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Abstract

Rare variants are thought to play an important role in the etiology of complex diseases and may
explain a significant fraction of the missing heritability in genetic disease studies. Next-
generation sequencing facilitates the association of rare variants in coding or regulatory regions
with complex diseases in large cohorts at genome-wide scale. However, rare variant association
studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation
explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant
Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS
tests, BATI allows integration of individual or variant-specific features as covariates, while
efficiently performing inference based on full model estimation. We demonstrate that BATI
outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing
cohorts, especially when using meaningful biological context, such as functional annotation. We
show that BATI achieves power above 75% in scenarios in which competing tests fail to identify
risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We
have integrated BATI, together with five existing RVAS tests in the ‘Rare Variant Genome Wide
Association Study’ (rvGWAS) framework for data analyzed by whole-exome or whole genome
sequencing. ryvGWAS supports rare variant association for genes or any other biological unit
such as promoters, while allowing the analysis of essential functionalities like quality control or
filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight
candidate predisposition genes, including EHMT2 and COPS7A.

Data availability and implementation

All relevant data are within the manuscript and pipeline implementation on

https://github.com/hanasusak/rvGWAS
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Author summary

Complex diseases are characterized by being related to genetic factors and environmental
factors such as air pollution, diet etc. that together define the susceptibility of each individual to
develop a given disease. Much effort has been applied to advance the knowledge of the genetic
bases of such diseases, specially in the discovery of frequent genetic variants in the population
increasing disease risk. However, these variants usually explain a little part of the etiology of
such diseases. Previous studies have shown that rare variants, i.e. variants present in less than
1% of the population, may explain the rest of the variability related to genetic aspects of the
disease.

Genome sequencing offers the opportunity to discover rare variants, but powerful statistical
methods are needed to discriminate those variants that induce susceptibility to the disease.
Here we have developed a powerful and flexible statistical approach for the detection of rare
variants associated with a disease and we have integrated it into a computer tool that is easy
and intuitive for the researchers and clinicians to use. We have shown that our approach
outperformed other common statistical methods specially in a situation where these variants
explain just a small part of the disease. The discovery of these rare variants will contribute to the

knowledge of the molecular mechanism of complex diseases.

Introduction

The rapidly improving yield and cost-effect ratio of Next Generation Sequencing (NGS)
technologies provide the opportunity to study associations of genetic variants with complex
multifactorial diseases in large cohorts at a genome-wide scale. As opposed to genome-wide
association studies (GWAS), which are based on counting of genotypes at predefined genomic
positions with alternative alleles of medium to high minor allele frequency in the population

(MAF >1 %), whole-exome and whole-genome sequencing (WES, WGS) enable the study of
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rare genetic variants (RV) across the whole exome or genome, respectively. Previous studies
have shown that RVs play an important role in the etiology of complex genetic diseases(1-4).
Furthermore, it has been demonstrated that RVs are more likely to affect the structure, stability
or function of proteins than common variants(5,6). Therefore, statistical analysis of the
combined set of rare variants across genes or regulatory elements has the potential to reveal
new insights into the genetic heritability of complex diseases and the predisposition to cancer.
To this end, rare variant association studies (RVAS) that facilitate identification of novel disease
loci based on the burden of rare and damaging variants with low to medium effect size within
genomic units of interest have been developed(7).

One of the major difficulties when associating rare variants to disease is the lack of power when
using traditional statistical methods like GWAS. Given that few individuals are carriers of the
rare alternative allele, association studies based on single variant positions would require
extremely large sample sizes. To overcome this obstacle and to increase statistical power,
studies of RV consider simultaneously multiple variable positions within functional biological
units, such as genes, promoters or pathways, for association to disease. Different statistical
methods that address the problem of aggregated analysis of rare variants in case-control
studies have been proposed. For example, score based methods pool minor alleles per unit into
a measure of burden, which is used for association with a disease or phenotypic trait(8—11).
These burden tests are powerful when a high proportion of RVs found in a gene affect its
function and their effects on the disease are one-sided, i.e. either protective or deleterious. This
is rarely the case since usually few deleterious variants coexist with many neutral and possibly
some protective variants. Hence advanced methods have been developed to consider
heterogeneous effects among RVs on the disease (or trait), which are mainly based on variance
component tests, e.g. SKAT and C-alpha(12,13). These methods are more powerful than
burden tests when the hypothesis of unidirectional effects does not hold(14). More recently,
novel methods have been introduced. These contemplate that both types of genetic
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100  architectures may coexist throughout the genome, by being constructed as a linear combination
101  between burden and variance-component tests, such as SKAT-O(15). He et al.(16) developed
102  an alternative method, a hierarchical Bayesian multiple regression model (HBMR) additionally
103 accounting for variant detection errors commonly produced using NGS data, by incorporation of
104  genotype misclassification probabilities in the model. Sun et al.(17) proposed a mixed effects
105  test (MiST) within the framework of a hierarchical model, considering biological characteristics
106  of the variants in the statistical model. In brief, MiST assumes that individual variants are
107  independently distributed, with the mean modeled as a function of variant characteristics and
108  certain variance that accounts for heterogeneous variant effects. In the resulting generalized
109 linear mixed effects model (GLMM) variant-specific effects are treated as the random part of the
110  model and patient and variant characteristics as the fixed part. The authors claim that, under the
111  assumption that associated variants share common characteristics such as similar impact on
112 protein function (e.g. primarily loss of function), using this prior information increases the power
113  of the test. However, they also note that attempting to estimate the full model for inference
114  purposes requires multiple integration, such that it becomes too computationally intensive for a
115 genome-wide scan. Instead, a score test under the null hypothesis of no association is
116  proposed, avoiding multiple integration.

117  Building on the concept of MiST, but with the motivation of making inference based on full
118  model estimation, we propose a Bayesian alternative to the GLMM, using the Integrated Nested
119 Laplace Approximation (INLA) for efficient model estimation(18). Calculating the marginal
120  likelihood to estimate complex models in a fully Bayesian manner is often infeasible. Therefore,
121  approximate procedures such as the heuristic Markov Chain Monte Carlo (MCMC) method are
122 conventionally applied(16). MCMC is a highly flexible approach that can be used to make
123 inference for any Bayesian model. However, evaluating the convergence of MCMC sampling
124 chains is not straightforward(19). Another concern with MCMC is the extensive computation
125 time, especially in large-scale analyses such as genome-wide scans. INLA is a non-sampling
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126  based numerical approximation procedure, developed to estimate hierarchical latent Gaussian
127  Markov random field models. Being based on numerical approaches instead of simulations
128  renders INLA substantially faster than MCMC. Furthermore, Rue and Martino(20) demonstrated
129  for several models that INLA is also more accurate than MCMC when given the same
130  computational resources. The flexibility of modeling within the Bayesian framework combined
131  with rapid inference approaches opens new possibilities for genetic association testing.

132  Here, we present a novel Bayesian rare variant Association Test using INLA (BATI),
133  implemented as part of the ‘Rare Variant Genome Wide Association Study’ (rvGWAS)
134 framework. rvGWAS combines quality control (QC), interactive filtering, detection of data
135  stratification (technical or population based), integration of functional variant annotations and
136  four commonly used rare variant association tests (Burden, SKAT-O, KBAC and MiST) as well
137  as the two Bayesian alternatives, HBMR and BATI. We demonstrate using realistic benchmarks
138  that BATI substantially outperforms existing methods if prior information on the effect of variants
139  on protein function is used. We further show that BATI successfully copes with complex
140  population structure and other confounders. Finally, we propose how to use ‘difference in

141  deviance information criterion’ (ADIC) for model selection.

142 Material and Methods

143  Bayesian rare variant Association Test based on Integrated nested Laplace
144  approximation (BATI).

145 Integrated Nested Laplace Approximation is a recent approach to implement Bayesian inference
146  on latent Gaussian models, which are a versatile and flexible class of models ranging from
147  (generalized) linear mixed models (GLMMs) to spatial and spatio-temporal models. A detailed

148  definition of INLA can be found in(18,21,22). Here we applied INLA using the implementation of
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149 the R-INLA project (R package INLA version 17.06.20) to build a hierarchical Bayesian
150  approach to the GLMM for the association of rare variants with phenotypes in the context of
151 case-control studies. Our method termed BATI can efficiently and flexibly integrate a large
152 number of categorical and numeric characteristics of genetic variants as covariates, as INLA
153  facilitates estimation of the full model even for complex structures of random effects.

154  Model specification

155 Assume we have N individuals, and let Y; (i=1,.., N) be the observed phenotype of the iy
156  individual that belongs to an exponential family:

157 Y ~n(Y;u, 6) (1)

158  where the expected value u=E(Y;) is linked to a linear predictor n; through a known link
159  function g(:), so that g(-)=mn,. In our case Y; is a binary variable representing affected
160 individuals (cases) vs. unaffected individuals (controls). We propose to construct the likelihood
161  of the data based on a logistic distribution and use the identity function for g(-). The linear
162  predictor n; is defined to account for potential confounding covariates at the individual level as
163  well as for covariates at the variant level such as a variant’s functional impact:

164 n;=Xia+Gip (2)

165 where X; is a m x 1 vector of individual-based confounding covariates and G; denotes a p X 1
166  vector of genotypes for p RVs. Each genotype is coded as 0, 1, or 2, representing the number of
167  minor alleles. @ and S are the regression vectors of coefficients.

168  BATI can account for individual variant characteristics under the assumption that similar variant-
169  specific characteristics have a similar effect on the function of the protein and hence the
170  phenotype, while still allowing for potential variant-specific heterogeneity effects. Thus § can be
171  modeled in a hierarchical way as:

172 ,BJ=Z]t(1)+8] (3)
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173  where w is a vector of ¢ x 1 (j =1,..,q) variant-specific regression coefficients, Z* is a p x q
174  matrix (for q covariates per variant), and § is a p X 1 random effects vector which is assumed to
175  follow a multivariate Gaussian distribution with mean 0 and covariance matrix Q. If no
176  dependency structure is defined across variants, as in MiST(17), Q is a p X p identity matrix and
177  t the random effects variance. However, in order to model a correlation structure between
178  variants, such as physical distance dependency, BATI allows to construct Q such that it reflects
179  this structure. This is enabled by INLA, which provides Laplace approximation of the posterior
180  distributions, therefore allowing the estimation of the full model for complex structures of random
181  effects.

182  Plugging equation (3) into (2) we obtain the expression of a generalized linear mixed effects
183  model (GLMM):

184 ni=Xa+ (GiZ2)w + Gis (4)

185 with @ and w as fixed effects coefficients and § as random effects coefficients. Given the vector
186  of parameters 6 = {a,w,6}, the objectives of the Bayesian computation are the marginal posterior
187  distributions for each of the elements of the parameter vector p(6,|y) and for the hyper-
188  parameter p(z|y). In order to compute the marginal posterior for the parameters, we first need
189  to compute p(z]y) and p(6,|t,y). The INLA approach exploits the assumptions of the model to
190  produce a numerical approximation to the posteriors of interest, based on the Laplace
191  approximation(23).

192  Model selection

193  The classical approaches of association tests are based on hypothesis testing, where the null
194  hypothesis assumes no genetic effects, and the alternative hypothesis assumes a genetic effect
195  on the phenotype. In the context of BATI this can be specified as follows:

196 Hpn=Xa (5)

197  Hpn=Xa+(GZ)w+ G (6)
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198 A classic Bayesian criterion for model goodness of fit is the Deviance Information Criteria (DIC
199  )(24). DIC is calculated as the expectation of the deviance over the posterior distribution plus the
200 effective number of parameters. Thus, difference in DIC between the Hy and the H; models,

201  ADIC = DICy,- DICy,, can be used as the model selection criteria. As a rule of thumb values of

202  ADIC > 10 are recommended to reject the null-hypothesis. However, to evaluate the ability of
203  ADIC to correctly choose between null or alternative models we suggest the use of simulations,
204 as proposed by Holand et al.(25). To find an estimate of the probability of type | error,
205 concluding that there are genetic effects when in truth there is none, we randomly assign
206 individuals to either cases or controls. We then adjust models under null and alternative
207  hypothesis for each gene or biological unit included in the genome wide study, obtaining the
208 empirical distribution of ADIC. Finally, we select a 4D/C threshold from the quantile
209  corresponding to the desired significance level. For more robust threshold estimation, we
210 propose to generate S datasets by randomly shuffling cases and controls, such that S 4D/C
211  thresholds can be obtained and the median of the thresholds can be used. We used S = 10 for
212 model selection in our benchmark study.

213

214 A comprehensive framework for rare variant association analysis (RVAS).

215  We developed the ‘Rare Variant Genome Wide Association Study’ (vGWAS) framework (Fig
216 1A and Supplementary S1 Fig), an all-in-one tool designed for RVAS tests using case-control
217  cohorts analyzed by NGS. rvGWAS supports rare variant association aggregating by genes or
218 any other biological unit such as promoters or enhancers. It provides all essential steps and
219  functionalities to perform the complete analysis of whole-exome sequencing (WES) or whole-
220  genome sequencing (WGS) based case-control study designs: (1) it facilitates comprehensive
221  quality control and filtering, (2) it evaluates data stratification (either technical or population

222 based), (3) it enables the integration of patient- and/or variant-based covariates in association
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223 tests in an easy and intuitive fashion, and (4) it integrates six conceptually different rare-variant
224 association methods. It is implemented in a modular way and provides great flexibility, allowing
225 to analyze a wide range of association study designs.

226

227  Fig 1. rvGWAS workflow and QC plots for 1810 high quality samples from 1000GP used
228  for benchmarking. (A) vGWAS workflow for performing QC and six RVAS tests. The QC
229  module computes quality statistics shown in panels B-F. The result of each RVAS test is a
230  ranked list of genes with various informative attributes. (B) Bar-plot for number of variants per
231  sample, colored by functional annotation of variants. (C) Barplot for number of variants per
232 sample, colored by assignment to cases (~1/2) or controls (~1/2). (D) Number of variants per
233 gene in cases (x-axis) and controls (y-axis). Each dot is one gene, while the red line shows the
234 ratio of the number of cases and controls (1:1). (E) Histogram for number of mutations per
235  sample after removal of outliers. (F) Projection on first 10 PCA components. Samples are
236  colored by sequencing center. The graph in the upper right corner shows the cumulative
237  percentage of variance explained per principal components. Principal components can be used
238  as covariates in several RVAS tests.

239

240  BATI and five other RVAS methods are integrated in the ryGWAS framework. KBAC, SKAT-O,
241  and MiST, were chosen to be included due to their superior performance compared to eight
242  other RVAS methods in a benchmark study by Moutsianas et al.(14). In addition, we included
243 the classical Burden test representing the most simplistic and intuitive form of RVAS tests.
244  Finally, we incorporated HBMR, which is conceptually the most similar to BATI in terms of its
245  estimation approach (while MiST is more similar in terms of model specification). The six
246  supported RVAS tests represent a broad spectrum of approaches, including classic aggregation
247  of variants as a Burden variable, variance component bidirectional tests, mixed effect models
248  and Bayesian inference.
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249 rvGWAS is implemented as a pipeline of R scripts, and is available online at
250  https://github.com/hanasusak/rvGWAS. Detailed descriptions of the tool, included methods as
251  well as parameters are provided in supporting information file.

252

253  Realistic ‘semi-synthetic’ simulations of whole-exome sequencing based case-control
254  studies.

255  To allow for benchmarking using highly realistic disease cohorts, which correctly represent all
256  expected sources of noise, we developed a new disease cohort simulator combining thousands
257  of real WES datasets from various studies with known risk variants for a selected disease type.
258  The simulator randomly assigns WES samples to the case or control group and introduces
259  predisposition variants found in ClinVar for a disease of choice into the VCF files of cases.

260  We used two large datasets as basis for the simulation: 1) WES data of the 1000 Genomes
261  Project (1000GP), and 2) an in-house dataset combining patients diagnosed with various
262  conditions and healthy individuals subjected to WES during 2012 to 2017. VCF files from
263  1000GP (phase3)(26,27) were downloaded from
264  ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. This cohort contains 2504
265 individuals from 26 populations. WES libraries of 1000GP were prepared using one of four oligo
266  enrichment kits: (1) Nimblegen SeqEz V2, (2) Nimblegen SeqEz V3, (3) VC Rome, and (4)
267  Agilent SureSelect V2. Additional sample information used as covariates (population, super
268  population, gender) was obtained from the file
269  integrated_call_samples_v3.20130502.ALL.panel. We excluded related individuals, e.g in
270  parent-child trios we included the parents (if not consanguineous), but not the child. To minimize
271  issues with population stratification due to highly diverse populations we only included
272  individuals not belonging to African ancestry populations, as Africans had on average 25% more

273  variants than individuals from other ancestry groups. Nonetheless, the remaining cohort still
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274  represents a mixed population, allowing us to benchmark population stratification efficiency of
275  the RVAS tests.

276  The in-house ‘lberian® WES cohort includes 1189 individuals of Spanish ancestry and is
277  therefore highly homogeneous. WES libraries were prepared using three different oligo
278  enrichment kits: (1) Agilent SureSelect 50, (2) Agilent SureSelect 71, and (3) Nimblegen SeqEz
279 V3. Computational analysis and variant calling was performed according to GATK best practice

280 guidelines (https://software.broadinstitute.org/gatk/best-practices/). For simulation purposes we

281  only considered genomic loci that were targeted and covered with at least 10 sequence reads
282 by all oligo enrichment kits, and variants with a call rate higher than 85%. Samples that were
283  identified as outliers based on the number of called variants, transition to transversion (Ti/Tv)
284  ratio, or their projection on the first two principal components from principal component analysis
285 were removed from further analysis. The remaining datasets, named 1000GP and Iberian
286  cohort, consisted of 1,810 and 1,167 samples harboring 493,314 and 285,658 unique loci with
287  alternative alleles, respectively. From 1000GP we randomly selected half of the samples as
288 cases, the other half as controls, while for the Iberian cohort we selected one third as cases,
289  and two thirds as controls.

290

291  Simulating a breast cancer risk cohort.

292  To introduce realistic disease variants into a ‘semi-synthetic’ breast cancer predisposition
293 cohort, we queried the ClinVar database for breast cancer risk variants annotated as exonic or
294 splicing. We removed variants that had MAF higher than 0.01 in any ancestry population in any
295  of three commonly used exome databases: EVS, 1000GP or EXAC. Six genes had more than
296 five annotated disease risk variants in ClinVar: BRCA2 (MIM: *600185), BRCA1 (MIM:
297  *113705), PALB2 (MIM: *610355), BRIP1 (MIM: *605882), CHEK2 (MIM: +604373) and BARD1
298  (MIM: *601593) (Supplementary S1 Table), which we used to simulate risk patients by adding
299  variants to the VCF files (zero or one variant per case). As expected, all six genes already had
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300 rare variants, likely benign, in the unmodified cohorts (Supplementary S2 Table and
301 Supplementary S3 Table). This type of noise is expected in any case-control study using WES
302 data, and hence makes the simulation more realistic. We generated three genetic architectures
303  per gene, with ~2% (1), ~1% (2) or ~0.5% (3) of phenotypic variance explained (VE) by
304 introducing ClinVar risk variants. To this end we used the method of So et al.(28) for calculation
305  of cumulative VE each time a variant was added to a gene until the targeted VE was reached.
306  Calculation of VE requires three parameters per each variant: the prevalence of the trait, the
307  population frequency of the risk allele, and the genotype relative risk (RR). In practice, only odds
308 ratios (OR) are available in many case-control studies. However, OR approximates RR when
309 the disease prevalence in a population is low(28). As prevalence of breast cancer we selected
310 an estimate for the Spanish population of 0.00085(29). In order to generate realistic RR
311 distributions, we generated a distribution (Supplementary S2 Fig) assuming that the likelihood of
312  having high RR is negatively correlated with MAF(14). For BRCA1 and BRCAZ2 we simulated
313  two different types of genetic architectures, by introducing in one architecture only missense
314 variants, and in the other only loss of function (LoF) SNVs (i.e. stop-gain, stop-loss or splicing).
315  This allowed us to test if MiST and BATI benefit from features that capture biological function
316 and context of variants. For the four remaining genes, the variants were simulated regardless of
317  their functionality. The simulation procedure is repeated 100 times for each of the 8
318 architectures in order to generate 100 datasets for evaluation of statistical power and type |
319  error rates (TIER). For BARD1 it was not possible to reach the desired VE of 2% and 1% in
320  most simulations due to an insufficient number of breast cancer risk variants found in ClinVar.
321  Supplementary S3 Fig and Supplementary S4 Fig show the exact levels of VE in 100

322 simulations per gene for each of the two cohorts.
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323 Results

324  Quality control and filtering of benchmark WES cohorts.

325 Cohorts used for benchmarking of test methods consisted of 1,810 individuals in the 1000GP
326  cohort and 1,167 individuals in the Iberian cohort, harboring 493,314 and 285,658 unique loci
327  with a non-reference genotype in at least one of the samples, respectively. Both datasets were
328 analyzed and filtered using the ryGWAS quality control modules (see Methods and Supporting
329 information file). For benchmarking purposes, we only considered variants in regions targeted
330 by all used oligo enrichment kits. However, in the case of the Iberian cohort we observed that a
331 small subset of regions supposed to be targeted consistently showed low coverage in a Kkit-
332  specific manner, leading to strong biases identified by the data stratification module of rvGWAS
333  (data not shown). The bias disappeared when excluding regions with less than 10x average
334  coverage in at least one kit (Supplementary S5F Fig). Samples included in the final simulation
335  cohorts show no biases in any of the first ten components of the PCA (1000GP: Fig 1F, Iberian:
336  Supplementary S5F Fig), and the explained variance per PCA component is low (Fig 1F,
337  Supplementary S5C Fig). Furthermore, samples in the two cohorts show a normal distribution of
338  the number of mutations (Fig 1E, Supplementary S5E Fig) and Ti/Tv ratio (data not shown), and
339  show no bias in the number of variants and fractions of InDels or synonymous, honsynonymous
340 and LoF SNVs (Fig 1B, Fig 1C, Supplementary S5A-B Fig). Finally, there is a high correlation
341  between the fraction of cases and of controls having variants in any given gene (Fig 1D,
342  Supplementary S5D Fig).

343

344  Benchmarking RVAS Tests using semi-synthetic breast cancer risk cohorts.

345  We used the ryGWAS framework to benchmark the six RVAS tests (Burden, SKAT-O, KBAC,
346  MiST, HBMR and BATI) on the 1000GP and Iberian cohorts with simulated breast cancer risk

347 variants. In order to simulate a realistic breast cancer predisposition case-control study we
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348  randomly split each of the original cohorts in a case (1000GP: 905, Iberian: 389 samples) and a
349  control group (1000GP: 905, Iberian: 778 samples), and, in the case group samples, added
350 ClinVar risk variants to the genes BRCA2, BRCA1, PALB2, BRIP1, CHEK2 and BARD1 using
351 realistic variance explained (VE) rates (see Methods). Before performing the RVAS we filtered
352  out common variants (AF>0.01 in public databases or in the randomized control group) as well
353  as variants that were annotated as synonymous or had a CADD score below 10 (likely benign,
354 see https://cadd.gs.washington.edu/info). For BATI and MiST we used prior information on
355 variant characteristics as covariates: CADD scores as a quantitative variable and exonic
356 function (missense, loss-of-function, InDels) as a categorical variable. We repeated the
357 simulation and benchmarking process 10 times, including the randomized case-control
358 assignment in order to randomize background noise in each benchmark cycle.

359  Type | Error Rate estimates.

360 The six benchmarked RVAS tests use diverse criteria for statistical significance (p-value, Bayes
361 factor or ADIC). To generate comparable significance thresholds, we performed RVAS tests on
362 randomly split cohorts, but without introduced ClinVar risk variants. Hence, significant
363  associations should only be found by random chance and constitute false positives. This
364  procedure allowed us to obtain comparable thresholds for desired type | error rates for all
365 methods. For each of the 10 random cohort splits we obtained p-value significance thresholds
366 for Burden, KBAC, SKAT-O and MiST that translate to 5%, 0.1% and 0.01% TIER. Similarly, for
367 HBMR and for BATI we calculated thresholds for Bayes factor and ADIC resulting in the same
368 TIER levels. Estimated thresholds are highly similar across all 10 randomized case-control splits
369 (Supplementary S6 Fig). At 0.01% TIER only 2 genes (out of ~20,000) are expected as
370 significant by chance, therefore the observed small fluctuation of estimated significance
371  thresholds is not surprising. We finally used the test-specific median from 10 random splits as
372  thresholds to label a gene as significant for subsequent power analyses (Supplementary S6

373  Fig, Table 1 and Supplementary S4 Table).
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374

375 Table 1 P-value, Bayes Factor (HBMR) and ADIC (BATI) thresholds for Type | error rates
376 (TIER) of 0.05, 0.001 and 1e-04 estimated on 1000GP. We randomly permuted case and
377  control labels 10 times and for each estimated empirical thresholds for each RVAS test. The
378 median TIER values from 10 random permutations are used as thresholds for benchmark

379  comparison.

Method 0.05 TIER 0.001 TIER 1e-04 TIER
BURDEN 0.0519 1.12e-03 7.79e-05
KBAC 0.0650 1.52e-03 1.52e-04
SKAT-O 0.0563 1.47e-03 1.66e-04
MiST 0.0766 2.26e-09 3.33e-16
HBMR 1.2678 3.5774 9.0838
BATI 2.3898 9.5929 14.4623

380

381

382 We noticed that MiST shows zero inflated p-values (Supplementary S7A Fig). These
383  unexpected zero p-values occur exclusively for genes with few variants (<10) across the cohort,
384 indicating that the MiST method fails to obtain accurate p-values for genes with low burden of
385 variants. Hence, we removed all genes with p-value 0 from MiST results (Supplementary S7B
386  Fig). No other method showed a p-value inflation artefact or unexpectedly high Bayes Factor or
387  ADIC values (Supplementary S7C-G Fig).

388

389  Power analysis for six RVAS test methods.

390  We next determined the power of the competing RVAS tests to identify the 8 breast cancer risk
391 genes (BRCA1-Missense, BRCA1-LoF, BRCAZ2-Missense, BRCA2-LoF, PALB2, BRIP1,

392  CHEK2 and BARD1) at the three TIER levels 5%, 0.1% and 0.01% and at three levels of VE of
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393 2%, 1% and 0.5% (1000GP: Fig 2, Iberian: Supplementary S8 Fig). For the 1000GP cohort we
394  found that all methods showed a power close to 100% at a TIER of 5% across all tested VE
395 levels, except for Burden and KBAC, which showed decreased performance for VE = 0.5% (Fig
396 2A-C left). Testing 20,000 genes (whole exome) at a TIER of 5% we expect around 1000 false
397 positive genes, which is a poor choice for most studies. Using a TIER of 0.1% (~20 false
398 positive genes expected), differences between the tests become more pronounced, with
399  Burden, KBAC and MiST showing decreased power already for 1% VE, and all methods except
400  for BATI showing decreased power at 0.5% VE (Fig 2A-C middle). Interestingly, Burden, KBAC
401 and SKAT-O show strongly fluctuating power for the 8 tested genes, often showing either 100%
402  or 0% power (Fig 2C middle), meaning a risk gene was either identified in all 100 simulations, or
403  in none. BATI achieved more than 75% power for all genes, with a median above 90%. Using a
404  strict TIER of 0.01% (2 false positives expected for the whole exome), all tools except for MiST
405 are able to identify risk genes at 2% VE at almost 100% (for the outlier BARD1 we did not
406  achieve 2% VE in all simulations due to a lack of variants in ClinVar). However, performance of
407  all methods except BATI drops substantially for 1% VE. At 0.5% VE most methods miss the
408  maijority of risk genes in the majority of simulations (median power close to zero), while BATI
409  still achieves a median power of 60% (Fig 2A-C right). Note that MiST performed very poorly for
410  the strict TIER thresholds of 0.1% and 0.01%, likely due to the aforementioned zero-p-value
411 inflation issue, which results in a large number of false positives.

412

413  Fig 2. Benchmarking power of RVAS methods for the 1000GP-based BRCA risk study.
414  Each dot in the plots represents one of simulated 8 risk genes, and y-axis values show the
415  fraction of 100 simulations in which the gene was called as significant. RVAS tests were
416  benchmarked under the following 9 settings. Variance explained (VE) of the incorporated risk
417  variants is (A) ~2%, (B) ~1%, and (C) ~0.5%. For each VE we tested three TIER levels, left:
418  TIER 5%, middle: TIER 0.1%, and right: TIER 0.01%.
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419
420  Results are mostly similar in the benchmark using the Iberian cohort (Supplementary S8 Fig).
421  However, most tests perform slightly worse due to the smaller size of the cohort (1,167 vs
422 1,810 total individuals). Notably, BATI’s performance is stable despite the smaller cohort size.
423  Specifically, for a low VE of 0.5% and a strict TIER of 0.01% (Supplementary S8 Fig right), all
424  methods except for BATI show power close to 0, while BATI achieves power close to 100% for
425  three risk genes (median power of 55%).
426
427  Risk gene-wise power analysis.
428  Each gene has a different architecture, i.e. rate of (likely benign) rare variants in the original
429  cohorts, functional impact estimates for known risk variants, fraction of stop-gain or splicing
430 variants etc. We therefore benchmarked the performance of all RVAS tests across 100
431  simulations of risk variants for each gene separately (1000GP cohort: Fig 3 and Table 2,
432 Iberian cohort: Supplementary S9 Fig). In the gene-wise power plots we indicate the three TIER
433 thresholds using red (5%), green (0.1%) and blue (0.01%) lines. Note that due to different y-Axis
434  scaling these lines are not on the same height for different tests. As expected all methods
435  except MIST identify all risk genes at 0.01% TIER in the 2% VE setting. However, substantial
436  differences in power of the tests appear when VE is only 1% or 0.5%. While BATI calls most
437  genes with TIER 0.01% even at VE of 0.5%, and all genes at TIER 0.1% with >80% power
438 (Table 2), Burden, KBAC and SKAT-O recurrently fail to call BRCA2 (both missense and LoF
439  versions), and HBMR fails to call BARD1, CHEK2 and PALB2 already at TIER 0.1% (Table 2).
440  The performance of Burden, KBAC and SKAT-O varies considerably between genes, while
441  MiST, HBMR and BATI show relatively small differences. Interestingly, the power plots at 0.5%
442  VE look very similar when comparing Burden, KBAC and SKAT-O, indicating that these
443  methods share the same strengths and weaknesses.
444
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445  Fig 3. Benchmarking statistical power to detect rare variant associations for 8 genes
446 individually. Rare variants annotated for increased breast cancer risk were simulated into the
447  1000GP dataset with cases and controls randomly assigned. Power (y-axis) per gene for 6
448 methods (Burden, KBAC, SKAT-O, MiST, HBMR and BATI) is shown for (A) 2%, (B) 1%, and
449  (C) 0.5% variance explained between cases and healthy controls. (Due to using real SNVs in
450  the simulation the variance explained per gene fluctuates slightly around the targeted VE. See
451  Supplementary S3 Fig). Lower, middle and upper lines indicate relaxed (56%), medium (0.1%)
452  and strict (0.01%) TIER thresholds, respectively.

453

454  Table 2 Power of six RVAS methods for 8 genes/architectures simulated using the
455  1000GP cohort and ClinVar disease variants. 100 Architectures were simulated for each
456  gene. For BRCA1 and BRCA1 simulation was performed in missense and in LoF mode (see

457  Methods). Power is shown for VE = 0.06% and TIER levels 0. 001 and 1e-04.

Geni~ BROA!T BRCAT BROAZ BRCAZ BARD1 BRIP1 CHEK2 PALB2
BURDEN 99 100 0 0 0 100 13 54

KBAG 100 100 0 0 5 100 30 68

SKAT-O 99 100 0 0 0 100 10 78 | TIER=
MiST 0 0 0 0 0 0 0 0 0.001
HBMR 78 78 87 82 2 98 26 1

BATI 08 100 88 99 79 98 77 93

BURDEN 57 60 0 0 0 58 1 5

KBAG 86 92 0 0 0 100 4 13

SKAT-O 79 86 0 0 0 100 1 15 | TIER=
MIST 0 0 0 0 0 0 0 0 1e-04
HBMR 0 0 0 0 0 0 2 0

BAT| 63 94 56 74 9 68 29 57

19


https://doi.org/10.1101/2020.03.12.988584
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.988584; this version posted March 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

458

459  Only MiST and BATI are able to leverage categorical variant characteristics, here represented
460 as functional annotations such as ‘missense’, ‘LoF’, ‘indel’. As background LoF variants are rare
461 we expected that both methods excel at predicting BRCA7 and BRCA2 under the LoF-
462  architecture simulation. Indeed, for both methods we see a better performance for BRCA1-LoF
463 and BRCA2-LoF compared to the BRCA1-missense and BRCA2-missense, respectively. For
464  BATI, this difference is significant for both genes (BRCA1T: p = 4.0e-13 and BRCAZ2: p = 0.0025
465  for VE = 0.5 using Wilcoxon rank test). As a result, BATI predicts BRCA2-LoF at the highest
466  significance level (TIER 0.01%), while all other methods perform poorly. BRCA1-LoF shows the
467  highest ADIC value from all 8 risk genes, demonstrating that the BATI method strongly benefits
468  from categorical functional annotations.

469  The strong performance of BATI in terms of precision and recall comes at the price of longer run
470  time (Supplementary S5 Table). Inference based on full model estimation leads to a higher
471  computational complexity and hence higher run time of BATI compared to all competing
472  methods. The computational time and complexity of RVAS test methods is a concern, as exome
473  and genome sequencing datasets have been increasing dramatically in sample size recently.
474  However, the INLA implementation used by BATI (R-INLA project) facilitates the use of multiple
475  cores, and scales close to linearly with the number of used cores, allowing for analysis of large
476  cohorts on modern servers with many cores. Moreover, lowering the allele frequency threshold
477  of included rare variants (e.g. from AF <= 1% to AF <= 0.1%) for very large cohorts can
478  dramatically reduce computation times.

479

480  RVAS of chronic lymphocytic leukemia identifies candidate risk genes.

481  Chronic lymphocytic leukemia (CLL) is a cancer of B-lymphocytes, which expands in the bone
482  marrow, lymph nodes, spleen and blood. With the aim to identify the landscape of germline risk

483  genes that can predispose an individual to CLL, we applied BATI and the other five competing
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484 RVAS methods integrated in ryGWAS. The CLL cohort of 436 cases was collected and
485  sequenced following the guidelines of the International Cancer Genome Consortium (ICGC)(30)
486  within the framework of the Spanish ICGC-CLL consortium(31) (Puente et al. 2015). In addition,
487 725 individuals from our Iberian cohort were used as controls. For the gene-wise RVAS test we
488  preselected rare (MAF< 0.01 in our control cohort, EXAC and 1000GP) and potentially
489 damaging variants (CADD score > 10). All RVAS methods were adjusted for the first 10
490  principal components to account for population stratification and technical biases. For BATI and
491  MiST we additionally added the exonic function of the variants (i.e. LoF, missense, indel) and
492  the CADD damage score as covariates. We tested all genes with a variant call rate of at least
493  95% and removed genes flagged by Allele Balance Bias (ABB)(32) as enriched with false
494  positive variant calls (see Supporting information file for details). BATI identified 12 candidates
495  that passed the significance threshold of 10 (Supplementary S6 Table). Among those, EHMT2
496 and COPSTYA are promising CLL risk gene candidates. The heterodimeric methyltransferases
497 EHMT1 and EHMT2 have recently been implicated with prognosis of CLL and CLL cell
498  viability(33). COPS7A (previous name COP9) is involved in the Transcription-Coupled
499  Nucleotide Excision Repair (TC-NER) pathway and the COP9 signalosome complex (CSN) is
500 involved in phosphorylation of p53/TP53, JUN, I-kappa-B-alpha/NFKBIA, ITPK1 and
501 IRF8/ICSBP. However, replication of results in independent cohorts is required to evaluate

502  these findings.

503 Discussion

504  Here we presented a comprehensive framework, vGWAS, to facilitate user-friendly and intuitive
505 analysis of RVAS in case-control studies using whole genome or custom-captured next
506 generation sequencing data. rvGWAS integrates data quality control and filtering, several

507  existing rare variant association tests and the newly developed BATI test. We showed how BATI
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508 leverages both categorical and numerical variant characteristics and strongly benefits from their
509  inclusion as covariates. We demonstrated BAT!’s significant gain in power if risk genes contain
510 mostly LoF variants, while still performing at least as good as other methods when testing genes
511  containing mostly missense variants.

512  Model estimation when using complex data structures, including exome-wide genetic variants,
513  numerical damage estimates and functional annotations, becomes computationally heavy.
514  Therefore, existing tests do not estimate the full model (as in MiST) or use the relatively slow
515 MCMC (as in HBMR). BATI addresses this issue by estimating the full model using Integrated
516 Nested Laplace Approximation, which requires reasonable computational resources even when
517  using complex data structures. INLA provides approximations to the posterior marginals of the
518 latent variables, which are accurate and extremely fast to compute(18). INLA was originally
519 developed as a computationally efficient alternative to MCMC and presents two major
520 advantages. On the one hand, INLA’s fast speed allows it to work on models with huge
521  dimensional latent fields and a large number of covariates at different hierarchical levels (for
522  example in case of RVAS at the patient level and at the variant level). On the other hand, INLA
523  treats latent Gaussian models in a unified way, thus allowing for greater automation of the
524  inference process. Thanks to these characteristics, INLA has already been used in a great
525  variety of applications(34—39). Leveraging the efficiency of INLA, BATI, unlike MiST, can make
526 inference based on full model estimation, and provides comprehensive information on estimates
527 of model parameters. Furthermore, BATI allows for the inclusion of many numerical or
528  categorical features as covariates. Which other features, in addition to functional impact and
529  functional annotation of variants, could be beneficial for association testing remains to be
530 determined. Promising categories include variant call quality, tissue-specific gene expression
531 measures, biological pathways or copy number variants.

532  Previous benchmark studies of RVAS tests typically relied on pure simulations of variants, for
533 instance based on HapMap statistics, resulting in completely artificial cohorts(14). Furthermore,
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534  simulations were often restricted to small regions of the genome, limiting their power for
535  benchmarking exome-wide association tests. Simulated variant data is well-known to lack the
536  complexity and noise-level of real data, resulting in overly optimistic benchmark performances
537 and unrealistic expectations of the clinical researchers. Moreover, the use of random ‘causal’
538 variants hampers the benchmarking of methods that leverage characteristics of causal disease
539  variants, which are enriched in high damage scores and high impact changes such as LoF
540 variants. Here we combined real WES cohorts, representing realistic background noise, with
541 real disease variants, featuring realistic functional impact profiles and variant distributions, to
542  form semi-synthetic benchmark cohorts. We developed sampling methods allowing to test
543  different disease architectures featuring various levels of variance explained in multiple risk
544  genes. Furthermore, tests in the original randomized cohorts without introduced disease
545 variants facilitated the translation of method-specific significance thresholds to comparable
546  thresholds for type | error rates.

547  Using these simulations, we show that methods vary substantially in power, especially for risk
548  genes explaining a small fraction of the variance in a cohort. We found that differences between
549  methods when VE is low (1% and 0.5%) are substantially more profound than previously
550 appreciated, with some methods showing strongly fluctuating success rates for different genes
551  and close to zero power at VE of 0.5%. For example, MiST showed favorable results on purely
552  artificial benchmark sets(14), but performed poorly on our realistic WES cohorts, likely due to an
553 issue with zero-inflated p-values caused by inappropriate handling of low variant counts.
554  Specifically, MiST failed to identify any risk gene at low VE or low TIER thresholds. We further
555 found that the performance patterns of Burden, KBAC and SKAT-O across the 8 risk gene
556  architectures are highly similar when compared to MiST, HBMR and BATI. Burden, KBAC and
557  SKAT-O fail to predict the same genes at 0.5% VE, namely BRCA2, BARD1 and CHEK2, which

558 are characterized by high numbers of benign background variants. It is therefore likely beneficial
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559 to combine Burden- and SKAT-type methods with completely different approaches to
560 compensate for Burden and SKAT specific weaknesses.

561 In summary, leveraging variant characteristics and using the fast and accurate INLA model
562  estimation, BATI outperforms existing RVAS test methods on realistic WES cohorts using real
563 disease variants in 8 breast cancer risk genes, in hundreds of permutations. By facilitating
564  integration of large numbers of covariates, BATI represents a flexible testing approach that can

565 be further extended and enhanced in the future.
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