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Abstract

Assigning cell identities in dense image stacks is critical for many applications, for comparing
data across animals and experiment conditions, and investigating properties of specific cells.
Conventional methods are laborious, require experience, and could introduce bias. We present
a generalizable framework based on Conditional Random Fields models for automatic cell
identification. This approach searches for optimal arrangements of labels that maximally
preserves prior knowledge such as geometrical relationships. The algorithm shows better
accuracy and more robust handling of perturbations, e.g. missing cells and position variability,
with both synthetic and experimental ground-truth data. The framework is generalizable across
strains, imaging conditions, and easily builds and utilizes active data-driven atlases, which
further improves accuracy. We demonstrate the utility in gene-expression pattern analysis,
multi-cellular calcium imaging, and whole-brain imaging experiments. Thus, our framework is
highly valuable to a wide variety of annotation scenarios including in zebrafish, Drosophila,

hydra, and mouse brains.
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Introduction

Biological name annotation of anatomical regions in images is a critical step in several domains,
e.g. evolutionary and developmental phenotyping, spatial omics, and gene expression analysis.
This is also the case for neuroscience: identifying brain regions, cells, cell types, etc. is a crucial
step in image data analysis necessary for comparison across subjects, trials, experimental
conditions, and facilitating the utility of existing knowledge about the system. However, the
annotation task is typically challenging: reference atlases provide a static and often single view
of the anatomy, while anatomical features vary across individuals and experimental conditions.
Thus, manually matching data to atlas requires practice and is exceedingly laborious. Moreover,
variations in experimental parameters such as exact resolution, orientation of animals during
acquisition may not match the static atlases, making manual labeling infeasible. While
computational pipelines have been proposed for identifying anatomical features in imaging
data®™8, most focus on naming coarse anatomical regions. As imaging of large structures is
enabled by advanced microscopic techniques®!?, the current bottleneck to generate
interpretable data is, in part, due to methods to accurately annotate identities at cellular

resolution in large image sets, and doing so under the constraints of biological variability.

For instance, cell identification in images is a critical component in many studies in C. elegans
such as gene expression pattern analysis'''2, lineage tracing'?, multi-cell calcium imaging* and
whole-brain imaging®>8. Previous methods''*%2° focused on identifying sparsely distributed
cells with stereotypical positions in young larvae animals. Tools for automatic and unbiased
identification of cells in dense head ganglion do not exist. Further, all methods'**=22 for

automatic annotation of cell identities in C. elegans are either registration-based or formulate a
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linear assignment problem. Objective function in these methods minimizes the distances
between cell specific features (such as positions of cells) in images and atlas. Thus, these
methods only maximize extrinsic similarity?® between images and atlas, which is sensitive to
variability in cell positions. A better criterion for accurate annotation is to maximize intrinsic
similarity, which is more robust against position noise?*?* and inherently captures
dependencies between cell [abel assignments. For instance, if region 1 is anterior and to region
2 in atlas and region 1 is assigned certain label, then the label available for region 2 is
automatically dependent on region 1’s assignment. Previous methods either do not optimize
directly for such dependencies or only impose them indirectly as constraints in post-processing

steps.

To directly optimize for dependencies between label assighnment, we cast the cell annotation

25730 and build a fully connected Conditional

problem as a Structured Prediction problem
Random Fields (CRF) model®! to solve it. The model searches for, among all possible labeling
arrangements, an optimal assignment to each cell that is maximally unbiased and most
consistent with prior knowledge (e.g. label dependencies known in atlas). To maximize
accuracy, we encode dependencies between all pairs of cells in the form of several positional
relationship features in the model. These features include binary positional relationship
features, the Gromov-Wasserstein discrepancy between cells in an image and the atlas®?33, and
an angular relationship feature. Using both synthetic data with realistic properties and

manually annotated experimental ground-truth data, we demonstrate better performance of

our method compared to previous methods for several tasks (up to 20% improvement).
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83  There are several advantages of the CRF framework. First, the CRF framework can encode

84  arbitrary order dependencies between labels. Additionally, ad hoc features can be added to the
85 model to improve accuracy. We demonstrate this by incorporating spectral information, and
86 landmarks in the model when such information was available. Second, the CRF framework is

87  trainable algorithm3*3> and can easily incorporate information from annotated data in the form
88  of active data-driven atlas. We show that building such atlas is easy for our methods and

89 requires cheap mathematical operations — simple averaging — thus making it computationally

90 favorable for building atlas from thousands of images.

91  We show the utility of our approach in several contexts: determining gene expression patterns
92  with no prior expectations, tracking activities of multiple cells during calcium imaging, and

93 identifying cells in whole-brain imaging videos. For the whole-brain imaging experiment, our

94  annotation framework enabled us to analyze the simultaneously recorded response of C.

95 elegans head ganglion to food stimulus and identify two distinct groups of cells whose activities

96 correlated with distinct variables — food sensation and locomotion.

97 Results

98  Structured prediction framework for automatic identification of neurons

99  Our annotation framework consists of 4 steps (Fig. 1, Supplementary Fig. 1, Supplementary
100 Note 1). First, cells are automatically segmented using a Gaussian Mixture-based method; if
101  available, cells with known identities (landmarks) are also detected in this step. Second, a head
102  coordinate is generated by solving an optimization problem with considerations of the

103  directional consistency of axes (Supplementary Note 1.3). With this coordinate system, we next

5
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104  define cell specific features (unary potentials) and co-dependent features (pairwise potentials)
105 in the model. The basic model uses several pairwise relationship features for all pairs of cells,
106 including binary positional relationships, angular relationship, and the Gromov-Wasserstein

107  discrepancy between cells in the image and an atlas. By encoding these features among all pairs
108  of cells, our fully-connected CRF model accounts for label dependencies between each cell pair
109 to maximize accuracy. Third, identities are automatically predicted for all neurons iteratively,
110  taking into account neurons missing in the image stack (Supplementary Note 1.4). Duplicate
111  assignments are handled by calculating a label-consistency score for each neuron, removing
112 assignments with low scores (Supplementary Note 1.5) and re-running optimization. Lastly,

113  identities predicted across each run are pooled to generate top candidate identities for each

114  cell (Supplementary Note 1.6, Supplementary Video 1).

115 ldentity assignment using intrinsic features outperforms other methods

116  Given the broad utility of image annotation, we envision our workflow to apply to a variety of
117  problems where experimental constraints and algorithm performance requirements may be
118 diverse. These use cases require our framework to be flexible and accurate. Furthermore,

119  experimental data inherently contains perturbations that can affect annotation accuracy, e.g.
120 deviation between cell positions in images and positions in atlas (position noise), different

121  counts of cells in images and atlas due to missing cells in images (count noise), and presence or
122  absence of landmarks with known identities (landmarks). Thus, we used two different kinds of
123  datato tune the model and to assess accuracy: synthetic data generated from OpenWorm 3D
124  atlas®® (Supplementary Fig. 2a,b, Supplementary Fig. 3) and experimental data consisting of

125  annotated ground-truth of 9 animals, with ~100 uniquely identified neurons. To tune the
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126  features in the model, we compared prediction accuracy for several combinations of positional
127  relationship features. Among all co-dependent positional relationship features, the angular
128 relationship feature by itself or when combined with PA, LR, and DV binary position relationship

129 features performed best (Supplementary Fig. 4a).

130  While experimental data enables the assessment of prediction accuracy in real scenarios,

131  synthetic data enables us to dissect the effect of various perturbations independently. To assess
132  the effects of position noise and count noise on prediction accuracy, we simulated four

133 scenarios using the synthetic data (Supplementary Fig. 2c). In the absence of any perturbation,
134  relative positional relationship features predicted neuron identities with perfect accuracy, thus
135 demonstrating the suitability of co-dependent features and CRF framework for the annotation
136  task. We show that both position noise and count noise affect accuracy significantly

137  (Supplementary Fig. 2c,d) with position noise having a larger effect (compare scenarios 1-2 with
138  3-4, Supplementary Fig. 2c). Count noise is primarily caused by variability in the expression level
139  of the reporter used to identify cells, and limits in the computational methods to detect cells.
140  Results on both synthetic data and real data predict 10-15% improvement in prediction

141  accuracy can be attained by simply improving reagents and eliminate count noise

142  (Supplementary Fig. 2d). Another advantage of simulations using synthetic data is that it can be
143  used to obtain expected accuracy bounds by applying extreme case perturbations observed
144  empirically, thus setting an expectation on the performance of the method in real scenarios.
145  We obtained such bounds based on observed position noise of cells in experimental data

146  (Supplementary Fig. 2e). Indeed, the results for experimental data lied close to these bounds

147  (Supplementary Fig. 2f, Fig. 2 gray regions).
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148  To account for missing cells, we developed a method that considers missing neurons as a latent
149  state in the model (similar to hidden state CRF?’) and predicts identities by marginalizing over
150 latent states (Supplementary Note 1.6). Compared to the base case that assumes all cells are
151  present in an image, simulating missing neurons significantly increased the prediction accuracy
152  (Fig. 2a left) on experimental data; the top 5 candidate labels generated by this method

153  attained ~80% average accuracy (Fig. 2a right), similar to synthetic data (Supplementary Fig. 2f).

154  Another way to improve the cell identification accuracy is to use landmarks. These landmarks
155  act as additional constraints on the optimization while the algorithm searches for the optimal
156  arrangement of labels for non-landmark cells. We showed using both experimental data (Fig.
157  2b) and synthetic data (Supplementary Fig. 4b), randomly chosen landmarks increased

158  prediction accuracy by ~10-15%. It is possible that strategic choices of landmarks could further

159 improve accuracy.

160  Next, we compared our method against registration method popular for automatic cell

161  annotation!1°=22 (Fig. 2¢c, Supplementary Note 2). Remarkably for both experimental and

162  synthetic data, relative positions in the CRF framework performs the best (Fig. 2d,

163  Supplementary Fig. 5a). Further, the superiority of the CRF framework using relative positions is
164 insensitive to the position noise level in the synthetic data (Supplementary Fig. 5b). This has
165 important practical implications as neuron positions being highly variable across individual

166  animals has been shown3?, and confirmed with our datasets (Supplementary Fig. 6a,b). Because
167  cell positions on average can vary by more than the distance to their tenth nearest neighbor
168 (Supplementary Fig. 6b), we expect that this variability introduces large matching errors in

169  registration methods. In contrast, most pair-wise relationships are preserved despite the
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170  variability of absolute positions (Fig. 2e, Supplementary Fig. 6¢,d). Interestingly, combining
171  registration using absolute positions with relative position features corrupts the annotation

172  performance (Supplementary Fig. 5a), likely due to competing effects in the objective function.

173  Improvement in accuracy can be further achieved by incorporating information from annotated
174  data via a data-driven atlas that better accounts for variability in experimental data. Building
175  such data-driven atlas for our CRF framework is easy requiring only simple averaging operations
176  (Supplementary Note 1.7). By using data-driven atlas, the accuracy improved significantly to

177  74% for the top label and 95% for the top 5 labels (Fig. 2f).

178  Cell annotation in gene expression pattern analysis

179  We next demonstrate the utility of our framework for gene expression analyses, which is

180  important for many problems, e.g. mapping the molecular atlas of neurotransmitters3°49,

181  receptors*, and neuropeptides*’. Conventional methods e.g. screening a list of cell specific
182  marker lines that overlap with the reporter are laborious and scale badly with the number of
183  cells expressing the genes of interest and the number of new genes for which expression

184  patterns are to be determined. Automatic cell annotation can considerably reduce manual

185  efforts by generating a small list of candidate identities for each cell expressing the reporter.
186  Subsequently, researchers can easily verify or prune the candidate list. To demonstrate this use
187  case, we imaged a strain with multiple cells labeled with GFP and predicted candidate identities
188  of each cell. Determining cell identities in this case is difficult due to large count noise along
189  with position noise: since the full list of labels in the atlas is much bigger than few cells in the

190 reporter strain (scenario 4, Supplementary Fig. 2c). Thus, several degenerate (equally probable)


https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986356; this version posted March 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

191  solutions are possible. To avoid this, the reporter strain was crossed with a strain expressing
192  pan-neuronal red fluorescent protein (RFP), from which candidate identities were predicted.
193  Our framework accurately generated a candidate list for cells across all datasets (n =21
194  animals); 85% of cells had true identities within the top 5 labels chosen by the framework. In
195 comparison, the candidate list generated by the registration method achieved only 61%

196  accuracy (Fig. 3).

197  Cell annotation in multi-cell functional imaging experiments

198 We next demonstrate the utility of our algorithm in another important application - annotating
199 cell identities in multi-cell calcium functional imaging in vivo (Fig. 4a). Automation in this case
200 dramatically reduces labor associated with cell annotation for many time points, across trials,
201  animals, and experiments. We used a strain carrying GFP in multiple cells as a proxy for GCaMP-
202 labeled strains (Fig. 4a). Given the known candidate list of labels that can be assigned (no count
203  noise), the configurational space is small, which makes the task easy (similar to scenario 3

204  Supplementary Fig. 2c). Indeed, our annotation framework identified neurons with high

205  accuracy (98%, n = 35 animals). In comparison, the registration method predicted identities
206  with lower accuracy (88%) even with the small label assignment space (Fig. 4b). In reality, some
207  neurons may be undetected in the data due to expression mosaicism or low calcium transients
208 (equivalent to scenario 4, Supplementary Fig. 2c). We simulated this case by randomly

209 removing up to a third of total neurons from the images and predicting identities of remaining
210  cells using the full label list (Fig. 4c, Supplementary Fig. 7). Even under these conditions, the

211  accuracy of our method remains high (88%) significantly outperforming registration method

10
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212  (81%) (Supplementary Video 2). In practice, the performance can be further compensated for

213 by using multiple frames from each video.

214  To further facilitate annotation accuracy, we explored the utility of landmarks. Landmarks can
215 also help establish a coordinate system and guide post-prediction correction. Because the

216  combinatorial space of potential landmarks is very large (~10* for 10 landmarks out of ~200
217  cellsin the head), we asked what properties landmarks should have. We found that landmarks
218  distributed throughout the head or in lateral ganglion perform better in predicting identities of
219  neurons in all regions of the brain (Supplementary Fig. 8, Methods). As a test case, we

220 developed strains with spatially distributed, sparse neuronal landmarks using CyOFP

221  (Supplementary Note 3), which by itself can assist researchers in cell identification tasks. When
222 crossed with pan-neuronally expressing GCaMP/RFP reagents, the strains can be used for

223  whole-brain imaging (Fig. 4d) by using only two channels. This has two advantages: CyOFP can
224 be imaged “for free” while imaging GCaMP and RFP simultaneously, thus the landmarks

225  providing a concurrent reference in all frames; this strategy also leaves other channels open for

226  optogenetic manipulations and voltage imaging*>44.

227  We next tested this strategy in a simple whole-brain imaging experiment. Isoamyl alcohol (1AA)
228 is a well-known component of the bacterial metabolites that C. elegans senses and responds
229  to* . We recorded neuronal responses to a step-change in IAA concentration using a

230  microfluidic system (Supplementary Fig. 9). We observed both odor-specific responses and
231  spontaneous activities (Fig. 4e). More importantly, neurons with algorithm-assigned identities
232  demonstrate expected behavior. For instance, we identified the sensory neuron AWC, and

233  detected an off-response to IAA, consistent with known AWC behavior. In addition, the

11
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234  predicted interneurons (e.g. AVA, RIB, and AIB) also demonstrate previously known activity

235  patterns'®.

236  We also tested worms’ responses to periodic stimuli of a more complex and naturalistic input —
237  supernatant of bacterial culture (Fig. 5, Supplementary Video 3). A periodic input (5sOnand 5
238 s Off for 8 cycles) entrains many neurons as expected, therefore allowing us to better separate
239  the odor-elicited responses from spontaneous activities (Fig. 5a). We generated the candidate
240 identities for all recorded neurons (Supplementary Fig. 10a). Notably, several highly entrained
241  neurons were identified as sensory neurons known to respond to food stimuli #3=° (Fig. 5c¢),
242  some of which responded to the onset of the stimuli and some to the withdrawal of the stimuli
243  (Fig. 5d). The power spectrum of these neurons showed a strong frequency component at 0.1

244  Hz as expected (Fig. 5b).

245  Next, to examine the latent dynamics in the whole-brain activities during the entire experiment,
246  we used traditional Principal Component Analysis (PCA) and Sparse Principal Component

247  Analysis (sPCA)>. The overall dynamics are low-dimensional with top 3 traditional PCs capturing
248  70% of the variance (Supplementary Fig. 10b). In comparison, while the top 3 sparse PCs (SPCs)
249  explain 43% of the variance in the data, they enable meaningful interpretation of the latent

250 dynamics by eliminating mixing of activity profiles in PCs (Fig 5e). SPC1 shows a systematic

251  decline of the signals, presumably related to photobleaching of the fluorophores; both SPC2
252  and SPC3 illustrate spontaneous activities with different temporal dynamics (Fig 5e). With

253  automatic annotation, we were able to identify cell classes belonging to each SPC

254  (Supplementary Fig. 10c). We then analyzed the relationship between motion and neuron

255  activities. In our microfluidic device, the animals are not fully immobilized. By tracking

12
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256  landmarks on the body; we observed propagating waves along the body (Fig 5f, Supplementary
257  Fig. 10d, Supplementary Video 4). Interestingly, cells participating in SPC2 showed significantly
258  higher mutual information with motion than any other component (Fig. 5g). Examining the

259  connection between activities of neurons that drive SPC2 and animal motion demonstrates that
260 these neurons are indeed correlated or anti-correlated with the motion we detected (Fig. 5h);
261  notably, command interneurons such as AVA, RIM, and motor neurons such as VA, DA correlate
262  well with backward motion (Fig. 5h). Cross-correlation analysis between motion and neuron
263  activities showed that neurons are activated ahead of motion (Fig. 5i); when lag is added to the
264 neuron activities, the mutual information of SPC2 neurons with motion is maximum at the

265 same delay observed in the cross-correlation (Supplementary Fig. 10e). These experiments

266 together demonstrate the power of the approach, which enabled previously difficult

267 simultaneous analyses of several sensory, inter-, and motor neurons’ activities to natural food
268  stimulus. Thus, automatic identity prediction enabled meaningful interpretation of the whole-

269 brain data.

270  Framework is broadly applicable to wider conditions

271  Another important advantage of the CRF framework is its flexibility to incorporate additional
272  information to improve the identification accuracy, by simply adding new terms in the objective
273  function without disturbing the weights of existing features. Here we demonstrate this idea by
274  using the recently developed NeuroPAL3® that provides a unique chromatic code to each

275  neuron (Fig. 6a). This code was included as a unary potential in the model. Using manually

276  curated ground-truth data, we compared different methods. These methods included different

277  orthogonal feature combinations, as used by previous approaches, thus providing insights into

13
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278  which features perform best (Fig. 6b, Supplementary Note 2). Unsurprisingly, registration

279  performs poorly (with or without color information); color alone is not sufficient, and color

280 combined with spatial features improves the accuracy (whether registration or relative position
281  is used). Notably, the best performing model uses relative position features in combination with
282  color and without registration term (Fig. 6b, Supplementary Fig. 11a), achieving 76% accuracy
283  for the top-label prediction. Further, for 88% of the neurons, the true identity is within the top
284  three labels. A further improvement in the model accuracy was achieved by using data-driven
285  atlas to account for biological variability in both the positional relationships and color (Fig. 6c,
286  Supplementary Fig. 12). Using the data-driven atlas significantly improves the accuracy to >87%
287  (top labels); more than 95% of the neurons have their true identities in the top three labels

288 chosen by the model. We expect that more datasets for the atlas will continue to improve the

289  accuracy.

290 Lastly, we show that our model is equipped to work with realistic complex scenarios of animals
291 imaged in different orientations, often not rigid rotations (Fig. 6d). Identifying cells in these
292  cases is challenging: manual annotation using the 2D-atlas? is not possible since it lacks left-
293  right information; further, due to low-z sampling of image stacks, segmented positions of cells
294  along z-axis are noisier. These challenges can be addressed by using the data-driven atlas. We
295 imaged and manually annotated seven animals in microfluidic devices with varying degrees of
296 orientations to test the methodology. With data-driven atlas built from animals imaged

297 laterally, the prediction accuracy of top labels was 63% (76% for top three labels) which are

298 reasonable for practical purposes. Accuracy was further improved when the atlas was updated

14
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299 combining the data from animals imaged in rotated orientations: 65% for top labels (80% for

300 top three labels) (Supplementary Fig. 11b, Supplementary Fig. 13).

301 Discussion

302 Annotating anatomical features and cellular identities in biological images are important tasks
303 for many applications. Here, we demonstrated our CRF framework is suitable for fluorescently
304 labeled cells in 3D images for many applications. Using both ground-truth experimental data of
305 whole-brain image stacks and synthetic data generated from atlas, we showed that our

306 framework is more accurate compared to existing approaches. We demonstrated using real
307 examples how the pipeline can be used for analysis of gene expression pattern for instance, and
308 for neuron identification from dense multi-cell or whole-brain imaging experiments. Further,
309 our CRF framework significantly speeds up the cell identification compared to manual labeling

310 while reducing bias.

311  With the pipeline, we address several challenges. There is ample evidence that anatomy varies
312  from individual to individual, and from condition to condition. This variability, or position noise,
313 is a major source of roadblock in effectively applying previous methods to annotate the whole-
314  brain recording data. Because our framework leverages intrinsic similarity?3, it performs better
315 than registration methods in handling position noise (Supplementary Fig. 5). Further, CRF

316  formulation is more accurate in handling count noise i.e. cases of missing or undetectable cells
317 inimages (Fig. 4c, Supplementary Fig. 7), because the missing neurons do not upset the

318 relationships among the detectable neurons in the CRF formulation while missing neurons

319 introduces large uncertainty in registration methods. Lastly, the CRF method predicts identities
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320 with sufficient accuracy for different postural orientations of the worms often seen in our

321  microfluidic experiments. We expect that this superiority is maintained for any data that have
322 relational information preserved, this is the case virtually in all biological samples where tissues
323  are connected by matrix, such as in other whole-brain recordings or for registration of fixed

324 tissues.

325  Building and using data-driven atlases in the pipeline is simple and yet highly effective. We

326 expect that data from more animals, different orientations, age, and imaging techniques will
327  further improve the generalizability. Since building such data-driven atlas for our framework
328 requires only cheap mathematical operations (Supplementary Note 1), incorporating more data
329 s quite simple and easily scalable. In contrast, other methods may require simultaneous or
330 batch-wise registration of multiple images to one reference; this would require solving multiple
331 constrained regression problems on increasingly large data sets, thus rendering them

332  computationally unscalable.

333  While we only considered pairwise features in the current formulation, feature functions with
334  arbitrary dependency can be included in the model that may further improve prediction

335  accuracy®*°4, Advances in structured energy minimization field>>>>°¢ will enable tackling the
336 increased complexity of combinatorial optimization in these cases. Our workflow is the first
337  application of Structured Prediction framework, borrowing techniques from metric object
338 matching literature for annotation in biological images. Log-linear parameterization in our
339 framework makes the model a member of the exponential families®’; thus, the objective

340 function in our framework has striking similarities with the entropy-regularized optimal

341 transport objective functions32°8, Therefore, improvements in speed can be achieved by
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342  borrowing fast optimization techniques developed in optimal transport literature. Advances in

343  these fields will continue to improve the method development in image analysis.

344  We anticipate that by using our generalizable formulation, similar pipelines can be set up to
345 annotate more image sets in other organisms and build atlases. Data in many anatomical

346  annotation problems (e.g. brain atlas construction, registering images from different

347  modalities, comparing animals or related species to one another for developmental studies)
348 share a similar property, in that the anatomical features of interest maintain a cohesion from
349 sample to sample. This underlining cohesion lends itself to the CRF framework. As we have
350 shown, the pipeline is extremely flexible in incorporating new information. Thus, framework
351 should be easily modifiable catering to the data demands in other organisms including features
352  besides landmarks and spectral information such as cellular morphology and expected cellular
353  activities (e.g. calcium transients). Because the only inputs to our framework are segmented
354  anatomical regions in images and positional relationships among them, information already
355 available in data across organisms®°%%0, the framework proposed here should be generally
356  useful for many problems in model organisms such as Drosophila>®®%, zebrafish®, mammalian
357  brains'®0. Besides fluorescence, the pipeline should also be able to work with data from other

358 modalities including EM, live imaging, and fluorescence imaging from cleared tissues.

359
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360 Online Methods

361 Reagents
362  For all experiments, animals were cultured using standard techniques®?. A detailed list of strains

363  used is provided in Supplementary Note 4.

364 Imaging
365  Allimaging was performed using either a Perkin ElImer spinning disk confocal microscope (1.3
366  NA, oil objective) or Brucker Opterra Il Swept field confocal microscope (Plan Fluor ELWD air

367 objective) at 40x magnification, with an EMCCD camera.

368 To acquire data used for framework validation and comparison against other methods (Fig. 2),
369 gene expression pattern analysis (Fig. 3), multi-cell calcium imaging (Fig. 4), imaging landmark
370 strain (Fig. 4) and NeuroPAL imaging (Fig. 6), animals were synchronized to L4 stage and were
371 imaged in an array device®. A single 3D stack was acquired with either 0.5 pm or 1 um spacing
372  between z-planes and 10 ms exposure time (except for NeuroPAL strain where exposure times

373  of different channels were chosen based on the guidelines provided in NeuroPAL manuals38).

374  Whole-brain functional recording data while providing chemical stimulus were acquired using a
375  microfluidic device designed for applying chemical stimulation®* to the nose-tip of the animal.
376  Here image stacks were acquired with 1 um spacing between z-planes and 10 ms exposure for
377  each z-plane. This enabled recording videos at 1.1 volumes/s while imaging two channels

378 simultaneously (GCaMP and RFP). Animals were synchronized to Day-1 adult stage.
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379  Generating synthetic data for framework tuning and comparison against other methods

380 Synthetic data was generated using the freely available 3D atlas at OpenWorm?3®. Atlas available
381 at Worm Atlas®? was not used as it provides only a 2D view. To mimic the conditions

382 encountered in experimental data, two perturbations were applied to the 3D atlas

383  (Supplementary Fig 4). First, due to inherent biological variability, positions of cells observed in
384  images do not exactly match the positions in atlas. Thus, position noise was applied to each cell
385 in the atlas sampled from a normal distribution with fixed variance. Thus, the position of the it"
386 cell p; in synthetic data was determined as p; = P; qt145 + €, €~ N (0, 0?). Here Piatias IS the
387  position of the cell in the atlas. To determine the variance o2, we quantified the variance of cell
388  positions observed in experimental data (Supplementary Fig. 3a,c,e) using the strain with

389  neuronal landmarks. We calculated the 25™ percentile and 75™ percentile of the variance

390 across all cells across all animals (n = 31) to define the lower bound and upper bound position
391 noise observed in experimental data. However, this variability cannot be directly applied to the
392  atlas due to different spatial scales. Thus, we applied the 25t or the 75 percentile of the

393  variance of cell positions to the atlas scaled by the inter-cell distances in atlas (Supplementary

394  Fig. 3b,d,f,g,h) to define lower bound and upper bound noise to be applied to the atlas.

395 Second, although there are 195-200 neurons in head ganglion in C. elegans, only 100-130 cells
396 were detected in images. Remaining cells are not detected either due to low-expression levels
397  of fluorophores or segmentation methods to resolve densely packed cells. This increases the
398 complexity of determining the labels of cells. To illustrate, matching 195 cells in an image to
399 195 cellsin the atlas is easier as only one or very few possible configurations of label

400 assignments exist that maximally preserves the positional relationships among cells. In contrast,
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401  in the case of matching 100 cells in an image to 195 cells in atlas, many possible labeling

402 arrangements may exist that equally preserve the positional relationships among cells. Thus, to
403  simulate this case, randomly selected cells were marked as missing and identities were

404  predicted for remaining cells only. Since no prior information was available on which regions of
405 the head ganglion had more cells missing, we selected the missing cells uniformly across brain
406 regions. Finally, bounds on prediction accuracy (shown as gray regions in Fig. 2 and

407  Supplementary Fig. 2) were obtained as the average prediction accuracy across runs obtained

408 on synthetic data by applying lower bound and upper bound position noise.

409  Generating ground-truth data for framework tuning and comparison against other methods

410 NeuroPAL reagents OH15495 and OH15500 were used to generate ground-truth data. 3D image
411  stacks were acquired following the guidelines provided in NeuroPAL manual. Identities were
412  annotated in image stacks using the example annotations provided in NeuroPAL manual.

413  Individual channel image stacks were read in MATLAB, gamma and contrast were adjusted for
414  each channel individually so that the color of cells in the RGB image formed by combining the
415 individual channels match as much as possible (perceptually) the colors of cells in NeuroPAL

416  manuals. To annotate identities in the 3D stack, Vaa3D software was used®.

417  Comparison against other methods

418  Detailed description of the methodology used for each method that the CRF framework was
419 compared against is provided in Supplementary Note 2. Note, for fair comparisons, standard 3D
420 atlas was used by all methods as the reference (including CRF framework) for defining positions
421  of cells (used by registration methods) and for defining positional relationships among cells

422  (used by the CRF framework).
20
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423  Simulations for choosing landmark locations

424  Landmarks (cell with known identities) improve prediction accuracy by constraining the

425  optimization problem as it forces the CRF framework to choose optimal labels for all cells such
426  that they preserve their positional relationships with the cells with fixed identities. However,
427  choosing an optimal set of landmarks is difficult. This is because the combinatorial space of
428  choosing landmarks is huge (~10'4 for 10 landmark cells out of 195 in head ganglion). Simulating
429  each such combination and predicting identities is not computationally tractable. Thus, we
430 asked which regions of the brain landmark cells should lie in. We divided the head ganglion
431 region into three groups: anterior group consisting of anterior ganglion, middle group

432  consisting of lateral, dorsal and ventral ganglion, and posterior group consisting of

433  retrovesicular ganglion. Two hundred runs were performed for each group with 15 randomly
434  selected landmarks in each run. We constrained the landmarks cells to lie in a specific group
435  and assessed how well the landmarks in that group perform in predicting the identities of cells
436  in other regions. Overall, landmarks in anterior and posterior groups performed badly in

437  predicting identities of cells in posterior and anterior groups respectively. Landmarks in the
438 middle group and landmarks spatially distributed throughout the head performed equally

439  (Supplementary Fig. 8). We chose landmarks spatially distributed throughout the head due to
440 practical advantages: spatially distributed landmarks can be easily identified manually in image
441  stacks thus can be used as input to the CRF framework. In contrast cells in middle group are
442  densely packed and may not be identified easily. We tested this using several reporter strain
443  with GFP labeled cells. Further, landmarks should be reliably expressed across animals, should

444  have known and verified expression patterns and should label neither too few cells (not useful)
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445  nor too many cells (difficult identification). Thus, we chose unc-47, gcy-32 and gcy-8 reporters

446  for labeling landmarks.

447  Whole-brain data analysis

448  All videos were processed using custom software in MATLAB for automatic segmentation and
449  tracking of nuclei in whole-brain image stacks. Tracks for nuclei with minor tracking errors were
450 corrected in post-processing steps. Tracks with large tracking errors were dropped from the

451 data.

452  Segmentation - Neurons were automatically segmented in image stacks using a gaussian

453  mixture model based segmentation technique. Briefly here, a 3D gaussian mixture model is
454  fitted to the intensity profiles in image stacks using expectation-maximization algorithm. The
455  number of components in the model and the ellipsoidal shape of each component determines

456  the number of nuclei segmented and their shapes.

457  Tracking — Custom software was used for tracking cells. Briefly, segmented nuclei at each

458  timepoint in image stacks are registered to a common reference frame and temporally nearby
459  frames to produce globally and locally consistent matching. Based on these matchings,

460 consistency constraints such as transitivity of matching were imposed in the post-processing
461  step to further improve tracking accuracy. A custom MATLAB GUI was used to quickly and

462 manually inspect the accuracy of tracking. Tracks of cells with minor tracking errors were

463  resolved using semi-automated method.

464  Cell identification — Identities were predicted using the CRF framework with positional features

465  (Supplementary Note 1) and data-driven atlas. Landmarks cells with known identities were
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466 identified in the CyOFP channel were provided as input to the framework to achieve higher

467  accuracy.

468 Identification of stimulus tuned neurons — To identify stimulus tuned neurons, the power

469  spectrum of activities of all cells within the stimulus application window (100 s — 180 s) was
470  calculated using “fft” function in MATLAB. Cells that showed significant power (> 0.08) at 0.1 Hz
471  were selected. This criterion identified all cells except two with low response amplitude to the
472  stimulus however the response could be manually seen in the video. Thus, these cells were

473  manually selected.

474  PCA and Sparse PCA — Principal Component analysis (PCA) of neuron activity time-series data

475  was performed using in-built functions in MATLAB. Sparse Principal component analysis (SPCA)

476  was performed using freely available MATLAB toolbox .

477 Neuron activities correlation to animal motion — To ascertain that the motion of the worm in

478  device has signatures of wave-propagation in freely moving animals, we looked for phase shift
479 in the velocity of the different regions of the animal in the device (similar to phase shift in

480  curvature of body parts of animals seen in freely moving animals®’). To calculate the velocity,
481  displacement of randomly selected cells along the anterior-posterior axis of the animal was
482  calculated (Supplementary Video 4) based on the tracking of cells. Cell displacements were
483  smoothed using Savitzky-Golay filter. Subsequently, velocity of each cell was calculated by

484  differentiating the displacement of each cell.

485  Mutual information (Ml) of the obtained velocity signal was calculated with 1) stimulus tuned

486 neurons, 2) neurons with significant weights in sparse principal components 1-3, and 3)
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487  remaining cells. Ml analysis requires estimating the joint probability density of velocity and
488  neuron activity. We used the kernel density estimation method to do so that uses Gaussian
489  kernel with bandwidth parameters (that specify the variance of gaussian kernel) set to [0.05,
490  0.05]. Cells grouped in SPC2 always had the largest mutual information with velocity regardless

491  of the choice of the bandwidth parameter.

492  Statistical Analysis

493  Standard statistical tests were performed using Paired Comparisons App in OriginPro 2020.
494  Details regarding the tests (sample size, significance, method) are reported in figure legends.
495  Following asterisk symbols are used to denote significance level throughout the manuscript - *
496 (p<0.05), ** (p <0.01), *** (p < 0.001). Wherever significance level not indicated implies not

497  significantly different (n.s).

498  Code and Data availability
499  Code and data used in this study can be accessed at

500  https://github.com/shiveshc/CRF Cell ID.git. This repository contains the following 1) All code

501 andindividual components necessary for using CRF framework to annotate cells in new data,

502 visualize results, and build new atlases based on annotated data 2) Code to reproduce results
503 for comparison shown against other methods in this study, and 3) all raw datasets used in this
504  study as well as human annotations created for those datasets except whole-brain imaging

505 datasets.
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673  Figure 1. CRF annotation framework automatically predicts cell identities in image stacks.

674 a) CRF framework models a conditional joint probability distribution of labels assigned to
675 cells P(y/x). The underlying graph structure (factor graph) encodes two different kinds
676 of features — unary potentials (cell specific) and pairwise potentials (dependencies

677 between labels). The framework has four modules. 1) Data processing, 2) Preprocessing
678 for extracting features in the model, 3) Iterative prediction of neuron identities while
679 taking missing cells into account, and 4) Generating candidate name list for each cell.
680

681 b) Steps of CRF framework applied to neuron imaging in C. elegans. b1 - Max-projection of
682 a 3D image stack showing head ganglion neurons whose biological names (identities)
683 are to be determined. b2 — automatically detected cells (Methods) shown as overlaid
684 colored regions on the raw image. b3 — Coordinate axes are generated automatically
685 (Supplementary Note 1). b4 — an example of unary potentials showing the affinity of
686 each cell taking the label RMGL. b5 — an example of dependencies encoded by pairwise
687 potentials, shows the affinity of each cell taking the label ALA given the arrow-pointed
688 cell is assigned the label RMEL. b6 — identities are predicted by simultaneous

689 optimization of all potentials such that assigned labels maximally preserve the empirical
690 knowledge available from atlases. b7 — duplicate assignment of labels is handled using a
691 label consistency score calculated for each cell (Supplementary Note 1). b7 — the

692 process is repeated with different combinations of missing cells to marginalize over

693 missing cells (Supplementary Note 1). b9 —top candidate label list is generated for each
694 cell.

695

696 c) An example of automatically predicted identities (top picks) for each cell.

697
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700  Figure 2. Annotation framework outperforms other approaches. Static OpenWorm atlas was
701  used for predicting identities in all figures except f. Gray regions indicate bounds on prediction
702  accuracy obtained using simulations on synthetic data.

703 a) (Left) Accounting for missing neurons improves prediction accuracy (n =9 animals, *** p
704 < 0.001, Bonferroni paired comparison test). (Right) True identities are in the top labels
705 for majority of the neurons.

706

707 b) Landmarks cells improve prediction accuracy. For each condition (except no landmarks)
708 50 runs were performed for each ground-truth dataset (n = 9 animals) with randomly
709 selected landmarks in each run. Thus, total n = 400-450 random combinations of

710 landmarks tested for each condition.

711

712 c) Key difference between registration-based methods and our framework.

713

714 d) Prediction accuracy comparison across methods using ground truth experimental data
715 (n=9, * p < 0.05, Bonferroni paired comparison test) and synthetic data (n = 190-200
716 runs, ***p < 0.001, Bonferroni paired comparison test). For synthetic data, random
717 position and count noise applied in each run.

718

719 e) Pairwise positional relationships among cells are more consistent with atlas even though
720 the absolute positions of cells vary across worms. (Left) average deviation of angular
721 relationship measured in ground truth data (n=9) from the angular relationship in static
722 atlas. (Right) distribution of all deviations in left panel (total of 8,516 relationships) is
723 sparse and centered around 0 deviation, thus indicating angular relationships are

724 consistent with atlas.

725

726 f) Using data-driven consensus atlas instead of static atlas improves prediction accuracy
727 significantly. Results shown for experimental ground truth data (n = 9 animals).

728

34


https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/

729

730

731
732
733
734
735
736
737
738

739

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986356; this version posted March 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gene expression pattern

|

o Y
OxG X e

GFP reporter strain pan-neuronal predict

labelled strain neuron identities

IL1DL/R w ASGLR g RIVL/R
- T
IL2L/R L ) |

ILIL/R gt 3 ‘\KBL/R AlZL/R
LR Al

—_
o
1
*
*
*

i

o
[e))
1

(=}
S
1

Fraction of neurons accurately predicted

0.2
0.0 r r
S &
< &
o \(9\. QO
& @
Y

Figure 3. CRF framework predicts identities for gene expression pattern analyses.

a) (Top) Schematic showing a fluorescent reporter strain with GFP expressed in cells for
which names need to be determined. Since no candidate labels are known a priori the
reporter strain is crossed with a strain expressing RFP pan-neuronally and neuron labels
are predicted. (Bottom) proxy strain carrying rab-3p(prom1)::2xNLS::TagRFP and odr-
2p::GFP with 19 cells labeled with GFP was used to assess prediction accuracy.

b) CRF framework with relative position features outperforms registration method (n =21
animals) (***p < 0.001, Bonferroni paired comparison test).
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742  Figure 4. Cell identity prediction in multi-cell calcium imaging experiments and landmark
743  strain.

744 a) (Top) schematic showing automatic identification of cells in multi-cell calcium imaging
745 for high-throughput analysis. (Bottom) proxy strain used with GFP labeled cells as an
746 illustration of GCaMP imaging.

747

748 b) CRF framework outperforms registration method (n = 35 animals, *** p < 0.001,

749 Bonferroni paired comparison test).

750

751 c) Prediction accuracy comparison for the case of missing cells in images (count noise). ***
752 p < 0.001, Bonferroni paired comparison test. Total n = 700 runs were performed across
753 35 animals for each method with randomly selected cells removed in each run. For fair
754 comparison, cells removed across methods were the same.

755

756 d) Max-projection of 3D image stacks showing CyOFP labeled landmark cells in head

757 ganglion (pseudo-colored as cyan): animals carrying unc47p::CyOFP with 9 landmarks
758 (top), and animals carrying [unc-47p::CyOFP; gcy-32p::CyOFP] with 12 landmarks

759 (bottom).

760

761 e) (Left) max-projection of 3D image stack from whole-brain activity recording showing
762 head ganglion cells and identities predicted by CRF framework (Top labels). Animal is
763 immobilized in a microfluidic device channel and IAA stimulus is applied to the nose tip.
764 T. (Right) GCaMP6s activity traces extracted by tracking cells over time in the same 108s
765 recording and their corresponding identities. Blue shaded region shows IAA stimulation
766 period.

767
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769  Figure 5. CRF framework identifies neurons representing sensory and motor activities in
770  whole-brain recording.

771 a) GCaMP6s activity traces of 73 cells automatically tracked throughout a 278s long whole-
772 brain recording and the corresponding predicted identities (top labels). Periodic

773 stimulus (5 sec-on — 5 sec-off) of bacteria (E. Coli OP50) supernatant was applied starting
774 at 100 s (shaded blue regions).

775

776 b) Power spectrum of neuron activity traces during the stimulation period for all cells. Cells
777 entrained by 0.1 Hz periodic stimulus show significant amplitude for 0.1 Hz frequency
778 component (green).

779

780 c) Activity traces of cells entrained by periodic stimulus shown for the stimulation period.
781 Blue shaded regions indicate stimulus ON, unshaded region indicate stimulus OFF.

782 Identities predicted by the framework are labeled.

783

784 d) Average ON and OFF responses of cells entrained by periodic stimulus across trials. The
785 black line indicates mean and gray shading indicates + s.e.m.

786

787 e) Average activities of neurons with significant non-zeros weights in the first 3 sparse

788 principal components (SPCs). Activities within each component are stereotypical and
789 different components show distinct temporal dynamics. Cells with positive weights

790 (blue) and negative weights (red) in SPC2 and SPC3 showed anti-correlated activity. Out
791 of the 67 non-stimulus-tuned cells, 19 had non-zero weights in SPC1, 16 cells had non-
792 zero weights in SPC2 and 5 cells had non-zero weights in SPC3. Shading indicates mean +
793 s.e.m of activity.

794

795 f) Velocity (motion/second) traces of cells along anterior-posterior (AP) axis (blue to red)
796 show phase shift in velocity indicating motion in device shows signatures of wave

797 propagation.

798

799 g) Cells with non-zero weights in SPC2 show high mutual information with worm velocity
800 compared to cells grouped in other SPCs (*** denotes p < 0.001, Bonferroni paired

801 comparison test). Median (red line), 25" and 75 percentiles (box) and range (whiskers).
802 Dashed line indicates entropy of velocity (maximum limit of mutual information

803 between velocity and any random variable).

804

805 h) Activity traces of 16 cells (with significant non-zero weights) in SPC2 and corresponding
806 identities predicted by the framework. Red traces for cells with negative weights in

807 SPC2, blue traces for cells with positive weights in SPC2. Worm motion/second shown
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on top. (Right) max projection of 3D image stack showing head ganglion neurons and
cells with positive weights (blue) and negative weights (red) in SPC2.

Cross-correlation analysis between velocity and cells with non-zero weights in SPC2
shows a strong correlation between neuron activities and velocity. In comparison, other
cells show low correlation.
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Figure 6. Annotation framework is generalizable and compatible with different strains and
imaging scenarios.

a)

b)

c)

d)

A representative image (max-projection of 3D stack) of head ganglion neurons in
NeuroPAL strain.

(Left) comparison of prediction accuracy for various methods that use different
information. CRF framework that combines relative position features along with color
information performs best (n = 9 animals, * p < 0.05, *** p < 0.001, Bonferroni paired
comparison test). (Right) the best performing method predicts cell identities with high
accuracy. OpenWorm static atlas was used for all methods to perform registration and
to define positional relationship features among cells.

(Left) annotation framework can easily incorporate information from annotated data in
the form of data-driven atlas, which improves prediction accuracy (** p <0.01,
Bonferroni paired comparison test). (Right) accuracy achieved by top labels.

An example image of head ganglion neurons in NeuroPAL strain for rotated animal
(nematode lying on DV axis). In contrast, animal lying on the LR axis is shown below. The
locations of RMDVL/R, AVEL/R cells in the two images are highlighted for contrasts.
Dashed ellipses indicate positions of cells in retrovesicular ganglion, showing that the
rotated animal is not rigidly rotated.

Top-label prediction accuracies for rotated animal. n = 7 animals.
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