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Abstract 

The brain lacks a traditional lymphatic system for metabolite clearance. The existence a 
“glymphatic system” where metabolites are removed from the brain’s extracellular space by 
convective exchange between interstitial fluid (ISF) and cerebrospinal fluid (CSF) along the 
paravascular spaces (PVS) around cerebral blood vessels has been controversial for nearly a 
decade. While recent work has shown clear evidence of directional flow of CSF in the PVS in 
anesthetized mice, the driving force for the observed fluid flow remains elusive. The heartbeat-
driven peristaltic pulsation of arteries has been proposed as a probable driver of directed CSF 
flow. In this study, we use rigorous fluid dynamic simulations to provide a physical interpretation 
for peristaltic pumping of fluids. Our simulations match the experimental results and show that 
arterial pulsations only drive oscillatory motion of CSF in the PVS. The observed directional CSF 
flow can be explained by naturally occurring and/or experimenter-generated pressure differences.  
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Introduction 
 The flow of cerebrospinal fluid (CSF) in the brain is hypothesized to play an 

important role in the clearance of metabolic waste and maintenance of the ionic environment1–3. 
Recent work suggests that the paravascular spaces (PVS) surrounding cerebral arteries provide 
a low-resistance pathway for the bulk flow of CSF into the brain1,4–7. However, this idea that there 
is bulk fluid movement into the brain is highly controversial, with both simulations8–10 and 
experiments6,7,11,12 being put forward both in support of and against bulk flow. One of the leading 
theories in support of bulk flow in the PVS identifies “peristaltic pumping” as the flow driver, i.e., 
the idea that heartbeat-driven pulsations pump CSF in the PVS. Peristaltic pumping in a 
deformable tube is achieved by repeated contractions and dilations propagating along the wall of 
the tube. In fluid dynamics, peristaltic pumping is a well-understood mechanism of fluid transport. 
The mechanism of peristaltic pumping of fluids was first demonstrated by Latham13. Further work 
on the peristaltic pumping of fluids has encompassed a wide range of scenarios14–17. Calculations 
made using fluid dynamic principles can make very accurate predictions of fluid flow under 
peristalsis, and have been used in designing artificial peristaltic pumps18–20. 

Recent work by Mestre et al.7 and Bedussi et al.6 used in vivo two-photon microscopy21 to 
simultaneously measure arterial pulsations and the flow of CSF in the PVS around the middle 
cerebral artery (MCA) by tracking the motion of fluorescent microspheres. They found that 
movement of CSF in the PVS had two components, a constant flow in the direction of blood flow 
with an average velocity of approximately 20µm/sec, and an oscillatory flow in phase with the 
arterial pulsations6,7, with a peak velocity of approximately 10µm/sec. Based on these 
observations, it has been proposed that peristaltic motion of the arterial wall generates a 
“pumping” force that drives the net flow of CSF parallel to the direction of the pulse wave 
propagation. 

In this study, we apply the well-established fluid dynamic principles of peristalsis to study 
the nature of fluid flow in the PVS, aiming to bridge the gap between experimental observations 
and hypotheses. As previous studies of CSF flow in the PVS disagree on both the direction and 
the flow rates8–10, we started our calculations by revisiting the mechanism of peristaltic pumping 
using time-dependent fluid dynamic simulations with fluid particle tracking in a deforming domain. 
By emphasizing the mechanism of peristatic pumping, we aimed at providing a clear physical 
interpretation for our calculations. We then performed fluid dynamic simulations on more realistic 
models of the PVS. Our simulations suggest that peristalsis with physiologically-plausible 
pulsation cannot drive the experimentally-observed fluid flow. However, we found that a small, 
constant pressure gradient (of order 0.01 mmHg/mm) can account for the net forward movement 
observed experimentally. These results suggest that the observed directional movement of CSF 
in the PVS is generated by naturally occurring and/or experimenter-generated pressure 
differences, but not by arterial pulsations. 

Results 
 We first examine how peristaltic motion affects the flow of an incompressible fluid in a two-
dimensional tube. Consider a fluid-filled tube with deformable walls and no pressure difference 
across its two ends. When the position of the walls is fixed, there is no pressure gradient, and 
therefore no fluid flow (Fig 1a, 1b). When the walls move inward due to a peristaltic wave 
propagating to the right (Fig 1a), the fluid-filled domain deforms and the fluid is displaced. When 
the direction of the fluid flow is the same as the peristaltic wave, the motion is said to be 
anterograde – otherwise it is said to be retrograde. The flow in both directions is a result of the 
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fluid pressure distribution, shown in Figure 1b. The pressure is maximum at the location of the 
moving neck and is minimum at the two ends of the tube. Therefore, the fluid that is displaced by 
the wall is subject to the same pressure difference (∆𝑝𝑝) in either direction (∆𝑝𝑝𝑎𝑎  =  ∆𝑝𝑝𝑟𝑟, where the 
subscripts ‘a’ and ‘r’ denote the anterograde and retrograde flows, respectively). However, since 
the width of the tube (h) is smaller in one direction (ℎ𝑎𝑎  >  ℎ𝑟𝑟), there is more resistance for 
retrograde flow than anterograde flow (since flow resistance R scales with width of the tube 𝑅𝑅 ∝
1/ℎ3  for 2D flow, 𝑅𝑅𝑎𝑎  <  𝑅𝑅𝑟𝑟).  As a result of this difference in flow resistance, the anterograde flow 
is greater than the retrograde flow (flow rate,𝑄𝑄 =  ∆𝑝𝑝/𝑅𝑅,𝑄𝑄𝑎𝑎  >  𝑄𝑄𝑟𝑟). Thus, while peristalsis drives 
both anterograde and retrograde flows, a net flow in the direction of the peristaltic wave emerges 
(Video SV1). This example is a simplified version of peristalsis, where, the walls of the fluid-filled 
tube only contract. An example with a periodic contraction and expansion of the walls is 
demonstrated in figure S1 and Video SV2. 

It is important to bear in mind the difference between peristaltic transport of fluids and 
peristatic transport of solids. The textbook picture of peristalsis22,23 is derived from the transport 
of solid matter in the esophagus and the gastro-intestinal tract. When solid matter is transported 
by peristalsis, all of the material moves in the direction of the peristaltic wave (Fig 1c). This differs 
from the case of fluid transport by peristalsis, which generates both anterograde and retrograde 
flows (Fig 1b, S1). Moreover, the peristaltic transport of solids is independent of the magnitude of 
wall motion and the length of the tube. In contrast, the nature of fluid flow in a tube driven by 
peristaltic motion of the walls is highly depended on the magnitude of both wall motion and tube 
length24, which we will demonstrate in the results. This understanding of the mechanism of 
peristaltic transport of fluids is crucial to interpreting the results of fluid dynamic models of the 
PVS. The assumptions of the shape, size and the deformation of the PVS may vary between the 
models, but the mechanism of peristaltic transport remains the same. 

Peristaltic pumping requires unphysiologically large amplitude pulsations for meaningful 
fluid flows 
 To understand the relation between arterial wall movement and fluid movement in the 
PVS, we created a model of peristaltic pumping. In our model, the geometry of the PVS is taken 
to be cylindrically symmetric, with the artery centered within the PVS (Fig 2a). While the geometry 
of the fluid domain is simplified, the inner and outer radii are based on realistic values (see 
methods). We then imposed a sinusoidal peristaltic wave on the arterial wall, while keeping the 
outer wall of the PVS fixed, effectively making the brain tissue rigid. In order to capture the whole 
peristaltic wave, the length of the PVS used in the simulation was equal to one wavelength (λ) of 
the peristaltic wave (see methods). Since we are interested in studying the pumping generated 
by arterial wall movement alone, we used periodic boundary conditions at the axial ends of the 
PVS. This is equivalent to studying flow driven by peristalsis with no additional pressure 
differences8,14,15,25. We tracked the motion of particles at the center of the PVS. 

Peristaltic pumping of fluid is a result of lower flow resistance for anterograde flow and 
higher resistance for retrograde flow (see Fig 1 and Fig 2b). This explains the fluid velocities 
observed with respect to the arterial wall position and wall velocity (Fig 2c,2d). The phase 
difference between the arterial wall velocity and the downstream fluid velocity (axial velocity, 𝑣𝑣𝑧𝑧) 
remained the same throughout the length of the domain. Flow resistance (𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) of a tube with 
an annular cross-section decreases with approximately the fourth power  of the internal radius26. 
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For slow, laminar flows like those in the paravascular space, the flow resistance of a tube with 
annular cross-section is given by the equation: 

𝑄𝑄 =  
−𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄
𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

;   𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  =  
8𝜇𝜇
𝜋𝜋
�𝑟𝑟24  −  𝑟𝑟14  −  

(𝑟𝑟22  −  𝑟𝑟12)2

𝑙𝑙𝑙𝑙(𝑟𝑟2 𝑟𝑟1⁄ )
�
−1

                                          (1) 

Where Q is the flow rate, p is the pressure and µ is the dynamic viscosity of the fluid. The 
internal and external radii of the annular region are given by r1 and r2 respectively. For our 
calculations, Reynolds numbers range from 0.13 to 10.67, well within the laminar flow regime. 
Given the strong dependence of fluid resistance on the diameter, it follows that the amplitude of 
pulsations (the change in internal radius) should have a large effect on the flow resistance 
changes and therefore the pumping generated by peristaltic motion. 

We examined the relation between pulsation amplitude and the trajectory of the fluid 
particles in the PVS. To put our results in the context of experimental findings, the typical half 
wave amplitude of heartbeat pulsations is 0.5-2% of arterial diameter6,7. Our simulations show 
that such small amplitude pulsations generate little difference between forward and backward flow 
resistance, which resulted in oscillatory fluid flow with minimal net anterograde flow (Fig 2e). 
These simulations show that the mean downstream velocity for fluid in the PVS driven by 
heartbeat pulsations should be approximately 2 orders of magnitude smaller than the oscillatory 
velocity. However, the kind of fluid particle trajectories reported by Bedussi et al.6 and Mestre et 
al.7 are very different from the ones simulated in Fig 2e. The fluid trajectories in the PVS observed 
in both studies are more similar to the ones shown in Fig 2f, where the net anterograde motion of 
the fluid is of the same order as the oscillatory motion. This kind of fluid motion would require non-
physiological amplitudes arterial pulsations, with half wave amplitudes around 25% of the arterial 
radius. To better understand the effect of pulsation amplitude on fluid flow, we examined the 
relation between the pulsation amplitude and the ratio of mean flow speed (or average 
anterograde velocity) to oscillatory velocity (difference between peak anterograde velocity to peak 
retrograde velocity) (Fig 2g). These result show that heartbeat-driven pulsations in an idealized 
model are too small to explain the directed flow of CSF seen in vivo. 

While the shape of the PVS in our model was simplified, the model still provides important 
generalizable insights into the mechanism of peristalsis. Specifically, the model helps us 
understand the relation between the movement of the arterial wall and the flow of fluid. We found 
that the radial wall velocity and the anterograde fluid velocity are always out of phase (by 270o, 
Fig 2c,2d), and that the kind of fluid trajectories observed in vivo would require large, non-
physiological amplitudes for arterial pulsations. Next, we examined if these results held for a 3-
dimensional model of peristalsis with a realistic shape of the PVS and pulse waveform. 

Paravascular flow measurements are inconsistent with peristaltic pumping  
 To test if fluid flow is influenced by the details of the shape of the PVS or the waveform of 
heartbeat driven pulsations, we created a  model with a realistically-sized and shaped PVS, with 
a cardiac waveform drawn from experimental data7 (Fig 3a,b). The outer wall of the PVS was 
assumed to be fixed, and the length of the domain was set to be equal to one wavelength (λ) of 
the peristaltic wave. We use a no pressure (traction) boundary condition at the boundaries in 
place of the periodic boundary condition used for the axisymmetric simulations. This is done to 
better estimate the pressure changes in the PVS (Fig 3e).  
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The mean flow speed (anterograde velocity time-averaged over a complete cycle) of fluid 
particles at the centerline of the PVS in our simulation was 102.1 µm/s. However, this was 
accompanied by oscillatory fluid velocities of approximately 30,000 µm/sec, well over a hundred 
times the mean flow speed (Fig 3c, 3d). Moreover, in our simulations the fluid downstream velocity 
and the arterial wall velocity were out of phase, whereas these velocities were in phase for in vivo 
measurements by both Bedussi et al.6 and Mestre et al.7 (Fig 4d). Viewed together with the results 
of the axisymmetric simulations, our simulations suggest that the shape of the PVS and the 
waveform of heartbeat pulsations cannot pump CSF in a model with a simplified geometry of the 
PVS. 

These results show that a peristaltic pumping model is inconsistent with experimental 
findings, which suggests that there are some problems with the assumptions of the peristaltic 
pumping model. In the next section, we revisit these assumptions and attempt to match the results 
of the fluid dynamic calculations with experimental findings. 

Pressure differences, not arterial pulsations drive bulk fluid flow 
In order to better capture the geometry of the PVS, we made changes to our 3D model 

based on the anatomy of the brain, the subarachnoid space and cerebral vasculature.  We 
shortened the length of the PVS to 5 mm, and made the outer wall of the PVS move with the 
pulsations. Previous  peristaltic pumping models8,9,14,15 have set the length of the fluid chamber to 
be equal to one wavelength of the peristaltic wave. However, the wavelength of the peristaltic 
motion of arteries is considerably larger than the length of the middle cerebral artery (MCA), the 
proposed source of peristaltic pumping. With a peristaltic wave speed of 0.5-2 m/s27,28, and a 
heartbeat frequency of 6-10 beats/second in mice6,7,29–31, the wavelength of the peristaltic wave 
is between 50-160mm in mice, while the MCA is only 4-6 mm long in mice6,32,33. This means that 
the pulse wave travels so fast across the length of the PVS that the arterial wall moves in and out 
simultaneously and therefore there is no appreciable difference in the flow resistance for 
anterograde and retrograde flows (Fig S2). We calculated the fluid particle trajectories 1 mm from 
the distal end of the PVS segment (z = 4 mm), which captures the geometry of the surface of the 
brain where the flow measurements were made. This corrected the inconsistency between the 
phase of the fluid downstream velocity and the arterial wall velocity found in the peristaltic 
pumping model with a length of one pulsation wavelength (Figure S2). Our results are similar to 
the phase relation between arterial wall velocity and fluid velocity estimated by Asgari et al.10, who 
studied the flow driven by penetrating arterioles in a model with anatomically realistic dimensions. 

 Secondly, the fixing of the outer wall of the PVS in other models means that the brain 
tissue and the subarachnoid space that surround the PVS are rigid. This is not realistic because 
the brain tissue is very soft, with a shear modulus in the range of 1-8 kPa34–38 (7.5-60 mmHg) and 
the 80 mmHg  pressure changes (Fig 3e) predicted by the peristaltic pumping model will cause 
substantial deformations. To include the effect of the soft tissue, we moved outer wall of the PVS 
with the same frequency as the heartbeat driven pulsations (Fig 4b). We applied these small, 
pressure-driven deformations in the direction of the outward normal of the surface of the PVS, 
because pressure-like forces act along the outward normal of a surface. Since the mechanical 
properties of the subarachnoid space are mostly unknown39–42, we adjusted the amplitude of these 
deformations so that  the oscillatory fluid velocity matched that observed in vivo by Mestre et al.7  

 Our simulations suggest that the wall movement itself can only drive oscillations in fluid 
flow with negligible (0.007 µm/s) mean anterograde flow. The time course of fluid velocity from 
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our simulations and its relation to the arterial wall movement agrees very well with the measured 
values in both phase and magnitude (Fig 4d and 4e). The phase relation between the arterial wall 
velocity and the fluid velocity is a direct result of correcting the length of the PVS, while the 
magnitude of fluid velocity is corrected by including movement of the outer walls of the PVS in the 
simulation. However, the simulations suggest that arterial pulsations generate very little net 
anterograde flow with a time averaged downstream velocity of 0.007 µm/s (Fig 4f).   

Finally, we tested the possibility that small pressure differences across the ends of the 
PVS can drive the bulk flow observed in the experimental studies. We calculated the fluid flow 
through the PVS while varying the imposed pressure difference over a physiologically plausible 
range. We found that a very small pressure difference, 0.01 mmHg across the length of the PVS 
(5 mm), was sufficient to drive a mean downstream speed of 24.4µm/sec (Fig 4g), close to the 
mean flow speed observed in vivo7(Fig 4h). The pressure difference value was also found using 
equations derived in another recent theoretical study that estimated the flow resistance of 
paravascular spaces26. Such a small pressure difference is practically impossible to measure in 
live animals, due to the lack of instruments sensitive to such small changes43,44. The pressure 
differences could be normally present due to CSF production in the ventricles43 and drainage via 
meningeal lymphatic vessels45,46 and the cribriform plate47, or be generated by intracranial 
injections48,49 of the tracer spheres. We conclude that peristalsis cannot drive unidirectional fluid 
pumping in the PVS of cerebral arteries under physiological conditions and that the experimentally 
observed CSF flow in the PVS is probably due to pressure differences present in the system. 

Discussion 
 Peristatic pumping has been hypothesized to drive directed movement of cerebrospinal 
fluid in the paravascular space. In this study we test the “peristaltic pumping” hypothesis, by using 
simulations of fluid dynamics to understand what experimental measurements tell us about bulk 
flow. We started with simple models to provide a physical interpretation to the process of 
peristalsis of fluids and built more physiologically realistic models informed by the results of these 
models. We were able to improve upon previously published computational models aimed at 
studying the flow of CSF in the PVS8–10,25, using the detailed anatomical and physiological 
information from the experiments by Mestre et. al.7. This experimental data provided information 
about the shape of the PVS around cerebral arteries and the amplitude and waveform of the 
heartbeat driven pulsations, which we used in our modeling. The experiments also had detailed 
information on the oscillatory and anterograde flow of CSF in the PVS. Our simulations show that 
the cardiac pulsation of arteries is only capable of driving the oscillatory motion of CSF in the 
PVS, and not the unidirectional bulk flow. Rather, the experimentally observed unidirectional flow 
is likely to be driven by pressure differences in the system. 

 Our simulations point to two main reasons why arterial pulsations cannot drive 
unidirectional fluid flow in the PVS. First, direct measurement of cortical arteriole diameters in 
mice using two-photon imaging shows that the amplitude of the heartbeat-driven pulsations is 
small (1-4% peak to peak change in arterial diameter6,50,51). In humans, CT angiography has 
shown that pulsations drive only a maximum of 4-6%52,53 change in the volume of the MCA (2-3% 
change in diameter assuming a cylindrical geometry). Our calculations show that substantially 
larger cardiac pulsations (roughly 50% peak-to-peak change in diameter) are required to drive 
significant directed motion of the fluid relative to the oscillatory motion. Second, the peristaltic 
motion of arteries cannot drive unidirectional fluid flow because the length of the PVS is 
substantially less than the wavelength of the peristaltic wave. The total length of the MCA is 
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between 4-6 mm in mice6,32,33, while the wavelength of the peristaltic wave is between 100-1000 
mm (based on the pulse wave velocity of 1-5 m/s27,28 and a heart rate of 6-12 Hz29,30). This is over 
an order of magnitude difference between the length of the PVS and the wavelength of the 
peristaltic wave. In humans, the MCA is longer, (roughly 100 mm 54). However, while the pulse 
wave velocity, a function of arterial stiffness55,56, remains roughly the same in mice and 
humans57,58, the heartrate in humans is around 1-2 Hz, which makes the wavelength of the 
peristaltic wave 1-2 orders of magnitude higher than the length of the MCA in humans. Therefore, 
in mice as well as in humans, arterial pulsations are unlikely to drive unidirectional CSF flow. 

Based on the experimental evidence available, we speculate that two possible 
mechanisms that could drive CSF flow in the PVS, namely, CSF production in the choroid plexus 
and osmotic pressure differences across astrocytic end feet. CSF flow through the PVS and into 
the brain is severely affected in aquaporin-4 (AQP4) knockout  mice1,50. The AQP4 channel is 
selectively permeable to water61,62 and is present in the choroid plexus63 and the astrocytic 
endfeet1.  The deletion of the AQP4 gene could reduce CSF production and osmotic flow through 
astrocytic endfeet. It is possible that a combination of the two factors drive CSF flow since the 
osmotic concentration gradients and the CSF production rate are interrelated69.  Alternatively, the 
observed flow in the PVS might be an caused by the infusion rate of 1-2µl/min used in the 
experiments to study CSF flow6,7, which is 3-5 times the typical rate of CSF production rate in 
mice (0.38 µl/min43). The infusion rate used in these experiments is known to increase intercranial 
pressure1,44, as pointed out by Hladky and Barrand48. A detailed 3-D model of the whole brain with 
the PVS and the SAS, all modelled as poroelastic media70 would be needed to test the possibility 
of the observed flow being an artifact of the infusion. 

An important result of our simulations is that the paravascular spaces around pial 
arterioles provide a crucial pathway for fluid transport in the brain due to their low flow resistance. 
A very small pressure difference (0.01 mmHg, Fig 4g) across the length of the MCA (5 mm) can 
be sufficient to drive fluid through the PVS with a mean speed of ~20 µm/s. This is in stark contrast 
to the much less permeable brain tissue, where a pressure gradient of 1 mmHg/mm can only 
generate fluid velocities in the order of 0.010 µm/s59. However, the low flow resistance makes 
understanding the driving force for CSF movement in the PVS extremely difficult.  A pressure 
difference in the range of 0.01 mmHg  cannot be accurately measured with current instruments, 
which have a resolution of around 1 mmHg43,60. Moreover, invasive access of the skull probes 
through the skull severely affects the flow through the PVS50. 

Methods 
Model equations and boundary conditions 
 We use a standard time-dependent finite element method to solve the equations of fluid 
motion in the PVS. These equations are formulated to correctly account for the deformation of the 
PVS. Specifically, we write the equations in Arbitrary Lagrangian-Eulerian (ALE) coordinates (see 
appendix). As is well-known, ALE formulations are able to account for the deformation of the 
solution’s domain at the expense of having to determine an auxiliary motion typically referred to 
as the “mesh motion”71–73.  The governing equations for the fluid and the mesh movement are 
written in their weak, tensor form (see Appendix) and converted to their component form using 
Wolfram Mathematica. These component form equations are implemented in COMSOL 
Multiphysics (Burlington, MA) using the “Weak Form PDE” interface, where PDE stands for partial 
differential equation. Therefore, the overall solution scheme is our own, and COMSOL 
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Multiphysics simply provides a high-level integrated programming environment within which said 
scheme is implemented. 

 The fluid (CSF) velocity and pressure are governed by the incompressible Navier-Stokes 
equations (eq. M1 - M3). We solve for the fluid velocity (𝒗𝒗𝑓𝑓)  and pressure (𝑝𝑝𝑓𝑓) in the PVS as a 
function of time (t). In eq. M1, 𝜌𝜌𝑓𝑓and 𝝈𝝈𝑓𝑓 are the fluid’s mass density and Cauchy stress, 
respectively. In eq. M3, 𝜇𝜇𝒇𝒇 is the fluid’s dynamic viscosity. 

𝜕𝜕𝒗𝒗𝑓𝑓
𝜕𝜕𝜕𝜕

 +  �𝒗𝒗𝑓𝑓 .∇�𝒗𝒗𝑓𝑓   −  
1
𝜌𝜌𝑓𝑓
∇ ∙ 𝝈𝝈𝑓𝑓  =  𝟎𝟎                                                                 (𝑀𝑀1) 

∇.𝒗𝒗𝑓𝑓  = 0                                                                                          (𝑀𝑀2) 

𝝈𝝈𝑓𝑓  =  −𝑝𝑝𝑓𝑓𝑰𝑰 + 𝜇𝜇𝒇𝒇�∇𝒗𝒗𝑓𝑓  + (∇𝒗𝒗𝑓𝑓)𝑇𝑇�                                                               (𝑀𝑀3) 

  

The governing equation for the mesh motion is dictated by convenience and, where necessary, 
by the problem’s geometric constraints. In our problem, the deformation of the solution’s domain 
(PVS) is relatively mild and therefore we the mesh motion equation, with primary unknown given 
by the mesh displacement 𝒖𝒖𝑚𝑚, is chosen to be a linear elliptic model74, namely the Laplace 
equation (eq. M4): 

   
∇. (∇𝒖𝒖𝑚𝑚)  = 0                                                                                          (𝑀𝑀4) 

 We use no-slip boundary condition at the inner and outer walls of the PVS, i.e., fluid 
velocity is equal to the wall velocity in all simulations (eq. M5). For the axisymmetric simulations, 
the inner walls have a baseline radius of R1 and the outer walls have a fixed radius of R2. The 
movement of the inner walls is given by a travelling sinusoidal wave (eq. M6). There is no wall 
movement at the outer wall (eq. M7). The total length of the tube is taken equal to the wavelength 
(𝜆𝜆) of the peristaltic wave. Periodic boundary conditions are used at the two ends of the tube (eq. 
M8). To obtain a unique pressure solution, a global constrain is applied for the total pressure (eq. 
M9). 

        

at 𝑟𝑟 =  𝑅𝑅1 𝑎𝑎𝑎𝑎𝑎𝑎  𝑟𝑟 =  𝑅𝑅2,                    𝒗𝒗𝑓𝑓  =  
𝜕𝜕𝒖𝒖𝑚𝑚
𝜕𝜕𝜕𝜕

                                                               (𝑀𝑀5) 

at 𝑟𝑟 =  𝑅𝑅1,𝑢𝑢𝑚𝑚𝑚𝑚 =  ∅ 𝑅𝑅1𝑆𝑆𝑆𝑆𝑆𝑆 �
2𝜋𝜋
𝜆𝜆

 (𝑧𝑧 −  𝑐𝑐𝑐𝑐)�  , 𝑢𝑢𝑚𝑚𝑚𝑚 =  0                                         (𝑀𝑀6) 

at 𝑟𝑟 =  𝑅𝑅2 ,𝑢𝑢𝑚𝑚𝑚𝑚 =  0,                                                    𝑢𝑢𝑚𝑚𝑚𝑚 =  0                                         (𝑀𝑀7) 

𝒗𝒗𝑓𝑓�𝑧𝑧 = 0
 =  𝒗𝒗𝑓𝑓�𝑧𝑧 = 𝜆𝜆

 ;              𝑝𝑝𝑓𝑓�𝑧𝑧 = 0
 =  𝑝𝑝𝑓𝑓�𝑧𝑧 = 𝜆𝜆

                                                 (𝑀𝑀8) 

�𝑝𝑝𝑓𝑓  =  0                                                                                           (𝑀𝑀9) 

 In eq. M6-M7, 𝑢𝑢𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑚𝑚𝑚𝑚 are the r and z components of the mesh displacement (𝒖𝒖𝑚𝑚). 
∅  is the half wave amplitude of the peristaltic wave, as a fraction of the baseline diameter R1. c is 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990655doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990655
http://creativecommons.org/licenses/by-nd/4.0/


the speed of the peristaltic wave. The integration in equation M9 is performed over the entire 
computational domain. 

 For the 3D simulations presented in Fig 3 and 4, we created the cross section of the PVS 
to resemble the geometries observed in vivo7,26. The inner wall of the cross section is a circle of 
radius R1. The outer wall of the cross section is an ellipse with major axis R2 and minor axis 0.8R1. 
The intersection of the circle with the ellipse is smoothened with a fillet of radius 0.08R1. The 
cross-section can be divided into three regions. The three regions can be identified in Fig 4c. The 
inner walls of the PVS (the walls facing the arteries or the circular face) are shown in orange. At 
the inner walls, a dilation of the arterial wall will cause a deformation of the PVS in the direction 
opposite to the unit outward normal, 𝒏𝒏 (eq. M10). The outer walls of the PVS (wall facing the SAS 
or the brain tissue or the elliptical face) are shown with green arrows in Fig 4c. On the outer walls, 
the pressure is higher when the vessel dilates and lower when the vessel contracts (Fig 3e). 
Therefore, when the vessel dilates, the outer walls of the PVS deform in the direction of the 
outward normal, 𝒏𝒏 (eq. M11). We call the part of the wall between these two regions, the transition 
region (the fillet region shown with blue arrows in Fig 4c). Here, the displacement is smoothly 
transitioned using the step function available in COMSOL Multiphysics.  

at inner walls:  𝒖𝒖𝑚𝑚 =  −𝑎𝑎𝑎𝑎 [𝑐𝑐𝑐𝑐 −  𝑧𝑧]𝒏𝒏                                                          (𝑀𝑀10) 

at outer walls:  𝒖𝒖𝑚𝑚 =  𝜑𝜑 𝑎𝑎𝑎𝑎 [𝑐𝑐𝑡𝑡 −  𝑧𝑧]𝒏𝒏                                                         (𝑀𝑀11) 

 In equations M10 and M11, ‘an’ is a periodic function with a time period of 1/f, where f is 
the heartrate frequency. The waveform of ‘an’ is interpolated from the pulsation waveform 
reported by Mestre et al7 (Fig 3b, 4b). The value of  𝜑𝜑 (SAS displacement parameter) is 0 for the 
simulations presented in Fig 3 and Fig S2. For the simulations presented in Fig 4, the value of 𝜑𝜑 
is 0.368. 

 For the simulations shown in Fig 3, no traction was applied at the axial ends of the PVS 
(eq. M11-M12). This change was useful to understand the magnitude of pressure changes in the 
PVS (Fig 3e). 

at  𝑧𝑧 =  0,                         𝝈𝝈𝑓𝑓 .𝒏𝒏 =  𝟎𝟎                                                            (𝑀𝑀11) 

at  𝑧𝑧 =  𝜆𝜆,                         𝝈𝝈𝑓𝑓 .𝒏𝒏 =  𝟎𝟎                                                            (𝑀𝑀12) 

 

For the simulations shown in Fig 4, no traction is applied at the distal end of the PVS (z = 
La, where La is the length of the MCA). This is similar to equation M12. At the proximal, a pressure 
like traction is applied (eq. M13). The parameter 𝑝𝑝1 in equation M11 is the pressure difference 
across the length of the PVS, shown on the x-axis of Fig 4g. On the peripheral walls of the PVS, 
the fluid velocity is equal to the wall velocity (similar to eq. M5). 

at  𝑧𝑧 =  0,                  𝝈𝝈𝑓𝑓 .𝒏𝒏 =  −𝑝𝑝1𝒏𝒏                                                            (𝑀𝑀13) 

   

The Reynolds number for all the simulations is calculated using the formula for flow in a 
pipe (eq. M14). In equation M12, 𝐷𝐷ℎ is the hydraulic diameter, which is calculated using the area 
A and the perimeter P. Q is the flow rate. The Péclet number is calculated using the diffusion (D) 
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coefficient for Amyloid-beta in water (eq. M15).  𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 is the mean downstream speed of the fluid 
at the center of the PVS ( 𝑟𝑟 =  (𝑅𝑅1  +  𝑅𝑅2) 2⁄  ). 

𝑅𝑅𝑅𝑅 =  
𝜌𝜌𝑓𝑓 𝑄𝑄 𝐷𝐷ℎ
𝜇𝜇 𝐴𝐴

, 𝐷𝐷ℎ  =  4𝐴𝐴/𝑃𝑃                                                            (𝑀𝑀14) 

𝑃𝑃𝑃𝑃 =  
𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷ℎ
𝐷𝐷

                                                                             (𝑀𝑀15) 

The details about particle tracking in ALE are explained in the appendix. The particle 
tracking calculations and movies were made using Matlab® code. All the code for Mathematica, 
Comsol and Matlab are available to download on Github (https://github.com/DrewLab/Peristaltic-
pumping-of-CSF.git). 

Anisotropic non-dimensionalization 
 One of the major concerns when using finite element simulations to study flow in the PVS 
is the long and narrow geometry of the PVS. For example, the domain used for simulations 
presented in Fig 2 has a length of one wavelength of the peristaltic wave (116.7 mm or 116,667 
µm), which is nearly 3000 times the width of the PVS (40 µm). Simulating the geometry with these 
dimensions could cause a large number of elements, making it incredibly expensively to solve or 
create elements with very bad aspect ratios. To deal with this problem, we non-dimensionalized 
the equations with different scaling factors in the x, y (or r for axisymmetric simulations), and z 
directions. All the equations from the mesh coordinates (𝑿𝑿𝑚𝑚) are rewritten in these non-
dimensional coordinates (𝑿𝑿𝑐𝑐) (eq. M14). In equation M14, the coordinates are written in the 
conventional order, i.e, (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) for Cartesian and (𝑟𝑟,𝜃𝜃, 𝑧𝑧) for cylindrical coordinates. 

   𝑿𝑿𝑚𝑚  =  𝐿𝐿𝑜𝑜  �
1 0 0
0 1 0
0 0 𝑔𝑔3

�𝑿𝑿𝑐𝑐                                                                           (𝑀𝑀14)    

The characteristic length, 𝐿𝐿𝑜𝑜, was chosen to be equal to the arterial wall radius (R1). The 
scaling factor, 𝑔𝑔3, was chosen so that the axial (z) length of the domain in the non-dimensionalized 
coordinates is 10. This resulted in a scaling factor (𝑔𝑔3) value of ~400 in all the simulations. To 
verify the validity of this choice of parameter, we plotted the z and r components of the velocity 
gradient in the mesh coordinates and non-dimensional coordinates (Fig S3). In the mesh 
coordinates, the velocity gradients (for the radial and the axial component) were nearly three 
orders of magnitude higher in the radial direction compared to the axial direction. Our choice of 
scaling factor results in velocity gradients of similar magnitude, which means that for meshes of 
aspect ratio ~1 in the non-dimensionalized coordinates, the approximation and interpolation errors 
are rather contained (for low Reynold’s number flows). A similar line of reasoning is used to 
minimize approximation and interpolation errors for anisotropic adaptive meshing for flow 
simulations75–77.  

 

Model parameters 
 All the parameters were taken to match the values observed in vivo in mice. The 
dimensions of the cross-section of the PVS and the pulsation waveform of the arteries were taken 
from Mestre et al.7, to emulate their experimental results.  All the parameters used in the model 
are listed in table 1. 
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Table 1 | Parameters used in simulations 

Parameter Name Symbol Value Unit Source 

Arterial radius R1 30 µm 7 

PVS width wd 40 µm 7 

PVS outer radius R2 70 µm R1 + wd 

CSF viscosity µf 0.001 Pa.s 78,79 

CSF Density ρf 1000 kg/m3 78,79 

Pulsation Frequency f 8.67 Hz 7 

Pulse wave speed c 1 m/s 27,28 

Pulse wave wavelength λ 0.13 m c/f 

MCA Length La 5 mm 6,32,33 

Diffusion coefficient D 1.4x10-6 cm2/s 80,81 
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Fig 1 | Mechanism of forward transport (pumping) driven by peristalsis in fluids and solids. 

a. The movement of fluid (the dots represent fluid particles) driven by peristaltic compression of the walls 
of a 2D tube. The fluid movement in this figure is calculated using the Navier-Stokes equation with zero 
traction (pressure) at the two ends of the tube.  

b. The pressure field in the tube in the deformed state. The fluid is displaced by the moving walls and this 
creates high pressure at the neck of wall movement. The pressure difference is same for retrograde and 
anterograde flow. However, the resistance is large posterior to the site of contraction.  Compared to 
anterograde flow, retrograde flow needs the fluid to flow through a narrower tube. This results in a greater 
anterograde flow (magenta dots in a) compared to retrograde flow (green dots in a).  

c. The movement of a solid bolus (yellow ellipse) driven by peristaltic motion of the walls of a 2D tube. The 
contact forces between the moving walls and the solid bolus are responsible for forward transport. The 
position of the solid bolus with respect to the dotted lines shows that the solid is moved forward. 
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Fig 2 | Heartrate pulsations drive oscillatory, but not directional flow. Large non-physiological pulsations are 
required for appreciable peristaltic pumping. 

a. Schematic of the axisymmetric peristatic pumping model. The arterial wall undergoes peristatic 
movement, while the outer wall of the PVS is fixed. The length of the PVS is taken as one wavelength of 
the peristaltic wave (λ) with periodic boundary conditions at the two axial ends. 

b. Schematic of the fluid motion during periodic peristalsis. The fluid displaced by the moving wall should 
move with lower resistance along the direction of the peristaltic wave than in the opposite direction. This 
difference in flow resistance results in net forward pumping. 

c. The magnitude of the axial velocity is denoted by color, with arrows showing the direction. The half-wave 
amplitude of the peristaltic wave is 0.8% of the vessel radius. The deformations are scaled by a factor of 
50 in the figure to clearly show the arterial wall movement. 

d. The plots show the relative phase between arterial wall velocity and the centerline fluid velocity at the 
same axial (z) location (midpoint, z = λ/2). There is a 270o phase difference between the wall velocity and 
fluid velocity.  

e. The trajectory (in z) of a fluid particle at the center of the PVS, where the amplitude of the peristaltic wave 
is similar to heartbeat driven pulsation6,7 (0.8% peak-to-peak change in arterial radius). The flow is mostly 
oscillatory with very little unidirectional movement.  

f. The trajectory (in z) of a fluid particle at the center of the PVS, where the amplitude of the peristaltic wave 
is unrealistically large (50% peak-to-peak change in arterial radius). This trajectory with appreciable 
unidirectional movement looks similar to experimental results6,7.  

g. Plot showing the ratio of mean flow speed (average unidirectional flow velocity) to oscillatory velocity 
(peak velocity change in a cycle) as a function of the amplitude of the peristaltic wave. The shaded region 
shows the normal amplitude of pulsation cerebral arteries (1-4% of arterial radius peak-to-peak). Note that 
in this range, the oscillatory velocity is ~ 2 orders of magnitude higher than the pumping velocity. 
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Fig 3| Simulations of arterial pulsations in a model with an elliptic PVS show that observed fluid flows are 
inconsistent with a peristaltic pumping mechanism.  

a. The 3D geometry of the PVS used in our simulations replicates the PVS geometry observed in vivo in 
mice. The figure in top-left is taken from Mestre et al.7 and the figure on the bottom-right shows the 3D 
geometry used in our calculations. 

b. The dimensions and boundary conditions used in 3D fluid dynamics simulations. The wall movement on 
the arterial side (orange) is given by a travelling wave with a realistic waveform observed in vivo in mice7 
(inset). The wall on the brain tissue side is fixed (green). The parameters (R1, R2, λ etc are given in Table 
1). 

c. Plots showing the arterial wall velocity and the centerline velocity of the fluid taken at the same axial (z) 
location. While the wall velocity profile and magnitude are very similar to what was observed in vivo7, the 
oscillatory fluid velocity is ~1000x higher than the values observed in vivo6,7. Moreover, the peak fluid 
velocity is not in phase with the wall velocity. These discrepancies were predicted by our simplified model 
(Figure 2). 

d. The colors show axial velocity profile at the mid-section of the PVS (XZ plane at y=0) throughout the 
cardiac cycle. Arrows are provided to make the interpretation of flow easier. The fluid velocity profile agrees 
with our expectations from the mechanism of peristalsis (Fig 2b) and our simplified model (Fig 2c). The 
deformations are increased by a factor of 50 in post-processing to clearly show the arterial wall movement. 

e. Corresponding pressure profile at the mid-section of the PVS (XZ plane at y=0) throughout the cardiac 
cycle. The deformations are scaled by a factor of 50 in post-processing to clearly show the arterial wall 
movement. 
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Fig 4| A small, constant pressure gradient can explain directed fluid movement in vivo. 

a. Schematic of the model. The length of the PVS is set to 5 mm to match the length of the MCA in mice 
(4-6mm6,32,33). An additional pressure difference between the inlet and outlet is applied. 

b. The displacement of the arterial wall (orange) and the PVS wall (green) used in the simulation. The 
displacement is given in the direction of the surface normals shown in c. 

c. Positive displacement direction at a cross-section of the PVS, this is the direction of displacement for the 
plots shown in b. The Inner wall is shown in orange and the outer wall is shown in green. The displacement 
changes in amplitude and direction from the inner wall to the outer wall. This transition is carried out using 
the smooth, step function in COMSOL Multiphysics. The changing direction and length of the blue arrows 
indicates the smooth transition. 

d. Plot showing arterial wall velocity and oscillations in fluid velocity measured in vivo. Adapted from Mestre 
et al. 7 

e. Plot showing arterial wall velocity and oscillations in downstream fluid velocity our simulation matches 
with those in d. 

f. Plot of the trajectory of a fluid particle in the z direction shows that there is very little pumping by arterial 
wall movement.  

g. Plot showing the relation between an applied pressure difference across the ends of the PVS and the 
mean anterograde flow speed. An additional 0.01 mmHg pressure difference across the PVS is required to 
achieve a mean flow speed of 24.4 μm/s, similar to the mean flow speeds observed in vivo (h). 

h. Mean flow speed in the PVS measured in vivo. Adapted from Mestre et al. 7  
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