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27 Abstract

28 Rare variants are thought to play an important role in the etiology of complex diseases and may 

29 explain a significant fraction of the missing heritability in genetic disease studies. Next-

30 generation sequencing facilitates the association of rare variants in coding or regulatory regions 

31 with complex diseases in large cohorts at genome-wide scale. However, rare variant association 

32 studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation 

33 explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant 

34 Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS 

35 tests, BATI allows integration of individual or variant-specific features as covariates, while 

36 efficiently performing inference based on full model estimation. We demonstrate that BATI 

37 outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing 

38 cohorts, especially when using meaningful biological context, such as functional annotation. We 

39 show that BATI achieves power above 75% in scenarios in which competing tests fail to identify 

40 risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We 

41 have integrated BATI, together with five existing RVAS tests in the ‘Rare Variant Genome Wide 

42 Association Study’ (rvGWAS) framework for data analyzed by whole-exome or whole genome 

43 sequencing. rvGWAS supports rare variant association for genes or any other biological unit 

44 such as promoters, while allowing the analysis of essential functionalities like quality control or 

45 filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight 

46 candidate predisposition genes, including EHMT2 and COPS7A. 

47 Data availability and implementation 

48 All relevant data are within the manuscript and pipeline implementation on 

49 https://github.com/hanasusak/rvGWAS
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50 Author summary
51 Complex diseases are characterized by being related to genetic factors and environmental 

52 factors such as air pollution, diet etc. that together define the susceptibility of each individual to 

53 develop a given disease. Much effort has been applied to advance the knowledge of the genetic 

54 bases of such diseases, specially in the discovery of frequent genetic variants in the population 

55 increasing disease risk. However, these variants usually explain a little part of the etiology of 

56 such diseases. Previous studies have shown that rare variants, i.e. variants present in less than 

57 1% of the population, may explain the rest of the variability related to genetic aspects of the 

58 disease. 

59 Genome sequencing offers the opportunity to discover rare variants, but powerful statistical 

60 methods are needed to discriminate those variants that induce susceptibility to the disease.  

61 Here we have developed a powerful and flexible statistical approach for the detection of rare 

62 variants associated with a disease and we have integrated it into a computer tool that is easy 

63 and intuitive for the researchers and clinicians to use. We have shown that our approach 

64 outperformed other common statistical methods specially in a situation where these variants 

65 explain just a small part of the disease. The discovery of these rare variants will contribute to the 

66 knowledge of the molecular mechanism of complex diseases.

67 Introduction

68 The rapidly improving yield and cost-effect ratio of Next Generation Sequencing (NGS) 

69 technologies provide the opportunity to study associations of genetic variants with complex 

70 multifactorial diseases in large cohorts at a genome-wide scale. As opposed to genome-wide 

71 association studies (GWAS), which are based on counting of genotypes at predefined genomic 

72 positions with alternative alleles of medium to high minor allele frequency in the population 

73 (MAF >1 %), whole-exome and whole-genome sequencing (WES, WGS) enable the study of 
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74 rare genetic variants (RV) across the whole exome or genome, respectively. Previous studies 

75 have shown that RVs play an important role in the etiology of complex genetic diseases(1–4). 

76 Furthermore, it has been demonstrated that RVs are more likely to affect the structure, stability 

77 or function of proteins than common variants(5,6). Therefore, statistical analysis of the 

78 combined set of rare variants across genes or regulatory elements has the potential to reveal 

79 new insights into the genetic heritability of complex diseases and the predisposition to cancer. 

80 To this end, rare variant association studies (RVAS) that facilitate identification of novel disease 

81 loci based on the burden of rare and damaging variants with low to medium effect size within 

82 genomic units of interest have been developed(7). 

83 One of the major difficulties when associating rare variants to disease is the lack of power when 

84 using traditional statistical methods like GWAS. Given that few individuals are carriers of the 

85 rare alternative allele, association studies based on single variant positions would require 

86 extremely large sample sizes. To overcome this obstacle and to increase statistical power, 

87 studies of RV consider simultaneously multiple variable positions within functional biological 

88 units, such as genes, promoters or pathways, for association to disease. Different statistical 

89 methods that address the problem of aggregated analysis of rare variants in case-control 

90 studies have been proposed. For example, score based methods pool minor alleles per unit into 

91 a measure of burden, which is used for association with a disease or phenotypic trait(8–11). 

92 These burden tests are powerful when a high proportion of RVs found in a gene affect its 

93 function and their effects on the disease are one-sided, i.e. either protective or deleterious. This 

94 is rarely the case since usually few deleterious variants coexist with many neutral and possibly 

95 some protective variants. Hence advanced methods have been developed to consider 

96 heterogeneous effects among RVs on the disease (or trait), which are mainly based on variance 

97 component tests, e.g. SKAT and C-alpha(12,13). These methods are more powerful than 

98 burden tests when the hypothesis of unidirectional effects does not hold(14). More recently, 

99 novel methods have been introduced. These contemplate that both types of genetic 
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100 architectures may coexist throughout the genome, by being constructed as a linear combination 

101 between burden and variance-component tests, such as SKAT-O(15). He et al.(16) developed 

102 an alternative method, a hierarchical Bayesian multiple regression model (HBMR) additionally 

103 accounting for variant detection errors commonly produced using NGS data, by incorporation of 

104 genotype misclassification probabilities in the model. Sun et al.(17) proposed a mixed effects 

105 test (MiST) within the framework of a hierarchical model, considering biological characteristics 

106 of the variants in the statistical model. In brief, MiST assumes that individual variants are 

107 independently distributed, with the mean modeled as a function of variant characteristics and 

108 certain variance that accounts for heterogeneous variant effects. In the resulting generalized 

109 linear mixed effects model (GLMM) variant-specific effects are treated as the random part of the 

110 model and patient and variant characteristics as the fixed part. The authors claim that, under the 

111 assumption that associated variants share common characteristics such as similar impact on 

112 protein function (e.g. primarily loss of function), using this prior information increases the power 

113 of the test. However, they also note that attempting to estimate the full model for inference 

114 purposes requires multiple integration, such that it becomes too computationally intensive for a 

115 genome-wide scan. Instead, a score test under the null hypothesis of no association is 

116 proposed, avoiding multiple integration.

117 Building on the concept of MiST, but with the motivation of making inference based on full 

118 model estimation, we propose a Bayesian alternative to the GLMM, using the Integrated Nested 

119 Laplace Approximation (INLA) for efficient model estimation(18). Calculating the marginal 

120 likelihood to estimate complex models in a fully Bayesian manner is often infeasible. Therefore, 

121 approximate procedures such as the heuristic Markov Chain Monte Carlo (MCMC) method are 

122 conventionally applied(16). MCMC is a highly flexible approach that can be used to make 

123 inference for any Bayesian model. However, evaluating the convergence of MCMC sampling 

124 chains is not straightforward(19). Another concern with MCMC is the extensive computation 

125 time, especially in large-scale analyses such as genome-wide scans. INLA is a non-sampling 
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126 based numerical approximation procedure, developed to estimate hierarchical latent Gaussian 

127 Markov random field models. Being based on numerical approaches instead of simulations 

128 renders INLA substantially faster than MCMC. Furthermore, Rue and Martino(20) demonstrated 

129 for several models that INLA is also more accurate than MCMC when given the same 

130 computational resources. The flexibility of modeling within the Bayesian framework combined 

131 with rapid inference approaches opens new possibilities for genetic association testing. 

132 Here, we present a novel Bayesian rare variant Association Test using INLA (BATI), 

133 implemented as part of the ‘Rare Variant Genome Wide Association Study’ (rvGWAS) 

134 framework. rvGWAS combines quality control (QC), interactive filtering, detection of data 

135 stratification (technical or population based), integration of functional variant annotations and 

136 four commonly used rare variant association tests (Burden, SKAT-O, KBAC and MiST) as well 

137 as the two Bayesian alternatives, HBMR and BATI. We demonstrate using realistic benchmarks 

138 that BATI substantially outperforms existing methods if prior information on the effect of variants 

139 on protein function is used. We further show that BATI successfully copes with complex 

140 population structure and other confounders. Finally, we propose how to use ‘difference in 

141 deviance information criterion’ (DIC) for model selection.

142 Material and Methods

143 Bayesian rare variant Association Test based on Integrated nested Laplace 

144 approximation (BATI). 

145 Integrated Nested Laplace Approximation is a recent approach to implement Bayesian inference 

146 on latent Gaussian models, which are a versatile and flexible class of models ranging from 

147 (generalized) linear mixed models (GLMMs) to spatial and spatio-temporal models. A detailed 

148 definition of INLA can be found in(18,21,22). Here we applied INLA using the implementation of 
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149 the R-INLA project (R package INLA version 17.06.20) to build a hierarchical Bayesian 

150 approach to the GLMM for the association of rare variants with phenotypes in the context of 

151 case-control studies. Our method termed BATI can efficiently and flexibly integrate a large 

152 number of categorical and numeric characteristics of genetic variants as covariates, as INLA 

153 facilitates estimation of the full model even for complex structures of random effects.

154 Model specification 

155 Assume we have N individuals, and let  be the observed phenotype of the th 𝑌𝑖 (𝑖 = 1,…, 𝑁) 𝑖

156 individual that belongs to an exponential family:

157 (1)𝑌𝑖 ~𝜋(𝑌𝑖;𝜇𝑖, 𝜃)

158 where the expected value  is linked to a linear predictor  through a known link 𝜇 = 𝐸(𝑌𝑖) 𝜂𝑖

159 function , so that . In our case  is a binary variable representing affected 𝑔(·) 𝑔(·) = 𝜂𝑖 𝑌𝑖

160 individuals (cases) vs. unaffected individuals (controls). We propose to construct the likelihood 

161 of the data based on a logistic distribution and use the identity function for . The linear 𝑔(·)

162 predictor  is defined to account for potential confounding covariates at the individual level as 𝜂𝑖

163 well as for covariates at the variant level such as a variant’s functional impact: 

164 (2)𝜂𝑖 = 𝑋𝑡
𝑖𝛼 + 𝐺𝑡

𝑖𝛽

165 where  is a  vector of individual-based confounding covariates and  denotes a  𝑋𝑖 𝑚 × 1 𝐺𝑖 𝑝 × 1

166 vector of genotypes for  RVs. Each genotype is coded as 0, 1, or 2, representing the number of 𝑝

167 minor alleles.  and  are the regression vectors of coefficients. 𝛼 𝛽

168 BATI can account for individual variant characteristics under the assumption that similar variant-

169 specific characteristics have a similar effect on the function of the protein and hence the 

170 phenotype, while still allowing for potential variant-specific heterogeneity effects. Thus  can be 𝛽

171 modeled in a hierarchical way as:

172 (3)𝛽𝑗 = 𝑍𝑡
𝑗𝜔 + 𝛿𝑗
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173 where  is a vector of  variant-specific regression coefficients,  is a  𝜔 𝑞 × 1 (𝑗 = 1,…,𝑞) 𝑍𝑡 𝑝 × 𝑞

174 matrix (for  covariates per variant), and  is a  random effects vector which is assumed to 𝑞 𝛿 𝑝 × 1

175 follow a multivariate Gaussian distribution with mean 0 and covariance matrix . If no 𝜏𝑄

176 dependency structure is defined across variants, as in MiST(17),  is a  identity matrix and 𝑄 𝑝 × 𝑝

177  the random effects variance. However, in order to model a correlation structure between 𝜏

178 variants, such as physical distance dependency, BATI allows to construct  such that it reflects 𝑄

179 this structure. This is enabled by INLA, which provides Laplace approximation of the posterior 

180 distributions, therefore allowing the estimation of the full model for complex structures of random 

181 effects.

182 Plugging equation (3) into (2) we obtain the expression of a generalized linear mixed effects 

183 model (GLMM):

184 (4)𝜂𝑖 = 𝑋𝑡
𝑖𝛼 + (𝐺𝑡

𝑖𝑍)𝜔 + 𝐺𝑡
𝑖𝛿

185 with  and  as fixed effects coefficients and  as random effects coefficients. Given the vector 𝛼 𝜔 𝛿

186 of parameters , the objectives of the Bayesian computation are the marginal posterior 𝜃 = {𝛼,𝜔,𝛿}

187 distributions for each of the elements of the parameter vector  and for the hyper-𝑝(𝜃𝑠|𝑦)

188 parameter . In order to compute the marginal posterior for the parameters, we first need 𝑝(𝜏|𝑦)

189 to compute  and . The INLA approach exploits the assumptions of the model to 𝑝(𝜏|𝑦) 𝑝(𝜃𝑠|𝜏,𝑦)

190 produce a numerical approximation to the posteriors of interest, based on the Laplace 

191 approximation(23). 

192 Model selection 

193 The classical approaches of association tests are based on hypothesis testing, where the null 

194 hypothesis assumes no genetic effects, and the alternative hypothesis assumes a genetic effect 

195 on the phenotype. In the context of BATI this can be specified as follows:

196 (5)𝐻0: 𝜂𝑖 = 𝑋𝑡
𝑖𝛼

197 (6)𝐻1: 𝜂𝑖 = 𝑋𝑡
𝑖𝛼 + (𝐺𝑡

𝑖𝑍)𝜔 + 𝐺𝑡
𝑖𝛿
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198 A classic Bayesian criterion for model goodness of fit is the Deviance Information Criteria (𝐷𝐼𝐶

199 )(24).  is calculated as the expectation of the deviance over the posterior distribution plus the 𝐷𝐼𝐶

200 effective number of parameters. Thus, difference in  between the H0 and the H1 models, 𝐷𝐼𝐶

201 , can be used as the model selection criteria. As a rule of thumb values of ∆𝐷𝐼𝐶 =  𝐷𝐼𝐶𝐻0 ‒ 𝐷𝐼𝐶𝐻1

202  are recommended to reject the null-hypothesis. However, to evaluate the ability of ∆𝐷𝐼𝐶 > 10

203  to correctly choose between null or alternative models we suggest the use of simulations, ∆𝐷𝐼𝐶

204 as proposed by Holand et al.(25). To find an estimate of the probability of type I error, 

205 concluding that there are genetic effects when in truth there is none, we randomly assign 

206 individuals to either cases or controls. We then adjust models under null and alternative 

207 hypothesis for each gene or biological unit included in the genome wide study, obtaining the 

208 empirical distribution of . Finally, we select a ΔDIC threshold from the quantile ∆𝐷𝐼𝐶

209 corresponding to the desired significance level. For more robust threshold estimation, we 

210 propose to generate S datasets by randomly shuffling cases and controls, such that S ΔDIC  

211 thresholds can be obtained and the median of the thresholds can be used. We used S = 10 for 

212 model selection in our benchmark study.

213

214 A comprehensive framework for rare variant association analysis (RVAS). 

215 We developed the ‘Rare Variant Genome Wide Association Study’ (rvGWAS) framework (Fig 

216 1A and Supplementary S1 Fig), an all-in-one tool designed for RVAS tests using case-control 

217 cohorts analyzed by NGS. rvGWAS supports rare variant association aggregating by genes or 

218 any other biological unit such as promoters or enhancers. It provides all essential steps and 

219 functionalities to perform the complete analysis of whole-exome sequencing (WES) or whole-

220 genome sequencing (WGS) based case-control study designs: (1) it facilitates comprehensive 

221 quality control and filtering, (2) it evaluates data stratification (either technical or population 

222 based), (3) it enables the integration of patient- and/or variant-based covariates in association 
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223 tests in an easy and intuitive fashion, and (4) it integrates six conceptually different rare-variant 

224 association methods. It is implemented in a modular way and provides great flexibility, allowing 

225 to analyze a wide range of association study designs.

226

227 Fig 1. rvGWAS workflow and QC plots for 1810 high quality samples from 1000GP used 

228 for benchmarking. (A) rvGWAS workflow for performing QC and six RVAS tests. The QC 

229 module computes quality statistics shown in panels B-F. The result of each RVAS test is a 

230 ranked list of genes with various informative attributes. (B) Bar-plot for number of variants per 

231 sample, colored by functional annotation of variants. (C) Barplot for number of variants per 

232 sample, colored by assignment to cases (~1/2) or controls (~1/2). (D) Number of variants per 

233 gene in cases (x-axis) and controls (y-axis). Each dot is one gene, while the red line shows the 

234 ratio of the number of cases and controls (1:1). (E) Histogram for number of mutations per 

235 sample after removal of outliers. (F) Projection on first 10 PCA components. Samples are 

236 colored by sequencing center. The graph in the upper right corner shows the cumulative 

237 percentage of variance explained per principal components. Principal components can be used 

238 as covariates in several RVAS tests.

239

240 BATI and five other RVAS methods are integrated in the rvGWAS framework. KBAC, SKAT-O, 

241 and MiST, were chosen to be included due to their superior performance compared to eight 

242 other RVAS methods in a benchmark study by Moutsianas et al.(14). In addition, we included 

243 the classical Burden test representing the most simplistic and intuitive form of RVAS tests. 

244 Finally, we incorporated HBMR, which is conceptually the most similar to BATI in terms of its 

245 estimation approach (while MiST is more similar in terms of model specification). The six 

246 supported RVAS tests represent a broad spectrum of approaches, including classic aggregation 

247 of variants as a Burden variable, variance component bidirectional tests, mixed effect models 

248 and Bayesian inference. 
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249 rvGWAS is implemented as a pipeline of R scripts, and is available online at 

250 https://github.com/hanasusak/rvGWAS. Detailed descriptions of the tool, included methods as 

251 well as parameters are provided in supporting information file.

252

253 Realistic ‘semi-synthetic’ simulations of whole-exome sequencing based case-control 

254 studies. 

255 To allow for benchmarking using highly realistic disease cohorts, which correctly represent all 

256 expected sources of noise, we developed a new disease cohort simulator combining thousands 

257 of real WES datasets from various studies with known risk variants for a selected disease type. 

258 The simulator randomly assigns WES samples to the case or control group and introduces 

259 predisposition variants found in ClinVar for a disease of choice into the VCF files of cases. 

260 We used two large datasets as basis for the simulation: 1) WES data of the 1000 Genomes 

261 Project (1000GP), and 2) an in-house dataset combining patients diagnosed with various 

262 conditions and healthy individuals subjected to WES during 2012 to 2017. VCF files from 

263 1000GP (phase3)(26,27) were downloaded from 

264 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. This cohort contains 2504 

265 individuals from 26 populations. WES libraries of 1000GP were prepared using one of four oligo 

266 enrichment kits: (1) Nimblegen SeqEz V2, (2) Nimblegen SeqEz V3, (3) VC Rome, and (4) 

267 Agilent SureSelect V2. Additional sample information used as covariates (population, super 

268 population, gender) was obtained from the file 

269 integrated_call_samples_v3.20130502.ALL.panel. We excluded related individuals, e.g in 

270 parent-child trios we included the parents (if not consanguineous), but not the child. To minimize 

271 issues with population stratification due to highly diverse populations we only included 

272 individuals not belonging to African ancestry populations, as Africans had on average 25% more 

273 variants than individuals from other ancestry groups. Nonetheless, the remaining cohort still 
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274 represents a mixed population, allowing us to benchmark population stratification efficiency of 

275 the RVAS tests. 

276 The in-house ‘Iberian’ WES cohort includes 1189 individuals of Spanish ancestry and is 

277 therefore highly homogeneous. WES libraries were prepared using three different oligo 

278 enrichment kits: (1) Agilent SureSelect 50, (2) Agilent SureSelect 71, and (3) Nimblegen SeqEz 

279 V3. Computational analysis and variant calling was performed according to GATK best practice 

280 guidelines (https://software.broadinstitute.org/gatk/best-practices/). For simulation purposes we 

281 only considered genomic loci that were targeted and covered with at least 10 sequence reads 

282 by all oligo enrichment kits, and variants with a call rate higher than 85%. Samples that were 

283 identified as outliers based on the number of called variants, transition to transversion (Ti/Tv) 

284 ratio, or their projection on the first two principal components from principal component analysis 

285 were removed from further analysis. The remaining datasets, named 1000GP and Iberian 

286 cohort, consisted of 1,810 and 1,167 samples harboring 493,314 and 285,658 unique loci with 

287 alternative alleles, respectively. From 1000GP we randomly selected half of the samples as 

288 cases, the other half as controls, while for the Iberian cohort we selected one third as cases, 

289 and two thirds as controls.

290

291 Simulating a breast cancer risk cohort. 

292 To introduce realistic disease variants into a ‘semi-synthetic’ breast cancer predisposition 

293 cohort, we queried the ClinVar database for breast cancer risk variants annotated as exonic or 

294 splicing. We removed variants that had MAF higher than 0.01 in any ancestry population in any 

295 of three commonly used exome databases: EVS, 1000GP or ExAC. Six genes had more than 

296 five annotated disease risk variants in ClinVar: BRCA2 (MIM: *600185), BRCA1 (MIM: 

297 *113705), PALB2 (MIM: *610355), BRIP1 (MIM: *605882), CHEK2 (MIM: +604373) and BARD1 

298 (MIM: *601593) (Supplementary S1 Table), which we used to simulate risk patients by adding 

299 variants to the VCF files (zero or one variant per case).  As expected, all six genes already had 
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300 rare variants, likely benign, in the unmodified cohorts (Supplementary S2 Table and 

301 Supplementary S3 Table). This type of noise is expected in any case-control study using WES 

302 data, and hence makes the simulation more realistic. We generated three genetic architectures 

303 per gene, with ~2% (1),  ~1% (2) or ~0.5% (3) of phenotypic variance explained (VE) by 

304 introducing ClinVar risk variants. To this end we used the method of So et al.(28) for calculation 

305 of cumulative VE each time a variant was added to a gene until the targeted VE was reached. 

306 Calculation of VE requires three parameters per each variant: the prevalence of the trait, the 

307 population frequency of the risk allele, and the genotype relative risk (RR). In practice, only odds 

308 ratios (OR) are available in many case-control studies. However, OR approximates RR when 

309 the disease prevalence in a population is low(28). As prevalence of breast cancer we selected 

310 an estimate for the Spanish population of 0.00085(29). In order to generate realistic RR 

311 distributions, we generated a distribution (Supplementary S2 Fig) assuming that the likelihood of 

312 having high RR is negatively correlated with MAF(14). For BRCA1 and BRCA2 we simulated 

313 two different types of genetic architectures, by introducing in one architecture only missense 

314 variants, and in the other only loss of function (LoF) SNVs (i.e. stop-gain, stop-loss or splicing). 

315 This allowed us to test if MiST and BATI benefit from features that capture biological function 

316 and context of variants. For the four remaining genes, the variants were simulated regardless of 

317 their functionality. The simulation procedure is repeated 100 times for each of the 8 

318 architectures in order to generate 100 datasets for evaluation of statistical power and type I 

319 error rates (TIER). For BARD1 it was not possible to reach the desired VE of 2% and 1% in 

320 most simulations due to an insufficient number of breast cancer risk variants found in ClinVar. 

321 Supplementary S3 Fig and Supplementary S4 Fig show the exact levels of VE in 100 

322 simulations per gene for each of the two cohorts.
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323 Results

324 Quality control and filtering of benchmark WES cohorts. 

325 Cohorts used for benchmarking of test methods consisted of 1,810 individuals in the 1000GP 

326 cohort and 1,167 individuals in the Iberian cohort, harboring 493,314 and 285,658 unique loci 

327 with a non-reference genotype in at least one of the samples, respectively. Both datasets were 

328 analyzed and filtered using the rvGWAS quality control modules (see Methods and Supporting 

329 information file). For benchmarking purposes, we only considered variants in regions targeted 

330 by all used oligo enrichment kits. However, in the case of the Iberian cohort we observed that a 

331 small subset of regions supposed to be targeted consistently showed low coverage in a kit-

332 specific manner, leading to strong biases identified by the data stratification module of rvGWAS  

333 (data not shown). The bias disappeared when excluding regions with less than 10x average 

334 coverage in at least one kit (Supplementary S5F Fig). Samples included in the final simulation 

335 cohorts show no biases in any of the first ten components of the PCA (1000GP: Fig 1F, Iberian: 

336 Supplementary S5F Fig), and the explained variance per PCA component is low (Fig 1F, 

337 Supplementary S5C Fig). Furthermore, samples in the two cohorts show a normal distribution of 

338 the number of mutations (Fig 1E, Supplementary S5E Fig) and Ti/Tv ratio (data not shown), and 

339 show no bias in the number of variants and fractions of InDels or synonymous, nonsynonymous 

340 and LoF SNVs (Fig 1B, Fig 1C, Supplementary S5A-B Fig). Finally, there is a high correlation 

341 between the fraction of cases and of controls having variants in any given gene (Fig 1D, 

342 Supplementary S5D Fig).

343

344 Benchmarking RVAS Tests using semi-synthetic breast cancer risk cohorts. 

345 We used the rvGWAS framework to benchmark the six RVAS tests (Burden, SKAT-O, KBAC, 

346 MiST, HBMR and BATI) on the 1000GP and Iberian cohorts with simulated breast cancer risk 

347 variants. In order to simulate a realistic breast cancer predisposition case-control study we 
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348 randomly split each of the original cohorts in a case (1000GP: 905, Iberian: 389 samples) and a 

349 control group (1000GP: 905, Iberian: 778 samples), and, in the case group samples, added 

350 ClinVar risk variants to the genes BRCA2, BRCA1, PALB2, BRIP1, CHEK2 and BARD1 using 

351 realistic variance explained (VE) rates (see Methods). Before performing the RVAS we filtered 

352 out common variants (AF>0.01 in public databases or in the randomized control group) as well 

353 as variants that were annotated as synonymous or had a CADD score below 10 (likely benign, 

354 see  https://cadd.gs.washington.edu/info). For BATI and MiST we used prior information on 

355 variant characteristics as covariates: CADD scores as a quantitative variable and exonic 

356 function (missense, loss-of-function, InDels) as a categorical variable. We repeated the 

357 simulation and benchmarking process 10 times, including the randomized case-control 

358 assignment in order to randomize background noise in each benchmark cycle. 

359 Type I Error Rate estimates. 

360 The six benchmarked RVAS tests use diverse criteria for statistical significance (p-value, Bayes 

361 factor or ). To generate comparable significance thresholds, we performed RVAS tests on ∆𝐷𝐼𝐶

362 randomly split cohorts, but without introduced ClinVar risk variants. Hence, significant 

363 associations should only be found by random chance and constitute false positives. This 

364 procedure allowed us to obtain comparable thresholds for desired type I error rates for all 

365 methods. For each of the 10 random cohort splits we obtained p-value significance thresholds 

366 for Burden, KBAC, SKAT-O and MiST that translate to 5%, 0.1% and 0.01% TIER. Similarly, for 

367 HBMR and for BATI we calculated thresholds for Bayes factor and  resulting in the same ∆𝐷𝐼𝐶

368 TIER levels. Estimated thresholds are highly similar across all 10 randomized case-control splits 

369 (Supplementary S6 Fig). At 0.01% TIER only 2 genes (out of ~20,000) are expected as 

370 significant by chance, therefore the observed small fluctuation of estimated significance 

371 thresholds is not surprising. We finally used the test-specific median from 10 random splits as 

372 thresholds to label a gene as significant for subsequent power analyses (Supplementary S6  

373 Fig, Table 1 and Supplementary S4 Table).
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374

375 Table 1 P-value, Bayes Factor (HBMR) and DIC (BATI) thresholds for Type I error rates 

376 (TIER) of 0.05, 0.001 and 1e-04 estimated on 1000GP. We randomly permuted case and 

377 control labels 10 times and for each estimated empirical thresholds for each RVAS test. The 

378 median TIER values from 10 random permutations are used as thresholds for benchmark 

379 comparison.

 Method  0.05 TIER 0.001 TIER 1e-04 TIER

BURDEN 0.0519 1.12e-03 7.79e-05

KBAC 0.0650 1.52e-03 1.52e-04

SKAT-O 0.0563 1.47e-03 1.66e-04

MiST 0.0766 2.26e-09 3.33e-16

HBMR 1.2678 3.5774 9.0838

BATI 2.3898  9.5929 14.4623
380

381

382 We noticed that MiST shows zero inflated p-values (Supplementary S7A Fig). These 

383 unexpected zero p-values occur exclusively for genes with few variants (<10) across the cohort, 

384 indicating that the MiST method fails to obtain accurate p-values for genes with low burden of 

385 variants.  Hence, we removed all genes with p-value 0 from MiST results (Supplementary S7B 

386 Fig). No other method showed a p-value inflation artefact or unexpectedly high Bayes Factor or 

387 DIC values (Supplementary S7C-G Fig).

388

389 Power analysis for six RVAS test methods. 

390 We next determined the power of the competing RVAS tests to identify the 8 breast cancer risk 

391 genes (BRCA1-Missense, BRCA1-LoF, BRCA2-Missense, BRCA2-LoF, PALB2, BRIP1, 

392 CHEK2 and BARD1) at the three TIER levels 5%, 0.1% and 0.01% and at three levels of VE of 
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393 2%, 1% and 0.5% (1000GP: Fig 2, Iberian: Supplementary S8 Fig). For the 1000GP cohort we 

394 found that all methods showed a power close to 100% at a TIER of 5% across all tested VE 

395 levels, except for Burden and KBAC, which showed decreased performance for VE = 0.5% (Fig 

396 2A-C left). Testing 20,000 genes (whole exome) at a TIER of 5% we expect around 1000 false 

397 positive genes, which is a poor choice for most studies. Using a TIER of 0.1% (~20 false 

398 positive genes expected), differences between the tests become more pronounced, with 

399 Burden, KBAC and MiST showing decreased power already for 1% VE, and all methods except 

400 for BATI showing decreased power at 0.5% VE (Fig 2A-C middle). Interestingly, Burden, KBAC 

401 and SKAT-O show strongly fluctuating power for the 8 tested genes, often showing either 100% 

402 or 0% power (Fig 2C middle), meaning a risk gene was either identified in all 100 simulations, or 

403 in none. BATI achieved more than 75% power for all genes, with a median above 90%. Using a 

404 strict TIER of 0.01% (2 false positives expected for the whole exome), all tools except for MiST 

405 are able to identify risk genes at 2% VE at almost 100% (for the outlier BARD1 we did not 

406 achieve 2% VE in all simulations due to a lack of variants in ClinVar). However, performance of 

407 all methods except BATI drops substantially for 1% VE. At 0.5% VE most methods miss the 

408 majority of risk genes in the majority of simulations (median power close to zero), while BATI 

409 still achieves a median power of 60% (Fig 2A-C right). Note that MiST performed very poorly for 

410 the strict TIER thresholds of 0.1% and 0.01%, likely due to the aforementioned zero-p-value 

411 inflation issue, which results in a large number of false positives.

412

413 Fig 2. Benchmarking power of RVAS methods for the 1000GP-based BRCA risk study. 

414 Each dot in the plots represents one of simulated 8 risk genes, and y-axis values show the 

415 fraction of 100 simulations in which the gene was called as significant. RVAS tests were 

416 benchmarked under the following 9 settings. Variance explained (VE) of the incorporated risk 

417 variants is (A) ~2%, (B) ~1%, and (C) ~0.5%. For each VE we tested three TIER levels, left: 

418 TIER 5%, middle: TIER 0.1%, and right: TIER 0.01%.
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419

420 Results are mostly similar in the benchmark using the Iberian cohort (Supplementary S8 Fig). 

421 However, most tests perform slightly worse due to the smaller size of the cohort (1,167  vs 

422 1,810 total individuals). Notably, BATI’s performance is stable despite the smaller cohort size. 

423 Specifically, for a low VE of 0.5% and a strict TIER of 0.01% (Supplementary S8 Fig right), all 

424 methods except for BATI show power close to 0, while BATI achieves power close to 100% for 

425 three risk genes (median power of 55%). 

426

427 Risk gene-wise power analysis. 

428 Each gene has a different architecture, i.e. rate of (likely benign) rare variants in the original 

429 cohorts, functional impact estimates for known risk variants, fraction of stop-gain or splicing 

430 variants etc. We therefore benchmarked the performance of all RVAS tests across 100 

431 simulations of risk variants for each gene separately (1000GP cohort:  Fig 3 and Table 2, 

432 Iberian cohort: Supplementary S9 Fig). In the gene-wise power plots we indicate the three TIER 

433 thresholds using red (5%), green (0.1%) and blue (0.01%) lines. Note that due to different y-Axis 

434 scaling these lines are not on the same height for different tests. As expected all methods 

435 except MiST identify all risk genes at 0.01% TIER in the 2% VE setting. However, substantial 

436 differences in power of the tests appear when VE is only 1% or 0.5%. While BATI calls most 

437 genes with TIER 0.01% even at VE of 0.5%, and all genes at TIER 0.1% with >80% power 

438 (Table 2), Burden, KBAC and SKAT-O recurrently fail to call BRCA2 (both missense and LoF 

439 versions), and HBMR fails to call BARD1, CHEK2 and PALB2 already at TIER 0.1% (Table 2). 

440 The performance of Burden, KBAC and SKAT-O varies considerably between genes, while 

441 MiST, HBMR and BATI show relatively small differences. Interestingly, the power plots at 0.5% 

442 VE look very similar when comparing Burden, KBAC and SKAT-O, indicating that these 

443 methods share the same strengths and weaknesses.

444
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445 Fig 3. Benchmarking statistical power to detect rare variant associations for 8 genes 

446 individually. Rare variants annotated for increased breast cancer risk were simulated into the 

447 1000GP dataset with cases and controls randomly assigned. Power (y-axis) per gene for 6 

448 methods (Burden, KBAC, SKAT-O, MiST, HBMR and BATI) is shown for (A) 2%, (B) 1%, and 

449 (C) 0.5% variance explained between cases and healthy controls. (Due to using real SNVs in 

450 the simulation the variance explained per gene fluctuates slightly around the targeted VE. See 

451 Supplementary S3 Fig). Lower, middle and upper lines indicate relaxed (5%), medium (0.1%) 

452 and strict (0.01%) TIER thresholds, respectively.

453

454 Table 2 Power of six RVAS methods for 8 genes/architectures simulated using the 

455 1000GP cohort and ClinVar disease variants. 100 Architectures were simulated for each 

456 gene. For BRCA1 and BRCA1 simulation was performed in missense and in LoF mode (see 

457 Methods). Power is shown for VE = 0.05% and TIER levels 0. 001 and 1e-04. 

              
Gene
Method

BRCA1 
MiSS

BRCA1 
LoF

BRCA2 
MiSS

BRCA2 
LoF BARD1 BRIP1 CHEK2 PALB2

BURDEN 99 100 0 0 0 100 13 54

KBAC 100 100 0 0 5 100 30 68

SKAT-O 99 100 0 0 0 100 10 78

MiST 0 0 0 0 0 0 0 0

HBMR 78 78 87 82 2 98 26 1

BATI 98 100 88 99 79 98 77 93

TIER=

0.001

BURDEN 57 60 0 0 0 58 1 5

KBAC 86 92 0 0 0 100 4 13

SKAT-O 79 86 0 0 0 100 1 15

MiST 0 0 0 0 0 0 0 0

HBMR 0 0 0 0 0 0 2 0

BATI 63 94 56 74 9 68 29 57

TIER=

1e-04
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458

459 Only MiST and BATI are able to leverage categorical variant characteristics, here represented 

460 as functional annotations such as ‘missense’, ‘LoF’, ‘indel’. As background LoF variants are rare 

461 we expected that both methods excel at predicting BRCA1 and BRCA2 under the LoF-

462 architecture simulation. Indeed, for both methods we see a better performance for BRCA1-LoF 

463 and BRCA2-LoF compared to the BRCA1-missense and BRCA2-missense, respectively. For 

464 BATI, this difference is significant for both genes (BRCA1: p = 4.0e-13 and BRCA2: p = 0.0025 

465 for VE = 0.5 using Wilcoxon rank test). As a result, BATI predicts BRCA2-LoF at the highest 

466 significance level (TIER 0.01%), while all other methods perform poorly. BRCA1-LoF shows the 

467 highest DIC value from all 8 risk genes, demonstrating that the BATI method strongly benefits 

468 from categorical functional annotations.

469 The strong performance of BATI in terms of precision and recall comes at the price of longer run 

470 time (Supplementary S5 Table).  Inference based on full model estimation leads to a higher 

471 computational complexity and hence higher run time of BATI compared to all competing 

472 methods. The computational time and complexity of RVAS test methods is a concern, as exome 

473 and genome sequencing datasets have been increasing dramatically in sample size recently. 

474 However, the INLA implementation used by BATI (R-INLA project) facilitates the use of multiple 

475 cores, and scales close to linearly with the number of used cores, allowing for analysis of large 

476 cohorts on modern servers with many cores. Moreover, lowering the allele frequency threshold 

477 of included rare variants (e.g. from AF <= 1% to AF <= 0.1%) for very large cohorts can 

478 dramatically reduce computation times.

479

480 RVAS of chronic lymphocytic leukemia identifies candidate risk genes. 

481 Chronic lymphocytic leukemia (CLL) is a cancer of B-lymphocytes, which expands in the bone 

482 marrow, lymph nodes, spleen and blood. With the aim to identify the landscape of germline risk 

483 genes that can predispose an individual to CLL, we applied BATI and the other five competing 
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484 RVAS methods integrated in rvGWAS. The CLL cohort of 436 cases was collected and 

485 sequenced following the guidelines of the International Cancer Genome Consortium (ICGC)(30) 

486 within the framework of the Spanish ICGC-CLL consortium(31) (Puente et al. 2015). In addition, 

487 725 individuals from our Iberian cohort were used as controls. For the gene-wise RVAS test we 

488 preselected rare (MAF≤ 0.01 in our control cohort, ExAC and 1000GP) and potentially 

489 damaging variants (CADD score > 10). All RVAS methods were adjusted for the first 10 

490 principal components to account for population stratification and technical biases. For BATI and 

491 MiST we additionally added the exonic function of the variants (i.e. LoF, missense, indel) and 

492 the CADD damage score as covariates. We tested all genes with a variant call rate of at least 

493 95% and removed genes flagged by Allele Balance Bias (ABB)(32) as enriched with false 

494 positive variant calls (see Supporting information file for details). BATI identified 12 candidates 

495 that passed the significance threshold of 10-4 (Supplementary S6 Table). Among those, EHMT2 

496 and COPS7A are promising CLL risk gene candidates. The heterodimeric methyltransferases 

497 EHMT1 and EHMT2 have recently been implicated with prognosis of CLL and CLL cell 

498 viability(33).  COPS7A (previous name COP9) is involved in the Transcription-Coupled 

499 Nucleotide Excision Repair (TC-NER) pathway and the COP9 signalosome complex (CSN) is 

500 involved in phosphorylation of p53/TP53, JUN, I-kappa-B-alpha/NFKBIA, ITPK1 and 

501 IRF8/ICSBP. However, replication of results in independent cohorts is required to evaluate 

502 these findings.

503 Discussion

504 Here we presented a comprehensive framework, rvGWAS, to facilitate user-friendly and intuitive 

505 analysis of RVAS in case-control studies using whole genome or custom-captured next 

506 generation sequencing data. rvGWAS integrates data quality control and filtering, several 

507 existing rare variant association tests and the newly developed BATI test. We showed how BATI 
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508 leverages both categorical and numerical variant characteristics and strongly benefits from their 

509 inclusion as covariates. We demonstrated BATI’s significant gain in power if risk genes contain 

510 mostly LoF variants, while still performing at least as good as other methods when testing genes 

511 containing mostly missense variants. 

512 Model estimation when using complex data structures, including exome-wide genetic variants, 

513 numerical damage estimates and functional annotations, becomes computationally heavy. 

514 Therefore, existing tests do not estimate the full model (as in MiST) or use the relatively slow 

515 MCMC (as in HBMR). BATI addresses this issue by estimating the full model using Integrated 

516 Nested Laplace Approximation, which requires reasonable computational resources even when 

517 using complex data structures. INLA provides approximations to the posterior marginals of the 

518 latent variables, which are accurate and extremely fast to compute(18). INLA was originally 

519 developed as a computationally efficient alternative to MCMC and presents two major 

520 advantages. On the one hand, INLA’s fast speed allows it to work on models with huge 

521 dimensional latent fields and a large number of covariates at different hierarchical levels (for 

522 example in case of RVAS at the patient level and at the variant level). On the other hand, INLA 

523 treats latent Gaussian models in a unified way, thus allowing for greater automation of the 

524 inference process. Thanks to these characteristics, INLA has already been used in a great 

525 variety of applications(34–39). Leveraging the efficiency of INLA, BATI, unlike MiST, can make 

526 inference based on full model estimation, and provides comprehensive information on estimates 

527 of model parameters. Furthermore, BATI allows for the inclusion of many numerical or 

528 categorical features as covariates. Which other features, in addition to functional impact and 

529 functional annotation of variants, could be beneficial for association testing remains to be 

530 determined. Promising categories include variant call quality, tissue-specific gene expression 

531 measures, biological pathways or copy number variants. 

532 Previous benchmark studies of RVAS tests typically relied on pure simulations of variants, for 

533 instance based on HapMap statistics, resulting in completely artificial cohorts(14). Furthermore, 
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534 simulations were often restricted to small regions of the genome, limiting their power for 

535 benchmarking exome-wide association tests. Simulated variant data is well-known to lack the 

536 complexity and noise-level of real data, resulting in overly optimistic benchmark performances 

537 and unrealistic expectations of the clinical researchers. Moreover, the use of random ‘causal’ 

538 variants hampers the benchmarking of methods that leverage characteristics of causal disease 

539 variants, which are enriched in high damage scores and high impact changes such as LoF 

540 variants. Here we combined real WES cohorts, representing realistic background noise, with 

541 real disease variants, featuring realistic functional impact profiles and variant distributions, to 

542 form semi-synthetic benchmark cohorts. We developed sampling methods allowing to test 

543 different disease architectures featuring various levels of variance explained in multiple risk 

544 genes. Furthermore, tests in the original randomized cohorts without introduced disease 

545 variants facilitated the translation of method-specific significance thresholds to comparable 

546 thresholds for type I error rates. 

547 Using these simulations, we show that methods vary substantially in power, especially for risk 

548 genes explaining a small fraction of the variance in a cohort. We found that differences between 

549 methods when VE is low (1% and 0.5%) are substantially more profound than previously 

550 appreciated, with some methods showing strongly fluctuating success rates for different genes 

551 and close to zero power at VE of 0.5%. For example, MiST showed favorable results on purely 

552 artificial benchmark sets(14), but performed poorly on our realistic WES cohorts, likely due to an 

553 issue with zero-inflated p-values caused by inappropriate handling of low variant counts. 

554 Specifically, MiST failed to identify any risk gene at low VE or low TIER thresholds. We further 

555 found that the performance patterns of Burden, KBAC and SKAT-O across the 8 risk gene 

556 architectures are highly similar when compared to MiST, HBMR and BATI. Burden, KBAC and 

557 SKAT-O fail to predict the same genes at 0.5% VE, namely BRCA2, BARD1 and CHEK2, which 

558 are characterized by high numbers of benign background variants. It is therefore likely beneficial 
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559 to combine Burden- and SKAT-type methods with completely different approaches to 

560 compensate for Burden and SKAT specific weaknesses.

561 In summary, leveraging variant characteristics and using the fast and accurate INLA model 

562 estimation, BATI outperforms existing RVAS test methods on realistic WES cohorts using real 

563 disease variants in 8 breast cancer risk genes, in hundreds of permutations. By facilitating 

564 integration of large numbers of covariates, BATI represents a flexible testing approach that can 

565 be further extended and enhanced in the future. 

566 Supporting information

567 S1 Text. Supporting information for Efficient and Flexible Integration of Variant Characteristics 

568 in Rare Variant Association Studies Using Integrated Nested Laplace Approximation
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