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Abstract

Sample size is a critical aspect of study design in population genomics research, yet few empirical studies
have examined the impacts of small sample sizes. We used datasets from eight diverging bird lineages to
make pairwise comparisons at different levels of taxonomic divergence (populations, subspecies, and
species). Our data are from loci linked to ultraconserved elements (UCEs) and our analyses used one
SNP per locus. All individuals were genotyped at all loci (McLaughlin et al. 2020). We estimated
population demographic parameters (effective population size, migration rate, and time since
divergence) in a coalescent framework using Diffusion Approximation for Demographic Inference (6aéi;

Gutenkunst et al. 2009), an allele frequency spectrum (AFS) method. Using divergence-with-gene-flow
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models optimized with full datasets, we subsampled at sequentially smaller sample sizes from full
datasets of 6 — 8 diploid individuals per population (with both alleles called) down to 1:1, and then we
compared estimates and their changes in accuracy. Accuracy was strongly affected by sample size, with
considerable differences among estimated parameters and among lineages. Effective population size
parameters (v) tended to be underestimated at low sample sizes (fewer than 3 diploid individuals per
population, or 6:6 haplotypes in coalescent terms). Migration (m) was fairly consistently estimated until
< 2 individuals per population, and no consistent trend of over- or underestimation was found in either
time since divergence (T) or O (4N,qu). Lineages that were taxonomically recognized above the
population level (subspecies and species pairs; i.e., deeper divergences) tended to have lower variation
in scaled root mean square error (SMRSE) of parameter estimation at smaller sample sizes than
population-level divergences, and many parameters were estimated accurately down to 3 diploid
individuals per population. Shallower divergence levels (i.e., populations) often required at least 5
individuals per population for reliable demographic inferences using this approach. Although divergence
levels might be unknown at the outset of study design, our results provide a framework for planning

appropriate sampling and for interpreting results if smaller sample sizes must be used.

Keywords: Population genomics, sample size, migration, effective population size, divergence with gene

flow.

Introduction

Genomic-scale data for studying population histories have increased the resolution of demographic

estimates, including effective population sizes, migration rates, and times since divergence, even when
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the number of sampled individuals is relatively low (Willing et al. 2012, Jeffries et al. 2016, Nazareno et
al. 2017). However, it is not well understood how the precision and accuracy of these estimates are
impacted by lower population sample sizes. The number of individuals that can be included in a study
might be limited by practical considerations such as availability of samples for difficult-to-access or
endangered populations, tradeoffs between including more individuals per population or more
populations, or decisions about whether to include more loci or more individuals (Felsenstein 2005,
Pruett & Winker 2008, Jeffries et al. 2016). Because these issues affect study design, it is important to
understand the impacts of relatively low within-population sample sizes on population demographic

parameters that are now commonly estimated in a coalescent framework.

The impacts of population sample size, and particularly the tradeoff between increased
numbers of individuals versus increased number of loci, has been studied primarily with microsatellite
datasets. In general, increasing the number of loci decreases the number of individuals needed for
accurate parameter estimations in population genetic studies (Morin et al. 2009, Willing et al. 2012), but
different parameter estimates are not impacted uniformly by low sample sizes. A size of 8 alleles per
population (4:4 diploid individuals) has been suggested as an optimum sample size for obtaining
coalescent-based likelihood estimates of © = 4N, (Felsenstein 2005). This sample size has also been
sufficient for non-coalescent-based estimates of unbiased heterozygosity (Pruett & Winker 2008), which
have been effectively estimated with 5-10 individuals. However, other estimators, such as genetic
diversity (e.g., Ag, Ho, and unbiased Hg) and differentiation (Fs7), require larger sample sizes for accurate
estimation, and often the number of individuals required increases as divergence decreases (Kalinowski

2005, Morin et al. 2009).

Modern genomic datasets, with their large numbers of sampled loci, are predicted to decrease

the number of individuals required for obtaining accurate estimates of demographic history (Jeffries et
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al. 2016). However, impacts of sample size on such estimates have undergone only limited investigation
thus far, and previous empirical work has focused on estimates of diversity (Ag, Hp, and unbiased Hg) and
differentiation (Fsr; Nazareno et al. 2017). Other demographic estimates made using allele frequency
spectrum (AFS) methods have only been evaluated so far with simulated data (Robinson et al. 2014),
using the program 6aédi (Diffusion Approximation for Demographic Inference; Gutenkunst et al. 2009).
Robinson et al. (2014) showed that median estimated parameter values in two-population §a6i models
of divergence in isolation remained close to true values down to 3 diploid individuals per population.
However, this did not hold true across all three model types they examined, and their optimal sampling
recommendations depended on the timescale of the demographic events experienced by the
populations, with very recent and very ancient events both requiring greater sample sizes (Robinson et
al. 2014). In empirical systems, such information on the timescale of demographic events or divergence
might be unknown at the outset of a study, particularly in taxa that have not been previously studied,
and care must be taken to avoid sampling too few individuals to accurately estimate parameters of

interest.

Here we use empirical datasets to conduct pairwise examinations of how inferences of
population parameters are impacted by sample size, scaling symmetrically downwards from full datasets
that meet or exceed sample sizes widely considered optimal for coalescent-based analyses. We
expected that as sample sizes decreased, errors in estimates would increase and accuracy would
decrease, but to varying degrees among parameters, and that systematic biases of mean estimates of
parameters might emerge at lower sample sizes. We used empirical datasets from diverging avian
lineages with different demographic and evolutionary histories to enhance our understanding of how

lower sample sizes affect estimates of effective population size (v), migration (m), time since divergence

(T), and O (4N ).
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Methods

Study system

We used eight datasets of ultraconserved elements (UCEs) from Beringian birds from McLaughlin et al.
(2020; Table 1), to generate repeatedly subsampled datasets at smaller sample sizes for analysis under a
coalescent framework in 6adi (Gutenkunst et al. 2009). These empirical datasets represent
taxonomically designated levels of population, subspecies, and species pairs in three avian orders,
contrasting pairs of Asian and North American populations of: Clangula hyemalis (long-tailed duck), Anas
crecca crecca/A. c. carolinensis (green-winged teal), and Mareca penelope/M. americana (Eurasian and
American wigeons) in Anseriformes; Numenius phaeopus variegatus/N. p. hudsonicus (whimbrel), and
Tringa brevipes/T. incana (gray-tailed and wandering tattlers) in Charadriiformes; and Luscinia svecica
(bluethroat), Pinicola enucleator kamschatkensis/P. e. flammula (pine grosbeak), and Pica pica/P.
hudsonia (Eurasian and black-billed magpies) in Passeriformes. These datasets, which span divergence
levels from populations with substantial levels of gene flow to effectively reproductively isolated species
(albeit with low gene flow), enable us to explore how the effects of low sample sizes on demographic
inference play out across these levels of divergence. Insofar as taxonomy is not a reliable indicator of
genomic divergence levels (e.g., Humphries and Winker 2011), we also include in our evaluations
estimates of Fs; made from the full datasets (Table 1). Among the lineages in this study, pairwise
comparisons fell out into two general groups, one with relatively low divergence and one with relatively

high divergence (McLaughlin et al. 2020; Table 1).

These datasets consist of one SNP per locus from 1,636—-2,656 UCE loci per lineage (each lineage

is a pairwise, two-population sample of diverging populations, subspecies, or species). Each dataset
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consists of 100% coverage for all individuals (all individuals have phased, high-quality SNPs called at both

alleles for all loci; McLaughlin et al. 2020).

Subsampling datasets and analyses

To produce datasets of varying sample sizes, stepping down from the maximum number of individuals
available for each population (6 — 8) to 1 individual per population, a custom Python script
(https://github.com/jfmclaughlin92/beringia_scripts) was used. This script (ngapi_dadi.py) iteratively
sampled individuals without replacement from the thinned .vcf files, created new .vcf files containing
these individuals, converted these files to the proper 6abi input format (using a Perl script by Kun Wang,
https://groups.google.com/forum/#!msg/dadi-user/p1WvTKRI9_0/1yQtcKgamPcl), and ran 6adi models
with predetermined, lineage-specific best-fit parameters for the split-migration (divergence-with-gene-
flow) model that comes with the 6adi Demographics2D.py file (split-mig). For six of our eight lineages,
split-migration models produced a best-fit model among multiple options, while for two of them a
secondary contact model was a demonstrably better fit (Clangula hyemalis and Mareca
penelope/americana; McLaughlin et al. 2020). Here we chose to include all eight datasets under a single
model framework (split-migration), wishing to focus on changes due to sample size variation with
multiple empirical datasets and not on more subtle variation due to differences among divergence-with-

gene-flow models.

For each sample size, 25 subsampled datasets were created, which were each run five times.
The best-fit run by highest maximum log composite likelihood (MLCL) value among those five runs was
then selected for each dataset and used for subsequent analyses. Parameter estimates for effective
population size (v; and v,), migration (m), time since split (T), and O (defined as 4N, with N, defined
as ancestral population size and u as mutation rate per generation), were then compared across

different sample sizes. The scaled root mean square error (SRMSE) was calculated, defined as
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with 8 in this context representing the estimate from the full dataset, 0 as the parameter estimate from

SRMSEy =

|

the subsampled dataset, and n the number of datasets (25) considered, following Robinson et al. (2014).
This was scaled by the mean of the parameter estimate at each sample size (6) to enable inter-lineage
comparisons of the changes in accuracy at lower sample sizes (SRMSE). This allowed us to quantify the
changes in accuracy of estimates at different sample sizes relative to each species’ parameter estimates’

means.

Results

Each lineage had a dataset of between 1,636 and 2,656 variable loci (Table 1). Across the eight lineages,
25 datasets were constructed at each sample size from 1:1 individual up to the full sample size minus

one for a total of 1,250 subsampled datasets.

Overall, as expected, variability in parameter estimates increased and accuracy decreased with
smaller sample sizes (Table 2, Figures 1, S1-5). Performance of mean parameter estimates varied both
with lineage and with sample size. The effective population size parameters (v;and v,) tended to be
underestimated at the lowest sample sizes, whereas there was a trend towards overestimation of
migration at the lowest sample sizes (m; Table 2, Figures 1, S1-5). Time since split (T) and © were more
ambiguous, with both over- and under-estimation occurring in different lineages (Table 2, Figures 1, S1-
5). These corresponded in many cases to large changes in the biologically meaningful estimates derived
from these parameters. For example, this can be seen in the effective population size parameter of
Tringa brevipes (v;), which varied from 1.02 to 8.49 across the full sample size spectrum (Table 2). This

represents effective population size estimates of 4,478 to 37,410 individuals. In other cases, however,
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seemingly large changes translated into minor biological differences (e.g., changes in m among pairwise

comparisons with very low levels of gene flow, considered in more detail below).

In general, SRMSE increased as sample sizes decreased (Table 3, Figure 2), reflecting the loss of
accuracy at lower sample sizes. Lineages with lower levels of divergence (Table 1, Figure S6) tended to
exhibit more variability among model runs at higher sample sizes than lineages with higher levels of
divergence (e.g., Numenius versus Luscinia in Figure 1 for v,). This was most notable in the two
population-level splits (L. svecica and C. hyemalis; Figures 1, S1-5). At higher levels of divergence (Table
1)—particularly among T. brevipes/T. incana, N. phaeopus, and Pica pica/Pica hudsonia—most
parameter estimates reached a consistent level at approximately 4 or 5 diploid individuals, after which
adding more individuals did not considerably improve estimates (Table 2), whereas SRMSE generally
only began to increase markedly below 3:3 comparisons for population size and split-time estimates
(Table 3, Figure 2). In some lower-divergence lineages, such as A. crecca and L. svecica, SRMSE began
increasing substantially in most parameters below a sample size of 5 (Table 3, Figure 2). However, this
was not universally the case, with SRMSE values in C. hyemalis remaining similar at most sample sizes

for multiple parameter estimates (Table 3, Figure 2).

Variation among lineages was noteworthy, as was variation among demographic variables as
sample sizes changed. Considering aggregate performance, using SRMSE as the basis for among-lineage
contrasts, all lineages showed a significant decrease in performance (increased SRMSE) with smaller
sample sizes (Table 4). These relationships were all significant using a linear regression except for the
SRMSE of m, which showed aberrancies at N = 2 among some high-divergence lineages (Tables 2, 3, and
4; Figures 2, S6). In many cases the linear regression models were substantially improved by breaking
the lineages into low-divergence and high-divergence groups (groups from Table 1, split by Fs; values <

0.05 and > 0.25; Table S1).
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Discussion

Sample size is an important consideration in study design, but it remains understudied in large-scale
genomic datasets (Nazareno et al. 2017). Our results suggest that the minimum reliable sample size will
vary considerably from taxon to taxon, depending on factors such as parameters of interest and the
depth of the lineage’s divergence. Although analyses using coalescent theory have suggested that
sample sizes of 8-10 individuals per population are optimal (Felsenstein 2005), by genotyping both
alleles of diploid animals our sample sizes were doubled (i.e., 1N = 2 haplotypes), and we were able to
estimate population parameters at considerably lower sample sizes in terms of individuals. Certain
parameters, such as migration rate (m) and effective population sizes (v;, and v,), showed fairly
consistent patterns of bias in over- or under-estimation across all lineages (Figures 1, S1-S5). In
particular, gene flow (m) was fairly consistently estimated with relatively small departures from
accuracy down to two individuals per population, after which it was overestimated in all lineages (Table

2; Figure S3).

Estimates of migration

We found the most variation in estimates of m occuring when samples were at 2:2 (e.g., Pinicola
enucleator and Pica pica/hudsonia; Figure 2). In most of the cases in which extreme estimates occurred
at 2:2, pairings of individuals that caused geographic clustering of within-continent population samples
were involved together with numerically very small estimates of m. The values of m were consistently
small, but variation around the mean estimate was apparently magnified by more subtle within-
continent variation than our study was designed to detect. Biologically, we reason that small values of m
are the more informative takeaway, and that increased variation around those very small numbers at N

of 2:2 is an artifact arising from a combination of relatively deep divergence and very low gene flow,
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probably coupled with some more subtle population structure within continental populations. In
biological terms, although these variations can appear graphically substantial (Figure 2, m), in Pinicola
enucleator they represented estimates ranging (max - min) from 0.01 to 6.13 X 10 individuals per

generation. In Pica, these max - min values were 0.03 - 2.29 X 10” individuals per generation.

Estimates of population size

The effective population sizes (v parameters) were not as robust, with variation tending to begin
to increase markedly below 4 diploid individuals per population and accuracy decreasing in all lineages
(Tables 2-3; Figures 1, S1, S2). They were, however, still reasonably accurate in many lineages at
relatively small samples sizes (Tables 2-3; Figures 1, S1, S2). The negative relationships between scaled
root mean square error (SRMSE) values for each demographic parameter and sample size (N) should
help users interpret how lineages and individual parameters are affected by smaller sample sizes (Tables

4, S1).

The impact of divergence

Our results reinforce previous findings (Kalinowski 2005, Morin et al. 2009) that an important
factor in determining the minimum sample size for a study is the level of divergence in the lineages
under examination. Although this might be known at the start of a study, that might not always be true,
potentially complicating sampling design. However, some general recommendations are possible, at
least within a broader framework of higher- and lower-divergence groups. Lineages with considerable
divergence (e.g., species-level, such as in Tringa) had accurate demographic parameters estimated at
lower sample sizes (Figures 2, S1-S5). Thus, it seems possible in such systems to reliably use fewer
individuals. In shallowly diverged populations that might experience substantial gene flow, however,

higher sample sizes may be required to overcome the impact of individuals with varying amounts of
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admixture, which appears to increase the variation in model performance at lower sample sizes among

low-divergence lineages (Figures 1, S1-S6; Table S1).

Our findings of the effects of divergence levels on the minimum sample sizes needed to
accurately estimate population demographic parameters broadly agreed with previous findings in other
genetic markers, with some exceptions. In lineages that are more shallowly split and have experienced
more gene flow, greater sample sizes are required to reliably estimate multiple parameters, including
not just the demographic parameters examined here, but also genetic distance (Kalinowski 2005), Fsr
(Morin et al. 2009, Humphries & Winker 2011), and recent demographic events (e.g., < 100 generations;
Beichman et al. 2018). The two population-level splits in our study, L. svecica and C. hyemalis, did not
perform as well for most parameter estimates at sample sizes below 6 individuals per population, with
accuracy (as measured by SRMSE; Table 3) decreasing rapidly; this fits our understanding that accurately
estimating more recent demographic events requires the improved draw on more recent coalescent
events that increased sample sizes bring (Beichman et al. 2018). The presence of a substantial amount of
gene flow appears to increase variation in parameter estimates and decrease accuracy, as seen in L.
svecica (Tables 2, 3), and in practical terms would require increased sample sizes for accurate parameter

estimation.

Model fit

Due to computational restrictions, we analyzed all subsampled datasets under the split-mig 6abi
(Gutenkunst et al. 2009) model determined and optimized for the full dataset in each lineage, and we
did not investigate the impact of sample size on model fit. Several subsample datasets (notably Clangula
hyemalis, Mareca penelope/M. americana, and Luscinia svecica) showed signs in some parameters of
beginning to consistently push the upper bounds of some model parameters. This means that both

variation and over-estimation of the parameters were likely underestimated in these groups at smaller
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sample sizes. This situation has also been noted with simulated data, which have been found in some
situations to have a better fit with a model type different than the one under which they were simulated

(Robinson et al. 2014).

Implications for study design

Research efficiency requires attention not only to the minimum sample size required to meet an
objective, but also to the point after which adding more samples begins to produce diminishing returns.
In this context, this means the point above which the SRMSE becomes similar between sample sizes, but
before the means of estimates start to change due to decreased sample size. This inflection point may
represent the minimum reliable sample size, but not necessarily. In some lineages, SRMSE was very
similar at larger sample sizes, began to slowly increase at intermediate sizes, and then at low sample
sizes increased quickly (Table 3, Figure 2). This again varied among lineages (Table 3, Figures S1-5). In
some, such as the Pica and Tringa species lineages, this inflection point was reached at higher sample
sizes than the minimum reliable sample sizes in some parameters (Table 3), whereas in others, such as
in most estimates of m, these points were the same (e.g., Figure S3). However, in some groups,
particularly estimates of effective population size (v;) and migration (m) in L. svecica, this optimal point
was not reached until the full dataset was analyzed, and may not have been reached at all in C. hyemalis
in any of the parameter estimates (Figures S1-S5). This is consistent with the findings of Robinson et al.
(2014), in that although in some cases a small sample size could be used, larger sample sizes still led to
more accurate parameter estimates. This was especially the case in our data for split times (7), ©, and
some effective population size (v) estimates (Table 2, Figure 1; Figures S1-5). Our linear regression

models help generalize these relationships (Tables 4, S1).

Conclusions
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Sample size is a critical aspect of study design and interpretation, and balancing the need for
reliable estimates with cost effectiveness is a key tradeoff. Inadequate sampling can lead to ambiguous
or biased results (Nazareno & Jump 2012, Nazareno et al. 2017), whereas many parameter estimates
are not improved above a certain sample size (Felsenstein 2005, Nazareno et al. 2017). As other
researchers, we found that inference of demographic parameters can be strongly influenced by sample
size, with estimates becoming less accurate at lower sample sizes and being over- and underestimated,
with considerable variation both among parameters and among lineages. In general, for pairwise
comparisons at shallow levels of divergence (population), care should be taken to include adequate
samples, with the best performance in these data generally occurring at 6 or more diploid individuals
per population. Parameter estimates in lineages with deeper divergence (subspecies and species) were

generally more resilient to lower sample sizes.
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Figure 1: Parameter estimates of effective population size (v; and v,), time since divergence (T),
migration (m), and O for selected lineages.
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Figure 2: SRMSE values for demographic parameters estimated at various sample sizes in this study,
indicating how estimates decrease in accuracy with smaller sample sizes. Pairwise comparisons within
each lineage are coded at lower right. Note that vertical scales are different in each panel.
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Tables

Table 1: Number of variable loci in each lineage, the full dataset size (number of diploid individuals in
each population), and Fsr values (from MclLaughlin et al. 2020).

Variable Full Fsr
loci dataset
size
Anseriformes
Clangula hyemalis 2,442 7:07 0.004
Anas crecca 2,481 6:06 0.02
Mareca penelope /A. 2,315 8:08 0.044
americana
Charadriiformes
Numenius phaeopus 2,388 7:07 0.269
Tringa brevipes /T. incana 1,636 8:08 0.585
Passeriformes
Luscinia svecica 2,516 7 0.014
Pinicola enucleator 2,656 7 0.442
Pica pica/Pica hudsonia 2,199 7 0.328
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Table 2: Mean estimates (+ SEM) of effective population size parameters (v;and v;), migration (m ), time since split (T), and O (defined as 4N,

where N, is ancestral population size and u is mutation rate per generation), in eight lineages of trans-Beringian birds calculated from 25

resampled datasets at each sample size.

Parameter 8:8 77 6:6 5:5 4:4 3:3 2:2 1:1
Anseriformes
Clangula Vi 8.937 10.706 11.039 10.662 10.977 10.688 8.864
hyemalis (+1.068) (+0.449) (+0.327) (+0.319) (+0.234) (+0.275) (+0.532)
Vs, 6.410 10.704 10.657 10.634 11.546 9.915 9.851
(+1.012) (+ 0.255) (+0.318) (+ 0.388) (+0.130) (+0.344) (+ 0.525)
T 1.487 1.542 1.460 1.497 1.472 1.639 2.155
(+0.213) (+ 0.065) (+0.067) (+ 0.083) (+ 0.053) (+0.105) (+0.187)
m 1.217 1.524 1.554 1.704 1.847 2.093 2.324
(£ 0.229) (+0.121) (£ 0.137) (+0.148) (+0.143) (x 0.190) (+0.157)
] 204.806 136.062 140.407 139.646 133.497 129.653 116.837
(+ 33.285) (+4.133) (x6.721) (+6.591) (+2.999) (+ 4.928) (+ 6.160)
Anas crecca Vi - 13.529 13.515 13.801 12.598 13.261 11.129
(+0.268) (£ 0.229) (+0.380) (+0.516) (£ 0.526) (+0.722)
Vs, - 16.737 16.689 16.523 16.939 15.270 11.631
(+ 0.450) (+0.471) (+0.492) (+ 0.516) (+1.061) (+ 1.090)
T - 1.154 1.226 1.265 1.333 1.298 1.500
(+ 0.039) (+0.019) (+0.024) (+ 0.045) (+ 0.046) (+ 0.088)
m - 0.736 0.83 0.661 0.699 0.472 0.765
(+ 0.063) (+ 0.040) (+0.073) (+0.114) (+0.094) (+0.147)
¢ - 143.00 135.50 133.17 130.67 133.51 127.13
(+4.157) (x1.492) (+1.581) (+3.204) (+2.831) (+5.231)
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Table 2, cont. Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1
Mareca Vi 10.116 10.518 9.847 10.063 9.904 9.398 10.193 9.438
penelope/A. (+ 0.002) (£ 0.132) (+0.318) (£ 0.217) (+0.260) (+0.320) (x 0.466) (+0.618)
americana

Vs 15.608 15.147 14.895 14.531 14.082 14.015 12.644 6.276
(+ 0.004) (£ 0.192) (+0.237) (x0.334) (+0.302) (+0.535) (£ 0.562) (+0.713)
T 1.139 1.135 1.209 1.190 1.214 1.235 1.268 1.267
(+ 0.000) (+0.023) (+ 0.035) (+0.021) (+0.023) (+ 0.036) (+0.043) (+0.077)
m 0.704 0.750 0.644 0.654 0.716 0.529 0.568 1.761
(+ 0.000) (+ 0.095) (+0.021) (+0.028) (+ 0.049) (+0.062) (+0.093) (+0.247)
¢ 128.06 128.83 125.16 125.08 123.56 123.76 121.81 128.64
(+0.012) (+1.794) (+1.024) (+1.178) (+1.177) (+1.912) (+ 1.946) (+4.026)

Charadriiformes
Numenius Vi - 2.982 2.887 2.845 2.722 2.614 2.332 2.542
phaeopus (+ 0.003) (+0.021) (x 0.029) (+0.030) (+0.043) (x 0.051) (+0.138)

vy - 6.245 6.086 6.047 5.691 5.308 4.735 4,176
(x 0.004) (+ 0.066) (x 0.064) (+0.085) (+0.097) (£ 0.127) (+0.211)
T - 1.968 1.931 1.981 1.894 1.796 1.501 2.386
(+ 0.002) (+0.019) (£ 0.027) (+ 0.040) (+0.063) (x 0.052) (+0.132)
m - 0.056 0.055 0.056 0.052 0.042 0.023 0.133
(x 0.000) (+0.001) (x 0.001) (+ 0.003) (+ 0.004) (x 0.007) (+0.013)
¢ - 147.88 149.67 147.32 150.84 157.11 ( 173.13 141.10
(+0.104) (+ 1.009) (x1.271) (+ 1.960) 3.098) (+3.298) (+ 6.502)
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Table 2, cont. Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1
Tringa Vi 7.894 8.487 7.516 7.014 6.382 5.258 2.806 1.016
brevipes/T. (x0.135) (+ 0.093) (+0.166) (£ 0.223) (+0.267) (+0.625) (£ 0.292) (+0.086)
incana

Vv, 2.559 2.835 2.663 2.537 2.613 2.395 1.416 0.578
(+ 0.045) (£ 0.036) (+ 0.055) (£ 0.085) (x0.103) (£0.111) (£ 0.150) (+ 0.050)
T 6.575 7.624 7.284 7.153 7.542 7.033 3.856 1.942
(£0.134) (x0.107) (£ 0.189) (£ 0.291) (+0.364) (+0.389) (£ 0.536) (+0.203)
m 0.0091 0.0081 0.0084 0.0085 0.0090 0.0098 0.008 0.165
(£ 0.000) (£ 0.000) (+ 0.000) (£ 0.000) (+ 0.000) (+ 0.000) (£ 0.002) (+0.015)
e 56.345 49.828 52.707 54.627 53.799 58.978 113.161 117.030
(+0.986) (£ 0.628) (+ 1.250) (£ 2.022) (+2.686) (+4.510) (£10.291) (+ 8.657)

Passeriformes

Luscinia svecica Vi - 3.877 3.934 4.618 5.056 5.827 6.322 5.452
(x 0.005) (+ 0.089) (x 0.344) (+0.408) (+0.435) (+0.488) (+ 0.403)

Vv, - 21.452 20.980 18.847 15.954 15.795 14.675 15.969

(£ 0.092) (+0.442) (£ 0.961) (+1.072) (+1.156) (x 1.307) (+1.432)

T - 1.290 1.285 1.276 1.243 1.226 1.203 1.256

(x 0.003) (+0.015) (x0.031) (+ 0.063) (+0.043) (x 0.067) (+0.104)

m - 1.956 2.122 2.127 2.330 3.357 2.416 2.940

(£ 0.058) (+0.108) (£ 0.245) (+£0.347) (£ 0.334) (£ 0.332) (£0.312)

e - 166.94 167.608 167.935 176.558 172.299 175.525 180.675

(£0.176) (+ 1.033) (x 2.405) (+ 5.360) (+3.636) (x 4.166) (+ 8.488)
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Table 2, cont. Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1
Pinicola Vi 2.519 2.846 2.843 2.658 2.597 2.197 2.325
enucleator (£0.016) (£ 0.057) (£ 0.076) (£0.113) (+0.120) (£ 0.121) (+0.117)

Vv, 1.786 2.355 2.112 1.898 1.656 1.412 1.465

(£ 0.011) (+0.013) (+ 0.046) (+0.063) (+ 0.050) (x0.037) (+0.073)

T 1.979 2.449 2.317 2.098 1.866 1.568 2.480

(£ 0.021) (£ 0.028) (£ 0.076) (+0.099) (£ 0.077) (£ 0.048) (x0.184)

m 0.0073 0.0105 0.0107 0.00677 0.0033 0.0010 0.0596

(x 0.001) (+ 0.000) (x 0.001) (+0.001) (+0.001) (x 0.001) (+0.004)

e 223.76 197.10 205.45 219.25 233.07 256.52 212.34

(x1.51) (x1.412) (x3.30) (x5.23) (x5.22) (x4.80) (+11.87)

Pica pica/Pica Vi 2.699 2.485 2.406 2.298 2.300 2.117 1.567
hudsonia (£ 0.042) (+0.046) (x 0.057) (+0.075) (+0.094) (£ 0.142) (+0.144)
Vv, 7.107 6.759 6.470 6.604 6.565 5.537 3.029

(£ 0.126) (+0.225) (+ 0.330) (x0.390) (+0.501) (£ 0.528) (+0.587)

T 3.334 3.017 2.868 2.710 2.561 2.325 2.309

(x 0.069) (+ 0.046) (+0.067) (+ 0.089) (+0.114) (£ 0.143) (x0.190)

m 0.0141 0.0121 0.0119 0.0086 0.0066 0.0033 0.0808

(£ 0.000) (+ 0.000) (x 0.010) (+0.001) (+0.001) (x 0.001) (£ 0.012)

e 108.09 116.50 121.01 126.62 132.95 146.85 162.11

(£ 1.602) (+1.48) (x2.00) (£ 3.26) (x4.74) (x7.58) (x9.71)
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Table 3: Scaled root mean square error (SRMSE) for each parameter at each diminished sample size. Parameters are effective population size (v,
and v,), migration (m ), time since split (T), and O (defined as 4N,.u, where N., is ancestral population size and u is mutation rate per generation).

Parameter 7:7 6:6 5:5 4:4 3:3 2:2 1:1

7 6 5 4 3 2 1

Clangula hyemalis m 0.391 0.438 0.451 0.436 0.540 0.500
Anas crecca m 0.262 0.556 0.803 1.123 0.942
Mareca penelope/M. americana m 0.624 0.187 0.221 0.339 0.661 0.838 0.913
Numenius phaeopus m 0.082 0.128 0.330 0.627 2.026 0.753
Tringa brevipes/T. incana m 1.293 1.213 1.214 1.081 0.928 1.659 0.992
Luscinia svecica m 0.262 0.570 0.747 0.642 0.699 0.619
Pinicola enucleator m 2.809 2.779 5.003 11.108 38.261 0.486
Pica pica/Pica hudsonia m 0.650 0.771 1.459 2.182 5.303 1.053
7 6 5 4 3 2 1

Clangula hyemalis v, 0.225 0.156 0.174 0.122 0.156 0.432
Anas crecca v, 0.081 0.136 0.214 0.195 0.384
Mareca penelope/M. americana v, 0.073 0.161 0.106 0.130 0.183 0.224 0.329
Numenius phaeopus v, 0.049 0.069 0.109 0.163 0.299 0.318
Tringa brevipes/T. incana v, 0.116 0.109 0.178 0.282 0.512 1.788 6.511
Luscinia svecica v, 0.112 0.398 0.459 0.496 0.541 0.464
Pinicola enucleator v, 0.141 0.167 0.275 0.307 0.505 0.427
Pica pica/Pica hudsonia v, 0.157 0.202 0.271 0.296 0.462 0.907
7 6 5 4 3 2 1

Clangula hyemalis v, 0.141 0.164 0.193 0.156 0.170 0.261
Anas crecca A 0.138 0.146 0.150 0.354 0.635
Mareca penelope/M. americana v, 0.069 0.091 0.135 0.151 0.217 0.320 1.588
Numenius phaeopus v, 0.059 0.061 0.122 0.198 0.345 0.554
Tringa brevipes/T. incana v, 0.154 0.133 0.168 0.204 0.228 0.887 3.241
Luscinia svecica v, 0.106 0.285 0.477 0.507 0.635 0.557
Pinicola enucleator v, 0.094 0.109 0.210 0.332 0.537 0.526

Pica pica/Pica hudsonia Vv, 0.182 0.282 0.308 0.391 0.566 1.702
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0.118
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0.261
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0.437
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0.296
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0.059
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0.338
0.158
0.186
0.218
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0.178
0.578
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0.264
0.153
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Table 4: Linear regression equations for scaled root mean square error (SRMSE) for each parameter
(from Table 3), summarizing how accuracy declines with diminished sample sizes. Parameters are
migration (m), effective population size (v;and v;), time since split (T), and O (defined as 4N, where
Ny is ancestral population size and i is mutation rate per generation). Note that these are based on
SMRSE values (to enable among-lineage comparisons). Thus, y in the regression equationy =mx + b is
SMRSE for that particular demographic variable (m is slope, x is N, and b is the y intercept).

SMRSE for variable Regression equation (y = mx + b) r? P

m° y =-0.00858 * N + 0.87714 0.413 0.0007
Vi y =-0.17563 * N + 1.05063 0.117 0.0156
v, y=-0.16171* N+ 0.97351 0.305 0.00004
T y =-0.10045 * N + 0.70147 0.237 0.0004
e y =-0.03825 * N + 0.34738 0.220 0.0007

“Note that this is for the low-divergence group only.
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Supplementary Information

Table S1: Linear regression equations for scaled root mean square error (SRMSE) for each parameter in
which breaking lineages into low-divergence and high-divergence groups improved the regression
model, summarizing how accuracy declines with diminished sample sizes. Parameters are effective
population size (v;and v;), time since split (T), and O (defined as 4N, where N, is ancestral
population size and u is mutation rate per generation). Note that these are based on SMRSE values (to
enable among-lineage comparisons; Table 3). Thus, y in the regression equation y = mx + b is SMRSE for
that particular demographic variable (m is slope, x is N, and b is the y intercept).

SMRSE for variable Regression equation (y = mx + b) r? P

v; (low-div group) y =-0.04467 * N + 0.40622 0.304 0.0052
v; (high-div group) y =-0.30251 * N + 1.68585 0.189 0.0299
v, (low-div group) y =-0.10533 * N + 0.69169 0.355 0.0021
v, (high-div group) y =-0.21646 * N+ 1.25166 0.352 0.0018
T (low-div group) y =-0.04739 * N + 0.40888 0.395 0.0010
T (high-div group) y=-0.15276 * N + 0.99239 0.328 0.0028
O (low-div group) y =-0.02843 * N + 0.26395 0.202 0.0275
O (high-div group) y =-0.04878 * N + 0.43241 0.303 0.0043
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Figure S1: Estimates of v, (effective size of population 1) at varying sample sizes in eight lineages
(vertical axis is v;, and horizontal axis is sample size as number of individuals).
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Figure S2: Estimates of v, (effective size of population 2) at varying sample sizes in eight lineages (vertical
axis is v,, and horizontal axis is sample size as number of individuals).
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Figure S3: Estimates of m (migration or gene flow) at varying sample sizes in eight lineages (vertical axis
is m, and horizontal axis is sample size as number of individuals).
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Figure S4: Estimates of T (time since divergence) at varying sample sizes in eight lineages (vertical axis is
T, and horizontal axis is sample size as number of individuals).
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Figure S5: Estimates of O (4N,.qu) at varying sample sizes in eight lineages (vertical axis is ©, and
horizontal axis is sample size as number of individuals).
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Figure S6. Parameter-specific scaled root mean square error (SRMSE) values plotted against sample size

(N). Note that vertical scales vary in each panel.
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Figure S6, continued. Parameter-specific scaled root mean square error (SRMSE) values plotted against
sample size (N). Note that vertical scales vary in each panel.
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