
1 
 

 1 

 2 

Automated Annotation of Cell Identities in Dense Cellular Images 3 

 4 

 5 

Shivesh Chaudhary1, Sol Ah Lee1, Yueyi Li1, Dhaval S. Patel1, Hang Lu1,2* 6 

 7 

1 School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 8 
Georgia, United States of America 9 

2 Petite Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 10 
Georgia, United States of America 11 

 12 

 13 

* Correspondence should be addressed to HL: hang.lu@gatech.edu.  14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.986356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract  25 
Assigning cell identities in dense image stacks is critical for many applications, for comparing 26 

data across animals and experiment conditions, and investigating properties of specific cells. 27 

Conventional methods are laborious, require experience, and could introduce bias. We present 28 

a generalizable framework based on Conditional Random Fields models for automatic cell 29 

identification. This approach searches for optimal arrangements of labels that maximally 30 

preserves prior knowledge such as geometrical relationships. The algorithm shows better 31 

accuracy and more robust handling of perturbations, e.g. missing cells and position variability, 32 

with both synthetic and experimental ground-truth data. The framework is generalizable across 33 

strains, imaging conditions, and easily builds and utilizes active data-driven atlases, which 34 

further improves accuracy. We demonstrate the utility in gene-expression pattern analysis, 35 

multi-cellular calcium imaging, and whole-brain imaging experiments. Thus, our framework is 36 

highly valuable to a wide variety of annotation scenarios including in zebrafish, Drosophila, 37 

hydra, and mouse brains. 38 

  39 
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Introduction   40 

Biological name annotation of anatomical regions in images is a critical step in several domains, 41 

e.g. evolutionary and developmental phenotyping, spatial omics, and gene expression analysis. 42 

This is also the case for neuroscience: identifying brain regions, cells, cell types, etc. is a crucial 43 

step in image data analysis necessary for comparison across subjects, trials, experimental 44 

conditions, and facilitating the utility of existing knowledge about the system. However, the 45 

annotation task is typically challenging: reference atlases provide a static and often single view 46 

of the anatomy, while anatomical features vary across individuals and experimental conditions. 47 

Thus, manually matching data to atlas requires practice and is exceedingly laborious. Moreover, 48 

variations in experimental parameters such as exact resolution, orientation of animals during 49 

acquisition may not match the static atlases, making manual labeling infeasible. While 50 

computational pipelines have been proposed for identifying anatomical features in imaging 51 

data1–8, most focus on naming coarse anatomical regions. As imaging of large structures is 52 

enabled by advanced microscopic techniques9,10, the current bottleneck to generate 53 

interpretable data is, in part, due to methods to accurately annotate identities at cellular 54 

resolution in large image sets, and doing so under the constraints of biological variability.  55 

For instance, cell identification in images is a critical component in many studies in C. elegans 56 

such as gene expression pattern analysis11,12, lineage tracing13, multi-cell calcium imaging14 and 57 

whole-brain imaging15–18. Previous methods11,19,20 focused on identifying sparsely distributed 58 

cells with stereotypical positions in young larvae animals. Tools for automatic and unbiased 59 

identification of cells in dense head ganglion do not exist. Further, all methods11,19–22 for 60 

automatic annotation of cell identities in C. elegans are either registration-based or formulate a 61 
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linear assignment problem. Objective function in these methods minimizes the distances 62 

between cell specific features (such as positions of cells) in images and atlas. Thus, these 63 

methods only maximize extrinsic similarity23 between images and atlas, which is sensitive to 64 

variability in cell positions. A better criterion for accurate annotation is to maximize intrinsic 65 

similarity, which is more robust against position noise23,24 and inherently captures 66 

dependencies between cell label assignments. For instance, if region 1 is anterior and to region 67 

2 in atlas and region 1 is assigned certain label, then the label available for region 2 is 68 

automatically dependent on region 1’s assignment. Previous methods either do not optimize 69 

directly for such dependencies or only impose them indirectly as constraints in post-processing 70 

steps. 71 

To directly optimize for dependencies between label assignment, we cast the cell annotation 72 

problem as a Structured Prediction problem25–30 and build a fully connected Conditional 73 

Random Fields (CRF) model31 to solve it. The model searches for, among all possible labeling 74 

arrangements, an optimal assignment to each cell that is maximally unbiased and most 75 

consistent with prior knowledge (e.g. label dependencies known in atlas). To maximize 76 

accuracy, we encode dependencies between all pairs of cells in the form of several positional 77 

relationship features in the model. These features include binary positional relationship 78 

features, the Gromov-Wasserstein discrepancy between cells in an image and the atlas32,33, and 79 

an angular relationship feature. Using both synthetic data with realistic properties and 80 

manually annotated experimental ground-truth data, we demonstrate better performance of 81 

our method compared to previous methods for several tasks (up to 20% improvement).  82 
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There are several advantages of the CRF framework. First, the CRF framework can encode 83 

arbitrary order dependencies between labels. Additionally, ad hoc features can be added to the 84 

model to improve accuracy. We demonstrate this by incorporating spectral information, and 85 

landmarks in the model when such information was available. Second, the CRF framework is 86 

trainable algorithm34,35 and can easily incorporate information from annotated data in the form 87 

of active data-driven atlas. We show that building such atlas is easy for our methods and 88 

requires cheap mathematical operations – simple averaging – thus making it computationally 89 

favorable for building atlas from thousands of images.  90 

We show the utility of our approach in several contexts: determining gene expression patterns 91 

with no prior expectations, tracking activities of multiple cells during calcium imaging, and 92 

identifying cells in whole-brain imaging videos. For the whole-brain imaging experiment, our 93 

annotation framework enabled us to analyze the simultaneously recorded response of C. 94 

elegans head ganglion to food stimulus and identify two distinct groups of cells whose activities 95 

correlated with distinct variables – food sensation and locomotion.  96 

Results 97 

Structured prediction framework for automatic identification of neurons 98 

Our annotation framework consists of 4 steps (Fig. 1, Supplementary Fig. 1, Supplementary 99 

Note 1). First, cells are automatically segmented using a Gaussian Mixture-based method; if 100 

available, cells with known identities (landmarks) are also detected in this step. Second, a head 101 

coordinate is generated by solving an optimization problem with considerations of the 102 

directional consistency of axes (Supplementary Note 1.3). With this coordinate system, we next 103 
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define cell specific features (unary potentials) and co-dependent features (pairwise potentials) 104 

in the model. The basic model uses several pairwise relationship features for all pairs of cells, 105 

including binary positional relationships, angular relationship, and the Gromov-Wasserstein 106 

discrepancy between cells in the image and an atlas. By encoding these features among all pairs 107 

of cells, our fully-connected CRF model accounts for label dependencies between each cell pair 108 

to maximize accuracy. Third, identities are automatically predicted for all neurons iteratively, 109 

taking into account neurons missing in the image stack (Supplementary Note 1.4). Duplicate 110 

assignments are handled by calculating a label-consistency score for each neuron, removing 111 

assignments with low scores (Supplementary Note 1.5) and re-running optimization. Lastly, 112 

identities predicted across each run are pooled to generate top candidate identities for each 113 

cell (Supplementary Note 1.6, Supplementary Video 1).  114 

Identity assignment using intrinsic features outperforms other methods 115 

Given the broad utility of image annotation, we envision our workflow to apply to a variety of 116 

problems where experimental constraints and algorithm performance requirements may be 117 

diverse. These use cases require our framework to be flexible and accurate.  Furthermore, 118 

experimental data inherently contains perturbations that can affect annotation accuracy, e.g. 119 

deviation between cell positions in images and positions in atlas (position noise), different 120 

counts of cells in images and atlas due to missing cells in images (count noise), and presence or 121 

absence of landmarks with known identities (landmarks). Thus, we used two different kinds of 122 

data to tune the model and to assess accuracy: synthetic data generated from OpenWorm 3D 123 

atlas36 (Supplementary Fig. 2a,b, Supplementary Fig. 3) and experimental data consisting of 124 

annotated ground-truth of 9 animals, with ~100 uniquely identified neurons. To tune the 125 
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features in the model, we compared prediction accuracy for several combinations of positional 126 

relationship features. Among all co-dependent positional relationship features, the angular 127 

relationship feature by itself or when combined with PA, LR, and DV binary position relationship 128 

features performed best (Supplementary Fig. 4a). 129 

While experimental data enables the assessment of prediction accuracy in real scenarios, 130 

synthetic data enables us to dissect the effect of various perturbations independently. To assess 131 

the effects of position noise and count noise on prediction accuracy, we simulated four 132 

scenarios using the synthetic data (Supplementary Fig. 2c). In the absence of any perturbation, 133 

relative positional relationship features predicted neuron identities with perfect accuracy, thus 134 

demonstrating the suitability of co-dependent features and CRF framework for the annotation 135 

task. We show that both position noise and count noise affect accuracy significantly 136 

(Supplementary Fig. 2c,d) with position noise having a larger effect (compare scenarios 1-2 with 137 

3-4, Supplementary Fig. 2c). Count noise is primarily caused by variability in the expression level 138 

of the reporter used to identify cells, and limits in the computational methods to detect cells. 139 

Results on both synthetic data and real data predict 10-15% improvement in prediction 140 

accuracy can be attained by simply improving reagents and eliminate count noise 141 

(Supplementary Fig. 2d). Another advantage of simulations using synthetic data is that it can be 142 

used to obtain expected accuracy bounds by applying extreme case perturbations observed 143 

empirically, thus setting an expectation on the performance of the method in real scenarios. 144 

We obtained such bounds based on observed position noise of cells in experimental data 145 

(Supplementary Fig. 2e). Indeed, the results for experimental data lied close to these bounds 146 

(Supplementary Fig. 2f, Fig. 2 gray regions).  147 
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To account for missing cells, we developed a method that considers missing neurons as a latent 148 

state in the model (similar to hidden state CRF37) and predicts identities by marginalizing over 149 

latent states (Supplementary Note 1.6). Compared to the base case that assumes all cells are 150 

present in an image, simulating missing neurons significantly increased the prediction accuracy 151 

(Fig. 2a left) on experimental data; the top 5 candidate labels generated by this method 152 

attained ~80% average accuracy (Fig. 2a right), similar to synthetic data (Supplementary Fig. 2f).  153 

Another way to improve the cell identification accuracy is to use landmarks. These landmarks 154 

act as additional constraints on the optimization while the algorithm searches for the optimal 155 

arrangement of labels for non-landmark cells. We showed using both experimental data (Fig. 156 

2b) and synthetic data (Supplementary Fig. 4b), randomly chosen landmarks increased 157 

prediction accuracy by ~10-15%. It is possible that strategic choices of landmarks could further 158 

improve accuracy.  159 

Next, we compared our method against registration method popular for automatic cell 160 

annotation11,19–22 (Fig. 2c, Supplementary Note 2). Remarkably for both experimental and 161 

synthetic data, relative positions in the CRF framework performs the best (Fig. 2d, 162 

Supplementary Fig. 5a). Further, the superiority of the CRF framework using relative positions is 163 

insensitive to the position noise level in the synthetic data (Supplementary Fig. 5b). This has 164 

important practical implications as neuron positions being highly variable across individual 165 

animals has been shown38, and confirmed with our datasets (Supplementary Fig. 6a,b). Because 166 

cell positions on average can vary by more than the distance to their tenth nearest neighbor 167 

(Supplementary Fig. 6b), we expect that this variability introduces large matching errors in 168 

registration methods. In contrast, most pair-wise relationships are preserved despite the 169 
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variability of absolute positions (Fig. 2e, Supplementary Fig. 6c,d). Interestingly, combining 170 

registration using absolute positions with relative position features corrupts the annotation 171 

performance (Supplementary Fig. 5a), likely due to competing effects in the objective function. 172 

Improvement in accuracy can be further achieved by incorporating information from annotated 173 

data via a data-driven atlas that better accounts for variability in experimental data. Building 174 

such data-driven atlas for our CRF framework is easy requiring only simple averaging operations 175 

(Supplementary Note 1.7). By using data-driven atlas, the accuracy improved significantly to 176 

74% for the top label and 95% for the top 5 labels (Fig. 2f).  177 

Cell annotation in gene expression pattern analysis 178 

We next demonstrate the utility of our framework for gene expression analyses, which is 179 

important for many problems, e.g. mapping the molecular atlas of neurotransmitters39,40, 180 

receptors41, and neuropeptides42. Conventional methods e.g. screening a list of cell specific 181 

marker lines that overlap with the reporter are laborious and scale badly with the number of 182 

cells expressing the genes of interest and the number of new genes for which expression 183 

patterns are to be determined. Automatic cell annotation can considerably reduce manual 184 

efforts by generating a small list of candidate identities for each cell expressing the reporter. 185 

Subsequently, researchers can easily verify or prune the candidate list. To demonstrate this use 186 

case, we imaged a strain with multiple cells labeled with GFP and predicted candidate identities 187 

of each cell. Determining cell identities in this case is difficult due to large count noise along 188 

with position noise: since the full list of labels in the atlas is much bigger than few cells in the 189 

reporter strain (scenario 4, Supplementary Fig. 2c). Thus, several degenerate (equally probable) 190 
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solutions are possible. To avoid this, the reporter strain was crossed with a strain expressing 191 

pan-neuronal red fluorescent protein (RFP), from which candidate identities were predicted. 192 

Our framework accurately generated a candidate list for cells across all datasets (n = 21 193 

animals); 85% of cells had true identities within the top 5 labels chosen by the framework. In 194 

comparison, the candidate list generated by the registration method achieved only 61% 195 

accuracy (Fig. 3).  196 

Cell annotation in multi-cell functional imaging experiments 197 

We next demonstrate the utility of our algorithm in another important application - annotating 198 

cell identities in multi-cell calcium functional imaging in vivo (Fig. 4a). Automation in this case 199 

dramatically reduces labor associated with cell annotation for many time points, across trials, 200 

animals, and experiments. We used a strain carrying GFP in multiple cells as a proxy for GCaMP-201 

labeled strains (Fig. 4a). Given the known candidate list of labels that can be assigned (no count 202 

noise), the configurational space is small, which makes the task easy (similar to scenario 3 203 

Supplementary Fig. 2c). Indeed, our annotation framework identified neurons with high 204 

accuracy (98%, n = 35 animals). In comparison, the registration method predicted identities 205 

with lower accuracy (88%) even with the small label assignment space (Fig. 4b). In reality, some 206 

neurons may be undetected in the data due to expression mosaicism or low calcium transients 207 

(equivalent to scenario 4, Supplementary Fig. 2c). We simulated this case by randomly 208 

removing up to a third of total neurons from the images and predicting identities of remaining 209 

cells using the full label list (Fig. 4c, Supplementary Fig. 7). Even under these conditions, the 210 

accuracy of our method remains high (88%) significantly outperforming registration method 211 
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(81%) (Supplementary Video 2). In practice, the performance can be further compensated for 212 

by using multiple frames from each video.  213 

To further facilitate annotation accuracy, we explored the utility of landmarks. Landmarks can 214 

also help establish a coordinate system and guide post-prediction correction. Because the 215 

combinatorial space of potential landmarks is very large (~1014 for 10 landmarks out of ~200 216 

cells in the head), we asked what properties landmarks should have.  We found that landmarks 217 

distributed throughout the head or in lateral ganglion perform better in predicting identities of 218 

neurons in all regions of the brain (Supplementary Fig. 8, Methods). As a test case, we 219 

developed strains with spatially distributed, sparse neuronal landmarks using CyOFP 220 

(Supplementary Note 3), which by itself can assist researchers in cell identification tasks. When 221 

crossed with pan-neuronally expressing GCaMP/RFP reagents, the strains can be used for 222 

whole-brain imaging (Fig. 4d) by using only two channels. This has two advantages: CyOFP can 223 

be imaged “for free” while imaging GCaMP and RFP simultaneously, thus the landmarks 224 

providing a concurrent reference in all frames; this strategy also leaves other channels open for 225 

optogenetic manipulations and voltage imaging43,44.  226 

We next tested this strategy in a simple whole-brain imaging experiment. Isoamyl alcohol (IAA) 227 

is a well-known component of the bacterial metabolites that C. elegans senses and responds 228 

to45–47.  We recorded neuronal responses to a step-change in IAA concentration using a 229 

microfluidic system (Supplementary Fig. 9). We observed both odor-specific responses and 230 

spontaneous activities (Fig. 4e).  More importantly, neurons with algorithm-assigned identities 231 

demonstrate expected behavior. For instance, we identified the sensory neuron AWC, and 232 

detected an off-response to IAA, consistent with known AWC behavior. In addition, the 233 
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predicted interneurons (e.g. AVA, RIB, and AIB) also demonstrate previously known activity 234 

patterns16. 235 

We also tested worms’ responses to periodic stimuli of a more complex and naturalistic input – 236 

supernatant of bacterial culture (Fig. 5, Supplementary Video 3).  A periodic input (5 s On and 5 237 

s Off for 8 cycles) entrains many neurons as expected, therefore allowing us to better separate 238 

the odor-elicited responses from spontaneous activities (Fig. 5a). We generated the candidate 239 

identities for all recorded neurons (Supplementary Fig. 10a). Notably, several highly entrained 240 

neurons were identified as sensory neurons known to respond to food stimuli 48–50 (Fig. 5c), 241 

some of which responded to the onset of the stimuli and some to the withdrawal of the stimuli 242 

(Fig. 5d). The power spectrum of these neurons showed a strong frequency component at 0.1 243 

Hz as expected (Fig. 5b).  244 

Next, to examine the latent dynamics in the whole-brain activities during the entire experiment, 245 

we used traditional Principal Component Analysis (PCA) and Sparse Principal Component 246 

Analysis (sPCA)51. The overall dynamics are low-dimensional with top 3 traditional PCs capturing 247 

70% of the variance (Supplementary Fig. 10b). In comparison, while the top 3 sparse PCs (SPCs) 248 

explain 43% of the variance in the data, they enable meaningful interpretation of the latent 249 

dynamics by eliminating mixing of activity profiles in PCs (Fig 5e). SPC1 shows a systematic 250 

decline of the signals, presumably related to photobleaching of the fluorophores; both SPC2 251 

and SPC3 illustrate spontaneous activities with different temporal dynamics (Fig 5e). With 252 

automatic annotation, we were able to identify cell classes belonging to each SPC 253 

(Supplementary Fig. 10c). We then analyzed the relationship between motion and neuron 254 

activities. In our microfluidic device, the animals are not fully immobilized. By tracking 255 
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landmarks on the body; we observed propagating waves along the body (Fig 5f, Supplementary 256 

Fig. 10d, Supplementary Video 4). Interestingly, cells participating in SPC2 showed significantly 257 

higher mutual information with motion than any other component (Fig. 5g). Examining the 258 

connection between activities of neurons that drive SPC2 and animal motion demonstrates that 259 

these neurons are indeed correlated or anti-correlated with the motion we detected (Fig. 5h); 260 

notably, command interneurons such as AVA, RIM, and motor neurons such as VA, DA correlate 261 

well with backward motion (Fig. 5h). Cross-correlation analysis between motion and neuron 262 

activities showed that neurons are activated ahead of motion (Fig. 5i); when lag is added to the 263 

neuron activities, the mutual information of SPC2 neurons with motion is maximum at the 264 

same delay observed in the cross-correlation (Supplementary Fig. 10e). These experiments 265 

together demonstrate the power of the approach, which enabled previously difficult 266 

simultaneous analyses of several sensory, inter-, and motor neurons’ activities to natural food 267 

stimulus. Thus, automatic identity prediction enabled meaningful interpretation of the whole-268 

brain data.   269 

Framework is broadly applicable to wider conditions 270 

Another important advantage of the CRF framework is its flexibility to incorporate additional 271 

information to improve the identification accuracy, by simply adding new terms in the objective 272 

function without disturbing the weights of existing features. Here we demonstrate this idea by 273 

using the recently developed NeuroPAL38 that provides a unique chromatic code to each 274 

neuron (Fig. 6a). This code was included as a unary potential in the model.  Using manually 275 

curated ground-truth data, we compared different methods. These methods included different 276 

orthogonal feature combinations, as used by previous approaches, thus providing insights into 277 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.986356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

which features perform best (Fig. 6b, Supplementary Note 2). Unsurprisingly, registration 278 

performs poorly (with or without color information); color alone is not sufficient, and color 279 

combined with spatial features improves the accuracy (whether registration or relative position 280 

is used). Notably, the best performing model uses relative position features in combination with 281 

color and without registration term (Fig. 6b, Supplementary Fig. 11a), achieving 76% accuracy 282 

for the top-label prediction.  Further, for 88% of the neurons, the true identity is within the top 283 

three labels.  A further improvement in the model accuracy was achieved by using data-driven 284 

atlas to account for biological variability in both the positional relationships and color (Fig. 6c, 285 

Supplementary Fig. 12). Using the data-driven atlas significantly improves the accuracy to >87% 286 

(top labels); more than 95% of the neurons have their true identities in the top three labels 287 

chosen by the model. We expect that more datasets for the atlas will continue to improve the 288 

accuracy. 289 

Lastly, we show that our model is equipped to work with realistic complex scenarios of animals 290 

imaged in different orientations, often not rigid rotations (Fig. 6d). Identifying cells in these 291 

cases is challenging: manual annotation using the 2D-atlas52 is not possible since it lacks left-292 

right information; further, due to low-z sampling of image stacks, segmented positions of cells 293 

along z-axis are noisier. These challenges can be addressed by using the data-driven atlas.  We 294 

imaged and manually annotated seven animals in microfluidic devices with varying degrees of 295 

orientations to test the methodology. With data-driven atlas built from animals imaged 296 

laterally, the prediction accuracy of top labels was 63% (76% for top three labels) which are 297 

reasonable for practical purposes. Accuracy was further improved when the atlas was updated 298 
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combining the data from animals imaged in rotated orientations: 65% for top labels (80%  for 299 

top three labels) (Supplementary Fig. 11b, Supplementary Fig. 13).  300 

Discussion 301 

Annotating anatomical features and cellular identities in biological images are important tasks 302 

for many applications. Here, we demonstrated our CRF framework is suitable for fluorescently 303 

labeled cells in 3D images for many applications. Using both ground-truth experimental data of 304 

whole-brain image stacks and synthetic data generated from atlas, we showed that our 305 

framework is more accurate compared to existing approaches. We demonstrated using real 306 

examples how the pipeline can be used for analysis of gene expression pattern for instance, and 307 

for neuron identification from dense multi-cell or whole-brain imaging experiments. Further, 308 

our CRF framework significantly speeds up the cell identification compared to manual labeling 309 

while reducing bias.  310 

With the pipeline, we address several challenges.  There is ample evidence that anatomy varies 311 

from individual to individual, and from condition to condition. This variability, or position noise, 312 

is a major source of roadblock in effectively applying previous methods to annotate the whole-313 

brain recording data.  Because our framework leverages intrinsic similarity23, it performs better 314 

than registration methods in handling position noise (Supplementary Fig. 5).  Further, CRF 315 

formulation is more accurate in handling count noise i.e. cases of missing or undetectable cells 316 

in images (Fig. 4c, Supplementary Fig. 7), because the missing neurons do not upset the 317 

relationships among the detectable neurons in the CRF formulation while missing neurons 318 

introduces large uncertainty in registration methods. Lastly, the CRF method predicts identities 319 
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with sufficient accuracy for different postural orientations of the worms often seen in our 320 

microfluidic experiments.  We expect that this superiority is maintained for any data that have 321 

relational information preserved, this is the case virtually in all biological samples where tissues 322 

are connected by matrix, such as in other whole-brain recordings or for registration of fixed 323 

tissues. 324 

Building and using data-driven atlases in the pipeline is simple and yet highly effective. We 325 

expect that data from more animals, different orientations, age, and imaging techniques will 326 

further improve the generalizability. Since building such data-driven atlas for our framework 327 

requires only cheap mathematical operations (Supplementary Note 1), incorporating more data 328 

is quite simple and easily scalable.  In contrast, other methods may require simultaneous or 329 

batch-wise registration of multiple images to one reference; this would require solving multiple 330 

constrained regression problems on increasingly large data sets, thus rendering them 331 

computationally unscalable.  332 

While we only considered pairwise features in the current formulation, feature functions with 333 

arbitrary dependency can be included in the model that may further improve prediction 334 

accuracy53,54. Advances in structured energy minimization field53,55,56 will enable tackling the 335 

increased complexity of combinatorial optimization in these cases. Our workflow is the first 336 

application of Structured Prediction framework, borrowing techniques from metric object 337 

matching literature for annotation in biological images. Log-linear parameterization in our 338 

framework makes the model a member of the exponential families57; thus, the objective 339 

function in our framework has striking similarities with the entropy-regularized optimal 340 

transport objective functions32,58. Therefore, improvements in speed can be achieved by 341 
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borrowing fast optimization techniques developed in optimal transport literature. Advances in 342 

these fields will continue to improve the method development in image analysis.  343 

We anticipate that by using our generalizable formulation, similar pipelines can be set up to 344 

annotate more image sets in other organisms and build atlases. Data in many anatomical 345 

annotation problems (e.g. brain atlas construction, registering images from different 346 

modalities, comparing animals or related species to one another for developmental studies) 347 

share a similar property, in that the anatomical features of interest maintain a cohesion from 348 

sample to sample. This underlining cohesion lends itself to the CRF framework. As we have 349 

shown, the pipeline is extremely flexible in incorporating new information. Thus, framework 350 

should be easily modifiable catering to the data demands in other organisms including features 351 

besides landmarks and spectral information such as cellular morphology and expected cellular 352 

activities (e.g. calcium transients). Because the only inputs to our framework are segmented 353 

anatomical regions in images and positional relationships among them, information already 354 

available in data across organisms1,6,59,60, the framework proposed here should be generally 355 

useful for many problems in model organisms such as Drosophila59,61, zebrafish6, mammalian 356 

brains1,60. Besides fluorescence, the pipeline should also be able to work with data from other 357 

modalities including EM, live imaging, and fluorescence imaging from cleared tissues. 358 

  359 
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Online Methods 360 

Reagents  361 

For all experiments, animals were cultured using standard techniques62. A detailed list of strains 362 

used is provided in Supplementary Note 4. 363 

Imaging 364 

All imaging was performed using either a Perkin Elmer spinning disk confocal microscope (1.3 365 

NA, oil objective) or Brucker Opterra II Swept field confocal microscope (Plan Fluor ELWD air 366 

objective) at 40x magnification, with an EMCCD camera. 367 

To acquire data used for framework validation and comparison against other methods (Fig. 2), 368 

gene expression pattern analysis (Fig. 3), multi-cell calcium imaging (Fig. 4), imaging landmark 369 

strain (Fig. 4) and NeuroPAL imaging (Fig. 6), animals were synchronized to L4 stage and were 370 

imaged in an array device63. A single 3D stack was acquired with either 0.5 µm or 1 μm spacing 371 

between z-planes and 10 ms exposure time (except for NeuroPAL strain where exposure times 372 

of different channels were chosen based on the guidelines provided in NeuroPAL manuals38).  373 

Whole-brain functional recording data while providing chemical stimulus were acquired using a 374 

microfluidic device designed for applying chemical stimulation64 to the nose-tip of the animal. 375 

Here image stacks were acquired with 1 μm spacing between z-planes and 10 ms exposure for 376 

each z-plane. This enabled recording videos at 1.1 volumes/s while imaging two channels 377 

simultaneously (GCaMP and RFP). Animals were synchronized to Day-1 adult stage.  378 
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Generating synthetic data for framework tuning and comparison against other methods 379 

Synthetic data was generated using the freely available 3D atlas at OpenWorm36. Atlas available 380 

at Worm Atlas52 was not used as it provides only a 2D view. To mimic the conditions 381 

encountered in experimental data, two perturbations were applied to the 3D atlas 382 

(Supplementary Fig 4). First, due to inherent biological variability, positions of cells observed in 383 

images do not exactly match the positions in atlas. Thus, position noise was applied to each cell 384 

in the atlas sampled from a normal distribution with fixed variance. Thus, the position of the 𝑖𝑖𝑡𝑡ℎ 385 

cell 𝑝𝑝𝑖𝑖 in synthetic data was determined as 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 + 𝜖𝜖, 𝜖𝜖~ 𝒩𝒩(0,𝜎𝜎2). Here 𝑝𝑝𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the 386 

position of the cell in the atlas. To determine the variance 𝜎𝜎2, we quantified the variance of cell 387 

positions observed in experimental data (Supplementary Fig. 3a,c,e) using the strain with 388 

neuronal landmarks. We calculated the 25th percentile and 75th percentile of the variance 389 

across all cells across all animals (n = 31) to define the lower bound and upper bound position 390 

noise observed in experimental data. However, this variability cannot be directly applied to the 391 

atlas due to different spatial scales. Thus, we applied the 25th or the 75th percentile of the 392 

variance of cell positions to the atlas scaled by the inter-cell distances in atlas (Supplementary 393 

Fig. 3b,d,f,g,h) to define lower bound and upper bound noise to be applied to the atlas. 394 

Second, although there are 195-200 neurons in head ganglion in C. elegans, only 100-130 cells 395 

were detected in images. Remaining cells are not detected either due to low-expression levels 396 

of fluorophores or segmentation methods to resolve densely packed cells. This increases the 397 

complexity of determining the labels of cells. To illustrate, matching 195 cells in an image to 398 

195 cells in the atlas is easier as only one or very few possible configurations of label 399 

assignments exist that maximally preserves the positional relationships among cells. In contrast, 400 
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in the case of matching 100 cells in an image to 195 cells in atlas, many possible labeling 401 

arrangements may exist that equally preserve the positional relationships among cells. Thus, to 402 

simulate this case, randomly selected cells were marked as missing and identities were 403 

predicted for remaining cells only. Since no prior information was available on which regions of 404 

the head ganglion had more cells missing, we selected the missing cells uniformly across brain 405 

regions. Finally, bounds on prediction accuracy (shown as gray regions in Fig. 2 and 406 

Supplementary Fig. 2) were obtained as the average prediction accuracy across runs obtained 407 

on synthetic data by applying lower bound and upper bound position noise. 408 

Generating ground-truth data for framework tuning and comparison against other methods 409 

NeuroPAL reagents OH15495 and OH15500 were used to generate ground-truth data. 3D image 410 

stacks were acquired following the guidelines provided in NeuroPAL manual38. Identities were 411 

annotated in image stacks using the example annotations provided in NeuroPAL manual. 412 

Individual channel image stacks were read in MATLAB, gamma and contrast were adjusted for 413 

each channel individually so that the color of cells in the RGB image formed by combining the 414 

individual channels match as much as possible (perceptually) the colors of cells in NeuroPAL 415 

manuals. To annotate identities in the 3D stack, Vaa3D software was used65. 416 

Comparison against other methods 417 

Detailed description of the methodology used for each method that the CRF framework was 418 

compared against is provided in Supplementary Note 2. Note, for fair comparisons, standard 3D 419 

atlas was used by all methods as the reference (including CRF framework) for defining positions 420 

of cells (used by registration methods) and for defining positional relationships among cells 421 

(used by the CRF framework).  422 
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Simulations for choosing landmark locations 423 

Landmarks (cell with known identities) improve prediction accuracy by constraining the 424 

optimization problem as it forces the CRF framework to choose optimal labels for all cells such 425 

that they preserve their positional relationships with the cells with fixed identities. However, 426 

choosing an optimal set of landmarks is difficult. This is because the combinatorial space of 427 

choosing landmarks is huge (~1014 for 10 landmark cells out of 195 in head ganglion). Simulating 428 

each such combination and predicting identities is not computationally tractable. Thus, we 429 

asked which regions of the brain landmark cells should lie in. We divided the head ganglion 430 

region into three groups: anterior group consisting of anterior ganglion, middle group 431 

consisting of lateral, dorsal and ventral ganglion, and posterior group consisting of 432 

retrovesicular ganglion. Two hundred runs were performed for each group with 15 randomly 433 

selected landmarks in each run. We constrained the landmarks cells to lie in a specific group 434 

and assessed how well the landmarks in that group perform in predicting the identities of cells 435 

in other regions. Overall, landmarks in anterior and posterior groups performed badly in 436 

predicting identities of cells in posterior and anterior groups respectively. Landmarks in the 437 

middle group and landmarks spatially distributed throughout the head performed equally 438 

(Supplementary Fig. 8). We chose landmarks spatially distributed throughout the head due to 439 

practical advantages: spatially distributed landmarks can be easily identified manually in image 440 

stacks thus can be used as input to the CRF framework. In contrast cells in middle group are 441 

densely packed and may not be identified easily. We tested this using several reporter strain 442 

with GFP labeled cells. Further, landmarks should be reliably expressed across animals, should 443 

have known and verified expression patterns and should label neither too few cells (not useful) 444 
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nor too many cells (difficult identification). Thus, we chose unc-47, gcy-32 and gcy-8 reporters 445 

for labeling landmarks. 446 

Whole-brain data analysis 447 

All videos were processed using custom software in MATLAB for automatic segmentation and 448 

tracking of nuclei in whole-brain image stacks. Tracks for nuclei with minor tracking errors were 449 

corrected in post-processing steps. Tracks with large tracking errors were dropped from the 450 

data. 451 

Segmentation - Neurons were automatically segmented in image stacks using a gaussian 452 

mixture model based segmentation technique. Briefly here, a 3D gaussian mixture model is 453 

fitted to the intensity profiles in image stacks using expectation-maximization algorithm. The 454 

number of components in the model and the ellipsoidal shape of each component determines 455 

the number of nuclei segmented and their shapes. 456 

Tracking – Custom software was used for tracking cells. Briefly, segmented nuclei at each 457 

timepoint in image stacks are registered to a common reference frame and temporally nearby 458 

frames to produce globally and locally consistent matching. Based on these matchings, 459 

consistency constraints such as transitivity of matching were imposed in the post-processing 460 

step to further improve tracking accuracy. A custom MATLAB GUI was used to quickly and 461 

manually inspect the accuracy of tracking. Tracks of cells with minor tracking errors were 462 

resolved using semi-automated method.  463 

Cell identification – Identities were predicted using the CRF framework with positional features 464 

(Supplementary Note 1) and data-driven atlas. Landmarks cells with known identities were 465 
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identified in the CyOFP channel were provided as input to the framework to achieve higher 466 

accuracy. 467 

Identification of stimulus tuned neurons – To identify stimulus tuned neurons, the power 468 

spectrum of activities of all cells within the stimulus application window (100 s – 180 s) was 469 

calculated using “fft” function in MATLAB. Cells that showed significant power (> 0.08) at 0.1 Hz 470 

were selected. This criterion identified all cells except two with low response amplitude to the 471 

stimulus however the response could be manually seen in the video. Thus, these cells were 472 

manually selected. 473 

PCA and Sparse PCA – Principal Component analysis (PCA) of neuron activity time-series data 474 

was performed using in-built functions in MATLAB. Sparse Principal component analysis (SPCA) 475 

was performed using freely available MATLAB toolbox 66. 476 

Neuron activities correlation to animal motion – To ascertain that the motion of the worm in 477 

device has signatures of wave-propagation in freely moving animals, we looked for phase shift 478 

in the velocity of the different regions of the animal in the device (similar to phase shift in 479 

curvature of body parts of animals seen in freely moving animals67). To calculate the velocity, 480 

displacement of randomly selected cells along the anterior-posterior axis of the animal was 481 

calculated (Supplementary Video 4) based on the tracking of cells. Cell displacements were 482 

smoothed using Savitzky-Golay filter. Subsequently, velocity of each cell was calculated by 483 

differentiating the displacement of each cell. 484 

Mutual information (MI) of the obtained velocity signal was calculated with 1) stimulus tuned 485 

neurons, 2) neurons with significant weights in sparse principal components 1-3, and 3) 486 
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remaining cells. MI analysis requires estimating the joint probability density of velocity and 487 

neuron activity. We used the kernel density estimation method to do so that uses Gaussian 488 

kernel with bandwidth parameters (that specify the variance of gaussian kernel) set to [0.05, 489 

0.05]. Cells grouped in SPC2 always had the largest mutual information with velocity regardless 490 

of the choice of the bandwidth parameter. 491 

Statistical Analysis 492 

Standard statistical tests were performed using Paired Comparisons App in OriginPro 2020. 493 

Details regarding the tests (sample size, significance, method) are reported in figure legends. 494 

Following asterisk symbols are used to denote significance level throughout the manuscript - * 495 

(p < 0.05), ** (p < 0.01), *** (p < 0.001). Wherever significance level not indicated implies not 496 

significantly different (n.s). 497 

Code and Data availability 498 

Code and data used in this study can be accessed at 499 

https://github.com/shiveshc/CRF_Cell_ID.git. This repository contains the following 1) All code 500 

and individual components necessary for using CRF framework to annotate cells in new data, 501 

visualize results, and build new atlases based on annotated data 2) Code to reproduce results 502 

for comparison shown against other methods in this study, and 3) all raw datasets used in this 503 

study as well as human annotations created for those datasets except whole-brain imaging 504 

datasets. 505 
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Figure 1. CRF annotation framework automatically predicts cell identities in image stacks.  673 

a) CRF framework models a conditional joint probability distribution of labels assigned to 674 
cells 𝑃𝑃(y/𝐱𝐱). The underlying graph structure (factor graph) encodes two different kinds 675 
of features – unary potentials (cell specific) and pairwise potentials (dependencies 676 
between labels). The framework has four modules. 1) Data processing, 2) Preprocessing 677 
for extracting features in the model, 3) Iterative prediction of neuron identities while 678 
taking missing cells into account, and 4) Generating candidate name list for each cell.  679 
 680 

b) Steps of CRF framework applied to neuron imaging in C. elegans. b1 - Max-projection of 681 
a 3D image stack showing head ganglion neurons whose biological names (identities) 682 
are to be determined. b2 – automatically detected cells (Methods) shown as overlaid 683 
colored regions on the raw image. b3 – Coordinate axes are generated automatically 684 
(Supplementary Note 1). b4 – an example of unary potentials showing the affinity of 685 
each cell taking the label RMGL. b5 – an example of dependencies encoded by pairwise 686 
potentials, shows the affinity of each cell taking the label ALA given the arrow-pointed 687 
cell is assigned the label RMEL. b6 – identities are predicted by simultaneous 688 
optimization of all potentials such that assigned labels maximally preserve the empirical 689 
knowledge available from atlases. b7 – duplicate assignment of labels is handled using a 690 
label consistency score calculated for each cell (Supplementary Note 1). b7 – the 691 
process is repeated with different combinations of missing cells to marginalize over 692 
missing cells (Supplementary Note 1). b9 – top candidate label list is generated for each 693 
cell. 694 
 695 

c) An example of automatically predicted identities (top picks) for each cell. 696 
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 699 

Figure 2. Annotation framework outperforms other approaches. Static OpenWorm atlas was 700 
used for predicting identities in all figures except f. Gray regions indicate bounds on prediction 701 
accuracy obtained using simulations on synthetic data. 702 

a) (Left) Accounting for missing neurons improves prediction accuracy (n = 9 animals, *** p 703 
< 0.001, Bonferroni paired comparison test). (Right) True identities are in the top labels 704 
for majority of the neurons.  705 
 706 

b) Landmarks cells improve prediction accuracy. For each condition (except no landmarks) 707 
50 runs were performed for each ground-truth dataset (n = 9 animals) with randomly 708 
selected landmarks in each run. Thus, total n = 400-450 random combinations of 709 
landmarks tested for each condition. 710 
 711 

c) Key difference between registration-based methods and our framework.  712 
 713 

d) Prediction accuracy comparison across methods using ground truth experimental data 714 
(n=9, * p < 0.05, Bonferroni paired comparison test) and synthetic data (n = 190-200 715 
runs, ***p < 0.001, Bonferroni paired comparison test). For synthetic data, random 716 
position and count noise applied in each run.  717 
 718 

e) Pairwise positional relationships among cells are more consistent with atlas even though 719 
the absolute positions of cells vary across worms. (Left) average deviation of angular 720 
relationship measured in ground truth data (n=9) from the angular relationship in static 721 
atlas. (Right) distribution of all deviations in left panel (total of 8,516 relationships) is 722 
sparse and centered around 0 deviation, thus indicating angular relationships are 723 
consistent with atlas. 724 
 725 

f) Using data-driven consensus atlas instead of static atlas improves prediction accuracy 726 
significantly. Results shown for experimental ground truth data (n = 9 animals).  727 
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 729 

Figure 3. CRF framework predicts identities for gene expression pattern analyses. 730 

a) (Top) Schematic showing a fluorescent reporter strain with GFP expressed in cells for 731 
which names need to be determined. Since no candidate labels are known a priori the 732 
reporter strain is crossed with a strain expressing RFP pan-neuronally and neuron labels 733 
are predicted. (Bottom) proxy strain carrying rab-3p(prom1)::2xNLS::TagRFP and odr-734 
2p::GFP with 19 cells labeled with GFP was used to assess prediction accuracy. 735 
  736 

b) CRF framework with relative position features outperforms registration method (n = 21 737 
animals) (***p < 0.001, Bonferroni paired comparison test).  738 
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Figure 4. Cell identity prediction in multi-cell calcium imaging experiments and landmark 742 
strain. 743 

a) (Top) schematic showing automatic identification of cells in multi-cell calcium imaging 744 
for high-throughput analysis. (Bottom) proxy strain used with GFP labeled cells as an 745 
illustration of GCaMP imaging. 746 
 747 

b) CRF framework outperforms registration method (n = 35 animals, *** p < 0.001, 748 
Bonferroni paired comparison test).  749 
 750 

c) Prediction accuracy comparison for the case of missing cells in images (count noise). *** 751 
p < 0.001, Bonferroni paired comparison test. Total n = 700 runs were performed across 752 
35 animals for each method with randomly selected cells removed in each run. For fair 753 
comparison, cells removed across methods were the same. 754 
 755 

d) Max-projection of 3D image stacks showing CyOFP labeled landmark cells in head 756 
ganglion (pseudo-colored as cyan): animals carrying unc47p::CyOFP with 9 landmarks 757 
(top), and animals carrying [unc-47p::CyOFP; gcy-32p::CyOFP] with 12 landmarks 758 
(bottom).  759 
 760 

e) (Left) max-projection of 3D image stack from whole-brain activity recording showing 761 
head ganglion cells and identities predicted by CRF framework (Top labels). Animal is 762 
immobilized in a microfluidic device channel and IAA stimulus is applied to the nose tip. 763 
T. (Right) GCaMP6s activity traces extracted by tracking cells over time in the same 108s 764 
recording and their corresponding identities. Blue shaded region shows IAA stimulation 765 
period.  766 

  767 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.986356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 768 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.986356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

Figure 5. CRF framework identifies neurons representing sensory and motor activities in 769 
whole-brain recording.  770 

a) GCaMP6s activity traces of 73 cells automatically tracked throughout a 278s long whole-771 
brain recording and the corresponding predicted identities (top labels). Periodic 772 
stimulus (5 sec-on – 5 sec-off) of bacteria (E. Coli OP50) supernatant was applied starting 773 
at 100 s (shaded blue regions).  774 
 775 

b) Power spectrum of neuron activity traces during the stimulation period for all cells. Cells 776 
entrained by 0.1 Hz periodic stimulus show significant amplitude for 0.1 Hz frequency 777 
component (green). 778 

 779 
c) Activity traces of cells entrained by periodic stimulus shown for the stimulation period. 780 

Blue shaded regions indicate stimulus ON, unshaded region indicate stimulus OFF. 781 
Identities predicted by the framework are labeled. 782 

 783 
d) Average ON and OFF responses of cells entrained by periodic stimulus across trials. The 784 

black line indicates mean and gray shading indicates ± s.e.m. 785 

 786 
e) Average activities of neurons with significant non-zeros weights in the first 3 sparse 787 

principal components (SPCs). Activities within each component are stereotypical and 788 
different components show distinct temporal dynamics. Cells with positive weights 789 
(blue) and negative weights (red) in SPC2 and SPC3 showed anti-correlated activity. Out 790 
of the 67 non-stimulus-tuned cells, 19 had non-zero weights in SPC1, 16 cells had non-791 
zero weights in SPC2 and 5 cells had non-zero weights in SPC3. Shading indicates mean ± 792 
s.e.m of activity. 793 

 794 
f) Velocity (motion/second) traces of cells along anterior-posterior (AP) axis (blue to red) 795 

show phase shift in velocity indicating motion in device shows signatures of wave 796 
propagation. 797 

 798 
g) Cells with non-zero weights in SPC2 show high mutual information with worm velocity 799 

compared to cells grouped in other SPCs (*** denotes p < 0.001, Bonferroni paired 800 
comparison test). Median (red line), 25th and 75th percentiles (box) and range (whiskers). 801 
Dashed line indicates entropy of velocity (maximum limit of mutual information 802 
between velocity and any random variable).  803 

 804 
h) Activity traces of 16 cells (with significant non-zero weights) in SPC2 and corresponding 805 

identities predicted by the framework. Red traces for cells with negative weights in 806 
SPC2, blue traces for cells with positive weights in SPC2. Worm motion/second shown 807 
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on top. (Right) max projection of 3D image stack showing head ganglion neurons and 808 
cells with positive weights (blue) and negative weights (red) in SPC2. 809 

 810 
i) Cross-correlation analysis between velocity and cells with non-zero weights in SPC2 811 

shows a strong correlation between neuron activities and velocity. In comparison, other 812 
cells show low correlation.  813 

  814 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.986356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

 815 

  816 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.986356doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986356
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

Figure 6. Annotation framework is generalizable and compatible with different strains and 817 
imaging scenarios. 818 

a) A representative image (max-projection of 3D stack) of head ganglion neurons in 819 
NeuroPAL strain. 820 
 821 

b) (Left) comparison of prediction accuracy for various methods that use different 822 
information. CRF framework that combines relative position features along with color 823 
information performs best (n = 9 animals, * p < 0.05, *** p < 0.001, Bonferroni paired 824 
comparison test). (Right) the best performing method predicts cell identities with high 825 
accuracy. OpenWorm static atlas was used for all methods to perform registration and 826 
to define positional relationship features among cells. 827 

 828 
c) (Left) annotation framework can easily incorporate information from annotated data in 829 

the form of data-driven atlas, which improves prediction accuracy (** p < 0.01, 830 
Bonferroni paired comparison test). (Right) accuracy achieved by top labels. 831 

 832 
d) An example image of head ganglion neurons in NeuroPAL strain for rotated animal 833 

(nematode lying on DV axis). In contrast, animal lying on the LR axis is shown below. The 834 
locations of RMDVL/R, AVEL/R cells in the two images are highlighted for contrasts. 835 
Dashed ellipses indicate positions of cells in retrovesicular ganglion, showing that the 836 
rotated animal is not rigidly rotated. 837 

 838 
e) Top-label prediction accuracies for rotated animal. n = 7 animals.  839 
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