

1 Targeted mutagenesis of $\Delta 5$ and $\Delta 6$ fatty acyl
2 desaturases induce multiplex-mutagenesis and
3 lipogenesis in Atlantic salmon (*Salmo salar*)

4
5 Yang Jin¹, Alex K. Datsomor², Rolf E. Olsen², Jon Olav Vik³, Jacob S.
6 Torgersen⁵, Rolf B. Edvardsen⁴, Anna Wargelius⁴, Per Winge², Fabian
7 Grammes¹⁵

8
9 ¹Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences,
10 N-1432, Aas, Norway

11 ²Norwegian University of Science and Technology, Department of Biology, Trondheim,
12 N-7491, Norway

13 ³Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food
14 Science, N-1432, Aas, Norway

15 ⁴Institute of Marine Research, N-5817, Bergen, Norway.

16 ⁵AquaGen AS, Post box 1240, Torgard, N-7462, Trondheim, Norway

17

18

19 **Abstract**

20

21 With declining wild fish populations, farmed Atlantic salmon (*Salmo salar*) has gained
22 popularity as a source for healthy long-chain highly unsaturated fatty acids (LC-HUFA)
23 including 20:5n-3 and 22:6n-3. However, the introduction of plant-based oil in fish diets has
24 reduced the content of these beneficial LC-HUFA. The capability of biosynthesis of
25 LC-HUFAs depends on fatty acids supplied in diets and the genetic potential residing in the
26 fish. Key proteins involved in LC-HUFA synthesis in salmon include fatty acid desaturases 2
27 (Fads2). In a recent study we used CRISPR/Cas9 to generate two F0 mutant strains of salmon,
28 1) $\Delta 6abc/5^{Mt}$ with mutations in $\Delta 5fads2$, $\Delta 6fads2-a$, $\Delta 6fads2-b$ and $\Delta 6fads2-c$ genes, and 2)
29 $\Delta 6bc^{Mt}$ with mutations in $\Delta 6fads2-b$ and $\Delta 6fads2-c$ genes. The CRISPR mutated salmon
30 (crispants) had reduced levels of LC-HUFA and expression of targeted *fads2* genes. In present
31 study we apply whole transcriptome analysis on these *fads2* crispants. Our purpose is to
32 evaluate the genetic mosaicism in *fads2* crispants and the effect these mutations had on other
33 lipid metabolism pathways in fish. Both $\Delta 6abc/5^{Mt}$ and $\Delta 6bc^{Mt}$ crispants demonstrated high
34 percentage of indels within all intended target genes, though different indel types and
35 percentage were observed between individuals. Skipping of a CRISPR-targeted exon was
36 observed in $\Delta 6fads2-a$ gene of $\Delta 6abc/5^{Mt}$ salmon. The $\Delta 6abc/5^{Mt}$ fish also displayed several
37 disruptive indels which resulted in over 100 differentially expressed genes (DEGs) enriched in
38 lipid metabolism pathways in liver. This includes up-regulation of *srebp1* genes as well as
39 genes involved in fatty acid *de-novo* synthesis, fatty acid β -oxidation and lipogenesis. Both

40 *elovl5* and *elovl2* genes were not changed, suggesting that the genes were not targeted by
41 Srebp1. The mutation of $\Delta 6bc^{Mt}$ surprisingly resulted in over 3000 DEGs which were enriched
42 in factors encoding genes involved in mRNA regulation and stability.

43

44 1. Introduction

45

46 Atlantic salmon (*Salmo salar* L.) is one of the most beneficial fish species for human
47 consumption since it contains high amounts of long-chain highly unsaturated fatty acids
48 (LC-HUFA) such as docosahexaenoic acid (22:6n-3, DHA), eicosapentaenoic acid (20:5n-3,
49 EPA) and arachidonic acid (20:4n-6, ARA). The high LC-HUFA content in farmed salmon
50 originates mainly from dietary inclusions of marine fish oil and fish meal. However, traditional
51 marine fisheries are exploited to its maximal level and with increasing volume of salmon
52 production, dietary marine oil and meal sources have been gradually diluted over the past
53 decades. Plant oil are used to substitute marine oils in diet, with an increasing levels from 0%
54 of total lipids in 1990 to 19.2% in 2013 [1]. This has resulted in a reduction of LC-PUFA levels
55 in salmon flesh since plant oil do not contain LC-PUFA [2].

56

57 Salmon are capable of synthesizing LC-HUFA through elongation and desaturation of
58 α -linolenic (18:3n-3) and linoleic (18:2n-6) acids, and the synthesis is often increased when the
59 fish are given plant oil diet with low LC-HUFA [3]. This explains the fact that salmon can
60 tolerate partially substitution of fish oil with plant oil without negative impact on growth rate,
61 feed conversion or any histopathological lesions [4]. However, the synthesized LC-HUFA in
62 salmon is still not enough to compensate for the reduced LC-HUFA level caused by inclusion
63 of plant oil in diet [2]. This has reduced the nutritional value of salmon for human
64 consumption. One way to solve this is to improve the capacity of LC-HUFA synthesis in
65 salmon to produce higher amounts of LC-HUFA when fed a normal plant oil diet. This
66 however, requires a better understanding of the regulation of genes involved in LC-HUFA
67 synthesis.

68

69 The pathways of LC-HUFA synthesis in salmon involves 4 elongases encoded by *elovl2*,
70 *elovl4*, *elovl5a* and *elovl5b* and 4 desaturases encoded by $\Delta 5fads2$, $\Delta 6fads2-a$, $\Delta 6fads2-b$ and
71 $\Delta 6fads2-c$. All 8 genes have been cloned and functionally characterised through heterologous
72 expression in yeast (*Saccharomyces cerevisiae*) [5, 6]. Both *elovl5a* and *elovl5b* are mainly
73 involved in elongating C₁₈ and C₂₀ fatty acids, while *elovl2* and *elovl4* are involved in
74 elongating C₂₀ and C₂₂ [7, 8, 6]. All four *fads* genes in salmon are homologs to the human
75 *FADS2* gene. In salmon they have separate functions where double bonds are introduced at C5
76 ($\Delta 5fads2$) or C6 ($\Delta 6fads2-a$, $\Delta 6fads2-b$ and $\Delta 6fads2-c$) from the carboxyl end [8, 9]. Feeding
77 of plant oil often leads to up-regulation of both *elovl* and *fads2* genes in salmon, which is likely
78 due to the low LC-HUFA content in the diet [10–13].

79

80 In addition to the LC-HUFA synthesis genes, many other genes involved in fatty acid *de-novo*
81 synthesis, fatty acid oxidation and cholesterol biosynthesis are also differentially expressed

82 after feeding plant oil [10–13]. It is difficult to conclude the reason for the differential
83 expression of lipid metabolism genes since plant oils are devoid of cholesterol and LC-HUFA
84 and contains high amount of C₁₈ PUFA precursors and phytosterols compared to fish oil
85 [14–16]. In a recent study we disrupted LC-HUFA synthesis pathway in salmon by mutating
86 *elovl2* gene using CRISPR/Cas9 technology [17]. In addition to the decreased DHA content in
87 mutant fish, we have identified up-regulation of *fads2* genes as well as several genes involved
88 in fatty acid biosynthesis and lipogenesis [17]. This suggests a systemic change of lipid
89 metabolism regulation in response to the disruption of LC-HUFA synthesis in salmon.
90

91 CRISPR/Cas9 technology has recently been used in salmon to edit genes and generate mutants
92 [17–20]. Both guide RNA (gRNA) and Cas9 mRNA are injected to one-cell stage salmon
93 embryos to induce a targeted double-strand break, followed by non-homologous end joining
94 (NHEJ) which generates random insertions and deletions (indels) at the target sites that can
95 leads to a truncated protein. In salmonids, the application. The studies of CRISPR/Cas9 edited
96 salmon have so far been done on the F0 generation because the fish has a long maturation
97 period of 2-4 years. As a mosaic pattern of mutations forms in F0 crispant salmon, which
98 translates into multiple alleles in the fish [17].
99

100 We have recently used CRISPR/Cas9 to mutate *fads2* genes in salmon which resulted in
101 down-regulation of targeted genes and lower DHA and EPA contents in tissues [21]. In present
102 study we aimed to further characterize transcriptional regulation of lipid metabolism in
103 *fads2*-mutated salmon by comparing its transcriptomes to wildtype fish. Our study also seeks
104 to provide detailed insights on the effect and distribution of genetic mosaicism in salmon
105 individuals after mutation of *fads2* genes.
106

107 2. Methods

108 2.1 Generation of CRISPR/Cas9-mediated mutated salmon and feeding experiment
109

110 The generation of CRISPR/Cas9-mediated mutated salmon eggs and the corresponding
111 feeding trial was previously published in [21]. In brief, two types of *fads2* mutants were
112 generated with CRISPR/Cas9. Both times a single CRISPR guide RNA (gRNA) was used to
113 target different combinations of *fads2* genes simultaneously: A $\Delta 6abc/5$ -mutated ($\Delta 6abc/5^{Mt}$)
114 salmon strain was generated using a gRNA targeting $\Delta 6fads2-a$ (NCBI Gene ID 100136441),
115 $\Delta 6fads2-b$ (100329172), $\Delta 6fads2-c$ (106584797) and $\Delta 5fads2$ (100136383). A $\Delta 6bc$ -mutated
116 ($\Delta 6bc^{Mt}$) salmon strain was generated targeting $\Delta 6fads2-b$ and $\Delta 6fads2-c$. Both strains were
117 co-injected with a gRNA targeting the *slc45a2* gene, involved in melanin synthesis [18]. Target
118 sequences of gRNAs were published in Datsomor *et.al*, 2019.
119

120 The feeding trial was performed on Atlantic salmon parr of approximate 85 ± 25 g for
121 $\Delta 6abc/5^{Mt}$ salmon, 104 ± 25 g for $\Delta 6bc^{Mt}$ salmon, and 176 ± 34 g for wildtype controls (WT) at
122 the Institute of Marine Research (Matre, Norway). Fish were initially fed a standard
123

124 commercial diet until start of the experiment. A total of six experimental tanks were used with
125 a common-garden approach, each containing 18 fish consisting of 6 Pit-tagged fish of the
126 $\Delta 6abc/5^{Mt}$, $\Delta 6bc^{Mt}$ and WT. Three tanks were then fed a plant oil diet containing 5%
127 LC-HUFA of total fatty acids in diet, while the remaining three tanks were fed a fish oil diet
128 with 20% LC-HUFA. The fatty acids composition of the diets was shown in detail in [21].
129 After 54 days of feeding, fish under plant oil diet reached 203 ± 51 g for $\Delta 6abc/5^{Mt}$ salmon, 281
130 ± 52 g for $\Delta 6bc^{Mt}$ salmon and 250 ± 62 for WT, while the fish under fish oil diet reached $171 \pm$
131 36 g, 191 ± 69 g and 241 ± 47 g for the three groups respectively. Liver and muscle tissues from
132 6 fish per treatment were then sampled and tissues were flash frozen on dry ice and
133 subsequently stored at -80°C .

134

135 2.2 AmpliSeq

136

137 To confirm CRISPR/Cas9-induced mutations, AmpliSeq was conducted according to the
138 Illumina protocol (16S Metagenomic Sequencing Library Preparation # 15044223 Rev. B).
139 DNA was isolated from selected individuals from both liver and muscle using DNeasy blood
140 and tissue kits (Qiagen, Hilden, Germany). Primers were designed to specifically amplify the
141 regions around the CRISPR gRNA target sites (Table 1). For each sample the amplicons were
142 generated in singleplex reactions, pooled and then purified using AMPure beads before
143 running index-PCR using the Nextera XT Index Kit (Illumina, San Diego, CA, USA).
144 AmpliSeq libraries were subsequently normalized before sequencing the libraries as 300bp
145 paired-end reads on Illumina MiSeq (Illumina, San Diego, CA, USA) at Centre of Integrative
146 Genetics (CIGENE, Ås, Norway). Raw .fastq reads were quality trimmed using *cutadapt* [22]
147 before aligning them to the salmon genome ICSASG_v2
148 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000233375.1/) using *bwa mem* [23] and saving
149 files in .bam format. For each sample the proportion of indels for each base in a 25bp window
150 around the target sites was determined using the python3 *coverage.py*
151 (<https://gitlab.com/fabian.grammes/crispr-indel>). Additionally we predicted the effect of each
152 indel on the main transcript/protein using *SnpEff* [24].

153

154 Table 1: CRISPR gRNA target sequences and AmpliSeq primer sequences.

CRISPR gRNA	Target Gene	CRISPR targets (5'->3')*	AmpliSeq primer sequences
Delta6abc/5	$\Delta 6fads2-a$	GGCACCGACAGAGCCCAGCC <u>AGG</u> *	Forward (5'->3'): TTTGTAGGACGCATTGTCGC Reverse (5'->3'): AGATGACACACTACTTTCTAGGAG
Delta6abc/5	$\Delta 6fads2-b$	GGCACCGACAGAGCCCAGCC <u>AGG</u> *	Forward (5'->3'): CCCGGGTCCCTACCTAAACCTA Reverse (5'->3'): CTCCTCCCCCTCATCAGGTGAC
Delta6abc/5	$\Delta 6fads2-c$	GGCACCGACAGAGCCCAGCC <u>AGG</u> *	Forward (5'->3'): GAGACGCTCTAGGCTTCACA Reverse (5'->3'): TCCCAGCGGTTGGATCATT
Delta6bc	$\Delta 6fads2-b$	* <u>CCAAGGGTGGCGTGGTTGGCCC</u>	Forward (5'->3'): TGATCAAACCGCTGGAAAT Reverse (5'->3'): ACGGTGTGAGTGGAGCAGAG
Delta6bc	$\Delta 6fads2-c$	* <u>CCAAGGGTGGCGTGGTTGGCCC</u>	Forward (5'->3'): AGAGTCCATTCCCAGGACGAA Reverse (5'->3'): ACAGACTGGACAGAGCGTAG

Slc45a2	slc45a2	GGGGAACAGGCCGATAAGACT <u>GGG</u> *	Forward (5'->3'): TGTATGAGCTACAGACAGGTGG Reverse (5'->3'): AGGGGCTCTACTTCGTAGGAT
---------	---------	------------------------------------	---

155 Forward overhang: 5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG□[sequence]

156 Reverse overhang: 5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG□[sequence]

157 * Underlined trinucleotides are the CRISPR protospacer adjacent motif (PAM) sites

158 [‡]The CRISPR target sites was published in Datsomor *et.al*, 2019

159

160 2.3 RNA extraction and library preparation

161

162 Total RNA was extracted from liver of individual fish by using RNeasy Plus Universal Mini kit
163 (Qiagen), according to manufacturer's instruction. RNA concentration and quality were
164 assessed by Nanodrop 8000 (Thermo Scientific, Wilmington, USA) and Agilent 2100
165 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All samples had RIN values >8.5.
166 RNA-seq libraries were prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina).
167 The libraries were subsequently sequenced using 100bp single-end high-throughput mRNA
168 sequencing (RNA-seq) on an Illumina Hiseq 2500 (Illumina) at Norwegian Sequencing Centre
169 (Oslo, Norway).

170

171 2.4 Data analysis and statistics

172

173 Read sequences were processed using the *bcbio-nextgen* pipeline
174 (<https://github.com/bcbio/bcbio-nextgen>). In brief reads were aligned to the salmon genome
175 (ICSASG_v2) using *STAR* [25]. The resulting .bam files were subsequently used to generate i)
176 raw gene counts using *featureCounts* (v1.4.4) [26] using the NCBI salmon genome annotation
177 (available for download at http://salmonbase.org/Downloads/Salmo_salar-annotation.gff3). ii)
178 exon counts using *DEXSeq* (dexseq_count.py) [27]. In addition reads were mapped directly to
179 the transcriptome using *Salmon* (v0.10.2) [28]. Raw fastq files and raw gene counts table are
180 publicly available under the accession: E-MTAB-8319 at the ArrayExpress Archive
181 (<https://www.ebi.ac.uk/arrayexpress/>).

182

183 Expression analysis of the genes was performed using R (v3.4.1). Only genes with a minimum
184 counts level of at least 1 count per million (CPM) in 75% of the samples were kept for further
185 differential expression analysis (DEA). DEA was performed between samples from two
186 factors (genotype and diet), using generalized linear model (GLM) method in R package edgeR
187 [29]. The present study focus on three contrasts, *Δ6abc*/5-mutated salmon *versus* WT fed plant
188 oil diet, *Δ6abc*/5-mutated salmon *versus* WT fed fish oil diet, and WT salmon fed plant oil
189 *versus* fish oil diet. Genes with a false discovery rate (FDR), an adjusted *p* value (*q*) <0.05 and
190 absolute log2 fold change (|Log2FC|) >0.5 were considered to be differentially expressed genes
191 (DEGs) between the two test conditions. Subsequently, a KEGG ontology enrichment analysis
192 (KOEAs) was conducted using same package edgeR. Hypergeometric test was applied based on
193 number of DEGs compared to total genes annotated to each KEGG pathway, and differences
194 were considered significant when *p* <0.005. The R code which used to generate DEA and

195 KOEA was publicly available at Fairdomhub (<https://fairdomhub.org/investigations/242>). All
196 figures were made by using R package ggplot2 [30].
197

198 **3. Result and discussion**

199

200 *3.1 CRISPR/Cas9 induced mutations*

201

202 The two strains of Atlantic salmon carrying CRISPR/Cas9-mediated mutations were generated
203 as described earlier [21]. In both strains CRISPR/Cas9 mediated mutations were induced using
204 a single CRISPR gRNA targeting multiple genes (Figure 1A). The gRNA of $\Delta 6abc/5^{Mt}$ salmon
205 targeted $\Delta 6fads2-a$, $\Delta 6fads2-b$, $\Delta 6fads2-c$ and $\Delta 5fads2$ genes, while the gRNA of $\Delta 6bc^{Mt}$
206 targeted $\Delta 6fads2-b$ and $\Delta 6fads2-c$. Both $\Delta 6abc/5$ and $\Delta 6bc$ mutant salmon were co-injected
207 with a CRISPR gRNA targeting *slc45a2* which induces an albino phenotype and served as
208 visual control in our experiment.
209

210

211 CRISPR/Cas9-induced structural mutations at the *fads2* as well as the *slc45a2* genes of fish
212 from both $\Delta 6abc/5^{Mt}$ and $\Delta 6bc^{Mt}$ strains were confirmed by using AmpliSeq. All fish injected
213 with CRISPR/Cas9 carried structural variants at the respective gRNA target sites (Figure 1 B).
214 For all individuals from both CRISPR strains we observed a high degree of mosaicism at each
215 of the respective gRNA target sites (Figure 1B). This suggests that Cas9-induced editing
216 continues after one-cell stage of the embryos. In order to better understand the consequences of
217 the different structural variants on a phenotypic level, we predicted variant effects using
218 SnpEff and summarised the results according to the impact category (Figure 1C). The majority
219 of structural variants across all individuals were predicted to have “high” impact, meaning to
220 have a likely disruptive effect on the protein function. Nevertheless, our analysis also showed
221 that many of the individuals from the two CRISPR strains still carried a considerable amount of
222 the WT genotype (non-CRISPR mutated). Therefore, we believe it is more correct to consider
223 the two resulting CRISPR strains as *fads2* knock-downs rather than knockouts. The $\Delta 6abc/5^{Mt}$
224 gRNA targeted sequence right after the cytochrome b5-like domain of *fads2* genes, while
225 $\Delta 6bc^{Mt}$ gRNA targeted sequences on exon 1 before all protein domains. Therefore, the
226 out-of-frame mutations in $\Delta 6abc/5^{Mt}$ and $\Delta 6bc^{Mt}$ were expected to disrupt characteristic
227 domains identified in fatty acyl desaturases, though our CRISPR-target sites did not
228 specifically fall within protein domains. These out-of-frame mutations identified by Ampliseq
229 could explain the nonsense-mediated decay (NMD) of the mutant mRNA and impaired
230 biosynthesis of LC-PUFA in $\Delta 6abc/5^{Mt}$ fish [21].
231

232

233 *3.2 CRISPR/Cas9-induced indels cause $\Delta 6fads2-a$ exon skipping events*

234

235 Interestingly, we found that CRISPR/Cas9 induced mutations of $\Delta 6abc/5^{Mt}$ gRNA in the
236 $\Delta 6fads2-a$ gene were affecting splicing of exonic part 6 (harbouring the CRISPR target site;
exonic part 6 corresponds to exon 4 in transcript: [XM_014170212.1](#); exon 3 in
[XM_014170213.1](#)). Analysis of exonic-part 6 retention in $\Delta 6abc/5$ -mutated salmon using

237 RNA-seq data revealed mis-splicing of the $\Delta 6fads2-a$ transcript resulting in the skipping of
238 exonic part 6 (Figure 2). Exon skipping caused by CRISPR/Cas9-generated mutations was
239 observed previously in both cell lines [31, 32] and genetically modified organisms including
240 zebrafish [33] and salmon [17]. CRISPR induced mis-splicing is mostly caused by one of two
241 mechanisms: i) indels generated by CRISPR-mutation affects the exon-intron boundaries or ii)
242 indels promote exon skipping by disrupting an exon splicing enhancer or introducing an exon
243 splicing silencer within the targeted exon [34]. However, neither mechanism fits to our study.
244 This was because other $\Delta 6abc/5^{Mt}$ gRNA target sites on $\Delta 5fads2$, $\Delta 6fads2-b$ and $\Delta 6fads2-c$
245 gene contained identical sequences and showed the same distance to exon-intron boundary but
246 did not affect splicing. Nonetheless, the skipping of exon 6 in $\Delta 6fads2-a$ transcripts will result
247 in the production of truncated proteins that lack 37 amino acids, which suggests deleterious
248 effects on protein structure and functions.

249

250 3.3 CRISPR-targeted *fads2* genes are down-regulated in $\Delta 6abc/5$ but not in $\Delta 6bc$ salmon

251

252 Many of the CRISPR induced structural variants introduce premature termination codons
253 likely to trigger mRNA degradation by nonsense-mediated decay (NMD) [35]. Indeed, we
254 found that CRISPR-targeted $\Delta 5fads2$, $\Delta 6fads2-a$ and $\Delta 6fads2-b$ genes were strongly
255 down-regulated ($q < 0.05$) in $\Delta 6abc/5^{Mt}$ salmon compared to WT regardless of the dietary
256 treatment (Figure 3). In $\Delta 6bc^{Mt}$ salmon, the CRISPR-targeted $\Delta 6fads2-b$ gene was
257 down-regulated compared to WT, but the levels of down-regulation were less clear than in
258 $\Delta 6abc/5^{Mt}$ salmon. Surprisingly, the expression $\Delta 5fads2$ and $\Delta 6fads2-a$ genes was also
259 down-regulated in $\Delta 6bc^{Mt}$ salmon, though both genes were not targeted by $\Delta 6bc^{Mt}$ gRNAs. The
260 expression of $\Delta 6fads2-c$ gene was generally very low and was not likely play a major role in
261 salmon liver. This low level expression may also explain that $\Delta 6fads2-c$ was not affected by
262 CRISPR mutation (Figure 3). The expression of other genes in LC-HUFA synthesis pathways,
263 *elovl2*, *elovl5-a* and *elovl5-b* genes was stable between $\Delta 6abc/5^{Mt}$, $\Delta 6bc^{Mt}$ and WT salmon.

264

265 The NMD-mediated mRNA degradation, absence of exon 6 in $\Delta 6fads2-a$ transcripts, and other
266 CRISPR-induced mutations such as out-of-frame mutations are expected to produce
267 non-functional enzyme proteins that would ultimately disrupt LC-HUFA biosynthesis in the
268 fish. Indeed, analysis of tissue composition of LC-HUFA coupled with assay of desaturation
269 and elongation activities in liver showed clear impacts of the CRISPR-mutations. The mutation
270 of $\Delta 6abc/5$ genes in salmon resulted in significant reduction of DHA and EPA compared to
271 WT [21]. On the other hand, we observed effects of background wildtype alleles in the
272 $\Delta 6abc/5^{Mt}$ salmon (Figure 1B and C) accounting for limited but measurable desaturation
273 activities [21].

274

275 Low levels of LC-HUFA levels often induce hepatic expression of $\Delta 5fads2$ and $\Delta 6fads2-a$
276 genes as was shown in our previous *elovl2*-mutated salmon [17]. On the other hand, reduced
277 DHA level has little effect on the expression of *elovl5* and *elovl2* genes as was shown in present
278 $\Delta 6abc/5^{Mt}$ salmon (Figure 3). Higher expression of *elovl2* and *elovl5* genes that often observed

279 in fish fed plant oil compared to fish oil diet (Figure 3) [36, 37], which was more likely caused
280 by other differences between the two diets, such as cholesterol levels.

281

282 3.3 Transcriptional changes in liver after mutating *fads2* genes

283

284 An average of 29 million reads were mapped on to the salmon genome ICSASG_v2. From a
285 total of 55304 annotated genes, 23114 genes had at least 1 count per million (CPM) in 25% of
286 the samples, and were considered for subsequent analysis. By applying principle component
287 analysis (PCA) on Log2 CPM of the top 1000 most variant genes, we identified a clear
288 separation of plant oil and fish oil samples between PC1 (explaining 34.8% of the observed
289 variation) and PC2 (8.3%) as well as a separation of WT and $\Delta 6abc/5^{Mt}$ samples between PC2
290 and PC3 (6.8%) (Figure 4). Although not as strong we also found a clear tendency for
291 separation of WT and $\Delta 6bc^{Mt}$ samples between PC2 and PC3. Plant oil diet and
292 CRISPR-mutation seemed to have different impact on gene transcription in salmon liver,
293 though both the diet and mutation have generated low levels of LC-HUFA in the fish body.

294

295 Differential expression analysis (DEA) was done by contrasting crispat and WT salmon
296 separately under plant oil and fish oil diets. This resulted in 121 differentially expressed genes
297 (DEGs, $q < 0.05$ & $|\log 2FC| > 0.5$) in $\Delta 6abc/5^{Mt}$ salmon compared to WT when fed fish oil diet,
298 while 104 DEGs were found between crispat and WT salmon under plant oil diet (Figure 5 A).
299 Surprisingly, more DEGs were found in $\Delta 6bc^{Mt}$ salmon compared to WT. This includes 1665
300 genes identified in crispat salmon when fed fish oil diet and 2041 DEGs identified in salmon
301 fed plant oil diet. A total number of 3863 DEGs was found in WT salmon fed plant oil diet
302 compared to fish oil.

303

304 To further understand the functions of DEGs between crispat and WT salmon, we conducted a
305 KEGG enrichment analysis by comparing the number of DEGs to the total number of genes in
306 each KEGG pathway (Figure 5 B). The DEGs of $\Delta 6abc/5^{Mt}$ salmon were not only enriched in
307 fatty acid metabolism pathway, but also peroxisome proliferator-activated receptors (PPAR)
308 signalling pathway which is involved in many metabolic pathways including fatty acid
309 synthesis and catabolism [38]. This suggests PPAR to be key transcription regulators for fatty
310 acid metabolism in salmon. Their differential regulation was likely caused by the decreased
311 EPA and DHA and consequential accumulation of 18:3n-3 and 18:2n-6 after disruption of
312 LC-HUFA synthesis pathway [21]. Accumulated 18:3n-3 and 18:2n-6 could not be synthesised
313 further to DHA and EPA after disruption of *fads2* genes, but were alternatively consumed in
314 β -oxidation which was mostly likely activated by PPAR transcription factor [38]. Similar
315 enrichment of fatty acids metabolism and PPAR signalling pathways was also found in the
316 DEGs between WT salmon fed plant oil and fish oil (Figure 5 B). Additionally, sterol
317 biosynthesis pathway was enriched for DEGs between WT salmon fed plant oil and fish oil but
318 was not enriched for the DEGs between *fads2* mutants versus WT fish (Figure 5 B). Indicating
319 that the LC-HUFA level and PPAR has little effect on cholesterol biosynthesis in salmon,
320 which should be more likely regulated by other biochemical signals such as low cholesterol

321 level and other transcription factors including sterol regulatory binding protein 2 (SREBP2)
322 [11, 12, 14]. More detailed discussion on PPAR and SREBP regulations will be shown later in
323 this paper. Many other pathways were also enriched for the DEGs of WT fed plant oil *versus*
324 fish oil, such as amino acid biosynthesis and RNA transport. This suggests that dietary
325 inclusion of plant oil has more complex impact on salmon than just reducing LC-HUFA and
326 cholesterol levels in the fish body. Our study has successfully separated the effect of low
327 LC-HUFA level from other effects of plant oil inclusion, however more research is required to
328 understand the complete regulatory network in response to the change of plant oil in diet.
329 Surprisingly, no lipid metabolism pathways were enriched in $\Delta 6bc^{Mt}$ salmon compared to WT,
330 regardless of dietary LC-HUFA level. This was in accordance to the fatty acid composition in
331 liver, where no significant difference was found between $\Delta 6bc^{Mt}$ salmon and WT [21]. The
332 DEGs were likely more enriched in mRNA regulation pathways, including mRNA
333 surveillance and spliceosome pathways. One possible explanation could be the mutation of
334 ncRNA which has function on transcription regulation or immune system [39]. Nevertheless,
335 the reason for the high number of DEGs in $\Delta 6bc^{Mt}$ salmon and their enriched pathways needs to
336 be further investigated.

337

338 3.4 Expression of lipid metabolism genes in response to $\Delta 6abc/5$ mutation.

339

340 Due to many unexpected and lipid metabolism unrelated DEGs found in $\Delta 6bc^{Mt}$ salmon, only
341 $\Delta 6abc/5^{Mt}$ fish were included for further transcriptomic analysis to understand the
342 transcriptional regulation of lipid metabolism after disrupting LC-HUFA synthesis genes. Here
343 we discussed DEGs of lipid metabolism pathways that enriched in $\Delta 6abc/5^{Mt}$ *versus* WT
344 salmon, aiming to understand the regulatory network of lipid metabolism genes in response to
345 $\Delta 6abc/5^{Mt}$. The $\Delta 6abc/5$ mutant showed 14 (13.4%) differentially expressed lipid metabolism
346 genes when fed plant oil diet, while less (7 genes, 5.8%) lipid DEGs were identified in salmon
347 fed fish oil diet (Supplementary Table 1). The higher numbers of DEGs in $\Delta 6abc/5^{Mt}$ salmon
348 fed the plant oil diet suggest a compensatory response to the combined effects of impaired
349 endogenous LC-HUFA biosynthesis and reduced dietary LC-HUFA levels. On the other hand,
350 the reduced number of lipid DEGs in $\Delta 6abc/5^{Mt}$ salmon fed fish oil diet suggests an impact of
351 dietary LC-HUFA levels on gene transcription, most likely an end-product-mediated
352 inhibition. Nevertheless, 4 lipid DEGs were identified in $\Delta 6abc/5^{Mt}$ fish fed both plant oil and
353 fish oil experimental diets including $\Delta 5fad$, $\Delta 6fad-a$, $abcd1$ and $acc2$. Besides the two
354 CRISPR-targeted genes, the down-regulation of $acc2$ and up-regulation of $abcd1$ suggests an
355 increase of fatty acid β -oxidation pathway for energy expenditure after CRISPR-mutation [40].

356

357 Sterol regulatory element binding proteins (SREBPs) are suggested to be involved in
358 regulating lipid metabolism in both mammals and fish [41, 42]. Atlantic salmon has four
359 *srebp1* paralogous genes, *srebp1a*, *srebp1b*, *srebp1c* and *srebp1d* which are all orthologs of the
360 zebrafish *srebp1* gene (Supplementary Table 1). Both $\Delta 6abc/5^{Mt}$ and low LC-HUFA diet
361 resulted in increased transcription of all four *srebp1* genes in salmon (Figure 6 and
362 Supplementary Table 1). The transcription of the *srebp1* genes was negatively ($p < 0.05$)

363 correlated to the DHA level in phospholipid. On the other hand, transcription of *srebp2* genes
364 were not up-regulated in mutated *versus* WT salmon, and are not correlated to DHA level
365 (Figure 6 B). The different regulation of *srebp1* and *srebp2* transcription is consistent with
366 previous studies on mammals, suggesting that *srebp1* transcription is regulated by DHA levels
367 in salmon, while *srebp2* transcription is more likely to be induced by low cholesterol level in
368 the plant oil diet [41].

369

370 By comparing salmon gene promoter sequences to 6 transcription factor binding sites
371 databases (CISBP, HUMAN.H10MO.B, HT-SELEX2, HumanTF, JASPAR, TRANSFAC),
372 we identified 235 lipid metabolism genes, with potential sterol regulatory elements (SRE), the
373 Srebp binding sites, between -1000bp to 200bp from transcription starting sites
374 (Supplementary Table 2). This includes *Δ5fad*, *Δ6fad-a*, *elovl5a*, *elovl5b* and *elovl2* which are
375 the major genes in LC-HUFA synthesis pathway. Recent study showed that
376 CRISPR/Cas9-mediated editing of *elovl2* in salmon has increased transcription of *srebp1*,
377 *Δ6fad* and *Δ5fad* genes together with decreased LC-HUFA content, supporting the regulation
378 of *fads2* genes by Srebp-1 transcription regulator [17]. However, salmon Srebp-1 is unlikely to
379 induce *elovl5* and *elovl2* since their expression were stable while *srebp1* expression was
380 up-regulated in *Δ6abc/5^{Mt}* compared to WT salmon fed plant oil. The *elovl5* genes were also
381 stable in *elovl2*-mutated salmon [17]. One possible reason is that the SRE in promoter regions
382 of *elovl5* and *elovl2* genes may be more efficient for binding Srebp-2 rather than Srebp-1 [43],
383 or other that transcription factors such as liver X receptor (LXR) are responsible stimulation of
384 *elovl* genes in salmon under plant oil diet. On the other hand, mammalian SREBP-1 can target
385 both fatty acid desaturase (*FADS2*) and elongase (*ELVOL5*) genes and regulate LC-HUFA
386 synthesis [44, 45].

387

388 To further investigate the relationship between those key transcription factors and lipid
389 metabolism genes, we compared the expression changes of the 230 lipid metabolism genes
390 except LC-HUFA synthesis genes, either between mutated and WT salmon fed plant oil, or
391 between mutated and WT salmon fed fish oil, or between WT salmon fed plant oil and fish oil
392 (Figure 6A). Several *agpat3* and *acsbg* genes were significantly ($q<0.05$ & $|\log 2\text{FC}|>0.5$)
393 up-regulated in plant oil mutated salmon together with up-regulated *srebp1*. The function of
394 Srebp-1 transcription factor in salmon is likely similar to its function in mammals, which works
395 as a key transcription factor for hepatic lipogenesis, and *agpat3* and *acsbg* genes are likely the
396 key target genes of salmon Srebp-1. Same *acsbg*, *agpat3* and *srebp1* genes were also
397 up-regulated when the *elovl2* gene was CRISPR-mutated in salmon, confirming an increase of
398 fatty acid acylation and lipogenesis in response to decreased tissue DHA content [17]. Other
399 typical mammalian SREBP-1 targets, *fasn*, *acc1* and *elovl6* genes of fatty acid synthesis and
400 elongation pathways were also up-regulated, but not significant ($q>0.05$) in mutated salmon
401 compared to WT under plant oil diet (Figure 6). However, the transcriptional increase of these
402 genes were much higher and significant ($q<0.05$) in WT salmon fed plant oil diet compared to
403 fish oil. This means that the genes of fatty acids synthesis and elongation in salmon were not
404 merely targeted by Srebp-1, but by other transcription factors likely Srebp-2 [41] or Ppar- γ

405 [46]. Genes of cholesterol metabolism including *hmgcrab*, *mvd-a* and *sqlea-a* were only highly
406 up-regualted in WT fed plant oil diet *versus* fish oil, while no transcription change was
407 observed in $\Delta 6abc/5^{Mt}$ *versus* WT salmon. Several studies have found up-regualtion of
408 cholesterol biosyntheis and *srebp2* genes in salmon fed plant oils [11, 12, 14]. The present study
409 has supported that the relationship between *srebp2* and cholesterol biosynthesis genes is quite
410 conserved as in salmon as in mammals, and suggests that the SREBP binding sites of
411 cholesterol biosynthesis genes were *srebp2*-specific [41].
412

413 CRISPR/Cas9-mediated mutation of *fads2* genes in $\Delta 6abc/5$ also affected the fatty acid
414 β -oxidation pathway in salmon. This was indicated by a strong down-regulation of *acc2* gene
415 following $\Delta 6abc/5^{Mt}$ (Figure 5). Unlike the *ACCI* gene which is mostly involved in *de-novo*
416 fatty acid synthesis in cytosol, the *ACC2* gene in mammals produce mitochondria-associated
417 malonyl-CoA which is a negative regulator of CPT1 and inhibits mitochondria β -oxidation [47,
418 48]. Therefore, the down-regualtion of *acc2* in $\Delta 6abc/5^{Mt}$ salmon could suggest an increased
419 fatty acid β -oxidation after disruptpion of LC-HUFA sythetic pathway. This could be regulated
420 by PPAR which is key regualtor of fatty acid catabolism [38]. Similar to *srebp1*, we also found
421 negative correlation between DHA level and two *ppara-a* genes, though its expression was not
422 changed after $\Delta 6abc/5$ mutation. As PUFA and their derivatives are known natural ligands of
423 PPAR, the activation of PPAR and their target genes including fatty acid β -oxidation may not
424 rely on increased transcription of PPAR genes [49]. The increased β -oxidation was probably
425 due to accumulation of 18:3n-3, 18:2n-6, and other intermediate fatty acids in LC-HUFA
426 synthesis pathway which cannot be synthesised further to DHA and EPA after disruption of
427 *fads2* genes but were alternatively consumed in β -oxidation [21]. Feeding of plant oil diet also
428 induced *cpt1a* and *abcd1*, which are key genes involved in import of fatty acid into
429 mitochondria and peroxisome for catabolism. However, a paralog gene *cpt1b* were
430 down-regulated both after *fads2*-mutation and feeding plant oil diet. The reason for the
431 down-regualtion is unclear and whether it would affect fatty acid β -oxidation needs to be
432 further investigated. One possible explanation is that malonyl-CoA produced by *acc1* or *acc2*
433 is less organelle-specific in salmon, and that *cpt1b* gene could be inhibited by malonyl-CoA
434 produced by *acc1* in *de-novo* fatty acid synthesis.
435

436 4. Conclusions

437 CRISPR-Cas9 can be employed efficiently to mutate the multiple *fads2* genes, simultaneously,
438 in salmon. However, mosaic effects are common, embodied by different indels among tissues
439 and individuals. The exon skipping, found in the $\Delta 6fads2-a$ gene during transcription, was
440 predicted to result in the production of truncated proteins and strengthen the CRISPR-induced
441 disruption of LC-HUFA synthesis in $\Delta 6abc/5^{Mt}$ salmon. Down-regulation of the targeted
442 $\Delta 5fad$, $\Delta 6fad-a$ and $\Delta 6fad-b$ genes were found in liver, which likely cause a decrease of
443 LC-HUFA synthesis. On the other hand, the transcription of *elovl5a*, *elovl5b* and *elovl2* genes
444 in LC-HUFA synthesis pathway was not affected. Since *srebp1* genes were up-regulated in
445 $\Delta 6abc/5$ -mutated salmon the *elovl* genes were not likely regulated by this transcriptional
446

447 factor. Increased *de-novo* fatty acid synthesis and lipogenesis was observed after $\Delta 6abc/5^{Mt}$
448 and could also be regulated by SREBP1. In addition, the level of transcriptional changes of
449 *fasn* and *acc1* genes involved in fatty acid synthesis were much higher when the fish was fed
450 plant oil diet as compared to fish oil. This suggests that these genes were regulated by one or
451 more transcriptional factors in addition to SREBP1. PPAR or SREBP2 are likely candidates.
452 Increased fatty acid β -oxidation was also observed after $\Delta 6abc/5^{Mt}$ and was likely regulated by
453 PPAR. The CRISPR-mutation of $\Delta 6bc^{Mt}$ genes surprisingly revealed over 3000 DEGs in liver
454 of salmon, and the DEGs were not enriched in any lipid metabolism pathways. The reason for
455 the high number of DEGs in $\Delta 6bc^{Mt}$ salmon was unclear and needs to be further investigated.
456

457 Acknowledgements

458

459 The RNA-Seq and data analysis were financed by the Research Council of Norway (DigiSal,
460 grant number 248792). We would like to thank Matilde Mengkrog Holen and Centre for
461 Integrative Genetics (CIGENE) for help during RNA-Seq sample preparation.

462

463 Author contributions

464

465 **Conceptualization:** Yang Jin, Alex Datsomor, Rolf Edvardsen, Jacob Torgersen, Per Winge,
466 Fabian Grammes, Rolf Erik Olsen

467 **Data Curation:** Yang Jin, Fabian Grammes

468 **Formal Analysis:** Yang Jin, Fabian Grammes

469 **Funding Acquisition:** Rolf Edvardsen, Jacob Torgersen, Per Winge, Jon Olav Vik, Anna
470 Wargelius

471 **Methodology:** Yang Jin, Fabian Grammes

472 **Resources:** Alex Datsomor, Rolf Edvardsen, Anna Wargelius, Per Winge, Fabian Grammes,
473 Rolf Erik Olsen

474 **Visualization:** Yang Jin, Fabian Grammes

475 **Writing – Original Draft Preparation:** Yang Jin, Fabian Grammes

476 **Writing – Review & Editing:** Yang Jin, Jon Olav Vik, Anna Wargelius, Alex Datsomor, Rolf
477 Edvardsen, Jacob Torgersen, Per Winge, Fabian Grammes, Rolf Erik Olsen

478

479

480 References

481

- 482 1. Ytrestøyl T, Aas TS, Åsgård T. Utilisation of feed resources in production of Atlantic
483 salmon (*Salmo salar*) in Norway. *Aquaculture*. 2015;448:365–374.
484 doi:10.1016/j.aquaculture.2015.06.023.
- 485 2. Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty
486 acid levels in farmed Atlantic salmon, 2006-2015. *Sci Rep*. 2016;6:21892.
487 doi:10.1038/srep21892.

488 3. Tocher DR. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. *Reviews in*
489 *Fisheries Science*. 2003;11:107–184. doi:10.1080/713610925.

490 4. Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR. Replacement of fish
491 oil with rapeseed oil in diets of Atlantic salmon (*Salmo salar*) affects tissue lipid compositions
492 and hepatocyte fatty acid metabolism. *J Nutr*. 2001;131:1535–1543.
493 doi:10.1093/jn/131.5.1535.

494 5. Monroig O, Zheng X, Morais S, Leaver MJ, Taggart JB, Tocher DR. Multiple genes for
495 functional 6 fatty acyl desaturases (Fad) in Atlantic salmon (*Salmo salar* L.): gene and cDNA
496 characterization, functional expression, tissue distribution and nutritional regulation. *Biochim
497 Biophys Acta*. 2010;1801:1072–1081. doi:10.1016/j.bbapap.2010.04.007.

498 6. Morais S, Monroig O, Zheng X, Leaver MJ, Tocher DR. Highly unsaturated fatty acid
499 synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases. *Mar
500 Biotechnol*. 2009;11:627–639. doi:10.1007/s10126-009-9179-0.

501 7. Carmona-Antoñanzas G, Monroig O, Dick JR, Davie A, Tocher DR. Biosynthesis of very
502 long-chain fatty acids (C>24) in Atlantic salmon: cloning, functional characterisation, and
503 tissue distribution of an Elov14 elongase. *Comp Biochem Physiol B, Biochem Mol Biol*.
504 2011;159:122–129. doi:10.1016/j.cbpb.2011.02.007.

505 8. Hastings N, Agaba MK, Tocher DR, Zheng X, Dickson CA, Dick JR, et al. Molecular
506 cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved
507 in the production of eicosapentaenoic and docosahexaenoic acids from alpha-linolenic acid in
508 Atlantic salmon (*Salmo salar*). *Mar Biotechnol*. 2004;6:463–474.
509 doi:10.1007/s10126-004-3002-8.

510 9. Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ. Highly unsaturated fatty acid
511 synthesis in vertebrates: new insights with the cloning and characterization of a delta6
512 desaturase of Atlantic salmon. *Lipids*. 2005;40:13–24. doi:10.1007/s11745-005-1355-7.

513 10. Gillard G, Harvey TN, Gjuvsland A, Jin Y, Thomassen M, Lien S, et al.
514 Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. *Mol Ecol*.
515 2018;27:1200–1213. doi:10.1111/mec.14533.

516 11. Jin Y, Olsen RE, Gillard GB, Østensen M-A, Korsvoll SA, Santi N, et al. A systemic study
517 of lipid metabolism regulation in salmon fingerlings and early juveniles fed plant oil. *Br J Nutr*.
518 2018;120:653–664. doi:10.1017/S0007114518001885.

519 12. Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, et al. Functional
520 genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid
521 biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (*Salmo
522 salar*). *BMC Genomics*. 2008;9:299. doi:10.1186/1471-2164-9-299.

523 13. Morais S, Pratoomyot J, Taggart JB, Bron JE, Guy DR, Bell JG, et al. Genotype-specific
524 responses in Atlantic salmon (*Salmo salar*) subject to dietary fish oil replacement by vegetable
525 oil: a liver transcriptomic analysis. *BMC Genomics*. 2011;12:255.
526 doi:10.1186/1471-2164-12-255.

527 14. Liland NS, Espe M, Rosenlund G, Waagbø R, Hjelle JI, Lie Ø, et al. High levels of dietary
528 phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon
529 (*Salmo salar* L.). *Br J Nutr*. 2013;110:1958–1967. doi:10.1017/S0007114513001347.

530 15. Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS. Sterols regulate
531 cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and
532 Golgi. *Proc Natl Acad Sci USA*. 1999;96:11235–11240. doi:10.1073/pnas.96.20.11235.

533 16. Szterk A, Roszko M, Sosińska E, Derewiaka D, Lewicki PP. Chemical composition and
534 oxidative stability of selected plant oils. *J Am Oil Chem Soc*. 2010;87:637–645.
535 doi:10.1007/s11746-009-1539-4.

536 17. Datsomor AK, Zic N, Li K, Olsen RE, Jin Y, Vik JO, et al. CRISPR/Cas9-mediated
537 ablation of elovl2 in Atlantic salmon (*Salmo salar* L.) inhibits elongation of polyunsaturated
538 fatty acids and induces Srebp-1 and target genes. *Sci Rep*. 2019;9:7533.
539 doi:10.1038/s41598-019-43862-8.

540 18. Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A. Targeted
541 mutagenesis in Atlantic salmon (*Salmo salar* L.) using the CRISPR/Cas9 system induces
542 complete knockout individuals in the F0 generation. *PLoS One*. 2014;9:e108622.
543 doi:10.1371/journal.pone.0108622.

544 19. Straume AH, Kjærner-Semb E, Ove Skaftnesmo K, Güralp H, Kleppe L, Wargelius A, et
545 al. Indel locations are determined by template polarity in highly efficient in vivo
546 CRISPR/Cas9-mediated HDR in Atlantic salmon. *Sci Rep*. 2020;10:409.
547 doi:10.1038/s41598-019-57295-w.

548 20. Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, et al.
549 Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in
550 Atlantic salmon. *Sci Rep*. 2016;6:21284. doi:10.1038/srep21284.

551 21. Datsomor AK, Olsen RE, Zic N, Madaro A, Bones AM, Edvardsen RB, et al.
552 CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and
553 docosahexaenoic acid synthesis in Atlantic salmon (*Salmo salar* L.). *Sci Rep*. 2019;9:16888.
554 doi:10.1038/s41598-019-53316-w.

555 22. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
556 *EMBnet j*. 2011;17:10. doi:10.14806/ej.17.1.200.

557 23. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
558 *arXiv*. 2013.

559 24. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for
560 annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. *Fly*
561 (Austin). 2012;6:80–92.

562 25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
563 universal RNA-seq aligner. *Bioinformatics*. 2013;29:15–21.
564 doi:10.1093/bioinformatics/bts635.

565 26. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
566 assigning sequence reads to genomic features. *Bioinformatics*. 2014;30:923–930.
567 doi:10.1093/bioinformatics/btt656.

568 27. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data.
569 *Genome Res*. 2012;22:2008–2017. doi:10.1101/gr.133744.111.

570 28. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
571 bias-aware quantification of transcript expression. *Nat Methods*. 2017;14:417–419.
572 doi:10.1038/nmeth.4197.

573 29. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
574 expression analysis of digital gene expression data. *Bioinformatics*. 2010;26:139–140.
575 doi:10.1093/bioinformatics/btp616.

576 30. Wickham H. *ggplot2 - Elegant Graphics for Data Analysis*. New York, NY:
577 Springer-Verlag New York; 2016. doi:10.1007/978-0-387-98141-3.

578 31. Kapahnke M, Banning A, Tikkanen R. Random splicing of several exons caused by a
579 single base change in the target exon of crispr/cas9 mediated gene knockout. *Cells*. 2016;5.
580 doi:10.3390/cells5040045.

581 32. Mou H, Smith JL, Peng L, Yin H, Moore J, Zhang X-O, et al. CRISPR/Cas9-mediated
582 genome editing induces exon skipping by alternative splicing or exon deletion. *Genome Biol*.
583 2017;18:108. doi:10.1186/s13059-017-1237-8.

584 33. Prykhozhij SV, Steele SL, Razaghi B, Berman JN. A rapid and effective method for
585 screening, sequencing and reporter verification of engineered frameshift mutations in
586 zebrafish. *Dis Model Mech*. 2017;10:811–822. doi:10.1242/dmm.026765.

587 34. Sharpe JJ, Cooper TA. Unexpected consequences: exon skipping caused by
588 CRISPR-generated mutations. *Genome Biol*. 2017;18:109. doi:10.1186/s13059-017-1240-0.

589 35. Popp MW, Maquat LE. Leveraging Rules of Nonsense-Mediated mRNA Decay for
590 Genome Engineering and Personalized Medicine. *Cell*. 2016;165:1319–1322.
591 doi:10.1016/j.cell.2016.05.053.

592 36. Morais S, Taggart JB, Guy DR, Bell JG, Tocher DR. Hepatic transcriptome analysis of
593 inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic
594 salmon. *BMC Genomics*. 2012;13:410. doi:10.1186/1471-2164-13-410.

595 37. Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in
596 perspective. *Aquaculture*. 2015;449:94–107. doi:10.1016/j.aquaculture.2015.01.010.

597 38. Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated
598 transcription factors controlling both lipid metabolism and inflammation. *Biochim Biophys
599 Acta*. 2011;1812:1007–1022. doi:10.1016/j.bbadi.2011.02.014.

600 39. Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, et al. Non-coding RNAs Function as
601 Immune Regulators in Teleost Fish. *Front Immunol*. 2018;9:2801.
602 doi:10.3389/fimmu.2018.02801.

603 40. Choi CS, Savage DB, Abu-Elheiga L, Liu Z-X, Kim S, Kulkarni A, et al. Continuous fat
604 oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure,
605 reduces fat mass, and improves insulin sensitivity. *Proc Natl Acad Sci USA*.
606 2007;104:16480–16485. doi:10.1073/pnas.0706794104.

607 41. Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, et al.
608 Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of
609 lipogenic and cholesterogenic genes. *J Lipid Res*. 2002;43:1220–1235.

610 42. Carmona-Antoñanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ. Conservation of lipid
611 metabolic gene transcriptional regulatory networks in fish and mammals. *Gene*. 2014;534:1–9.
612 doi:10.1016/j.gene.2013.10.040.

613 43. Carmona-Antoñanzas G, Zheng X, Tocher DR, Leaver MJ. Regulatory divergence of
614 homeologous Atlantic salmon *elovl5* genes following the salmonid-specific whole-genome
615 duplication. *Gene*. 2016;591:34–42. doi:10.1016/j.gene.2016.06.056.

616 44. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Yoshikawa T, Hasty AH, et al.
617 Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and
618 PPARalpha. *J Lipid Res*. 2002;43:107–114.

619 45. Qin Y, Dalen KT, Gustafsson J-A, Nebb HI. Regulation of hepatic fatty acid elongase 5 by
620 LXRAalpha-SREBP-1c. *Biochim Biophys Acta*. 2009;1791:140–147.
621 doi:10.1016/j.bbapap.2008.12.003.

622 46. Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. *Prog
623 Lipid Res*. 2004;43:134–176. doi:10.1016/S0163-7827(03)00051-1.

624 47. Abu-Elheiga L, Matzuk MM, Abo-Hashem KA, Wakil SJ. Continuous fatty acid
625 oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. *Science*.
626 2001;291:2613–2616. doi:10.1126/science.1056843.

627 48. Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, et al. Liver-specific
628 deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without
629 affecting glucose homeostasis. *Proc Natl Acad Sci USA*. 2006;103:8552–8557.
630 doi:10.1073/pnas.0603115103.

631 49. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, et al. Fatty acids
632 and eicosanoids regulate gene expression through direct interactions with peroxisome
633 proliferator-activated receptors alpha and gamma. *Proc Natl Acad Sci USA*.
634 1997;94:4318–4323. doi:10.1073/pnas.94.9.4318.

635

636 **Figure 1 A:** Circos plot showing the different target sites of the CRISPR gRNAs. Gene $\Delta 5fads2$, $\Delta 6fads2-a$ and
637 $\Delta 6fads2-c$ have multiple transcripts while yellow boxes indicate exons of each transcript. **B:** Boxplot showing the
638 maximum proportion of insertions/deletions (indels) within the CRISPR gRNA target site as identified by
639 AmpliSeq. Different color indicates liver (L) or white muscle (WM) tissues from WT, $\Delta 6abc/5$ mutant or $\Delta 6bc$
640 mutant salmon. Each dot indicates L or WM tissue of an individual fish. **C:** Bar plots showing the (SnpEff)
641 predicted impact of the indel on the respective main transcript by individual. Impacts are classified as: HIGH=The
642 variant is assumed to have high (disruptive) impact in the protein; MODERATE=A non-disruptive variant that
643 might change protein effectiveness; LOW=The variant is assumed to be mostly harmless; WT=Wild type/no
644 indel. Each bar of the figure represents data of an individual fish.

645

646 **Figure 2 Detection of exon skipping in $\Delta 6fads2-a$ in relation to CRISPR. A:** Exon structure for the three
647 transcripts encoded by $\Delta 6fads2-a$. The targeting site (s1) for the $\Delta 6abc/5^M$ gRNA is enlarged and highlighted in
648 red. **B:** Schematic drawing on how aligned RNA-seq reads were used to calculate the percentage of exon retention
649 (PER) for a sample. **C:** Exon skipping was confirmed by using the aligned RNA-seq reads to calculate the PER for
650 each sample (represented as point).

651

652 **Figure 3 Expression of LC-HUFA synthesis genes in wildtype (WT), $\Delta 6abc/5^{Mt}$ and $\Delta 6bc^{Mt}$ salmon fed with**

653 either plant oil or fish oil diet. Gene expression are shown in transcript per million (TPM) value which is raw

654 counts normalised by both library size and mRNA length. Different letter indicates genes which were

655 differentially expressed ($q<0.05$ & $|\log_2\text{FC}|>0.5$).

656

657 **Figure 4 Principle component analysis (PCA)** on Log2 count per million (CPM) of the top 1000 most variant

658 genes between all liver samples. Different colors represents genetic groups of WT, $\Delta 6abc/5$ -mutated and

659 $\Delta 6bc$ -mutated salmon, while the color intensity represents different dietary treatments of either plant oil (low

660 HUFA) diet or fish oil diet (high HUFA).

661

662 **Figure 5 Differential expression analysis in liver between wildtype (WT) and mutated salmon. A)** Number

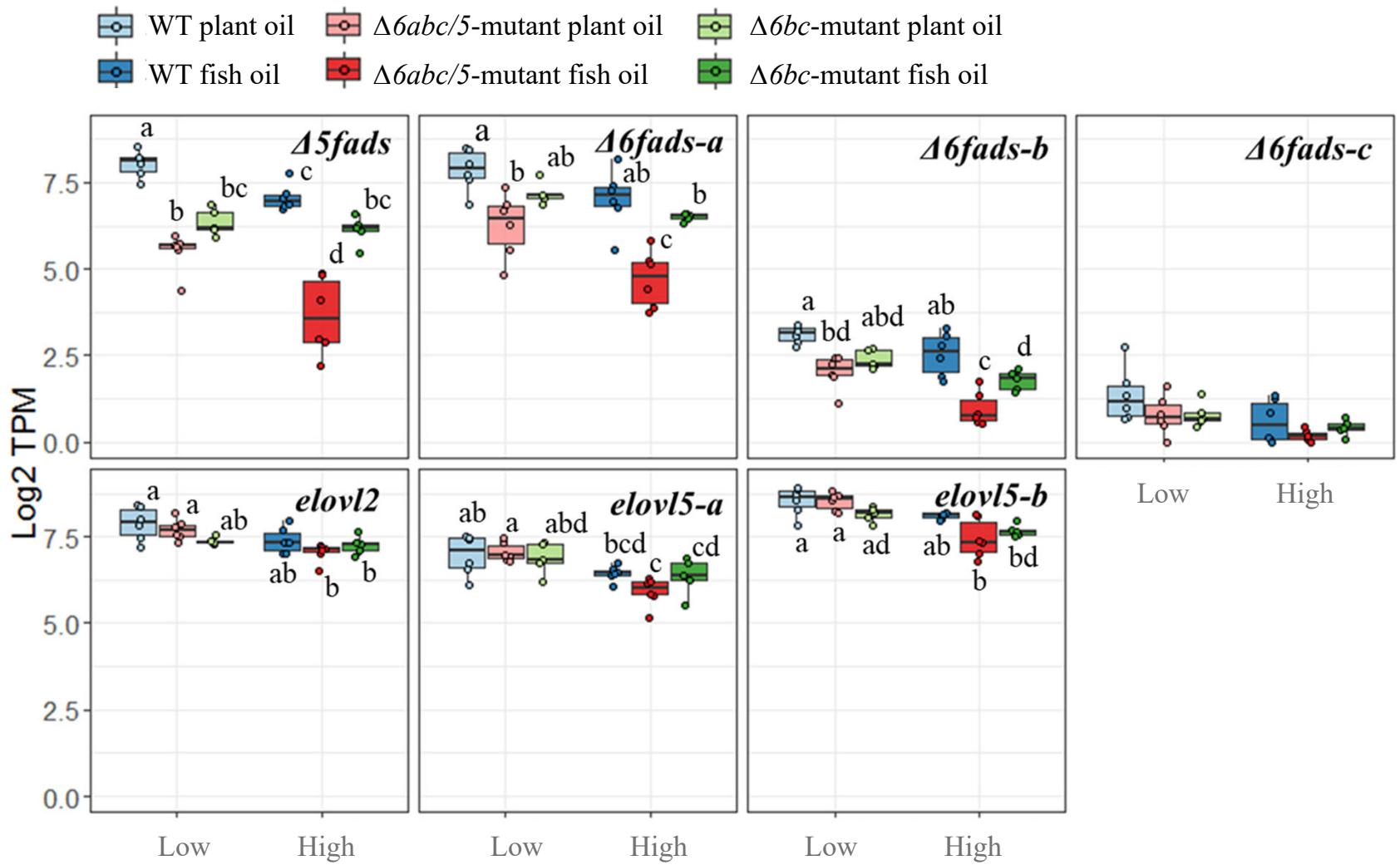
663 of up-regulated and down-regulated differential expressed genes (DEGs, $q<0.05$ & $|\log_2\text{FC}|>0.5$) either between

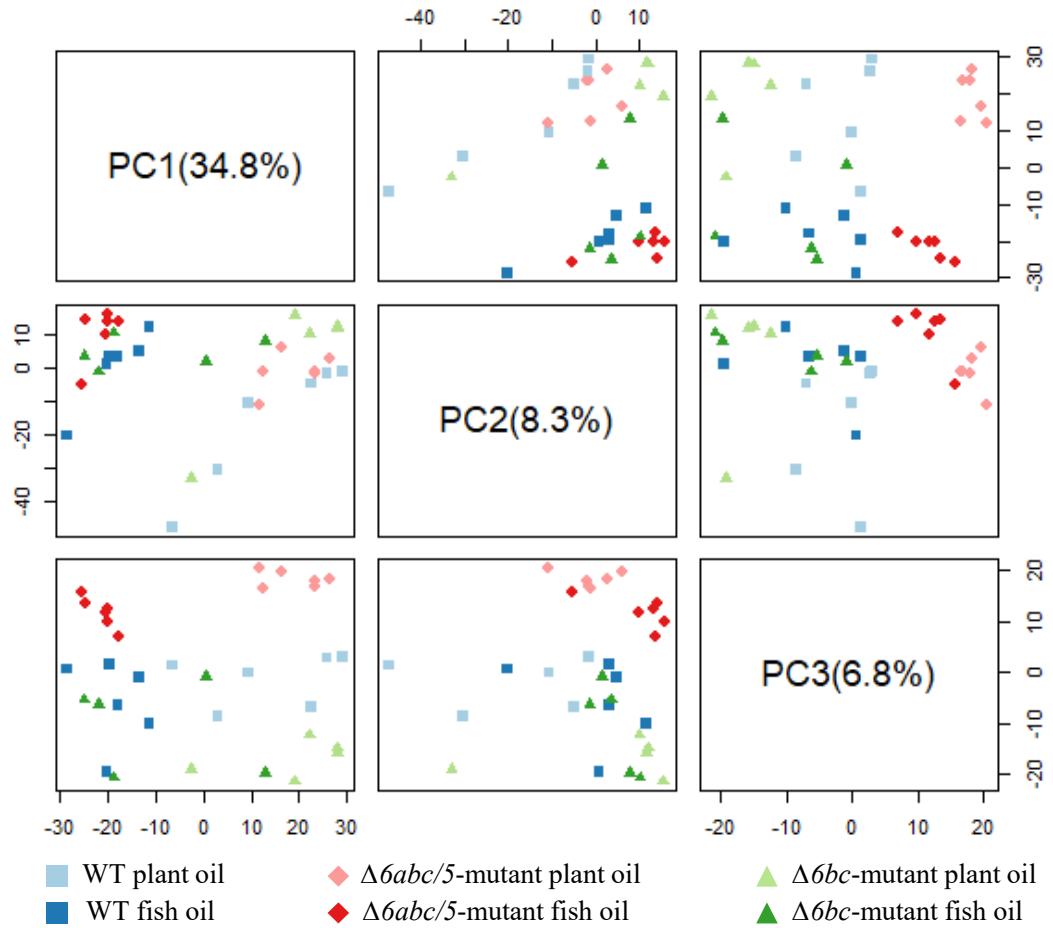
664 WT and $\Delta 6abc/5$ -mutated salmon, or between WT and $\Delta 6bc$ -mutated salmon, or between WT salmon fed plant oil

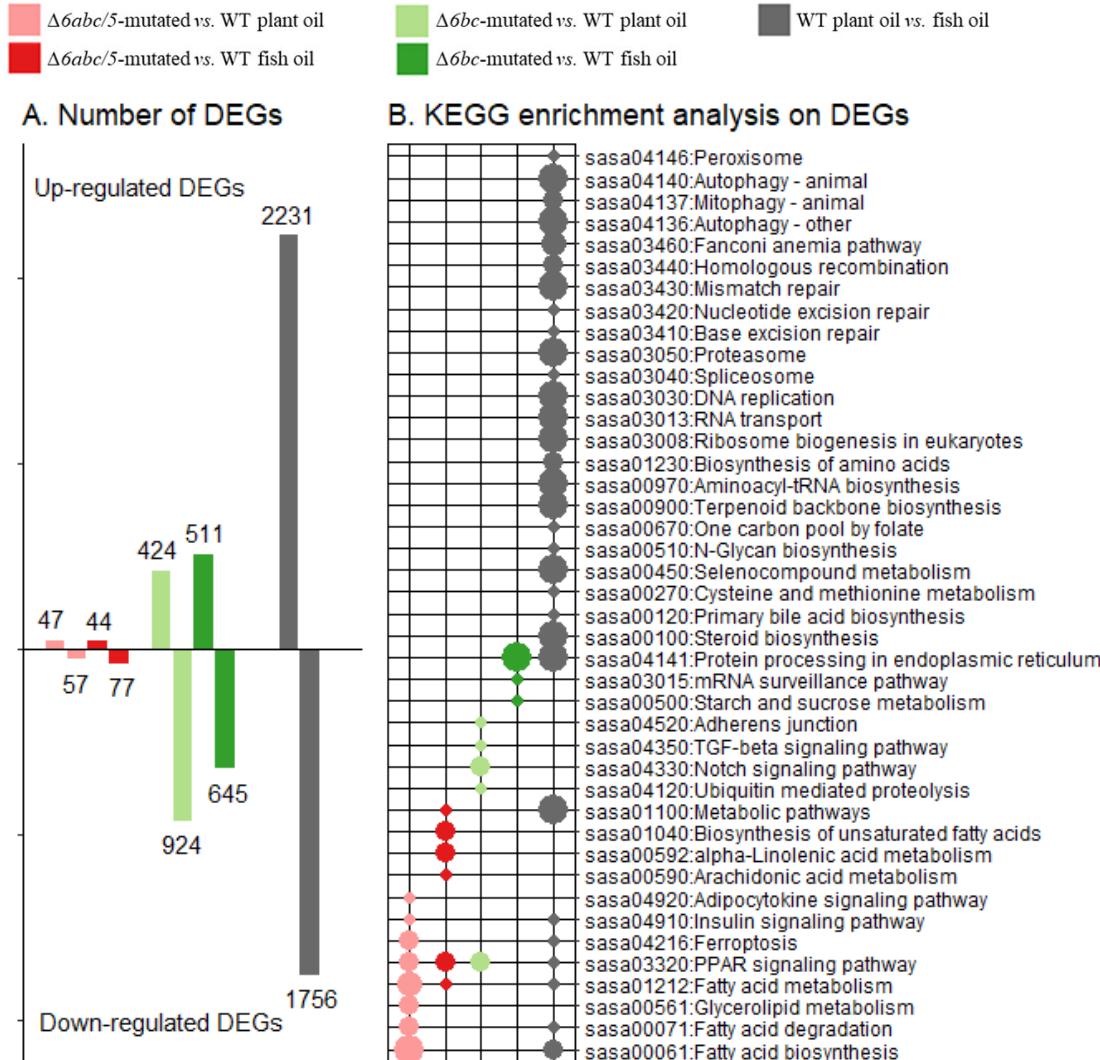
665 and fish oil. **B)** Significantly ($p<0.005$) enriched KEGG pathways of the DEGs. Hypergeometric test was applied

666 based on the number of DEGs versus total genes annotated to each KEGG pathway.

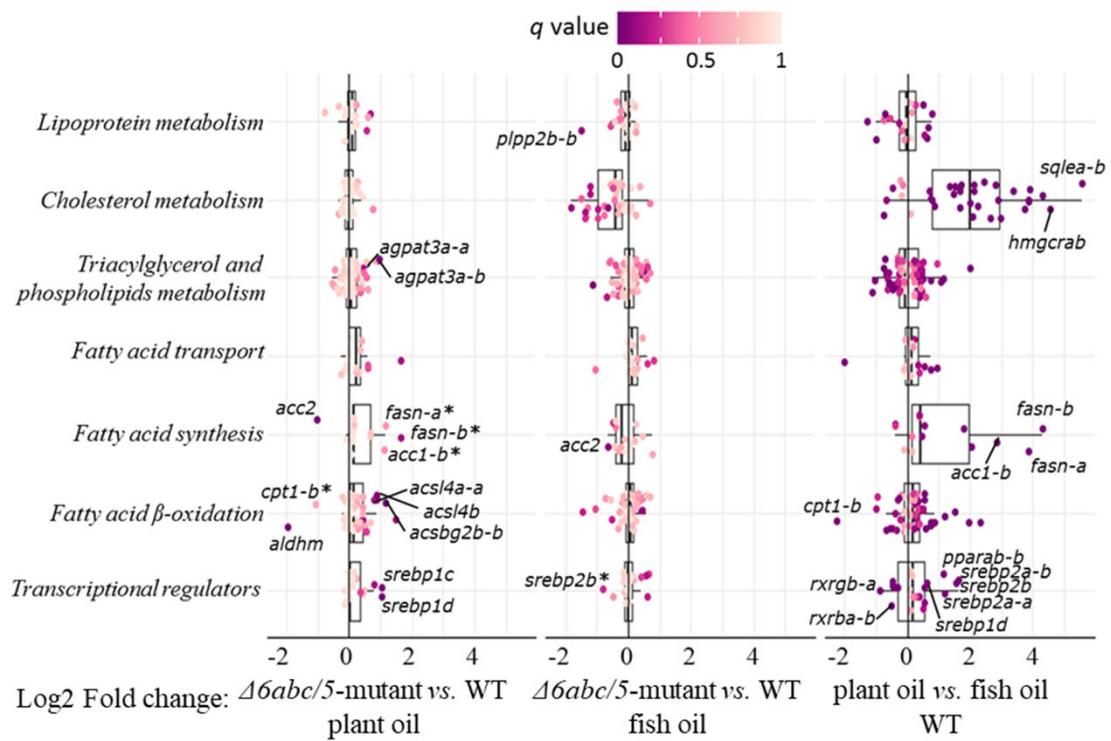
667

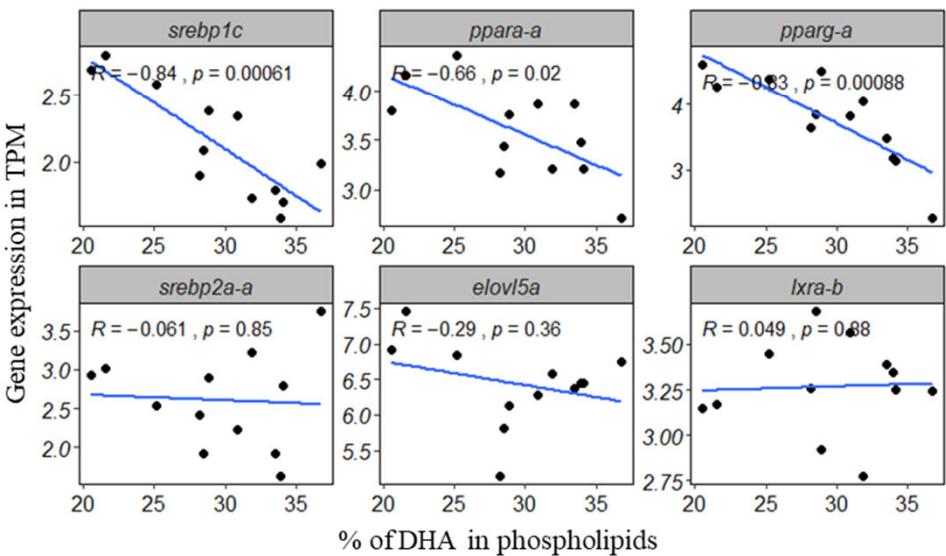

668 **Figure 6 Expression change of liver genes involved in lipid metabolism after CRISPR mutation. A)** Expression changes of genes in Log2 fold change between mutated and wildtype salmon. Differentially expressed

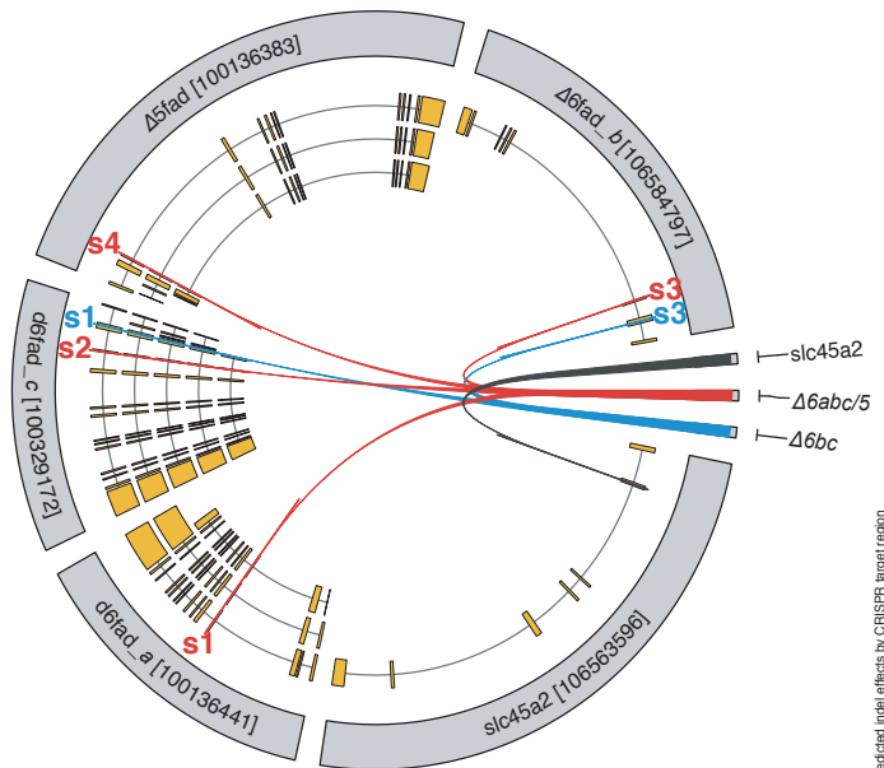
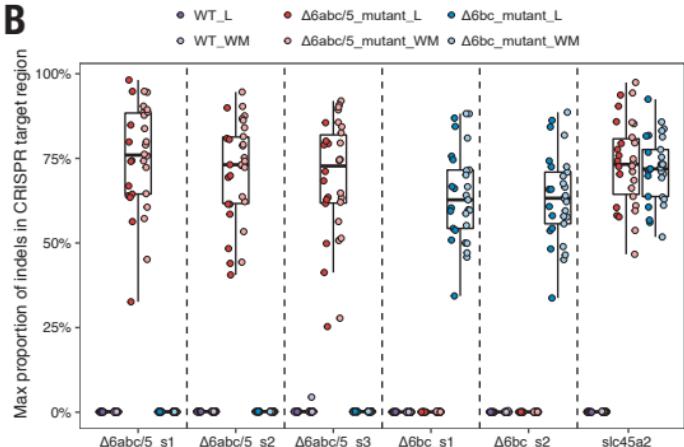
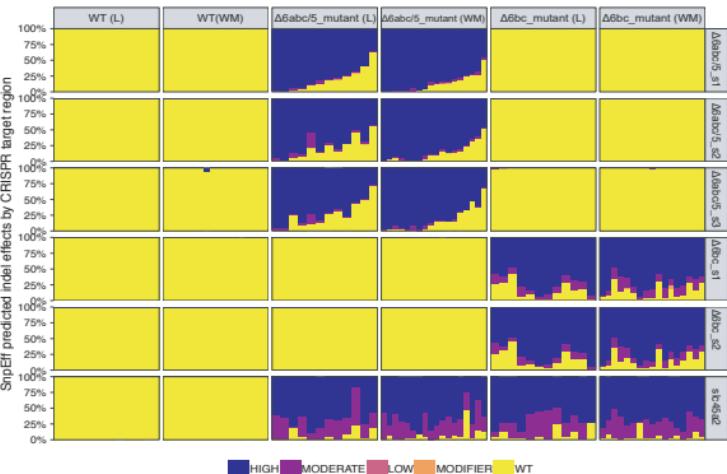

669 genes (DEGs, $q<0.05$ & $|\log_2\text{FC}|>0.5$) are labelled, except three genes with asterix (*) which had high log2 fold

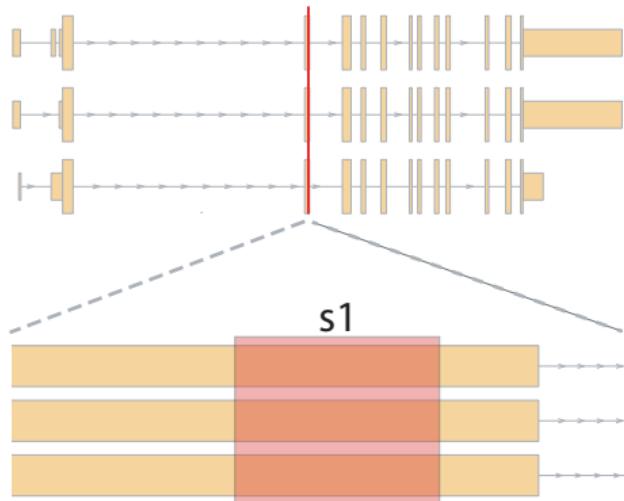
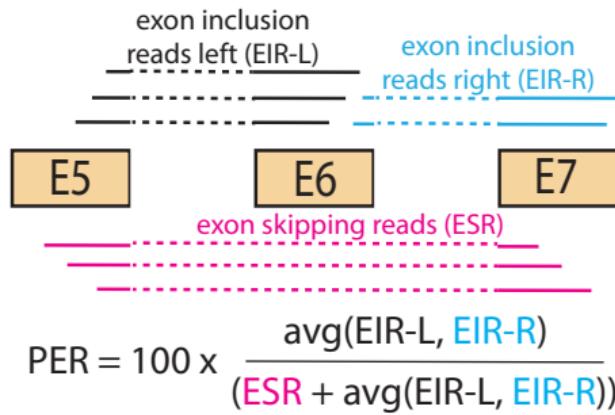
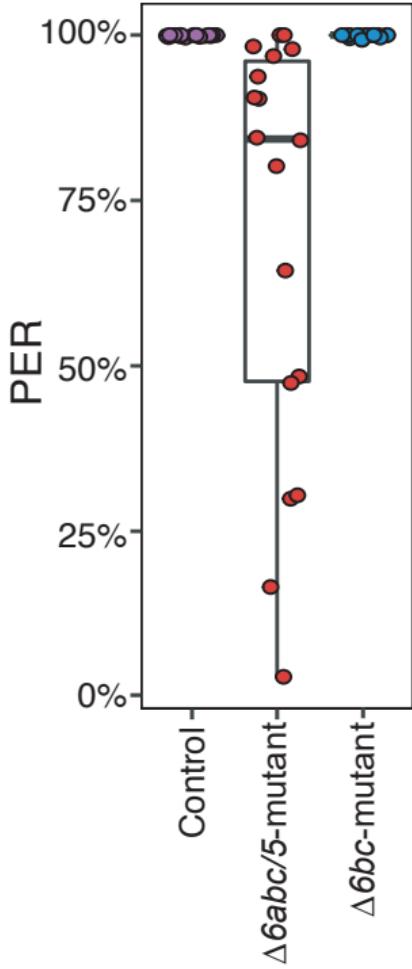

670 change but not significant ($q>0.05$) **B)** Correlation between gene expression and DHA content in phospholipid.

671 Data of DHA measurement was aquired from Datsmor *et.al*, 2019.


672






A. Expression change of lipid metabolism genes

B. Correlation between gene expression and DHA content

A**B****C**

A**B****C**