the high level of manual curation of

MTX (Bengtsson-Palme et al. 2015).

Sequencing technology was also a major factor  impacting the algorithm performance.  The

QIIME2 Classifier and QIIME2 BLAST MTX, for example, performed better when using MiSeq data

(see Figures 2 and 3). This indicates that some algorithms could not handle the trade-off between

error rate and read length. MetaG’s results were consistently showing high performance (see Figures

2 and 3). This can be attributed to the training of parameters for each sequencing technology and

database (see Methods section).

The observed wave-like MCC pattern was likely due to naming inconsistencies between the

reference taxonomy from NCBI and the taxonomies in MetaG’s different reference databases. In an

earlier  study,  the  authors  only  focused  on phylum and  genus  identifications  to  avoid  this  artifact

(Lindgreen  et  al.  2016).  The  differences  between  the  algorithms  cannot  be  explained  by  these

inconsistencies. The general drop in MCC towards the species level was real and related to missing

resolutions of the marker genes (Knight et al. 2018). This can also be seen from our whole-genome

analyses of viruses; they have shown that the vast majority of reads were assigned to the correct

isolate (see Table 1). In contrast, the species identifications for metaprofiling of bacteria, archaea and

fungi were less definitive (see Figures 2 and 3). However, due to speed and ease of use, metaprofiling

is still popular (Knight et al. 2018).
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In order to make high performance available to the community, software development must not

stop  at  creating  a  precise  algorithm.  Rather,  the  user  must  also  be  able  to  use  the  software

accordingly.  We supplemented MetaG with a concise manual and strong standard settings for short

and long reads and the three different databases. As our analyses have shown, these are usually

sufficient to allow users to get to the full potential of MetaG, regardless of the sequencing approach.

However, the standard settings also provide an excellent starting point to adjust the parameters to the

individual experiment.

In summary, we have reached our goal of designing a portable, easy to use software with

outstanding performance. In the light of our results, MetaG will  improve analysis in areas such as

medical metagenomics and ecologically and economically motivated metagenomics. By identifying or

predicting pathogens and antibiotic resistances, MetaG provides essential features, especially for the

healthcare sector. By design, our software supports adaptations to other current or future databases

and sequencing technologies. Thus, we invite everyone to use MetaG for their individual projects and

to help improve the software by giving feedback or modifying the source code.

Methods

Obtaining standard parameters

To achieve the best performance, the parameters of MetaG were trained. To accomplish this, a short-

and a long-read sample were analyzed using a single database at a time. By using LAST-TRAIN

(Hamada et al. 2017), we obtained the optimal alignment parameters for LAST. The optimal values for

LAST-SPLIT filtering, e-value, alignment score and confidence cutoff were determined manually with

the  help  of  custom  semi-automatic  training  scripts  (see  Supplemental  Materials).  The  standard
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parameters  are  accessible  from  https://github.com/IOB-Muenster/MetaG/tree/master/metag_src/

install/files as config files for MetaG.

Whole genome analyses of viruses

In July 2019, participants of the GRAID workshop in Sapporo, Japan sequenced Yellow fever virus

17D and Dengue virus type 1 and 2 using the MinION flowcell  FLO-MIN107 (R9.5).  Each of  the

viruses was exclusive to four of twelve barcoded samples. We took 4,000 debarcoded  pass reads

from each sample. The portions were pooled and analyzed in MetaG. We inspected the numbers of

reads matching to the expected taxa and to the unmatched class. Due to the nature of the sample, we

had to approximate the expected number of unmatched reads (775 or about 2 percent of the reads) as

the observed abundance of reads without any alignment.

To  get  realistic  short  reads,  we  simulated  MiSeqV3  sequencing  using  ART version  2.5.8

(Huang et al.  2012). Three isolate sequences were obtained from GenBank  (Benson et al.  2018):

Yellow fever  virus 17D (FJ654700.1),  Dengue viruses type 1 (M87512.1)  and type 2 (M29095.1).

Three different samples were created for each of the viral isolates. Each sample contained 16,000

reads with a length of 250 bases. The following command was executed: art_illumina -nf 0 -ss MSv3

-amp -na -q -i [sample.fasta] -l 250 -f 16000 -o [out.fastq]. The individual fastq files were transformed

to fasta and the first 960 reads of each sample were shuffled using a customized script (initial source:

https://github.com/Ales-ibt/Metagenomic-benchmark/blob/master/bin/16SrRNAamplicon/shuffled_

fasta.pl) to simulate sequencing artifacts. Next, the three samples were pooled. The number of reads

in the pooled in vitro MinION and in silico MiSeq samples was 48,000, each. Analyses were performed

using MetaG. The abundances for the three viral isolates and the unmatched, i.e. shuffled, reads were

compared to what was expected. ICTV VMR release MSL34 (version November 27) lists  Dengue

virus 45AZ5 and 16681 as virus isolate designations of the commonly used virus names Dengue virus
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type 1 and 2, respectively. We acknowledged this by setting the expected virus names to the viral

isolate designations given by ICTV.

Simulated sequencing of marker genes

We obtained 27 reference 16S or 28S rRNA gene sequences from bacteria, archaea and fungi from

the NCBI Nucleotide database  (Sayers et al. 2019) (see Table 2). The sequences showed different

degrees of  relatedness.  Three of  the sequences belonged to fungi  or  archaea,  respectively.  One

sequence stemmed from the bacterium  Xylanibacillus composti K13, which had only recently been

described as genus novum and species novum (Kukolya et al. 2018).

Table 2: Accession and version of the sequences retrieved from the NCBI Nucleotide database.

Sequence name Accession.version

Acaryochloris marina strain MBIC11017 NR_074407.1

Anaerolinea thermophila strain UNI-1 NR_074383.1

Aspergillus oryzae RIB40 XR_002735721.1

Bacillus subtilis subsp. subtilis strain 168 NR_102783.2

Bacillus velezensis strain FZB42 NR_075005.2

Brevibacillus agri strain DSM 6348 NR_040983.1

Brevibacillus nitrificans strain DA2 NR_112926.1

Corynebacterium glutamicum strain ATCC 13032 NR_041817.1

Cryptococcus neoformans strain CN7 MF580733.1

Escherichia coli J01859.1

Escherichia fergusonii strain ATCC 35469 NR_074902.1

Geobacillus kaustophilus strain BGSC 90A1 NR_115285.2

Geobacillus thermoleovorans strain BGSC 96A1 NR_115286.2

Kingella denitrificans L06166.1

Kingella kingae strain ATCC 23330 NR_042976.1

Methanoregula formicica strain SMSP NR_102441.1

Neisseria gonorrhoeae strain NCTC 8375 NR_026079.2

Neisseria meningitidis strain M1027 NR_104946.1

Paenibacillus dendritiformis strain T168 NR_042861.1
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Sequence name Accession.version

Paenibacillus polymyxa strain DSM 36 NR_117729.2

Penicillium expansum AF003359.1

Porphyromonas gingivalis strain JCM 12257 NR_113086.1

Pyrobaculum aerophilum strain IM2 NR_102764.2

Salmonella bongori strain NCTC 12419 NR_074888.1

Salmonella enterica subsp. enterica strain LT2 NR_074910.1

Thermoproteus tenax strain Kra 1 NR_044683.1

Xylanibacillus composti strain K13 NR_159902.1

Subsequently,  we  simulated  400  MiSeq  reads  per  sequence  as  described  for  the  viral

sequences.  The  fastq  files  were  transformed  to  fasta  and  the  first  24  reads  of  each  reference

sequence were shuffled to simulate sequencing artifacts (see previous section). All reads were pooled

and used for subsequent analysis.

We simulated the results of 2D MinION sequencing with a flowcell  version of R9 by using

NanoSim-H version 1.1.0.4 (Yang et al. 2017; Břinda and Yang). According to the shortest sequence

obtained from NCBI, the maximum read length was set to 1,415 bases. Again, 400 reads for each

sequence were produced by executing the following command: nanosim-h -p 'ecoli_R9_2D' -n 400

--circular --max-len 1415. Nanosim-H automatically created 24 unalignable reads for each sequence.

This corresponds to the custom shuffling approach when using ART. The resulting fasta files were

pooled to a single sample. The reads were then analyzed using several programs (see next section).

To  evaluate  the  results,  the  classifications  of  the  individual  reads  were  compared  to  the

expectation derived from the NCBI Taxonomy database (Sayers et al. 2019). During our preliminary

analysis, we noted that strain assignments to metaprofiling data were somewhat arbitrary. This was in
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line with previous findings  (Knight et al. 2018). Accordingly, the lower limit for the evaluation of all

programs was the species level.

The classifications  were evaluated as  follows.  If  a  non-shuffled  read was assigned to  the

correct taxon, it  was a true positive (TP), otherwise it  was a false positive (FP). If  it  could not be

assigned, it  was a false negative (FN). A shuffled read that was assigned to a taxon was a false

positive  (FP),  otherwise it  was a  true negative  (TN).  Using the above classes we calculated the

Matthew’s  Correlation  Coefficient  (MCC)  for  all  analyses  as  an  overall  performance  indicator

(Matthews 1975).

MCC=
TP∗TN −FP∗FN

√(TP+FP)∗(TP+FN)∗(TN +FP)∗(TN +FN)

Plots  were  created using  R 3.4.4  (R Core Team 2018) and  the packages  tidyverse  1.2.1

(Wickham 2017) and reshape2 1.4.3 (Wickham 2007).

Performance evaluation of taxonomic assignments

We chose to compare MetaG to the topical versions of the RDP Classifier, Parallel-META and QIIME.

The latter two programs had previously shown excellent performance at genus level (Escobar-Zepeda

et al. 2018). At the time of the study, Parallel-META v2.4.1 could be run with several databases using a

patch (Escobar-Zepeda et al. 2018). However, this was not possible using Parallel-META 3 (Jing et al.

2017),  which  was  the newest  version  at  the  time  of  our  analysis.  Therefore,  we  could  only  use

Parallel-META 3’s custom database. As our sample contained 28S rRNA sequences, which were not

supported by Parallel-META 3’s database, we only used the program on the bacterial mock sample

(see next section). 
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We  used  the  command  line  version  of  QIIME  2  (Bolyen  et  al.  2018) version  2018.11.0.

Samples and databases were imported using standard settings. Each sample was considered to be

demultiplexed. No quality filtering was performed, since the data was in fasta and not in fastq format.

We skipped the chimera filtering,  as the simulations  did not  involve  any artificial  PCR.  Following

advice  from  QIIME2  support  (https://forum.qiime2.org/t/analysis-of-fastq-files/3177),  we  did  not

perform any denoising for the nanopore data. To get comparable results, denoising was also skipped

for the MiSeq data.

To obtain the correct input format (QIIME2 term: artifact) for the analyses, the samples had to

be  dereplicated.  However,  this  resulted  in  a  loss  of  some  sequence  IDs,  which  would  have

complicated  our  downstream  benchmarking.  Thus,  we  replaced  the  sequences  inside  the

FeatureData[Sequence] artifact with the full set of sequences. We took care to adapt the sequences to

the QIIME2 format, e.g. the maximum amount of characters per line was 80.

Subsequently, we analyzed the sequences using two different approaches. The first used a

BLAST+  (Camacho et al. 2009) implementation of QIIME2 with standard settings on the RDP and

MTX database:

qiime feature-classifier classify-consensus-blast

--i-query [FeatureData[Sequence]]

--i-reference-reads [FeatureData[Sequence]] 

--i-reference-taxonomy[FeatureData[Taxonomy]]

The other approach used a QIIME2 implementation of a Naїve Bayesian Classifier ve Bayesian Classifier (Pedregosa

et al. 2011; Bokulich et al. 2018). First, the classifier was trained on RDP and MTX. However, in the
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case of the former database, this was not successful; possibly due to the number of database records.

After training, query reads were classified using standard settings and the MTX database:

qiime feature-classifier classify-sklearn 

--i-reads [FeatureData[Sequence]]

--i-classifier [training_profile]

Both QIIME2 implementations provided taxa with confidence levels. We examined the output

for both implementations and the used databases with the confidence thresholds 0, 0.5 and 1. We

chose to filter the taxa by the confidence cutoff that provided the highest overall performance for each

database and sequencing technology, as indicated by the MCC (optimal threshold). If two confidence

thresholds  yielded  similar  performance,  the  stricter  one was  chosen. For  the  BLAST+  and  the

classifier implementations, the chosen confidence cutoff was 0.5, regardless of sequencing technology

and database (data not  shown). These thresholds were applied to both simulated Nanopore and

MiSeq data.

At  the  time  of  analysis,  the  online  implementation  of  the  RDP  Classifier  contained  four

databases:  16S rRNA training set  16 (https://rdp.cme.msu.edu/classifier/classifier.jsp),  Fungal  LSU

training set 11 (Liu et al. 2012), Warcup Fungal ITS trainset 2 (Deshpande et al. 2016) and the UNITE

Fungal ITS trainset 07-04-2014 (Wang and Cole 2014). The former database was a 16S rRNA gene

database, the others focused on fungal sequences. Thus, fungal and bacterial/archaeal sequences

had to be analyzed separately. The results obtained for MiSeq and Nanopore data using the  16S

rRNA training set 16 were merged with the results obtained by using each of the fungal databases and

the respective confidence cutoff.
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The optimal confidence thresholds were determined as described for  QIIME2. The optimal

thresholds for the 16S rRNA database merged with Fungal LSU training set 11, Warcup Fungal ITS

trainset 2  and  UNITE Fungal ITS trainset 07-04-2014 for Nanopore and MiSeq sequencing (square

brackets) were 1.0 [0.5], 0.5 [1.0] and 0.5 [0.5], respectively.

Analysis of a MinION mock sample

Cuscó and coworkers  sequenced  the ZymoBIOMICS Microbial  Community  DNA Standard  D6306

using nanopore chemistry R9.4.1 and 1D reads (Cuscó et al. 2018). We obtained the reads from the

Sequence Read Archive (SRA) (Leinonen et al. 2011) using run ID SRR8029984 (Cuscó et al. 2018).

Cuscó et al. classified the 16S rRNA gene sequences by using the What’s in my Pot (WIMP) (Juul et

al.  2015) workflow  in  conjunction  with  the  NCBI  database. They  compared  the  results  to  the

manufacturer’s  expectation  (https://files.zymoresearch.com/protocols/_d6305_d6306_zymobiomics_

microbial_community_dna_standard.pdf)  (Cuscó et al. 2018). In line with the study, we applied 16S

rRNA gene-based workflows: we chose to use MetaG MTX on the MinION reads due to the results on

the simulated data. We then chose to compare the results to those obtained with Parallel-META 3. It

had previously shown very high performance (Escobar-Zepeda et al. 2018) and was applicable to 16S

rRNA data (see previous section). MetaG was run with its standard settings for MTX and Nanopore

reads. Parallel-META 3 was run in its strictest alignment mode, which was three:

PM-parallel-meta -t 4 -f F -e 3 -D B -r [input.fasta] -o [outpath]

The  absolute  taxon  abundances  given  by  both  algorithms  were  transformed  to  relative

abundances based on the individual amounts of matched reads. To the best of our knowledge, Cuscó

and coworkers also focused on matched reads (Cuscó et al. 2018). The abundance of the unexpected

taxa was the difference between the sum of the abundances of all expected taxa and a total of one.

Plots were generated using R 3.4.4 and tidyverse 1.2.1.
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Data access

The  source  code  of  MetaG  is  available  at  https://github.com/IOB-Muenster/MetaG/tree/

master/metag_src/  and  the  web  service  can  be  accessed  at  http://www.bioinformatics.uni-

muenster.de/tools/metag/. Our simulated samples, customized databases and standard parameters

can  be  accessed  from https://github.com/IOB-Muenster/MetaG/tree/master/supplemental/files/query,

https://github.com/IOB-Muenster/MetaG/tree/master/supplemental/files/db and https://github.com/IOB-

Muenster/MetaG/tree/master/metag_src/install/files. A list of links to MetaG’s output for all presented

samples  is  available  on  GitHub:  https://github.com/IOB-Muenster/MetaG/blob/master/supplemental/

files/query/README.md.
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Supplemental Materials

Calculation of taxonomy confidence score

In the initial alignment stage of MetaG, each query read has zero, one or multiple database hits. For

each read, MetaG assigns the taxonomy based on the highest number of hits. This is done at every

taxonomic  rank.  However,  the  process  is  lacking  statistics  to  evaluate  “how  good”  a  taxonomic

assignment really is. In the following, the taxonomy confidence score will be explained at the example

of a single query read. At a single rank, this hypothetical read has four potential taxonomies, called A,

B, C and D (see Table S1). MetaG identifies taxon A as the taxon with the most hits for this read at this

rank (see Table S1). The purpose of the following calculations is to show, whether A is the “true” taxon.

Table S1: Number of supporting hits and average e-value for four candidate taxa of a hypothetical query read. The resulting

bin weights and the individual confidence are shown for each candidate.

Taxon Hit count Average e-value Bin weight Individual confidence

A 4 0 4 16

B 3 0.2 2 6

C 1 0.4 1 1

D 1 0.6 0 NA

First,  the candidate taxa are sorted by the alignment quality.  This is first  attempted by the

arithmetic mean of the e-value (low to high), then by the arithmetic mean of the alignment score (high

to low) or the alignment count for each taxon (high to low). In the resulting list, the first taxon has the

best and the last one has the worst quality. The average e-values for the four taxa are given in Table

S1. According to the quality (here the e-value), the taxa are grouped in a maximum of four bins. The

first and the last taxon are automatically assigned to the first and the last bin, respectively. For the

definitions of the other bins, we subtracted the worst from the best quality value and divided the result

by three. Here, the result for the e-value is -0.2 (see Table S1). Bin two comprises of taxa which have

a higher e-value than the best one and at max an e-value of best value - -0.2 = 0.2. The third bin

ranges from the border of the second bin to quality values of at most best value - 2 * -0.2 = 0.4. All

other taxa are assigned to the last bin. In our example, A is in the first bin, B is in the second bin, C

and D are in the third and fourth bin, respectively (see Table S1).

Next, the bins are assigned with weights. Four for the first, two for the second, one for the third

and zero for the last bin (see Table S1). For all consequent calculations the last bin is ignored. The

individual count of hits for each taxon (see Table S1) is multiplied with its respective bin weight to

receive  the  individual  confidence.  The  individual  confidences  for  the  taxa  are:  A:  4  *  4  =  16,
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B: 3 * 2 = 6, C: 1 * 1 = 1 and D is ignored (see Table S1). The confidence of the taxon with the highest

number of hits, A, is reduced by the individual confidences of all other taxa. This value is then divided

by the total  number of  hits for  all  taxa,  except  for  those in the last  bin.  Thus,  the raw taxonomy

confidence score for A is (16 – 6 – 1)/(4 + 3 + 1) which is ca. 1.13. For convenience, we adjust the

range from -4 to 4 to the range between 0 and 1, bad and good confidence, respectively. Thus, the

final  taxonomy  confidence  score  for  A  is  ca.  0.64.  There  are  two  major  exceptions  from  the

calculations presented above:  The taxon with the most  hits will  always get  the highest  taxonomy

confidence score of one, if it is the only candidate taxon or if it has at least twice as many hits as the

taxon with second most hits.

The confidence score for taxon A is multiplied by the confidence score for the taxon at the

previous rank, if the currently considered rank is not the top one. This reflects the fact that a wrong

assignment at higher ranks will bias the assignments at all lower ranks. Thus, assignments of taxa

with lower confidences will  lead to fast reduction of confidences at the lower ranks. If  the current

confidence value is lower than the cutoff, the confidence threshold that is set by the user will leave the

current and all following taxa unassigned. Dependent on sequencing technology and database, we

provide  default  taxonomy  confidence  scores  in  our  standard  parameters  https://github.com/IOB-

Muenster/MetaG/tree/master/metag_src/install/files.

Building of databases

For  the  most  part,  databases  were  adapted  to  MetaG  by  using  several  custom  scripts

(https://github.com/IOB-Muenster/MetaG/tree/master/supplemental/scripts/db). Thus, later versions of

the databases can be used without extensive manual labor. However, we made minor corrections to

selected taxa. After modifying the database files, LAST databases were build using LASTdb (Frith et

al. 2010):

lastdb [dbPath][dbName] [db.fasta]

The  databases  used  in  our  analyses  can  be  found  at

https://github.com/IOB-Muenster/MetaG/tree/master/supplemental/files/db. The following sections will

focus on building the databases from scratch.
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RDP

We downloaded the unaligned sequences for  bacteria,  archaea and fungi  from the RDP website

(https://rdp.cme.msu.edu/misc/resources.jsp).  The  fasta  files  were  extracted  and  concatenated.

Semicolons within the headers were replaces by commas. To get a taxonomy file for MetaG, we ran

our makeRDPtax.pl script. For that, the db.fa must be located in the directory of the script. Apart from

modifying the format, the script aimed to improve the taxonomic resolution by splitting the information

for species and strain at the lowest taxonomic rank of RDP.

MTX

We  downloaded  the  Metaxa2.2  software  from  https://microbiology.se/software/metaxa2/.  After

extraction of the archive, we used  blastdbcmd  (Camacho et al. 2009) version 2.6.0+ to extract the

BLAST databases for LSU and SSU sequences using:

blastdbcmd -db [db]/blast -entry all -out [db].fa

Next, we merged the BLAST taxonomy files for the LSU and SSU sequences and customized

these files. The steps included, but were not limited to, removing entries with missing lower ranks,

splitting species and strain name and forcing the taxonomy to seven ranks. The latter was necessary,

as there was no common number of ranks for all entries. Thus, we always took the first three and last

four ranks. The complete set of changes can be made by running makeMTXtax.sh on the taxonomy

file MTX.txt in the script directory. The output was tax.MTX.txt.

Using  makeMTXfasta.pl, we removed the fasta entries for records which had been removed

from the taxonomy file.  For that,  the fasta file MTX.fa and the modified taxonomy file tax.MTX.txt

needed to be located in the directory of the script. The output was out.MTX.fa.

ICTV

We  retrieved  the  ICTV  VMR  database  as  an  excel  spreadsheet  from

https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository.  We replaced empty fields with NA and

removed line breaks in the fields. The field separator was set to tab and the sheet with the taxonomy

data was saved in CSV format as VMR.csv. The script makeICTVvmr_db.pl must be located in the

same directory. It queries the NCBI API to get the fasta sequences for all GenBank  (Benson et al.

2018) IDs belonging to the database records. Viral taxa frequently had multiple GenBank IDs. All were

reported, if they could be retrieved. The output was separated in three files holding the taxonomy, the

fasta sequences and the pathogen information. These files were located in the directory of the script

and were tax.VMR.txt, VMR.fa and patho.VMR.txt, respectively.
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PATRIC

In  order  to  build  a  pathogen  database  for  non-viral  samples  in  MetaG,  we  obtained  the

genome_lineage  and  genome_metadata  files  from  ftp://ftp.patricbrc.org/RELEASE_NOTES/.  We

modified the genome_metadata and removed all entries without a human host:

awk -F '\t' '{if ($46 ~ /^Human|^Homo/) {print $1"\t"$46"\t"$53}}' genome_metadata

The output was saved as patricHuman.txt. We then created our customized PATRIC database

using the makePATRIC.pl script. This expected the genome_lineage and patricHuman.txt files to be

located in the script directory. The output was patho.PATRIC.txt in the script directory.

Training of MetaG

To find the best parameters for MetaG, we aligned our viral samples and the simulated marker gene

samples  to  ICTV  and  to  both  MTX  and  RDP,  respectively,  using  LAST.  We  kept  these  LAST

alignments and created additional filtered alignments using LAST-SPLIT at -m 0.80, 0.85, 0.90, 0.95.

Using these alignments, we simulated all possible combinations of the e-value, alignment score and

confidence cutoff in the range from -40 to 10, 0 to 1 and 0 to 1, respectively, using custom scripts.

These scripts reported the performance of each parameter combination and alignment type. For the

viral  samples,  this  was done based on the observed versus expected abundance of  each taxon

(trainKnownAbund.pl). For the simulated marker samples, the MCC for all identifications at genus level

was  used  to  avoid  nomenclature  clashes  between  the  databases  (trainKnownOrigin.pl).  Detailed

instructions how to run the scripts could be found in the help message of each script. Both scripts

needed the CPAN (https://www.cpan.org/) modules Algorithm::Loops and Parallel::ForkManager. The

scripts had to be placed in the same directory as metag.sh and the module directory of MetaG. Both

scripts are available at https://github.com/IOB-Muenster/MetaG/tree/master/supplemental/scripts/train.

We manually examined the output and defined the standard parameters. We were looking for

the strictest combination of e-value, alignment score and confidence cutoff which showed the highest

performance. However, if the performance was equal over a wide range of parameters, we choose

relaxed parameters from this subset. Performing LAST-SPLIT at -m 0.95 was preferred over using the

native alignment, if the performance differences were negligible. This was done to improve the overall

computations, as filtered alignments were often significantly smaller than the unfiltered alignments.
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