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Abstract 

Sample size is a critical aspect of study design in population genomics research, yet few empirical studies 

have examined the impacts of small sample sizes. We used datasets from eight diverging bird lineages to 

make pairwise comparisons at different levels of taxonomic divergence (populations, subspecies, and 

species). Our data are from loci linked to ultraconserved elements (UCEs) and our analyses used one 

SNP per locus. All individuals were genotyped at all loci (McLaughlin et al. 2020). We estimated 

population demographic parameters (effective population size, migration rate, and time since 

divergence) in a coalescent framework using Diffusion Approximation for Demographic Inference (δaδi; 

Gutenkunst et al. 2009), an allele frequency spectrum (AFS) method. Using divergence-with-gene-flow 
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models optimized with full datasets, we subsampled at sequentially smaller sample sizes from full 

datasets of 6 – 8 diploid individuals per population (with both alleles called) down to 1:1, and then we 

compared estimates and their changes in accuracy. Accuracy was strongly affected by sample size, with 

considerable differences among estimated parameters and among lineages. Effective population size 

parameters (ν) tended to be underestimated at low sample sizes (fewer than 3 diploid individuals per 

population, or 6:6 haplotypes in coalescent terms). Migration (m) was fairly consistently estimated until 

< 2 individuals per population, and no consistent trend of over- or underestimation was found in either 

time since divergence (T) or Θ (4Nrefμ). Lineages that were taxonomically recognized above the 

population level (subspecies and species pairs; i.e., deeper divergences) tended to have lower variation 

in scaled root mean square error (SMRSE) of parameter estimation at smaller sample sizes than 

population-level divergences, and many parameters were estimated accurately down to 3 diploid 

individuals per population. Shallower divergence levels (i.e., populations) often required at least 5 

individuals per population for reliable demographic inferences using this approach. Although divergence 

levels might be unknown at the outset of study design, our results provide a framework for planning 

appropriate sampling and for interpreting results if smaller sample sizes must be used. 

 

Keywords: Population genomics, sample size, migration, effective population size, divergence with gene 

flow. 

 

Introduction 

Genomic-scale data for studying population histories have increased the resolution of demographic 

estimates, including effective population sizes, migration rates, and times since divergence, even when 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.10.986463doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986463
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

the number of sampled individuals is relatively low (Willing et al. 2012, Jeffries et al. 2016, Nazareno et 

al. 2017). However, it is not well understood how the precision and accuracy of these estimates are 

impacted by lower population sample sizes. The number of individuals that can be included in a study 

might be limited by practical considerations such as availability of samples for difficult-to-access or 

endangered populations, tradeoffs between including more individuals per population or more 

populations, or decisions about whether to include more loci or more individuals (Felsenstein 2005, 

Pruett & Winker 2008, Jeffries et al. 2016). Because these issues affect study design, it is important to 

understand the impacts of relatively low within-population sample sizes on population demographic 

parameters that are now commonly estimated in a coalescent framework. 

The impacts of population sample size, and particularly the tradeoff between increased 

numbers of individuals versus increased number of loci, has been studied primarily with microsatellite 

datasets. In general, increasing the number of loci decreases the number of individuals needed for 

accurate parameter estimations in population genetic studies (Morin et al. 2009, Willing et al. 2012), but 

different parameter estimates are not impacted uniformly by low sample sizes. A size of 8 alleles per 

population (4:4 diploid individuals) has been suggested as an optimum sample size for obtaining 

coalescent-based likelihood estimates of Θ = 4Neμ (Felsenstein 2005). This sample size has also been 

sufficient for non-coalescent-based estimates of unbiased heterozygosity (Pruett & Winker 2008), which 

have been effectively estimated with 5–10 individuals. However, other estimators, such as genetic 

diversity (e.g., AE, HO, and unbiased HE) and differentiation (FST), require larger sample sizes for accurate 

estimation, and often the number of individuals required increases as divergence decreases (Kalinowski 

2005, Morin et al. 2009). 

Modern genomic datasets, with their large numbers of sampled loci, are predicted to decrease 

the number of individuals required for obtaining accurate estimates of demographic history (Jeffries et 
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al. 2016). However, impacts of sample size on such estimates have undergone only limited investigation 

thus far, and previous empirical work has focused on estimates of diversity (AE, HO, and unbiased HE) and 

differentiation (FST; Nazareno et al. 2017). Other demographic estimates made using allele frequency 

spectrum (AFS) methods have only been evaluated so far with simulated data (Robinson et al. 2014), 

using the program δaδi (Diffusion Approximation for Demographic Inference; Gutenkunst et al. 2009). 

Robinson et al. (2014) showed that median estimated parameter values in two-population δaδi models 

of divergence in isolation remained close to true values down to 3 diploid individuals per population. 

However, this did not hold true across all three model types they examined, and their optimal sampling 

recommendations depended on the timescale of the demographic events experienced by the 

populations, with very recent and very ancient events both requiring greater sample sizes (Robinson et 

al. 2014). In empirical systems, such information on the timescale of demographic events or divergence 

might be unknown at the outset of a study, particularly in taxa that have not been previously studied, 

and care must be taken to avoid sampling too few individuals to accurately estimate parameters of 

interest. 

Here we use empirical datasets to conduct pairwise examinations of how inferences of 

population parameters are impacted by sample size, scaling symmetrically downwards from full datasets 

that meet or exceed sample sizes widely considered optimal for coalescent-based analyses. We 

expected that as sample sizes decreased, errors in estimates would increase and accuracy would 

decrease, but to varying degrees among parameters, and that systematic biases of mean estimates of 

parameters might emerge at lower sample sizes. We used empirical datasets from diverging avian 

lineages with different demographic and evolutionary histories to enhance our understanding of how 

lower sample sizes affect estimates of effective population size (ν), migration (m), time since divergence 

(T), and Θ (4Nrefμ). 
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Methods 

Study system 

We used eight datasets of ultraconserved elements (UCEs) from Beringian birds from McLaughlin et al. 

(2020; Table 1), to generate repeatedly subsampled datasets at smaller sample sizes for analysis under a 

coalescent framework in δaδi (Gutenkunst et al. 2009). These empirical datasets represent 

taxonomically designated levels of population, subspecies, and species pairs in three avian orders, 

contrasting pairs of Asian and North American populations of: Clangula hyemalis (long-tailed duck), Anas 

crecca crecca/A. c. carolinensis (green-winged teal), and Mareca penelope/M. americana (Eurasian and 

American wigeons) in Anseriformes; Numenius phaeopus variegatus/N. p. hudsonicus (whimbrel), and 

Tringa brevipes/T. incana (gray-tailed and wandering tattlers) in Charadriiformes; and Luscinia svecica 

(bluethroat), Pinicola enucleator kamschatkensis/P. e. flammula (pine grosbeak), and Pica pica/P. 

hudsonia (Eurasian and black-billed magpies) in Passeriformes. These datasets, which span divergence 

levels from populations with substantial levels of gene flow to effectively reproductively isolated species 

(albeit with low gene flow), enable us to explore how the effects of low sample sizes on demographic 

inference play out across these levels of divergence. Insofar as taxonomy is not a reliable indicator of 

genomic divergence levels (e.g., Humphries and Winker 2011), we also include in our evaluations 

estimates of FST made from the full datasets (Table 1). Among the lineages in this study, pairwise 

comparisons fell out into two general groups, one with relatively low divergence and one with relatively 

high divergence (McLaughlin et al. 2020; Table 1).  

 These datasets consist of one SNP per locus from 1,636–2,656 UCE loci per lineage (each lineage 

is a pairwise, two-population sample of diverging populations, subspecies, or species). Each dataset 
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consists of 100% coverage for all individuals (all individuals have phased, high-quality SNPs called at both 

alleles for all loci; McLaughlin et al. 2020).  

Subsampling datasets and analyses 

To produce datasets of varying sample sizes, stepping down from the maximum number of individuals 

available for each population (6 – 8) to 1 individual per population, a custom Python script 

(https://github.com/jfmclaughlin92/beringia_scripts) was used. This script (ngapi_dadi.py) iteratively 

sampled individuals without replacement from the thinned .vcf files, created new .vcf files containing 

these individuals, converted these files to the proper δaδi input format (using a Perl script by Kun Wang, 

https://groups.google.com/forum/#!msg/dadi-user/p1WvTKRI9_0/1yQtcKqamPcJ), and ran δaδi models 

with predetermined, lineage-specific best-fit parameters for the split-migration (divergence-with-gene-

flow) model that comes with the δaδi Demographics2D.py file (split-mig). For six of our eight lineages, 

split-migration models produced a best-fit model among multiple options, while for two of them a 

secondary contact model was a demonstrably better fit (Clangula hyemalis and Mareca 

penelope/americana; McLaughlin et al. 2020). Here we chose to include all eight datasets under a single 

model framework (split-migration), wishing to focus on changes due to sample size variation with 

multiple empirical datasets and not on more subtle variation due to differences among divergence-with-

gene-flow models. 

For each sample size, 25 subsampled datasets were created, which were each run five times. 

The best-fit run by highest maximum log composite likelihood (MLCL) value among those five runs was 

then selected for each dataset and used for subsequent analyses. Parameter estimates for effective 

population size (ν1 and ν2), migration (m), time since split (T), and Θ (defined as 4Nrefμ, with Nref defined 

as ancestral population size and μ as mutation rate per generation), were then compared across 

different sample sizes. The scaled root mean square error (SRMSE) was calculated, defined as  
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𝑆𝑆𝑆𝑆𝑆𝜃 =
 �Σ(𝜃� − 𝜃)2

𝑛
𝜃

 

with 𝜃 in this context representing the estimate from the full dataset, 𝜃� as the parameter estimate from 

the subsampled dataset, and n the number of datasets (25) considered, following Robinson et al. (2014). 

This was scaled by the mean of the parameter estimate at each sample size (𝜃) to enable inter-lineage 

comparisons of the changes in accuracy at lower sample sizes (SRMSE). This allowed us to quantify the 

changes in accuracy of estimates at different sample sizes relative to each species’ parameter estimates’ 

means. 

 

Results 

Each lineage had a dataset of between 1,636 and 2,656 variable loci (Table 1). Across the eight lineages, 

25 datasets were constructed at each sample size from 1:1 individual up to the full sample size minus 

one for a total of 1,250 subsampled datasets. 

 Overall, as expected, variability in parameter estimates increased and accuracy decreased with 

smaller sample sizes (Table 2, Figures 1, S1-5). Performance of mean parameter estimates varied both 

with lineage and with sample size. The effective population size parameters (ν1 and ν2) tended to be 

underestimated at the lowest sample sizes, whereas there was a trend towards overestimation of 

migration at the lowest sample sizes (m; Table 2, Figures 1, S1-5). Time since split (T) and Θ were more 

ambiguous, with both over- and under-estimation occurring in different lineages (Table 2, Figures 1, S1-

5). These corresponded in many cases to large changes in the biologically meaningful estimates derived 

from these parameters. For example, this can be seen in the effective population size parameter of 

Tringa brevipes (ν1), which varied from 1.02 to 8.49 across the full sample size spectrum (Table 2). This 

represents effective population size estimates of 4,478 to 37,410 individuals. In other cases, however, 
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seemingly large changes translated into minor biological differences (e.g., changes in m among pairwise 

comparisons with very low levels of gene flow, considered in more detail below).  

In general, SRMSE increased as sample sizes decreased (Table 3, Figure 2), reflecting the loss of 

accuracy at lower sample sizes. Lineages with lower levels of divergence (Table 1, Figure S6) tended to 

exhibit more variability among model runs at higher sample sizes than lineages with higher levels of 

divergence (e.g., Numenius versus Luscinia in Figure 1 for ν2). This was most notable in the two 

population-level splits (L. svecica and C. hyemalis; Figures 1, S1-5). At higher levels of divergence (Table 

1)—particularly among T. brevipes/T. incana, N. phaeopus, and Pica pica/Pica hudsonia—most 

parameter estimates reached a consistent level at approximately 4 or 5 diploid individuals, after which 

adding more individuals did not considerably improve estimates (Table 2), whereas SRMSE generally 

only began to increase markedly below 3:3 comparisons for population size and split-time estimates 

(Table 3, Figure 2). In some lower-divergence lineages, such as A. crecca and L. svecica, SRMSE began 

increasing substantially in most parameters below a sample size of 5 (Table 3, Figure 2). However, this 

was not universally the case, with SRMSE values in C. hyemalis remaining similar at most sample sizes 

for multiple parameter estimates (Table 3, Figure 2).  

 Variation among lineages was noteworthy, as was variation among demographic variables as 

sample sizes changed. Considering aggregate performance, using SRMSE as the basis for among-lineage 

contrasts, all lineages showed a significant decrease in performance (increased SRMSE) with smaller 

sample sizes (Table 4). These relationships were all significant using a linear regression except for the 

SRMSE of m, which showed aberrancies at N = 2 among some high-divergence lineages (Tables 2, 3, and 

4; Figures 2, S6). In many cases the linear regression models were substantially improved by breaking 

the lineages into low-divergence and high-divergence groups (groups from Table 1, split by FST values < 

0.05 and > 0.25; Table S1). 
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Discussion 

Sample size is an important consideration in study design, but it remains understudied in large-scale 

genomic datasets (Nazareno et al. 2017). Our results suggest that the minimum reliable sample size will 

vary considerably from taxon to taxon, depending on factors such as parameters of interest and the 

depth of the lineage’s divergence. Although analyses using coalescent theory have suggested that 

sample sizes of 8-10 individuals per population are optimal (Felsenstein 2005), by genotyping both 

alleles of diploid animals our sample sizes were doubled (i.e., 1N = 2 haplotypes), and we were able to 

estimate population parameters at considerably lower sample sizes in terms of individuals. Certain 

parameters, such as migration rate (m) and effective population sizes (ν1, and ν2), showed fairly 

consistent patterns of bias in over- or under-estimation across all lineages (Figures 1, S1-S5). In 

particular, gene flow (m) was fairly consistently estimated with relatively small departures from 

accuracy down to two individuals per population, after which it was overestimated in all lineages (Table 

2; Figure S3).  

Estimates of migration 

We found the most variation in estimates of m occuring when samples were at 2:2 (e.g., Pinicola 

enucleator and Pica pica/hudsonia; Figure 2). In most of the cases in which extreme estimates occurred 

at 2:2, pairings of individuals that caused geographic clustering of within-continent population samples 

were involved together with numerically very small estimates of m. The values of m were consistently 

small, but variation around the mean estimate was apparently magnified by more subtle within-

continent variation than our study was designed to detect. Biologically, we reason that small values of m 

are the more informative takeaway, and that increased variation around those very small numbers at N 

of 2:2 is an artifact arising from a combination of relatively deep divergence and very low gene flow, 
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probably coupled with some more subtle population structure within continental populations. In 

biological terms, although these variations can appear graphically substantial (Figure 2, m), in Pinicola 

enucleator they represented estimates ranging (max - min) from 0.01 to 6.13 X 10-9 individuals per 

generation. In Pica, these max - min values were 0.03 - 2.29 X 10-9 individuals per generation.  

Estimates of population size 

The effective population sizes (ν parameters) were not as robust, with variation tending to begin 

to increase markedly below 4 diploid individuals per population and accuracy decreasing in all lineages 

(Tables 2-3; Figures 1, S1, S2). They were, however, still reasonably accurate in many lineages at 

relatively small samples sizes (Tables 2-3; Figures 1, S1, S2). The negative relationships between scaled 

root mean square error (SRMSE) values for each demographic parameter and sample size (N) should 

help users interpret how lineages and individual parameters are affected by smaller sample sizes (Tables 

4, S1).  

The impact of divergence 

Our results reinforce previous findings (Kalinowski 2005, Morin et al. 2009) that an important 

factor in determining the minimum sample size for a study is the level of divergence in the lineages 

under examination. Although this might be known at the start of a study, that might not always be true, 

potentially complicating sampling design. However, some general recommendations are possible, at 

least within a broader framework of higher- and lower-divergence groups. Lineages with considerable 

divergence (e.g., species-level, such as in Tringa) had accurate demographic parameters estimated at 

lower sample sizes (Figures 2, S1-S5). Thus, it seems possible in such systems to reliably use fewer 

individuals. In shallowly diverged populations that might experience substantial gene flow, however, 

higher sample sizes may be required to overcome the impact of individuals with varying amounts of 
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admixture, which appears to increase the variation in model performance at lower sample sizes among 

low-divergence lineages (Figures 1, S1-S6; Table S1).  

Our findings of the effects of divergence levels on the minimum sample sizes needed to 

accurately estimate population demographic parameters broadly agreed with previous findings in other 

genetic markers, with some exceptions. In lineages that are more shallowly split and have experienced 

more gene flow, greater sample sizes are required to reliably estimate multiple parameters, including 

not just the demographic parameters examined here, but also genetic distance (Kalinowski 2005), FST 

(Morin et al. 2009, Humphries & Winker 2011), and recent demographic events (e.g., < 100 generations; 

Beichman et al. 2018). The two population-level splits in our study, L. svecica and C. hyemalis, did not 

perform as well for most parameter estimates at sample sizes below 6 individuals per population, with 

accuracy (as measured by SRMSE; Table 3) decreasing rapidly; this fits our understanding that accurately 

estimating more recent demographic events requires the improved draw on more recent coalescent 

events that increased sample sizes bring (Beichman et al. 2018). The presence of a substantial amount of 

gene flow appears to increase variation in parameter estimates and decrease accuracy, as seen in L. 

svecica (Tables 2, 3), and in practical terms would require increased sample sizes for accurate parameter 

estimation. 

Model fit 

Due to computational restrictions, we analyzed all subsampled datasets under the split-mig δaδi 

(Gutenkunst et al. 2009) model determined and optimized for the full dataset in each lineage, and we 

did not investigate the impact of sample size on model fit. Several subsample datasets (notably Clangula 

hyemalis, Mareca penelope/M. americana, and Luscinia svecica) showed signs in some parameters of 

beginning to consistently push the upper bounds of some model parameters. This means that both 

variation and over-estimation of the parameters were likely underestimated in these groups at smaller 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.10.986463doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986463
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

sample sizes. This situation has also been noted with simulated data, which have been found in some 

situations to have a better fit with a model type different than the one under which they were simulated 

(Robinson et al. 2014).  

Implications for study design 

Research efficiency requires attention not only to the minimum sample size required to meet an 

objective, but also to the point after which adding more samples begins to produce diminishing returns. 

In this context, this means the point above which the SRMSE becomes similar between sample sizes, but 

before the means of estimates start to change due to decreased sample size. This inflection point may 

represent the minimum reliable sample size, but not necessarily. In some lineages, SRMSE was very 

similar at larger sample sizes, began to slowly increase at intermediate sizes, and then at low sample 

sizes increased quickly (Table 3, Figure 2). This again varied among lineages (Table 3, Figures S1-5). In 

some, such as the Pica and Tringa species lineages, this inflection point was reached at higher sample 

sizes than the minimum reliable sample sizes in some parameters (Table 3), whereas in others, such as 

in most estimates of m, these points were the same (e.g., Figure S3). However, in some groups, 

particularly estimates of effective population size (ν1) and migration (m) in L. svecica, this optimal point 

was not reached until the full dataset was analyzed, and may not have been reached at all in C. hyemalis 

in any of the parameter estimates (Figures S1-S5). This is consistent with the findings of Robinson et al. 

(2014), in that although in some cases a small sample size could be used, larger sample sizes still led to 

more accurate parameter estimates. This was especially the case in our data for split times (T), Θ, and 

some effective population size (ν) estimates (Table 2, Figure 1; Figures S1-5). Our linear regression 

models help generalize these relationships (Tables 4, S1). 

Conclusions 
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Sample size is a critical aspect of study design and interpretation, and balancing the need for 

reliable estimates with cost effectiveness is a key tradeoff. Inadequate sampling can lead to ambiguous 

or biased results (Nazareno & Jump 2012, Nazareno et al. 2017), whereas many parameter estimates 

are not improved above a certain sample size (Felsenstein 2005, Nazareno et al. 2017). As other 

researchers, we found that inference of demographic parameters can be strongly influenced by sample 

size, with estimates becoming less accurate at lower sample sizes and being over- and underestimated, 

with considerable variation both among parameters and among lineages. In general, for pairwise 

comparisons at shallow levels of divergence (population), care should be taken to include adequate 

samples, with the best performance in these data generally occurring at 6 or more diploid individuals 

per population. Parameter estimates in lineages with deeper divergence (subspecies and species) were 

generally more resilient to lower sample sizes.  
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Figure 1: Parameter estimates of effective population size (ν1 and ν2), time since divergence (T), 
migration (m), and Θ for selected lineages. 
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Figure 2: SRMSE values for demographic parameters estimated at various sample sizes in this study, 
indicating how estimates decrease in accuracy with smaller sample sizes. Pairwise comparisons within 
each lineage are coded at lower right. Note that vertical scales are different in each panel.   
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Tables 
 

Table 1: Number of variable loci in each lineage, the full dataset size (number of diploid individuals in 
each population), and FST values (from McLaughlin et al. 2020). 

 

  Variable 
loci 

Full 
dataset 

size 

FST 

Anseriformes    

Clangula hyemalis 2,442 7:07 0.004 

Anas crecca 2,481 6:06 0.02 

Mareca penelope /A. 
americana 

2,315 8:08 0.044 

Charadriiformes    

Numenius phaeopus 2,388 7:07 0.269 

Tringa brevipes /T. incana 1,636 8:08 0.585 

Passeriformes    

Luscinia svecica 2,516 7 0.014 

Pinicola enucleator 2,656 7 0.442 

Pica pica/Pica hudsonia 2,199 7 0.328 
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Table 2: Mean estimates (± SEM) of effective population size parameters (ν1 and ν2), migration (m ), time since split (T), and Θ (defined as 4Nrefμ, 
where Nref is ancestral population size and μ is mutation rate per generation), in eight lineages of trans-Beringian birds calculated from 25 
resampled datasets at each sample size. 

 Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1 
Anseriformes          

Clangula 
hyemalis 

ν1 - 8.937  
(± 1.068) 

10.706  
(± 0.449) 

 

11.039  
(± 0.327) 

10.662  
(± 0.319) 

 

10.977  
(± 0.234) 

10.688  
(± 0.275) 

8.864  
(± 0.532) 

 ν2 - 6.410  
(± 1.012) 

 

10.704  
(± 0.255) 

10.657  
(± 0.318) 

10.634  
(± 0.388) 

11.546  
(± 0.130) 

9.915  
(± 0.344) 

9.851  
(± 0.525) 

 T - 1.487  
(± 0.213) 

 

1.542  
(± 0.065) 

1.460  
(± 0.067) 

1.497  
(± 0.083) 

1.472  
(± 0.053) 

1.639  
(± 0.105) 

2.155  
(± 0.187) 

 m - 1.217  
(± 0.229) 

 

1.524  
(± 0.121) 

1.554  
(± 0.137) 

1.704  
(± 0.148) 

1.847  
(± 0.143) 

2.093  
(± 0.190) 

2.324  
(± 0.157) 

 Θ - 204.806  
(± 33.285) 

136.062  
(± 4.133) 

140.407  
(± 6.721) 

 

139.646  
(± 6.591) 

133.497  
(± 2.999) 

129.653  
(± 4.928) 

116.837  
(± 6.160) 

          
Anas crecca ν1 - - 13.529  

(± 0.268)  
13.515  

(± 0.229) 
13.801  

(± 0.380) 
12.598  

(± 0.516) 
13.261  

(± 0.526) 
11.129  

(± 0.722) 
 ν2 - - 16.737  

(± 0.450) 
 

16.689  
(± 0.471) 

16.523  
(± 0.492) 

16.939  
(± 0.516) 

15.270  
(± 1.061) 

11.631  
(± 1.090) 

 T - - 1.154  
(± 0.039) 

 

1.226  
(± 0.019) 

1.265  
(± 0.024) 

1.333  
(± 0.045) 

1.298  
(± 0.046) 

1.500  
(± 0.088) 

 m - - 0.736  
(± 0.063) 

 

0.83 
 (± 0.040) 

0.661  
(± 0.073) 

0.699  
(± 0.114) 

0.472  
(± 0.094) 

0.765  
(± 0.147) 

 Θ - - 143.00  
(± 4.157) 

135.50  
(± 1.492) 

133.17  
(± 1.581) 

130.67  
(± 3.204) 

133.51  
(± 2.831) 

127.13  
(± 5.231) 
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Table 2, cont. Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1 
          

Mareca 
penelope/A. 
americana 

ν1 10.116  
(± 0.002)  

10.518  
(± 0.132) 

9.847  
(± 0.318) 

10.063  
(± 0.217) 

9.904  
(± 0.260) 

9.398  
(± 0.320) 

10.193 
(± 0.466) 

9.438  
(± 0.618) 

 ν2 15.608  
(± 0.004) 

15.147  
(± 0.192) 

14.895  
(± 0.237) 

 

14.531  
(± 0.334) 

14.082  
(± 0.302) 

14.015  
(± 0.535) 

12.644  
(± 0.562) 

6.276  
(± 0.713) 

 T 1.139  
(± 0.000) 

1.135  
(± 0.023) 

1.209  
(± 0.035) 

 

1.190  
(± 0.021) 

1.214  
(± 0.023) 

1.235  
(± 0.036) 

1.268  
(± 0.043) 

1.267  
(± 0.077) 

 m 0.704  
(± 0.000) 

0.750  
(± 0.095) 

0.644  
(± 0.021) 

 

0.654  
(± 0.028) 

0.716  
(± 0.049) 

0.529  
(± 0.062) 

0.568  
(± 0.093) 

1.761  
(± 0.247) 

 Θ 128.06  
(± 0.012) 

128.83  
(± 1.794) 

125.16  
(± 1.024) 

125.08 
 (± 1.178) 

123.56  
(± 1.177) 

123.76  
(± 1.912) 

121.81 
 (± 1.946) 

128.64  
(± 4.026) 

Charadriiformes          
Numenius 
phaeopus  

ν1 - 2.982  
(± 0.003)  

2.887  
(± 0.021) 

2.845  
(± 0.029) 

2.722  
(± 0.030) 

2.614  
(± 0.043) 

2.332  
(± 0.051) 

2.542  
(± 0.138) 

 ν2 - 6.245  
(± 0.004) 

6.086  
(± 0.066) 

 

6.047  
(± 0.064) 

5.691  
(± 0.085) 

5.308  
(± 0.097) 

4.735  
(± 0.127) 

4.176  
(± 0.211) 

 T - 1.968  
(± 0.002) 

1.931  
(± 0.019) 

 

1.981  
(± 0.027) 

1.894  
(± 0.040) 

1.796  
(± 0.063) 

1.501  
(± 0.052) 

2.386  
(± 0.132) 

 m - 0.056  
(± 0.000) 

0.055  
(± 0.001) 

 

0.056  
(± 0.001) 

0.052  
(± 0.003) 

0.042  
(± 0.004) 

0.023 
 (± 0.007) 

0.133  
(± 0.013) 

 Θ - 147.88  
(± 0.104) 

149.67  
(± 1.009) 

147.32  
(± 1.271) 

150.84  
(± 1.960) 

157.11 (± 
3.098) 

173.13  
(± 3.298) 

141.10  
(± 6.502) 
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Table 2, cont. Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1 
 

          
Tringa 
brevipes/T. 
incana 

ν1 7.894  
(± 0.135)  

8.487  
(± 0.093) 

7.516  
(± 0.166) 

7.014  
(± 0.223) 

6.382  
(± 0.267) 

5.258  
(± 0.625) 

2.806  
(± 0.292) 

1.016  
(± 0.086) 

 ν2 2.559  
(± 0.045) 

2.835  
(± 0.036) 

2.663  
(± 0.055) 

 

2.537  
(± 0.085) 

2.613  
(± 0.103) 

2.395  
(± 0.111) 

1.416  
(± 0.150) 

0.578  
(± 0.050) 

 T 6.575  
(± 0.134) 

7.624  
(± 0.107)  

7.284  
(± 0.189) 

 

7.153  
(± 0.291) 

7.542  
(± 0.364) 

7.033  
(± 0.389) 

3.856  
(± 0.536) 

1.942  
(± 0.203) 

 m 0.0091  
(± 0.000)  

0.0081  
(± 0.000) 

0.0084  
(± 0.000) 

 

0.0085  
(± 0.000) 

0.0090  
(± 0.000) 

0.0098  
(± 0.000) 

0.008  
(± 0.002) 

0.165 
(± 0.015) 

 Θ 56.345  
(± 0.986) 

49.828  
(± 0.628) 

52.707  
(± 1.250) 

54.627  
(± 2.022) 

53.799  
(± 2.686) 

58.978  
(± 4.510) 

113.161  
(± 10.291) 

117.030  
(± 8.657) 

Passeriformes          
Luscinia svecica ν1 - 3.877  

(± 0.005) 
3.934  

(± 0.089) 
 

4.618  
(± 0.344) 

5.056  
(± 0.408) 

5.827  
(± 0.435) 

6.322  
(± 0.488) 

5.452  
(± 0.403) 

 ν2 - 21.452  
(± 0.092) 

20.980 
 (± 0.442) 

 

18.847 
 (± 0.961) 

15.954  
(± 1.072) 

15.795  
(± 1.156) 

14.675  
(± 1.307) 

15.969 
 (± 1.432) 

 T - 1.290  
(± 0.003) 

1.285  
(± 0.015) 

 

1.276  
(± 0.031) 

1.243  
(± 0.063) 

1.226  
(± 0.043) 

1.203  
(± 0.067) 

1.256  
(± 0.104) 

 m - 1.956  
(± 0.058) 

2.122  
(± 0.108) 

 

2.127  
(± 0.245) 

2.330 
 (± 0.347) 

3.357  
(± 0.334) 

2.416  
(± 0.332) 

2.940  
(± 0.312) 

 Θ - 166.94 
 (± 0.176) 

167.608  
(± 1.033) 

167.935 
 (± 2.405) 

176.558  
(± 5.360) 

172.299  
(± 3.636) 

175.525 
 (± 4.166) 

180.675  
(± 8.488) 
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Table 2, cont. Parameter 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1 
 

          
Pinicola 
enucleator  

ν1 - 2.519 
 (± 0.016) 

2.846 
 (± 0.057) 

2.843  
(± 0.076) 

2.658 
 (± 0.113) 

2.597 
 (± 0.120) 

2.197  
(± 0.121) 

2.325  
(± 0.117) 

 ν2 - 1.786 
 (± 0.011) 

2.355  
(± 0.013) 

 

2.112 
 (± 0.046) 

1.898  
(± 0.063) 

1.656  
(± 0.050) 

1.412  
(± 0.037) 

1.465  
(± 0.073) 

 T - 1.979  
(± 0.021) 

2.449 
 (± 0.028) 

 

2.317  
(± 0.076) 

2.098  
(± 0.099) 

1.866  
(± 0.077) 

1.568  
(± 0.048) 

2.480  
(± 0.184) 

 m - 0.0073  
(± 0.001) 

0.0105 
 (± 0.000) 

 

0.0107  
(± 0.001) 

0.00677  
(± 0.001) 

0.0033 
 (± 0.001) 

0.0010  
(± 0.001) 

0.0596  
(± 0.004) 

 Θ - 223.76  
(± 1.51) 

197.10  
(± 1.41) 

205.45 
 (± 3.30) 

219.25  
(± 5.23) 

233.07  
(± 5.22) 

256.52  
(± 4.80) 

212.34  
(± 11.87) 

          
Pica pica/Pica 
hudsonia 

ν1 - 2.699  
(± 0.042) 

2.485 
 (± 0.046) 

 

2.406  
(± 0.057) 

2.298  
(± 0.075) 

2.300 
 (± 0.094) 

2.117  
(± 0.142) 

1.567 
 (± 0.144) 

 ν2 - 7.107  
(± 0.126) 

6.759 
 (± 0.225) 

 

6.470 
 (± 0.330) 

6.604 
(±0.390) 

6.565 
 (± 0.501) 

5.537 
 (± 0.528) 

3.029  
(± 0.587) 

 T - 3.334  
(± 0.069) 

3.017  
(± 0.046) 

 

2.868 
 (± 0.067) 

2.710  
(± 0.089) 

2.561 
 (± 0.114) 

2.325 
 (± 0.143) 

2.309 
(±0.190) 

 m - 0.0141  
(± 0.000) 

0.0121 
 (± 0.000) 

 

0.0119 
 (± 0.010) 

0.0086 
 (± 0.001) 

0.0066  
(± 0.001) 

0.0033  
(± 0.001) 

0.0808  
(± 0.012) 

 Θ - 108.09  
(± 1.602) 

116.50  
(± 1.48) 

121.01  
(± 2.00) 

126.62 
 (± 3.26) 

132.95 
 (± 4.74) 

146.85 
 (± 7.58) 

162.11  
(± 9.71) 
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Table 3: Scaled root mean square error (SRMSE) for each parameter at each diminished sample size. Parameters are effective population size (ν1 

and ν2), migration (m ), time since split (T), and Θ (defined as 4Nrefμ, where Nref is ancestral population size and μ is mutation rate per generation).  

 

  Parameter 7:7 6:6 5:5 4:4 3:3 2:2 1:1 

  7 6 5 4 3 2 1 
Clangula hyemalis m 

 
0.391 0.438 0.451 0.436 0.540 0.500 

Anas crecca  m 
  

0.262 0.556 0.803 1.123 0.942 
Mareca penelope/M. americana m 0.624 0.187 0.221 0.339 0.661 0.838 0.913 
Numenius phaeopus  m 

 
0.082 0.128 0.330 0.627 2.026 0.753 

Tringa brevipes/T. incana m 1.293 1.213 1.214 1.081 0.928 1.659 0.992 
Luscinia svecica m 

 
0.262 0.570 0.747 0.642 0.699 0.619 

Pinicola enucleator  m 
 

2.809 2.779 5.003 11.108 38.261 0.486 

Pica pica/Pica hudsonia m 
 

0.650 0.771 1.459 2.182 5.303 1.053 

 
 

7 6 5 4 3 2 1 
Clangula hyemalis ν1 

 
0.225 0.156 0.174 0.122 0.156 0.432 

Anas crecca  ν1 
  

0.081 0.136 0.214 0.195 0.384 
Mareca penelope/M. americana ν1 0.073 0.161 0.106 0.130 0.183 0.224 0.329 
Numenius phaeopus  ν1 

 
0.049 0.069 0.109 0.163 0.299 0.318 

Tringa brevipes/T. incana ν1 0.116 0.109 0.178 0.282 0.512 1.788 6.511 
Luscinia svecica ν1 

 
0.112 0.398 0.459 0.496 0.541 0.464 

Pinicola enucleator  ν1 
 

0.141 0.167 0.275 0.307 0.505 0.427 
Pica pica/Pica hudsonia ν1 

 
0.157 0.202 0.271 0.296 0.462 0.907 

 
 

7 6 5 4 3 2 1 
Clangula hyemalis ν2 

 
0.141 0.164 0.193 0.156 0.170 0.261 

Anas crecca  ν2 
  

0.138 0.146 0.150 0.354 0.635 
Mareca penelope/M. americana ν2 0.069 0.091 0.135 0.151 0.217 0.320 1.588 
Numenius phaeopus  ν2 

 
0.059 0.061 0.122 0.198 0.345 0.554 

Tringa brevipes/T. incana ν2 0.154 0.133 0.168 0.204 0.228 0.887 3.241 
Luscinia svecica ν2 

 
0.106 0.285 0.477 0.507 0.635 0.557 

Pinicola enucleator  ν2 
 

0.094 0.109 0.210 0.332 0.537 0.526 
Pica pica/Pica hudsonia ν2 

 
0.182 0.282 0.308 0.391 0.566 1.702 
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7 6 5 4 3 2 1 
Clangula hyemalis T 

 
0.329 0.310 0.358 0.282 0.434 0.632 

Anas crecca  T 
  

0.095 0.128 0.213 0.207 0.369 
Mareca penelope/M. americana T 0.100 0.153 0.097 0.111 0.164 0.194 0.315 
Numenius phaeopus  T 

 
0.052 0.066 0.110 0.196 0.350 0.322 

Tringa brevipes/T. incana T 0.138 0.149 0.208 0.261 0.275 1.006 2.508 
Luscinia svecica T 

 
0.056 0.118 0.250 0.178 0.284 0.408 

Pinicola enucleator  T 
 

0.183 0.291 0.437 0.578 0.848 0.396 
Pica pica/Pica hudsonia T 

 
0.193 0.265 0.350 0.444 0.608 0.673 

 
 

7 6 5 4 3 2 1 
Clangula hyemalis Θ 

 
0.262 0.295 0.296 0.264 0.333 0.490 

Anas crecca  Θ 
  

0.077 0.094 0.153 0.126 0.237 
Mareca penelope/M. americana Θ 0.068 0.046 0.052 0.059 0.083 0.094 0.153 
Numenius phaeopus  Θ 

 
0.035 0.042 0.067 0.113 0.173 0.231 

Tringa brevipes/T. incana Θ 0.337 0.283 0.280 0.338 0.395 0.608 0.670 
Luscinia svecica Θ 

 
0.030 0.070 0.158 0.108 0.126 0.242 

Pinicola enucleator  Θ 
 

0.060 0.118 0.186 0.224 0.284 0.298 
Pica pica/Pica hudsonia Θ 

 
0.123 0.161 0.218 0.278 0.386 0.463 
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Table 4: Linear regression equations for scaled root mean square error (SRMSE) for each parameter 
(from Table 3), summarizing how accuracy declines with diminished sample sizes. Parameters are 
migration (m), effective population size (ν1 and ν2), time since split (T), and Θ (defined as 4Nrefμ, where 
Nref is ancestral population size and μ is mutation rate per generation). Note that these are based on 
SMRSE values (to enable among-lineage comparisons). Thus, y in the regression equation y = mx + b is 
SMRSE for that particular demographic variable (m is slope, x is N, and b is the y intercept). 

  

SMRSE for variable Regression equation (y = mx + b) r2 P 

ma y = -0.00858 * N + 0.87714 0.413 0.0007 

ν1 y = -0.17563 * N + 1.05063 0.117 0.0156 

ν2 y = -0.16171 * N + 0.97351 0.305 0.00004 

T y = -0.10045 * N + 0.70147 0.237 0.0004 

Θ y = -0.03825 * N + 0.34738 0.220 0.0007 

a Note that this is for the low-divergence group only. 
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Supplementary Information 
 

Table S1: Linear regression equations for scaled root mean square error (SRMSE) for each parameter in 
which breaking lineages into low-divergence and high-divergence groups improved the regression 
model, summarizing how accuracy declines with diminished sample sizes. Parameters are effective 
population size (ν1 and ν2), time since split (T), and Θ (defined as 4Nrefμ, where Nref is ancestral 
population size and μ is mutation rate per generation). Note that these are based on SMRSE values (to 
enable among-lineage comparisons; Table 3). Thus, y in the regression equation y = mx + b is SMRSE for 
that particular demographic variable (m is slope, x is N, and b is the y intercept). 

SMRSE for variable Regression equation (y = mx + b) r2 P 

ν1 (low-div group) y = -0.04467 * N + 0.40622 0.304 0.0052 

ν1 (high-div group) y = -0.30251 * N + 1.68585 0.189 0.0299 

ν2 (low-div group) y = -0.10533 * N + 0.69169 0.355 0.0021 

ν2 (high-div group) y = -0.21646 * N + 1.25166 0.352 0.0018 

T (low-div group) y = -0.04739 * N + 0.40888 0.395 0.0010 

T (high-div group) y = -0.15276 * N + 0.99239 0.328 0.0028 

Θ (low-div group) y = -0.02843 * N + 0.26395 0.202 0.0275 

Θ  (high-div group) y = -0.04878 * N + 0.43241 0.303 0.0043 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.10.986463doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986463
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Supplementary Information figures 

 

Figure S1: Estimates of ν1 (effective size of population 1) at varying sample sizes in eight lineages 
(vertical axis is ν1, and horizontal axis is sample size as number of individuals).   
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Figure S2: Estimates of ν2 (effective size of population 2) at varying sample sizes in eight lineages (vertical 
axis is ν2, and horizontal axis is sample size as number of individuals). 
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Figure S3: Estimates of m (migration or gene flow) at varying sample sizes in eight lineages (vertical axis 
is m, and horizontal axis is sample size as number of individuals). 
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Figure S4: Estimates of T (time since divergence) at varying sample sizes in eight lineages (vertical axis is 
T, and horizontal axis is sample size as number of individuals). 
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Figure S5: Estimates of Θ (4Nrefμ) at varying sample sizes in eight lineages (vertical axis is Θ, and 
horizontal axis is sample size as number of individuals).  
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Figure S6. Parameter-specific scaled root mean square error (SRMSE) values plotted against sample size 
(N). Note that vertical scales vary in each panel. 

             Low-divergence lineages                                          High-divergence lineages 
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Figure S6, continued. Parameter-specific scaled root mean square error (SRMSE) values plotted against 
sample size (N). Note that vertical scales vary in each panel. 

Low-divergence lineages                                          High-divergence lineages 
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