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Abstract

The brain lacks a traditional lymphatic system for metabolite clearance. The existence a
“‘glymphatic system” where metabolites are removed from the brain’s extracellular space by
convective exchange between interstitial fluid (ISF) and cerebrospinal fluid (CSF) along the
paravascular spaces (PVS) around cerebral blood vessels has been controversial for nearly a
decade. While recent work has shown clear evidence of directional flow of CSF in the PVS in
anesthetized mice, the driving force for the observed fluid flow remains elusive. The heartbeat-
driven peristaltic pulsation of arteries has been proposed as a probable driver of directed CSF
flow. In this study, we use rigorous fluid dynamic simulations to provide a physical interpretation
for peristaltic pumping of fluids. Our simulations match the experimental results and show that
arterial pulsations only drive oscillatory motion of CSF in the PVS. The observed directional CSF
flow can be explained by naturally occurring and/or experimenter-generated pressure differences.
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Introduction

The flow of cerebrospinal fluid (CSF) in the brain is hypothesized to play an
important role in the clearance of metabolic waste and maintenance of the ionic environment',
Recent work suggests that the paravascular spaces (PVS) surrounding cerebral arteries provide
a low-resistance pathway for the bulk flow of CSF into the brain'4’". However, this idea that there
is bulk fluid movement into the brain is highly controversial, with both simulations®' and
experiments®” 1112 being put forward both in support of and against bulk flow. One of the leading
theories in support of bulk flow in the PVS identifies “peristaltic pumping” as the flow driver, i.e.,
the idea that heartbeat-driven pulsations pump CSF in the PVS. Peristaltic pumping in a
deformable tube is achieved by repeated contractions and dilations propagating along the wall of
the tube. In fluid dynamics, peristaltic pumping is a well-understood mechanism of fluid transport.
The mechanism of peristaltic pumping of fluids was first demonstrated by Latham'. Further work
on the peristaltic pumping of fluids has encompassed a wide range of scenarios'#-'". Calculations
made using fluid dynamic principles can make very accurate predictions of fluid flow under
peristalsis, and have been used in designing artificial peristaltic pumps'®-2°,

Recent work by Mestre et al.” and Bedussi et al.® used in vivo two-photon microscopy?' to
simultaneously measure arterial pulsations and the flow of CSF in the PVS around the middle
cerebral artery (MCA) by tracking the motion of fluorescent microspheres. They found that
movement of CSF in the PVS had two components, a constant flow in the direction of blood flow
with an average velocity of approximately 20um/sec, and an oscillatory flow in phase with the
arterial pulsations®’, with a peak velocity of approximately 10um/sec. Based on these
observations, it has been proposed that peristaltic motion of the arterial wall generates a
“‘pumping” force that drives the net flow of CSF parallel to the direction of the pulse wave
propagation.

In this study, we apply the well-established fluid dynamic principles of peristalsis to study
the nature of fluid flow in the PVS, aiming to bridge the gap between experimental observations
and hypotheses. As previous studies of CSF flow in the PVS disagree on both the direction and
the flow rates®'°, we started our calculations by revisiting the mechanism of peristaltic pumping
using time-dependent fluid dynamic simulations with fluid particle tracking in a deforming domain.
By emphasizing the mechanism of peristatic pumping, we aimed at providing a clear physical
interpretation for our calculations. We then performed fluid dynamic simulations on more realistic
models of the PVS. Our simulations suggest that peristalsis with physiologically-plausible
pulsation cannot drive the experimentally-observed fluid flow. However, we found that a small,
constant pressure gradient (of order 0.01 mmHg/mm) can account for the net forward movement
observed experimentally. These results suggest that the observed directional movement of CSF
in the PVS is generated by naturally occurring and/or experimenter-generated pressure
differences, but not by arterial pulsations.

Results

We first examine how peristaltic motion affects the flow of an incompressible fluid in a two-
dimensional tube. Consider a fluid-filled tube with deformable walls and no pressure difference
across its two ends. When the position of the walls is fixed, there is no pressure gradient, and
therefore no fluid flow (Fig 1a, 1b). When the walls move inward due to a peristaltic wave
propagating to the right (Fig 1a), the fluid-filled domain deforms and the fluid is displaced. When
the direction of the fluid flow is the same as the peristaltic wave, the motion is said to be
anterograde — otherwise it is said to be retrograde. The flow in both directions is a result of the
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fluid pressure distribution, shown in Figure 1b. The pressure is maximum at the location of the
moving neck and is minimum at the two ends of the tube. Therefore, the fluid that is displaced by
the wall is subject to the same pressure difference (Ap) in either direction (Ap, = Ap,, where the
subscripts ‘a’ and ‘r’ denote the anterograde and retrograde flows, respectively). However, since
the width of the tube (h) is smaller in one direction (h, > h,), there is more resistance for
retrograde flow than anterograde flow (since flow resistance R scales with width of the tube R «
1/h3 for 2D flow, R, < R,). As a result of this difference in flow resistance, the anterograde flow
is greater than the retrograde flow (flow rate,Q = Ap/R,Q, > Q,). Thus, while peristalsis drives
both anterograde and retrograde flows, a net flow in the direction of the peristaltic wave emerges
(Video SV1). This example is a simplified version of peristalsis, where, the walls of the fluid-filled
tube only contract. An example with a periodic contraction and expansion of the walls is
demonstrated in figure S1 and Video SV2.

It is important to bear in mind the difference between peristaltic transport of fluids and
peristatic transport of solids. The textbook picture of peristalsis?>?® is derived from the transport
of solid matter in the esophagus and the gastro-intestinal tract. When solid matter is transported
by peristalsis, all of the material moves in the direction of the peristaltic wave (Fig 1c¢). This differs
from the case of fluid transport by peristalsis, which generates both anterograde and retrograde
flows (Fig 1b, S1). Moreover, the peristaltic transport of solids is independent of the magnitude of
wall motion and the length of the tube. In contrast, the nature of fluid flow in a tube driven by
peristaltic motion of the walls is highly depended on the magnitude of both wall motion and tube
length?*, which we will demonstrate in the results. This understanding of the mechanism of
peristaltic transport of fluids is crucial to interpreting the results of fluid dynamic models of the
PVS. The assumptions of the shape, size and the deformation of the PVS may vary between the
models, but the mechanism of peristaltic transport remains the same.

Peristaltic pumping requires unphysiologically large amplitude pulsations for meaningful
fluid flows

To understand the relation between arterial wall movement and fluid movement in the
PVS, we created a model of peristaltic pumping. In our model, the geometry of the PVS is taken
to be cylindrically symmetric, with the artery centered within the PVS (Fig 2a). While the geometry
of the fluid domain is simplified, the inner and outer radii are based on realistic values (see
methods). We then imposed a sinusoidal peristaltic wave on the arterial wall, while keeping the
outer wall of the PVS fixed, effectively making the brain tissue rigid. In order to capture the whole
peristaltic wave, the length of the PVS used in the simulation was equal to one wavelength (1) of
the peristaltic wave (see methods). Since we are interested in studying the pumping generated
by arterial wall movement alone, we used periodic boundary conditions at the axial ends of the
PVS. This is equivalent to studying flow driven by peristalsis with no additional pressure
differences®'41%25, We tracked the motion of particles at the center of the PVS.

Peristaltic pumping of fluid is a result of lower flow resistance for anterograde flow and
higher resistance for retrograde flow (see Fig 1 and Fig 2b). This explains the fluid velocities
observed with respect to the arterial wall position and wall velocity (Fig 2c,2d). The phase
difference between the arterial wall velocity and the downstream fluid velocity (axial velocity, v,)
remained the same throughout the length of the domain. Flow resistance (R, ) of a tube with

an annular cross-section decreases with approximately the fourth power of the internal radius?®.
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For slow, laminar flows like those in the paravascular space, the flow resistance of a tube with
annular cross-section is given by the equation:

_ —op/oz. ul , . @ -

Q - ) l = T — T
Rflow Jlow T 2 ! ln(rz/rl)

€y

Where Q is the flow rate, p is the pressure and p is the dynamic viscosity of the fluid. The
internal and external radii of the annular region are given by ry and r, respectively. For our
calculations, Reynolds numbers range from 0.13 to 10.67, well within the laminar flow regime.
Given the strong dependence of fluid resistance on the diameter, it follows that the amplitude of
pulsations (the change in internal radius) should have a large effect on the flow resistance
changes and therefore the pumping generated by peristaltic motion.

We examined the relation between pulsation amplitude and the trajectory of the fluid
particles in the PVS. To put our results in the context of experimental findings, the typical half
wave amplitude of heartbeat pulsations is 0.5-2% of arterial diameter®’. Our simulations show
that such small amplitude pulsations generate little difference between forward and backward flow
resistance, which resulted in oscillatory fluid flow with minimal net anterograde flow (Fig 2e).
These simulations show that the mean downstream velocity for fluid in the PVS driven by
heartbeat pulsations should be approximately 2 orders of magnitude smaller than the oscillatory
velocity. However, the kind of fluid particle trajectories reported by Bedussi et al.® and Mestre et
al.” are very different from the ones simulated in Fig 2e. The fluid trajectories in the PVS observed
in both studies are more similar to the ones shown in Fig 2f, where the net anterograde motion of
the fluid is of the same order as the oscillatory motion. This kind of fluid motion would require non-
physiological amplitudes arterial pulsations, with half wave amplitudes around 25% of the arterial
radius. To better understand the effect of pulsation amplitude on fluid flow, we examined the
relation between the pulsation amplitude and the ratio of mean flow speed (or average
anterograde velocity) to oscillatory velocity (difference between peak anterograde velocity to peak
retrograde velocity) (Fig 2g). These result show that heartbeat-driven pulsations in an idealized
model are too small to explain the directed flow of CSF seen in vivo.

While the shape of the PVS in our model was simplified, the model still provides important
generalizable insights into the mechanism of peristalsis. Specifically, the model helps us
understand the relation between the movement of the arterial wall and the flow of fluid. We found
that the radial wall velocity and the anterograde fluid velocity are always out of phase (by 270°,
Fig 2c,2d), and that the kind of fluid trajectories observed in vivo would require large, non-
physiological amplitudes for arterial pulsations. Next, we examined if these results held for a 3-
dimensional model of peristalsis with a realistic shape of the PVS and pulse waveform.

Paravascular flow measurements are inconsistent with peristaltic pumping

To test if fluid flow is influenced by the details of the shape of the PVS or the waveform of
heartbeat driven pulsations, we created a model with a realistically-sized and shaped PVS, with
a cardiac waveform drawn from experimental data’ (Fig 3a,b). The outer wall of the PVS was
assumed to be fixed, and the length of the domain was set to be equal to one wavelength (1) of
the peristaltic wave. We use a no pressure (traction) boundary condition at the boundaries in
place of the periodic boundary condition used for the axisymmetric simulations. This is done to
better estimate the pressure changes in the PVS (Fig 3e).
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The mean flow speed (anterograde velocity time-averaged over a complete cycle) of fluid
particles at the centerline of the PVS in our simulation was 102.1 um/s. However, this was
accompanied by oscillatory fluid velocities of approximately 30,000 um/sec, well over a hundred
times the mean flow speed (Fig 3c, 3d). Moreover, in our simulations the fluid downstream velocity
and the arterial wall velocity were out of phase, whereas these velocities were in phase for in vivo
measurements by both Bedussi et al.® and Mestre et al.” (Fig 4d). Viewed together with the results
of the axisymmetric simulations, our simulations suggest that the shape of the PVS and the
waveform of heartbeat pulsations cannot pump CSF in a model with a simplified geometry of the
PVS.

These results show that a peristaltic pumping model is inconsistent with experimental
findings, which suggests that there are some problems with the assumptions of the peristaltic
pumping model. In the next section, we revisit these assumptions and attempt to match the results
of the fluid dynamic calculations with experimental findings.

Pressure differences, not arterial pulsations drive bulk fluid flow

In order to better capture the geometry of the PVS, we made changes to our 3D model
based on the anatomy of the brain, the subarachnoid space and cerebral vasculature. We
shortened the length of the PVS to 5 mm, and made the outer wall of the PVS move with the
pulsations. Previous peristaltic pumping models®®'4'% have set the length of the fluid chamber to
be equal to one wavelength of the peristaltic wave. However, the wavelength of the peristaltic
motion of arteries is considerably larger than the length of the middle cerebral artery (MCA), the
proposed source of peristaltic pumping. With a peristaltic wave speed of 0.5-2 m/s?”? and a
heartbeat frequency of 6-10 beats/second in mice®”2%3' the wavelength of the peristaltic wave
is between 50-160mm in mice, while the MCA is only 4-6 mm long in mice®3233 This means that
the pulse wave travels so fast across the length of the PVS that the arterial wall moves in and out
simultaneously and therefore there is no appreciable difference in the flow resistance for
anterograde and retrograde flows (Fig S2). We calculated the fluid particle trajectories 1 mm from
the distal end of the PVS segment (z = 4 mm), which captures the geometry of the surface of the
brain where the flow measurements were made. This corrected the inconsistency between the
phase of the fluid downstream velocity and the arterial wall velocity found in the peristaltic
pumping model with a length of one pulsation wavelength (Figure S2). Our results are similar to
the phase relation between arterial wall velocity and fluid velocity estimated by Asgari et al.°, who
studied the flow driven by penetrating arterioles in a model with anatomically realistic dimensions.

Secondly, the fixing of the outer wall of the PVS in other models means that the brain
tissue and the subarachnoid space that surround the PVS are rigid. This is not realistic because
the brain tissue is very soft, with a shear modulus in the range of 1-8 kPa34-8 (7.5-60 mmHg) and
the 80 mmHg pressure changes (Fig 3e) predicted by the peristaltic pumping model will cause
substantial deformations. To include the effect of the soft tissue, we moved outer wall of the PVS
with the same frequency as the heartbeat driven pulsations (Fig 4b). We applied these small,
pressure-driven deformations in the direction of the outward normal of the surface of the PVS,
because pressure-like forces act along the outward normal of a surface. Since the mechanical
properties of the subarachnoid space are mostly unknown3°-42, we adjusted the amplitude of these
deformations so that the oscillatory fluid velocity matched that observed in vivo by Mestre et al.”

Our simulations suggest that the wall movement itself can only drive oscillations in fluid
flow with negligible (0.007 um/s) mean anterograde flow. The time course of fluid velocity from
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our simulations and its relation to the arterial wall movement agrees very well with the measured
values in both phase and magnitude (Fig 4d and 4e). The phase relation between the arterial wall
velocity and the fluid velocity is a direct result of correcting the length of the PVS, while the
magnitude of fluid velocity is corrected by including movement of the outer walls of the PVS in the
simulation. However, the simulations suggest that arterial pulsations generate very little net
anterograde flow with a time averaged downstream velocity of 0.007 um/s (Fig 4f).

Finally, we tested the possibility that small pressure differences across the ends of the
PVS can drive the bulk flow observed in the experimental studies. We calculated the fluid flow
through the PVS while varying the imposed pressure difference over a physiologically plausible
range. We found that a very small pressure difference, 0.01 mmHg across the length of the PVS
(5 mm), was sufficient to drive a mean downstream speed of 24.4um/sec (Fig 4g), close to the
mean flow speed observed in vivo’(Fig 4h). The pressure difference value was also found using
equations derived in another recent theoretical study that estimated the flow resistance of
paravascular spaces?. Such a small pressure difference is practically impossible to measure in
live animals, due to the lack of instruments sensitive to such small changes**#4. The pressure
differences could be normally present due to CSF production in the ventricles*® and drainage via
meningeal lymphatic vessels**“® and the cribriform plate*’, or be generated by intracranial
injections*34° of the tracer spheres. We conclude that peristalsis cannot drive unidirectional fluid
pumping in the PVS of cerebral arteries under physiological conditions and that the experimentally
observed CSF flow in the PVS is probably due to pressure differences present in the system.

Discussion

Peristatic pumping has been hypothesized to drive directed movement of cerebrospinal
fluid in the paravascular space. In this study we test the “peristaltic pumping” hypothesis, by using
simulations of fluid dynamics to understand what experimental measurements tell us about bulk
flow. We started with simple models to provide a physical interpretation to the process of
peristalsis of fluids and built more physiologically realistic models informed by the results of these
models. We were able to improve upon previously published computational models aimed at
studying the flow of CSF in the PVS®'%2 using the detailed anatomical and physiological
information from the experiments by Mestre et. al.”. This experimental data provided information
about the shape of the PVS around cerebral arteries and the amplitude and waveform of the
heartbeat driven pulsations, which we used in our modeling. The experiments also had detailed
information on the oscillatory and anterograde flow of CSF in the PVS. Our simulations show that
the cardiac pulsation of arteries is only capable of driving the oscillatory motion of CSF in the
PVS, and not the unidirectional bulk flow. Rather, the experimentally observed unidirectional flow
is likely to be driven by pressure differences in the system.

Our simulations point to two main reasons why arterial pulsations cannot drive
unidirectional fluid flow in the PVS. First, direct measurement of cortical arteriole diameters in
mice using two-photon imaging shows that the amplitude of the heartbeat-driven pulsations is
small (1-4% peak to peak change in arterial diameter®°®°"). In humans, CT angiography has
shown that pulsations drive only a maximum of 4-6%°%°3 change in the volume of the MCA (2-3%
change in diameter assuming a cylindrical geometry). Our calculations show that substantially
larger cardiac pulsations (roughly 50% peak-to-peak change in diameter) are required to drive
significant directed motion of the fluid relative to the oscillatory motion. Second, the peristaltic
motion of arteries cannot drive unidirectional fluid flow because the length of the PVS is
substantially less than the wavelength of the peristaltic wave. The total length of the MCA is
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between 4-6 mm in mice®3233 while the wavelength of the peristaltic wave is between 100-1000
mm (based on the pulse wave velocity of 1-5 m/s?"?8 and a heart rate of 6-12 Hz?**0). This is over
an order of magnitude difference between the length of the PVS and the wavelength of the
peristaltic wave. In humans, the MCA is longer, (roughly 100 mm %4). However, while the pulse
wave velocity, a function of arterial stiffness®>°¢, remains roughly the same in mice and
humans®’¢, the heartrate in humans is around 1-2 Hz, which makes the wavelength of the
peristaltic wave 1-2 orders of magnitude higher than the length of the MCA in humans. Therefore,
in mice as well as in humans, arterial pulsations are unlikely to drive unidirectional CSF flow.

Based on the experimental evidence available, we speculate that two possible
mechanisms that could drive CSF flow in the PVS, namely, CSF production in the choroid plexus
and osmotic pressure differences across astrocytic end feet. CSF flow through the PVS and into
the brain is severely affected in aquaporin-4 (AQP4) knockout mice'®. The AQP4 channel is
selectively permeable to water®'%2 and is present in the choroid plexus® and the astrocytic
endfeet’. The deletion of the AQP4 gene could reduce CSF production and osmotic flow through
astrocytic endfeet. It is possible that a combination of the two factors drive CSF flow since the
osmotic concentration gradients and the CSF production rate are interrelated®. Alternatively, the
observed flow in the PVS might be an caused by the infusion rate of 1-2pl/min used in the
experiments to study CSF flow®’, which is 3-5 times the typical rate of CSF production rate in
mice (0.38 pl/min*®). The infusion rate used in these experiments is known to increase intercranial
pressure'*, as pointed out by Hladky and Barrand*®. A detailed 3-D model of the whole brain with
the PVS and the SAS, all modelled as poroelastic media’™ would be needed to test the possibility
of the observed flow being an artifact of the infusion.

An important result of our simulations is that the paravascular spaces around pial
arterioles provide a crucial pathway for fluid transport in the brain due to their low flow resistance.
A very small pressure difference (0.01 mmHg, Fig 4g) across the length of the MCA (5 mm) can
be sufficient to drive fluid through the PVS with a mean speed of ~20 um/s. This is in stark contrast
to the much less permeable brain tissue, where a pressure gradient of 1 mmHg/mm can only
generate fluid velocities in the order of 0.010 um/s®. However, the low flow resistance makes
understanding the driving force for CSF movement in the PVS extremely difficult. A pressure
difference in the range of 0.01 mmHg cannot be accurately measured with current instruments,
which have a resolution of around 1 mmHg*3%°. Moreover, invasive access of the skull probes
through the skull severely affects the flow through the PVS®°.

Methods

Model equations and boundary conditions

We use a standard time-dependent finite element method to solve the equations of fluid
motion in the PVS. These equations are formulated to correctly account for the deformation of the
PVS. Specifically, we write the equations in Arbitrary Lagrangian-Eulerian (ALE) coordinates (see
appendix). As is well-known, ALE formulations are able to account for the deformation of the
solution’s domain at the expense of having to determine an auxiliary motion typically referred to
as the “mesh motion””'3. The governing equations for the fluid and the mesh movement are
written in their weak, tensor form (see Appendix) and converted to their component form using
Wolfram Mathematica. These component form equations are implemented in COMSOL
Multiphysics (Burlington, MA) using the “Weak Form PDE” interface, where PDE stands for partial
differential equation. Therefore, the overall solution scheme is our own, and COMSOL
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Multiphysics simply provides a high-level integrated programming environment within which said
scheme is implemented.

The fluid (CSF) velocity and pressure are governed by the incompressible Navier-Stokes
equations (eq. M1 - M3). We solve for the fluid velocity (v) and pressure (pf) in the PVS as a

function of time (f). In eq. M1, prand oy are the fluid’s mass density and Cauchy stress,
respectively. In eq. M3, iy is the fluid’s dynamic viscosity.

avf 1
5t (v Vv, — Ev-af =0 (M1)

The governing equation for the mesh motion is dictated by convenience and, where necessary,
by the problem’s geometric constraints. In our problem, the deformation of the solution’s domain
(PVS) is relatively mild and therefore we the mesh motion equation, with primary unknown given
by the mesh displacement u,,, is chosen to be a linear elliptic model’*, namely the Laplace
equation (eq. M4):

V. (Vu,,) =0 (M4)

We use no-slip boundary condition at the inner and outer walls of the PVS, j.e., fluid
velocity is equal to the wall velocity in all simulations (eq. M5). For the axisymmetric simulations,
the inner walls have a baseline radius of R1 and the outer walls have a fixed radius of Rz. The
movement of the inner walls is given by a travelling sinusoidal wave (eq. M6). There is no wall
movement at the outer wall (eq. M7). The total length of the tube is taken equal to the wavelength
(4) of the peristaltic wave. Periodic boundary conditions are used at the two ends of the tube (eq.
M8). To obtain a unique pressure solution, a global constrain is applied for the total pressure (eq.
M9).

du,,
atr = Ryand r = R, vy = FTH (M5)
2
atr = Ry, Uy, = O R.Sin [7 (z — ct)] , Up, = 0 (M6)
atr = Ry, Uy = 0, Upz, = 0 (M7)
Vs z=0 = vflz:/'l; pf'z:O - pflzzl (M8)
[pr =0 (M9)

In eq. M6-M7, u,,,- and u,,, are the r and z components of the mesh displacement (u,,).
@ is the half wave amplitude of the peristaltic wave, as a fraction of the baseline diameter Ri. c is
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the speed of the peristaltic wave. The integration in equation M9 is performed over the entire
computational domain.

For the 3D simulations presented in Fig 3 and 4, we created the cross section of the PVS
to resemble the geometries observed in vivo’?6. The inner wall of the cross section is a circle of
radius R1. The outer wall of the cross section is an ellipse with major axis R and minor axis 0.8R1.
The intersection of the circle with the ellipse is smoothened with a fillet of radius 0.08R1. The
cross-section can be divided into three regions. The three regions can be identified in Fig 4c. The
inner walls of the PVS (the walls facing the arteries or the circular face) are shown in orange. At
the inner walls, a dilation of the arterial wall will cause a deformation of the PVS in the direction
opposite to the unit outward normal, n (eq. M10). The outer walls of the PVS (wall facing the SAS
or the brain tissue or the elliptical face) are shown with green arrows in Fig 4c. On the outer walls,
the pressure is higher when the vessel dilates and lower when the vessel contracts (Fig 3e).
Therefore, when the vessel dilates, the outer walls of the PVS deform in the direction of the
outward normal, n (eq. M11). We call the part of the wall between these two regions, the transition
region (the fillet region shown with blue arrows in Fig 4c). Here, the displacement is smoothly
transitioned using the step function available in COMSOL Multiphysics.

atinner walls: u,, = —an[ct — z]n (M10)
atouter walls: u,,, = g an[ct — z|n (M11)

In equations M10 and M11, ‘an’ is a periodic function with a time period of 1/f, where f is
the heartrate frequency. The waveform of ‘an’ is interpolated from the pulsation waveform
reported by Mestre et al” (Fig 3b, 4b). The value of ¢ (SAS displacement parameter) is 0 for the
simulations presented in Fig 3 and Fig S2. For the simulations presented in Fig 4, the value of ¢
is 0.368.

For the simulations shown in Fig 3, no traction was applied at the axial ends of the PVS
(eq. M11-M12). This change was useful to understand the magnitude of pressure changes in the
PVS (Fig 3e).

at z = 0, or.m =0 (M11)

at z = 1, or.n =0 (M12)

For the simulations shown in Fig 4, no traction is applied at the distal end of the PVS (z =
La, where L, is the length of the MCA). This is similar to equation M12. At the proximal, a pressure
like traction is applied (eq. M13). The parameter p; in equation M11 is the pressure difference
across the length of the PVS, shown on the x-axis of Fig 4g. On the peripheral walls of the PVS,
the fluid velocity is equal to the wall velocity (similar to eq. M5).

atz = 0, gr.m = —pin (M13)

The Reynolds number for all the simulations is calculated using the formula for flow in a
pipe (eq. M14). In equation M12, D,, is the hydraulic diameter, which is calculated using the area
A and the perimeter P. Q is the flow rate. The Péclet number is calculated using the diffusion (D)
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coefficient for Amyloid-beta in water (eq. M15). v,,,. is the mean downstream speed of the fluid
at the center of the PVS (r = (R + R,)/2).

D

Re = prQ_Ah’ D, = 4A/P (M14)
Vype D

Pe = ‘“’5 h (M15)

The details about particle tracking in ALE are explained in the appendix. The particle
tracking calculations and movies were made using Matlab® code. All the code for Mathematica,
Comsol and Matlab are available to download on Github (https://github.com/DrewLab/Peristaltic-
pumping-of-CSF.git).

Anisotropic non-dimensionalization

One of the major concerns when using finite element simulations to study flow in the PVS
is the long and narrow geometry of the PVS. For example, the domain used for simulations
presented in Fig 2 has a length of one wavelength of the peristaltic wave (116.7 mm or 116,667
pum), which is nearly 3000 times the width of the PVS (40 um). Simulating the geometry with these
dimensions could cause a large number of elements, making it incredibly expensively to solve or
create elements with very bad aspect ratios. To deal with this problem, we non-dimensionalized
the equations with different scaling factors in the x, y (or r for axisymmetric simulations), and z
directions. All the equations from the mesh coordinates (X,,) are rewritten in these non-
dimensional coordinates (X.) (eq. M14). In equation M14, the coordinates are written in the
conventional order, i.e, (x,y, z) for Cartesian and (r, 0, z) for cylindrical coordinates.

1 0 O
Xm =L, (O 1 O>XC (M14)
0 0 g;

The characteristic length, L,, was chosen to be equal to the arterial wall radius (R1). The
scaling factor, g5, was chosen so that the axial (z) length of the domain in the non-dimensionalized
coordinates is 10. This resulted in a scaling factor (g3) value of ~400 in all the simulations. To
verify the validity of this choice of parameter, we plotted the z and r components of the velocity
gradient in the mesh coordinates and non-dimensional coordinates (Fig S3). In the mesh
coordinates, the velocity gradients (for the radial and the axial component) were nearly three
orders of magnitude higher in the radial direction compared to the axial direction. Our choice of
scaling factor results in velocity gradients of similar magnitude, which means that for meshes of
aspect ratio ~1 in the non-dimensionalized coordinates, the approximation and interpolation errors
are rather contained (for low Reynold’s number flows). A similar line of reasoning is used to
minimize approximation and interpolation errors for anisotropic adaptive meshing for flow
simulations”>"7.

Model parameters

All the parameters were taken to match the values observed in vivo in mice. The
dimensions of the cross-section of the PVS and the pulsation waveform of the arteries were taken
from Mestre et al.”, to emulate their experimental results. All the parameters used in the model
are listed in table 1.


https://doi.org/10.1101/2020.03.13.990655
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.990655; this version posted March 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 1 | Parameters used in simulations

Parameter Name Symbol Value Unit Source
Arterial radius R 30 um 7

PVS width wd 40 um 7

PVS outer radius Ro 70 pum R1 + wd
CSF viscosity it 0.001 Pa.s 787
CSF Density P 1000 kg/m3 7879
Pulsation Frequency f 8.67 Hz 7

Pulse wave speed c 1 m/s 2728
Pulse wave wavelength A 0.13 m c/f
MCA Length La 5 mm 63233
Diffusion coefficient D 1.4x10°% cm?/s 808
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a Peristaltic transport of fluid

8 0.75
b

Maximum pressure

-~ —

Zero Pressure

Pressure (Pa)

Retrograde flow Anterograde flow 0.0

Flow resistance (R o 1/h?) R > R

r a

Flow rate (Q = Ap/R) Q < Q

r a

c Peristaltic transport of solid

Contact Force

N

}100% Forward transport
Fig 1 | Mechanism of forward transport (pumping) driven by peristalsis in fluids and solids.

a. The movement of fluid (the dots represent fluid particles) driven by peristaltic compression of the walls
of a 2D tube. The fluid movement in this figure is calculated using the Navier-Stokes equation with zero
traction (pressure) at the two ends of the tube.

b. The pressure field in the tube in the deformed state. The fluid is displaced by the moving walls and this
creates high pressure at the neck of wall movement. The pressure difference is same for retrograde and
anterograde flow. However, the resistance is large posterior to the site of contraction. Compared to
anterograde flow, retrograde flow needs the fluid to flow through a narrower tube. This results in a greater
anterograde flow (magenta dots in a) compared to retrograde flow (green dots in a).

c. The movement of a solid bolus (yellow ellipse) driven by peristaltic motion of the walls of a 2D tube. The
contact forces between the moving walls and the solid bolus are responsible for forward transport. The
position of the solid bolus with respect to the dotted lines shows that the solid is moved forward.
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Fig 2 | Heartrate pulsations drive oscillatory, but not directional flow. Large non-physiological pulsations are
required for appreciable peristaltic pumping.

a. Schematic of the axisymmetric peristatic pumping model. The arterial wall undergoes peristatic
movement, while the outer wall of the PVS is fixed. The length of the PVS is taken as one wavelength of
the peristaltic wave (L) with periodic boundary conditions at the two axial ends.

b. Schematic of the fluid motion during periodic peristalsis. The fluid displaced by the moving wall should
move with lower resistance along the direction of the peristaltic wave than in the opposite direction. This
difference in flow resistance results in net forward pumping.

c. The magnitude of the axial velocity is denoted by color, with arrows showing the direction. The half-wave
amplitude of the peristaltic wave is 0.8% of the vessel radius. The deformations are scaled by a factor of
50 in the figure to clearly show the arterial wall movement.

d. The plots show the relative phase between arterial wall velocity and the centerline fluid velocity at the
same axial (z) location (midpoint, z = A/2). There is a 270° phase difference between the wall velocity and
fluid velocity.

e. The trajectory (in z) of a fluid particle at the center of the PVS, where the amplitude of the peristaltic wave
is similar to heartbeat driven pulsation®7? (0.8% peak-to-peak change in arterial radius). The flow is mostly
oscillatory with very little unidirectional movement.

f. The trajectory (in z) of a fluid particle at the center of the PVS, where the amplitude of the peristaltic wave
is unrealistically large (50% peak-to-peak change in arterial radius). This trajectory with appreciable
unidirectional movement looks similar to experimental results®”.

g. Plot showing the ratio of mean flow speed (average unidirectional flow velocity) to oscillatory velocity
(peak velocity change in a cycle) as a function of the amplitude of the peristaltic wave. The shaded region
shows the normal amplitude of pulsation cerebral arteries (1-4% of arterial radius peak-to-peak). Note that
in this range, the oscillatory velocity is ~ 2 orders of magnitude higher than the pumping velocity.
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Fig 3| Simulations of arterial pulsations in a model with an elliptic PVS show that observed fluid flows are
inconsistent with a peristaltic pumping mechanism.

a. The 3D geometry of the PVS used in our simulations replicates the PVS geometry observed in vivo in
mice. The figure in top-left is taken from Mestre et al.” and the figure on the bottom-right shows the 3D
geometry used in our calculations.

b. The dimensions and boundary conditions used in 3D fluid dynamics simulations. The wall movement on
the arterial side (orange) is given by a travelling wave with a realistic waveform observed in vivo in mice’
(inset). The wall on the brain tissue side is fixed (green). The parameters (R1, Rz, A etc are given in Table
1).

c. Plots showing the arterial wall velocity and the centerline velocity of the fluid taken at the same axial (z)
location. While the wall velocity profile and magnitude are very similar to what was observed in vivo’, the
oscillatory fluid velocity is ~1000x higher than the values observed in vivo®’. Moreover, the peak fluid
velocity is not in phase with the wall velocity. These discrepancies were predicted by our simplified model
(Figure 2).

d. The colors show axial velocity profile at the mid-section of the PVS (XZ plane at y=0) throughout the
cardiac cycle. Arrows are provided to make the interpretation of flow easier. The fluid velocity profile agrees
with our expectations from the mechanism of peristalsis (Fig 2b) and our simplified model (Fig 2c). The
deformations are increased by a factor of 50 in post-processing to clearly show the arterial wall movement.

e. Corresponding pressure profile at the mid-section of the PVS (XZ plane at y=0) throughout the cardiac
cycle. The deformations are scaled by a factor of 50 in post-processing to clearly show the arterial wall
movement.
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Fig 4| A small, constant pressure gradient can explain directed fluid movement in vivo.

a. Schematic of the model. The length of the PVS is set to 5 mm to match the length of the MCA in mice
(4-6mm®:32.33), An additional pressure difference between the inlet and outlet is applied.

b. The displacement of the arterial wall (orange) and the PVS wall (green) used in the simulation. The
displacement is given in the direction of the surface normals shown in c.

c. Positive displacement direction at a cross-section of the PVS, this is the direction of displacement for the
plots shown in b. The Inner wall is shown in orange and the outer wall is shown in green. The displacement
changes in amplitude and direction from the inner wall to the outer wall. This transition is carried out using
the smooth, step function in COMSOL Multiphysics. The changing direction and length of the blue arrows
indicates the smooth transition.

d. Plot showing arterial wall velocity and oscillations in fluid velocity measured in vivo. Adapted from Mestre
etal.”

e. Plot showing arterial wall velocity and oscillations in downstream fluid velocity our simulation matches
with those in d.

f. Plot of the trajectory of a fluid particle in the z direction shows that there is very little pumping by arterial
wall movement.

g. Plot showing the relation between an applied pressure difference across the ends of the PVS and the
mean anterograde flow speed. An additional 0.01 mmHg pressure difference across the PVS is required to
achieve a mean flow speed of 24.4 um/s, similar to the mean flow speeds observed in vivo (h).

h. Mean flow speed in the PVS measured in vivo. Adapted from Mestre et al. 7
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