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ABSTRACT

Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for
genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust
resistance is a desirable characteristic due to the large economic impact of the disease. Although marker-assisted selection for
rust resistance has been successful, the genes involved are still unknown, and the associated regions vary among cultivars,
thus restricting methodological generalization. We used genotyping by sequencing of full-sib progeny to relate genomic regions
with brown rust phenotypes. We established a pipeline to identify reliable SNPs in complex polyploid data, which were used
for phenotypic prediction via machine learning. We identified 14,540 SNPs, which led to a mean prediction accuracy of 50%
by using different models. We also tested feature selection algorithms to increase predictive accuracy, resulting in a reduced
dataset with more explanatory power for rust phenotypes. Using different feature selection techniques, we achieved accuracy
of up to 95% with a dataset of 131 SNPs related to brown rust QTL regions and auxiliary genes. Therefore, our novel strategy
has the potential to assist studies of the genomic organization of brown rust resistance in sugarcane.

Introduction
Sugarcane is an important source of income worldwide, especially due to its efficiency in the manufacturing of biofuel and
sugar-related products in most tropical and subtropical areas of the world1, 2. Although this crop has great energetic potential,
its breeding process has generated high genomic complexity across bred varieties, exceeding that of most if not all other crops3.
Modern sugarcane cultivars are derived from a process of hybridization that has occurred over a century between Saccharum
spontaneum (2n = 5x = 40 to 16x = 128;x = 8)3, 4 and Saccharum officinarum (2n = 8x = 80, x = 10)3, 4. S. officinarum has a
more efficient process of sugar production but is susceptible to several biotic and abiotic stresses, in contrast to S. spontaneum,
which has a low sucrose content but is resistant to different types of stress1, 3, 5. Sugarcane cultivars have unique chromosome
sets (with numbers ranging from 80 to 130)6 with highly complex genomic organization1, a polyploid genome (with overall
ploidy estimated to be between 6 and 14)7, a frequent occurrence of aneuploidy at the locus level depending on the number of
homologous chromosomes in hybrid cultivars8, an estimated whole-genome size of 10 Gb9, and a high content of repetitive
regions (50% of genome size)10. This complexity has challenged the efforts of the scientific community to unravel the genetic
architecture of sugarcane in terms of the molecular mechanisms underlying different phenotypes, particularly efforts to detect
regions of phenotype-genotype associations.

Sugarcane breeding programs are implemented with the intention of releasing new cultivars with interesting agronomic
traits, including disease resistance11. One disease with a large impact on sugarcane yield is brown rust, which is caused by
Puccinia melanocephala, a fungus that affects foliage and decreases the photosynthetic capacity of sugarcane12, 13. Brown
rust infections have already caused large economic losses14–16. However, disease control has been shown to be successful in
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sugarcane breeding17, and the planting of cultivars resistant to brown rust is considered the most effective method of controlling
this pathogen11, 12. Based on comparisons of the genetic characteristics of the resistant cultivar R570 and other sugarcane
varieties17, brown rust resistance was found to be a dominant trait controlled by one or a few genes11, 18, with the presence
of two related major genes: Bru119 and Bru220. Bru1 has already been employed in different breeding programs to identify
resistant sugarcane genotypes5, using, for instance, the presence of flanking molecular markers for resistance diagnosis across
cultivars12.

Although there have been several advances in understanding brown rust susceptibility in sugarcane, it is important to
consider that pathogens may overcome the resistance of sugarcane varieties, and the use of a single region for resistance
examination further increases the probability of vulnerability5. Therefore, the exploration of novel genes could contribute to the
understanding of this process and in turn overcome the problems associated with reliance on a single gene21. An appropriate
strategy for unraveling the genetic architecture and genomic organization of brown rust resistance would be the use of linkage
maps followed by quantitative trait locus (QTL) identification. However, existing methodologies for the construction of
saturated linkage maps with high resolution are not suitable for sugarcane and other autopolyploid species due to their genomic
complexity5, 22, 23. Using simplification strategies based on the population expected segregation ratio, such as the selection of a
subset of single-dose markers, leads to impaired linkage groups and thus compromises the identification of reliable QTLs22. A
linkage map depicting QTLs associated with brown rust resistance has been published5, but as observed in previous studies11, 24,
adjustments of existing methods resulted in gaps, a poorly saturated map and a large number of unlinked markers, mainly due
to the high probability of meiotic behaviors in the cultivars and the aneuploidy of sugarcane7, 22. Different software programs
have been developed to build linkage maps for polyploids22, 25–27; however, none address sugarcane genomic organization.

The use of Bru1 for marker-assisted selection (MAS) represents a successful application of this methodology in some
sugarcane varieties28. However, resistance differs among cultivars, which can restrict the application of validated linked markers
as a general tool for MAS21, 28. Therefore, the identification and characterization of brown rust resistance genes in sugarcane
have been slow14, mainly because selection approaches based on QTL mapping overestimate the effect of strong QTLs, while
weak QTLs might not be identified29, 30. In general, these methodologies have low power to detect rare variants with phenotypic
associations31. Methodologies for addressing sugarcane genomic characteristics are still lacking, and because of the difficulty
of accurately selecting QTL regions for MAS, an alternative methodology known as genomic selection (GS) has been developed
to identify promising varieties with resistance traits and improve sugarcane breeding programs in terms of time and cost32, 33.

In general, GS is based on the creation of a predictive model for breeding values built with the entire set of markers using a
training and a testing population. This model might be posteriorly applied in a breeding program to select a set of promising
individuals33. In sugarcane breeding programs, the selection of superior genotypes might take more than 12 years34, and GS
represents an alternative for improving this process, accelerating the breeding cycle and reducing the time needed to generate
diversity31, 33, 35. Due to sugarcane’s genomic complexity, simplified predictive models involving linear regression cannot
capture the unknown nonlinear characteristics present in these datasets31, as described for other polyploid species36–38. To
address this issue, machine learning (ML) methodologies represent a promising approach with high accuracy31, 39–41. Although
GS was developed to address the problem of categorizing individuals using different populations, its application in biparental
populations is suitable and might be highly efficient due to the significant amount of linkage disequilibrium between loci42,
which would facilitate the initial cycles of breeding programs.

In sugarcane, the allele dosages (ADs) of a locus are frequently unknown7, which might lead to misclassified genotypes.
These difficulties in genotyping a population directly impact the estimation of locus effects on model creation43, and this
influence is more complex when using nonlinear models with more parameters to be estimated44. An alternative for dealing
with erroneous features and additional restrictions for high-dimensional data is feature selection (FS). These techniques aim
to reduce the number of single nucleotide polymorphisms (SNPs) in a data set and identify a subset of markers with higher
predictive capability by removing markers that are irrelevant/redundant for the phenotype45. These methods are among the most
powerful alternatives for building better generalization models46 while avoiding overfitting and the attribution of nongenetic
effects to different markers43. With FS, it is possible to reduce marker density and build simpler and more comprehensive
models46, thereby increasing predictive power due to the identification of phenotype-associated polymorphisms. A few previous
studies applied ML methods to decrease the number of SNP datasets needed for phenotypic predictions47–49, achieving high
accuracy. The identification of such a subset of putative causal polymorphisms is crucial for improving production in plants42

and represents a novel strategy for genomic prediction in sugarcane.
Therefore, the objectives of this research were as follows: (1) genotyping a sugarcane full-sib population using a genotyping

by sequencing (GBS) protocol50 followed by an established bioinformatics pipeline to identify reliable SNPs considering
the sugarcane aneuploid condition; (2) creating a ML-based strategy to establish a subset of SNPs with good ability to
predict brown rust phenotypes; and (3) examining these polymorphic regions to identify genes and QTL regions. Our study
provides a novel methodology that can assist in sugarcane genetic studies and breeding programs to establish a pipeline to
infer phenotype-causative regions, which can help unravel sugarcane brown rust resistance molecular mechanisms and identify
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targets for breeding.

Material and Methods
Mapping Population and Phenotypic Characterization
A set of full-sib progeny composed of 219 individuals derived from a biparental cross between the elite clone IACSP95-3018
(female parent) and the commercial variety IACSP93-3046 (male parent) was developed by the Sugarcane Breeding Program
at the Agronomic Institute of Campinas (IAC). IACSP95-3018 is a promising clone that is used in breeding programs but is
susceptible to brown rust. IACSP93-3046 is a variety with good tillering, an erect stool habit and resistance to brown rust.
These parents have already been used in transcriptome51 and mapping studies24, 52.

The progeny phenotyped for brown rust symptoms were planted in 2005 at the Sugarcane Breeding Center of the Instituto
Agronômico (IAC) located in Ribeirão Preto-SP, Brazil, and again in 2011 in Piracicaba-SP, Brazil, in an augmented block
design with five blocks, each containing 44 individuals, plots with 1-m rows and plants spaced 1.5 m apart. Both parents and
two varieties (SP81-3250 and RB835486) were included in each replicate as controls. The level of brown rust infection was
evaluated using a diagrammatic scale between 1 and 9, with larger values indicating larger percentages of leaf area infection53.
In Ribeirão Preto, four evaluations were performed: (1) November 2005 (plant cane), (2) January 2006 (plant cane), (3) January
2007 (ratoon cane), and (4) March 2007 (ratoon cane). In Piracicaba, the evaluations were conducted in December 2011 (plant
cane) and in February 2012 (plant cane).

Phenotypic Data Analyses
The phenotypic analyses of brown rust were performed using R statistical software54 following a statistical mixed model:

Yi jrkm = µ +Lk +Hm +LHkm +B j(km)+Gi(km)+ ei jrkm

where Yi jrkm is the phenotype of the ith genotype, considering the jth block, the rth replicate, the kth location and the mth
year of harvest. The trait mean is represented by µ; the fixed effects were modeled to estimate the contributions of (1) the
kth location (Lk), (2) the mth harvest (Hm), (3) the jth block at the kth location and in the mth harvest (B j(km)), and (4) the
interaction between the kth location and mth harvest (LHkm). The random effects included genotype G and the residual error e,
representing nongenetic effects.

The residual distribution was evaluated using quantile-quantile (Q-Q) plots together with a Shapiro-Wilk normality test
(p-value < 0.05). We also tested normalized values of the brown rust trait created with the R package bestNormalize55. To
analyze the contribution of genotype to phenotype, we used best linear unbiased predictions (BLUPs) calculated based on the
mixed model described above using the R package breedR56. Heritability (H2) was estimated as follows:

H2 =
σ2

g

σ2
g +

σ2
e
r

where σ2
g is the genetic variance, σ2

e is the residual variance, and r is the number of replicates.
With these predictions, cluster analysis was performed with the BLUP values. We used complete hierarchical clustering

based on pairwise Euclidean distances for visual inspection. The number of appropriate clusters was identified using the
K-means algorithm together with (1) the within-cluster sums of squares and (2) the average silhouette width of clusters,
implemented in the R package factoextra57. To evaluate the differences among the phenotypic rust groups, we used T-tests of
the BLUPs and original values.

Library Preparation and Sequencing Methodology
Total genomic DNA samples from parents and 180 progeny were extracted from leaf roll using the CTAB protocol58. Genome
complexity was reduced via the PstI restriction enzyme for library preparation50. We constructed two 9,648-plex libraries from
the population consisting of a single sample of each individual, two replicate samples of each parent and one blank sample.
Five sequencing runs were performed with the Illumina GAIIx (one in 2015) and Illumina NextSeq (four in 2017 divided into
two groups, which were sequenced twice) systems.

Quality Filtering and Demultiplexing
PhiX sequences were removed from GBS reads through alignments of raw reads against the PhiX genome using BLASTn59.
Reads resulting in a minimum percent identity of 90% and e-value of 0.01 against PhiX regions were filtered out60. FASTQC61

was used for the initial visualization of nucleotide distributions and their respective qualities, and FastX-Toolkit scripts62 were
employed to obtain 90-bp reads with a minimum of 80% of bases with a Q greater than 20. Sample demultiplexing was also
performed using the FastX-Toolkit62.
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Read Alignment and Reference Evaluation
We used the BWA-MEM version 0.7.1263 and Bowtie2 version 2.3.3.164 algorithms to align the filtered reads against the
following references: (1) the methyl-filtered (MF) genome of sugarcane cultivar SP70-114365, (2) the sorghum genome from
Phytozome v.1366, a sugarcane leaf transcriptome51, (4) the draft genome of the hybrid SP80-328067, (5) the monoploid genome
of the R570 variety3, (6) the S. spontaneum genome split into four subsets on the basis of the allele-defined genome, and (7)
sequences from the sugarcane expressed sequence tag project (SUCEST)68.

The performance of each mapping software tool was evaluated according to the percentage of uniquely mapped reads.
Additionally, to identify the most appropriate reference for SNP calling in sugarcane, SAMtools version 1.669 was used to
examine the profiles of sequencing depth across loci69.

Stacks version 2.370 was used to obtain the consensus sequences (contigs) formed by mapping reads to the different
references. All contigs were evaluated on the basis of their similarity to the consensus sequences of the other possible references.
All correspondences were counted, taking into account the quantity of related contigs. These alignments were obtained through
BLASTn59 with stringent parameters to examine real redundancies (a minimum e-value of 1e-30, a minimum percent identity
of 95% and coverage of at least 75% in the query sequence). We also used the R package circlize71 to visually inspect these
redundancies. Additionally, traditional assembly metrics (number of contigs, largest contig, total length, quantity of ambiguous
bases (Ns) per 100 kbp, N50/75 and L50/L75) of all the contigs separated by reference were calculated using QUAST version
5.0.272. An evaluation of the raw reference sequences was performed using QUAST version 5.0.2.

SNP Calling and Ploidy Evaluation
With the different references used, we executed the Tassel4-POLY73, 74 and Stacks version 2.370 pipelines. We evaluated raw
SNPs by comparing them to a dataset with a filter criterion of a maximum of 25% of missing data per locus, considering
individual genotypes without a minimum count of 50 reads as missing data.

The best selected reference was used to identify variants through the Haplotype Caller algorithm implemented in Genome
Analysis Toolkit (GATK) version 3.775, SAMtools version 1.669 and FreeBayes version 1.1.0-376. We created a common
dataset to be processed by these tools, establishing a pre-processing pipeline according to GATK best practices75. From the
mapping results, uniquely mapped reads were selected using SAMtools version 1.669, and with Picard Toolkit77, the following
steps were performed: (1) the mapped files from different sequencing experiments were joined into one file per individual; (2)
read duplicates were marked; and (3) read group information was added to different files. To produce more accurate results, we
used GATK version 3.775 to realign indels and SAMtools version 1.669 to convert mapping formats. Putative SNPs were called
using the three different tools and different ploidy configurations with GATK and FreeBayes (even ploidies ranging from 2 to
20). We selected the identified SNPs and evaluated these variants with respect to the quantity of missing data.

Final SNP-set Selection and Ploidy Evaluation
Using the R package VennDiagram78, a Venn diagram was created to evaluate the intersection between SNPs identified by the
callers and those identified by the selected reference. Indels were not used for further analyses. Due to sugarcane aneuploidy at
the locus level, we genotyped the individuals on the basis of SNP allele proportions, i.e., the ratio between the number of reads
for the reference allele and the total number of reads. To increase the reliability of our results, we selected markers called by
Tassel and at least one other caller with a minimum count of 50 reads per individual and a maximum of 25% missing data.

SuperMASSA79 and the VCF2SM pipeline73 were used to estimate the ploidy levels at different loci. Quantitative allele
intensities at each locus were estimated for individuals based on read depth73. These values were used to estimate locus ploidies
(ranging from 2 to 20). We used the F1 model for population structure due to the usage of a biparental population and did not
restrict the posterior probability threshold to capture and analyze all possible configurations produced by the statistical estimate.
We also defined the most probable set of loci with a posterior probability greater than 0.8 given the selected ploidy (6 through
14).

Machine Learning Strategies
Using the identified SNPs as ADs and allele proportions (APs), eight ML algorithms were tested to check their ability to
predict the phenotypic rust groups. Missing data were imputed as the means. We tested K-nearest neighbor (KNN)80, support
vector machine (SVM)81, Gaussian process (GP)82, decision tree (DT)83, random forest (RF)84, multilayer perceptron (MLP)
neural network85, adaptive boosting (AB)86, and Gaussian naive Bayes (GNB)87 implemented in the scikit-learn Python v.3
module88. As a cross-validation strategy, we used a stratified K-fold (k=4) repeated 100 times for different data configurations.
We evaluated the following metrics: (1) accuracy (proportion of correctly classified items), (2) recall/sensitivity (items correctly
classified as positive among the total quantity of positives), (3) precision (items correctly classified as positive among the total
items identified as positive), and (4) specificity (items classified as negative among the total negative items). The area under
the receiver operating characteristic (ROC) curve (AUC) was also calculated for each model and plotted using the Matplotlib
library89 with Python v.3.
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We also tested FS techniques implemented in the scikit-learn Python v.3 module88. We tested the following approaches to
obtain feature importance and create subsets of the marker data: (1) gradient tree boosting (FS1)90, (2) L1-based FS through a
linear support vector classification system (FS2)81, (3) extremely randomized trees (FS3)91, (4) univariate FS using ANOVA
(FS4), and (5) RF (FS5)84. On the evaluation metrics (accuracy, recall, precision and specificity) for each subset of identified
markers (FS1, FS2, FS3, FS4 and FS5), we performed a Shapiro-Wilk normality test (p-value < 0.01) and identified confidence
intervals for means (95%, 99% and 99.9% confidence) using the gmodels R package92 for parametric data and a Wilcoxon test
for nonparametric data. We tested the differences in these metrics between the selected FS methods using ANOVA and multiple
comparisons by Tukey’s test implemented in the agricolae R package93. We also evaluated the intersection of these datasets
using the R package VennDiagram78.

Functional Annotation
From the SNPs identified by the most promising FS technique, we selected the reference positions to which they belonged
and extracted the respective region. To check the distribution of these SNPs in the Bru1 region, we selected nine bacterial
artificial chromosomes (BACs) from the sugarcane cultivar R570 that were previously described as belonging to regions
containing Bru194. These BACs were retrieved from the GenBank database95. We performed comparative alignments of the
nine BACs and the selected reference sequences against S. spontaneum1 coding DNA sequences (CDSs) using BLASTn59

with the following parameters: a minimum e-value of 1e-30, a minimum percent identity of 95% and coverage of at least 75%
in the query sequence. The distribution of these regions among S. spontaneum chromosomal regions was inferred using the
karyoploteR package96.

We created a dataset with CDSs extracted from Phytozome v.1366 for fourteen different species from the Poaceae family
(Brachypodium distachyon, Brachypodium hybridum, Brachypodium silvatium, Hordeum vulgare, Oryza sativa, Oropetium
thomaeum, Panicum hallii, Panicum virgatum, Sorghum bicolor, Setaria italica, Setaria viridis, Triticum aestivum, Thinopyrum
intermedium and Zea mays) and Arabidopsis thaliana. Selected S. spontaneum CDSs were aligned against this dataset, enabling
the identification of correspondence with Gene Ontology97 (GO) categories and Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthologies98 (KOs). All identified GO categories were used to create a treemap to visualize possible correlated
categories in the dataset caused by identified regions using FS and BAC correspondence. This step was performed using the
REVIGO tool99.

Results
Phenotypic Analyses
The brown rust phenotypic dataset was analyzed as described in Section 2 (Supplementary Figs. S1-S6) of the Supplementary
Information (SI). Using the created phenotypic mixed model, we obtained a heritability of approximately 77%. Through the
established statistical analysis procedures, we identified two different phenotypic groups, which were used for association
analyses. These groups presented high divergence in scores, and the individuals were classified as belonging to the "resistant"
group or the "susceptible" group.

Genotyping Process
Raw GBS data quality control (Supplementary Tables S1 and S2), read alignment (Supplementary Table S3 and Supplementary
Fig. S7), reference evaluation (Supplementary Tables S4-S9 and Supplementary Fig. S8) and SNP calling (Supplementary
Tables S8-S11) were performed as described in the SI. The selected mapping tool was BWA, as it allowed the identification of
a larger quantity of uniquely mapped reads. We considered the MF genome the most appropriate reference for SNP calling
with our GBS dataset; this choice was made because this reference provided the largest percentage of uniquely mapped reads
(Supplementary Table S3), the most consensus sequences and respective profiles (Supplementary Tables S4 and S5), the greatest
sequencing depth at different mapping positions (Supplementary Table S6), the greatest ability for its consensus contigs to
represent the majority of the other reference consensus sequences (Supplementary Table S7), and the largest quantity of SNPs
identified using Tassel and Stacks (Supplementary Tables S8 and S9). The SNP calling process performed with the different
tools and MF reference resulted in different quantities of markers, as described in the SI. The quantity of SNPs can be observed
in Table 1.

[Table 1 about here.]

The intersections between SNPs found with different tools can be visualized in Fig. 1. A total of 13,458 SNP markers
were found by all used callers. However, when applying a reasonable filter for locus depths (minimum count of 50 per
individual) and missing data (maximum of 25%)23, this quantity decreased to 2,284. Although this approach of selecting
intersecting SNPs enables the definition of a highly stringent set, the quantity of false negatives will also be high. To establish
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a reasonable approach for SNP identification in sugarcane, we selected the most probable SNPs as the variants found with
Tassel and at least one other caller. With this approach, we found 88,395 SNPs (eliminating 49,362 possibly false-positive
SNPs uniquely identified by Tassel). After applying filters based on missing data and read depth, we obtained a final set of
14,540 SNPs (eliminating 4,341 questionable SNPs among 18,881 markers that would have been obtained using Tassel as
a unique tool together with the described filters). These datasets were used to evaluate possible ploidy configurations using
SuperMASSA software. This evaluation was performed on (I) 14,540 SNPs representing our final set of markers and (II) 4,341
SNPs representing the most likely false-positive SNPs.

[Figure 1 about here.]

Separating SuperMASSA posterior probabilities into three categories (A, B and C) based on their reliability (Fig. 1)
classified a considerable number of SNPs as having a specific ploidy with high confidence. However, the first set with 14,540
SNPs included variants with ploidies more similar to those expected for sugarcane (6 to 14)7 compared with the second one
with 4,341 SNPs. The majority of SNPs in the second set were classified as having a ploidy of 20, representing doubtful regions
with chances of duplication events and low-quality data7. Therefore, this group of putative molecular markers with higher
reliability provided better results in terms of estimated ploidies.

Phenotype-Genotype Associations
To understand the genotypic associations with different brown rust phenotypes more generally, we chose to perform genotype-
phenotype analyses with the phenotypic rust groups identified in the clustering analysis. We performed these tests using two
different approaches for genomic prediction: ADs obtained with SuperMASSA (ploidy range between 6 and 14 and posterior
probability greater than or equal to 0.8) and APs calculated based on Tassel output for read counts. With these two different
datasets, the FS techniques were applied and generated different sets of SNPs (Table 2).

[Table 2 about here.]

These SNPs were used to predict the phenotypic rust groups using the eight selected ML algorithms in the proposed
cross-validation scenario (described in SI in Supplementary Tables S12-S17). The performance of APs was superior to that of
ADs for all evaluated metrics (Supplementary Table S18). In almost 73% of the tests with different algorithms, the usage of
APs was equal or superior to that of ADs. Although there were some discrepancies across models and between FS subsets, we
observed better use of sugarcane GBS data with APs. In addition, the quantity of SNPs discarded to obtain favorable ADs in
sugarcane was almost 64%. Therefore, we considered the analysis of APs better than ADs for the task of GP.

The capability of predicting brown rust phenotypic groups was quite different among the created scenarios. Using the entire
dataset, the overall accuracy was near 50%, showing the models’ inefficiency in capturing the real SNP effects. The KNN
model presented an accuracy of almost 70% but with a very small value of specificity (0.23%), thus proving its inefficiency in
predicting these phenotypes when using the entire set of SNPs. With FS techniques, these values increased but still presented
differences between the selected methods. To evaluate the best FS techniques with which to increase predictive capabilities, we
determined confidence intervals for all metric means (accuracy, recall, precision and specificity), as shown in Supplementary
Table S19. Then, we counted the quantity of measures that exceeded the superior boundaries. FS1, FS2 and FS4 had the
best performance, as described in the SI (Supplementary Tables S20-S23). Furthermore, we analyzed the distributions and
similarities of these metrics. The accuracy distribution is shown in Fig. 2, and the other distributions are shown in the SI
(Supplementary Figs. S9-S12). FS3 and FS5 clearly did not allow a substantial increase in these performance measures. The
maximum values in the boxplots for FS3 and FS5 are close to the medians of FS1, FS2 and FS4. In addition, considering that
multiple comparisons by Tukey’s test grouped F3, F5 and the initial dataset together, we can conclude that these techniques did
not enable substantial improvement in accuracy. Analyses of the other metrics also showed better performance of FS1, FS2 and
FS4 than of the other datasets, including FS3, FS5 and the entire set of SNPs. Due to these findings, we considered FS1, FS2
and FS4 the most promising methodologies for detecting variants with high predictive capabilities.

[Figure 2 about here.]

The FS1, FS2 and FS4 methods identified different variants in different scaffolds. However, there were intersections
between these sets (Fig. 2), which we decided to evaluate. We tested all selected ML algorithms using the intersection between
at least two strategies (Inter 2), which corresponded to 131 SNPs, and the intersection between the three strategies (Inter 3),
which corresponded to 6 SNPs. The results obtained using Inter 3 did not increase the metric values of the FS techniques;
however, they were far superior to the initial results obtained with the entire dataset (approximately 41% larger), as described in
the SI (Supplementary Table S24). Inter 2, however, showed the highest predictive capabilities (Table 3), suggesting that these
variants have a greater probability of being associated with brown rust phenotypes.
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[Table 3 about here.]

The tested ML models had different capabilities of separating the phenotypic groups, and these capabilities changed
depending on the dataset used. In addition to using the previous metrics, we chose to evaluate model performance using ROC
curves and the respective AUCs. All of these plots are shown in the SI together with the AUC values (Supplementary Figs.
S13-S20). We evaluated two different configurations to consider a model with reasonable predictive performance: (A) AUC
≥ 0.8 and (B) AUC ≥ 0.9%. For (A), we identified AB, GNB, GP and MLP as the most promising models when using the FS1,
FS2 and FS4 techniques. When using the entire dataset and FS3, there were no significant changes in performance under (A).
GNB was the best model for FS5; GNB and RF were the best models for Inter 3; and KNN, GP, RF, MLP, AB and GNB were
the best models for Inter 2. This first configuration enabled identification of the Inter 2 FS technique as the most appropriate for
the creation of stable models using ML strategies. The performance of the built models based on Inter 2 is shown by ROC
curves in Fig. 3 and contrasted with the results for the entire dataset. For (B), the entire dataset, FS3, FS5 and Inter 3 did not
have AUC values exceeding 0.9, supporting the exclusion of FS3 and FS5 as interesting for detecting phenotype-associated
variants. GNB was the best model for FS1, and GP, MLP and GNB were the best models for FS2, FS4 and Inter 2. Thus, we
considered GP, MLP and GNB the best models for predicting the brown rust phenotypic groups. The ROC curves for these
three algorithms and the different subsets are provided in the SI (Supplementary Figs. S21-S23). The best AUC values were (I)
MLP: 0.99 for Inter 2 and 1.00 for FS2, (II) GNB: 0.98 for Inter 2 and 0.96 for FS2, and (III) GP: 0.98 for Inter 2 and 0.98
for FS2. This finding supports the hypothesis of an association between Inter 2 regions and brown rust phenotypes. On the
basis of these results, we suggest that the identification of intersections between FS1, FS2 and FS3 might be an appropriate
methodology for both GP and the identification of regions associated with brown rust phenotypes.

[Figure 3 about here.]

The last analysis that we performed to test whether this methodology was a promising strategy was an evaluation of the
genomic regions where the selected variants were located. For this step, we used S. spontaneum CDSs corresponding to (A) 9
selected BACs related to Bru1 QTL regions and (B) 146 MF scaffolds identified as important by at least two methods. We
identified 373 CDSs using (A) and 240 CDSs using (B). All BACs of (A) had correspondences, and nine scaffolds of (B) did
not have relevant alignments. As there was only one CDS in common between (A) and (B), we evaluated the chromosomal
location of these CDSs considering the S. spontaneum genomic reference, which is presented in the SI (Supplementary Fig. 24).
Notably, regions where these CDSs were located were spread throughout the genome. However, nearly all CDSs identified
in (B) were close to CDSs identified in (A), suggesting linkage disequilibrium between these regions due to chromosomal
proximity. Additionally, to understand whether these genomic regions have similar impacts on biological processes, we
performed enrichment analysis using the GO categories of these two groups (Fig. 4). We found 148 different GO categories in
(A) and 100 in (B), with 50 GOs in common. The other 50 categories identified for only the selected variants can be found in
the SI (Supplementary Fig. S25); there were four main categories: (I) sphingolipid metabolism, (II) DNA topological change,
(III) nitrogen compound transport, and (IV) phosphatidylinositol-mediated signaling.

[Figure 4 about here.]

In relation to metabolic pathways, we selected the S. bicolor KEGG correspondences for each CDS and also separated
these findings into groups (A) and (B). The complete discrimination of the identified pathways is shown in the SI. We found
41 associated pathways in (A) and 29 in (B), with 16 in common between these groups. As expected, there was an elevated
number of common biological cascades that might be influenced by these regions. The specific pathways found exclusively in
group (B) were monoterpenoid biosynthesis, phenylpropanoid biosynthesis, the pentose phosphate pathway, sulfur metabolism,
other glycan degradation, fatty acid elongation, basal transcription factors, ubiquitin-mediated proteolysis, various types of
N-glycan biosynthesis, tryptophan metabolism, sphingolipid metabolism, carbon metabolism and N-glycan biosynthesis.

Discussion
The organization of the sugarcane genome greatly challenges genetic studies of this species, and alternative approaches must be
employed to overcome these difficulties. Here, we developed a novel strategy to address sugarcane genomic specificities and
enable the identification of genomic regions related to brown rust resistance through the evaluation of ML predictive performance.
The sequencing method, SNP detection process and phenotypic associations were designed to fit these singularities. Sugarcane
brown rust susceptibility was previously studied and applied in sugarcane breeding programs28; however, there is still a gap in
the characterization of the wide range of genes involved in the process of infection and how different genomic polymorphisms
can influence this phenotype. The adjustments performed on these analyses showed reasonable results, and the identification of
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these possibly phenotype-causative regions can help unravel sugarcane brown rust resistance molecular mechanisms and the
selection of targets for breeding.

First, due to the diversity of rust scores (1-9), the variation in rust phenotypes within populations and the qualitative nature
of rust phenotypes, we decided to use the two groups identified by the BLUP clustering analysis instead of the raw scores. We
were interested in finding markers and genomic regions related to brown rust resistance, and the establishment of these two
major groups enabled the identification of resistance categories in the population. As previously described, these phenotypic
rust groups presented a high level of differentiation in rust scores, and this contrast in susceptibility may aid in the identification
of the most promising plants for sugarcane breeding programs. In addition, the establishment of these groups allowed the use of
a wide range of ML strategies.

In relation to the sugarcane genotyping process, different approaches have been adopted by the scientific community to
reduce the genomic complexity of sugarcane and utilize a limited amount of information. Song et al.100, for example, designed
different probes using in silico approaches. The resulting regions were posteriorly adopted in other studies101–104 due to the
large quantity of markers with sufficient sequencing depth located in genic regions. Another approach is GBS5, 23, 28, 105–107,
which is the preferred genotyping method for plants with some degree of genomic complexity23, 108 mainly due to its simplicity,
reproducibility and considerable genome coverage109. In addition, regulatory regions controlling different phenotypes are often
located in noncoding DNA, and GBS allows the amplification of such regions50. Herein, we decided to use GBS to obtain a
broader set of genomic regions with their respective probabilities of correspondence with rust resistance.

Sequencing reads are generally organized by using the S. bicolor genome for comparative alignments and the subsequent
identification of putative variants with bioinformatic methods. This reference choice is due to sorghum’s phylogenetic proximity
to sugarcane5, 28, 105–107 and, in some cases, probe experimental design100–104. Despite sorghum’s genome usage, the availability
of sugarcane pseudoreferences has provided new genomic tools for scientific research as initially explored by Balsalobre et al.23,
who used the sorghum genome, a sugarcane MF genome65, a sugarcane leaf transcriptome51 and SUCEST tags68. However,
new sugarcane genomic resources are now available, such as the draft genome of the cultivar SP80-328067, the monoploid
genome of the R570 variety3 and the genome of the AP85-441 S. spontaneum cultivar1, which are phylogenetically closer to
current sugarcane cultivar resources than are sorghum resources. Therefore, there is a need to explore these new references and
check their appropriateness. As there are no previous reports of the usage of these novel references together with sugarcane
GBS data, we decided to test them in order to identify the most appropriate reference.

Although GBS allows a reduction in genomic complexity, we must consider sugarcane singularities to establish an analysis
pipeline. In GBS experiments, the consensus of read clusters at cutting sites could be adopted as a reference in cases where
there is no appropriate sequence to use50. However, genome assembly is a difficult task when dealing with repetitive regions
and polyploids110. With the aim of reducing possible biases, we decided not to use de novo approaches, which were previously
described as inappropriate for sugarcane GBS data105.

In our study, the combination of BWA and MF scaffolds had the best performance for GBS data. BWA was previously
reported as a sensitive tool for aligning sugarcane reads and retaining a large number of uniquely mapped sequences100. In terms
of MF performance, this may be explained by the experimental procedures of MF sequencing and GBS library preparation.
GBS library construction is based on the selection of a subset of genomic regions using methylation-sensitive restriction
enzymes, which avoid repetitive regions50. To select our GBS regions, we used the enzyme PstI, which is a methyl-sensitive
restriction enzyme, to select hypomethylated DNA111. Similarly, the MF genome was obtained through a process of sequencing
where genomic regions were also selected based on hypomethylation65. This approach generated high compatibility between
our data and the genomic reference, as observed in the comparative alignments and previous reports23. Although there have
been great advances in understanding the sugarcane genome since the S. spontaneum genome became available, we decided to
perform our analyses using the sugarcane MF genome to capture the most probable markers and establish a criterion based
on data appropriateness. This genomic reference is still at the scaffold level, but as shown in this study, there is a high rate
of redundancy among consensus sequences obtained through GBS data alignments with the different references. Due to this
observed redundancy, we chose not to use all of the references. In addition to adding redundant markers, it is important to note
that these different consensus contigs built based on different references can lead to different alignments of GBS data. These
alignments may in turn produce different organizational profiles of read alignments and divergent SNPs. Therefore, we selected
the most reference with the best usage of the amount of GBS data as the most appropriate and analyzed the respective SNPs.

A wide range of SNP callers are available. Tassel was developed to handle GBS data and has been widely applied to species
with different genomic organizations. Although this tool enables the identification of many SNPs, it was previously described
as insufficiently accurate to be used alone112. Thus, to increase the reliability of our data, we decided to use other SNP callers
(GATK, FreeBayes, SAMtools and Stacks) in combination with Tassel, as the usage of SNPs identified by more than one caller
is more reliable than the usage of SNPs identified by only one caller113. The intersection between the SNPs identified by at
least two tools was established to increase the accuracy of these variants without substantially increasing the number of false
negatives. In addition, Tassel was used due to its targeted development for GBS data and preprocessing steps. The Tassel
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workflow keeps read depths unchanged between the initial mapping and the final data generated for the identified genotypes. In
sugarcane, this information is necessary to estimate ADs or calculate APs. Using this intersection approach, we identified the
final set of SNPs to be used for our association analyses. Indels, however, were not selected. These variants identified by in
silico strategies do not provide reliable information, showing elevated divergence between the existent callers and a probability
of producing spurious variants114.

Using this approach, we found 14,540 putative SNPs. With these regions, we tested two different strategies for genotyping
the population at these loci: (1) the usage of ADs estimated with SuperMASSA and (2) the usage of APs calculated based
on Tassel output. For SuperMASSA estimations, we kept only SNPs with an estimated ploidy between 6 and 14 (minimum
posterior probability of 0.8) due to sugarcane genomic configurations7, 23. However, sugarcane aneuploidy together with
the common occurrence of duplication events might have influenced the process of estimating locus ploidies and, in turn,
the process of categorizing the related dosages through the established filters. In addition, 64% of the identified SNPs were
discarded when using this approach for obtaining dosages. Because we would not need to calculate chromosomal distances
between loci for linkage map construction, the elevated loss of markers and the reduced performance of ADs in the task
of genomic prediction, we decided to continue our analyses with APs. Previous tests of this approach yielded reasonable
results101, 102, 104.

After establishing the bioinformatics pipeline for identifying and evaluating these regions, we studied the influence of
SNP subsets identified by FS techniques on the task of predicting phenotypic rust groups. The amount of data generated by
high-throughput sequencing technologies115 represents a challenge in genomic prediction, particularly due to the difficulty
of working with high-dimensional datasets, i.e., the ’large p, small n’ problem116. This increase in the amount of available
information makes the task of directly applying these marker data in genomic analyses more difficult and necessitates appropriate
preprocessing steps117. In this study, we proposed the use of FS techniques to select a smaller set of SNPs with more predictive
power than the entire dataset and closer associations with the brown rust phenotype to assist the identification of regions
associated with disease status. This can be considered quite advantageous in the context of genomic selection because the
identification of a subset of markers allows a reduction in sequencing costs49. In addition, it has already been demonstrated that
for genomic selection, a selected reduced number of SNPs has reasonable reliability49, 118, 119.

The identification of markers related to this phenotype using FS is based on these techniques to provide an interpretable
model due to the close relation between trait and genotype; i.e., using the subset of high-density markers might help elucidate
the regions most likely to be involved in phenotypic differentiation120. This strategy of selecting a subgroup of SNPs with
higher predictive power and closeness to the predictive class has already been employed in different contexts48, 121, 122. In this
study, we tested five different strategies and found three promising alternatives for executing this methodology. FS1, FS2 and
FS4 substantially increased the models’ capabilities of predicting the phenotypic groups as demonstrated in this paper. We
believe that this increase in predictive power is due to the identification of regions influencing the phenotype, possibly in QTLs
or regulatory genomic elements. As a final strategy for the prediction and selection of these associated regions, we suggest the
use of the intersection of these three techniques. This approach enabled the creation of more stable models using different ML
algorithms and better accuracies for predicting these phenotypes.

Corroborating this hypothesis, we also found that most of the identified regions containing these SNPs were associated with
QTLs with known biological functions, and there were also additional categories known to be correlated with rust resistance.
Through comparative alignments between MF scaffolds and S. spontaneum CDSs, we identified these regions and compared
them with CDSs correlated with BACs developed based on Bru1 regions. A total of 146 different scaffolds were selected
as important for this predictive task by at least two methods (FS1, FS2 and FS4). Among these sequences, only 9 did not
have correspondence with S. spontaneum CDSs, possibly due to the presence of additional noncoding regulatory elements.
These regions can be targets of genetic studies due to their relationships with predicted phenotypes. Although there was no
considerable intersection between CDSs associated with BACs and the selected scaffolds, we did find consensus in correlated
biological functions. This divergence between regions is mainly explained by the differences between the populations used to
generate the GBS data and the brown rust QTLs (which were used to select BACs). QTL regions are identified for a specific
population, and there might be differences between datasets from different populations, especially for the sugarcane genome.
In addition, the creation of sugarcane linkage maps relies on many adaptations of methods, such as the selection of only
single-dosage markers23, which might lead to the identification of a restricted set of QTLs and the nonuse of many auxiliary
genomic elements.

The exclusive GO categories related to the selected variants have already been reported to be associated with resistance.
Sphingolipid metabolism is intimately connected to programmed cell death123–125; DNA topological change is a wider category
with different implications in many biological processes, including responses to pathogens126; differences in nitrogen compound
transport might be related to the accumulation of this nutrient and its influence on resistance against pathogens127; and
phosphatidylinositol-mediated signaling includes important categories that also act on plants’ responses to pathogens125. A
considerable number of metabolic pathways related to both BACs and the selected scaffolds were also detected. However,
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specific pathways were found to be associated with these scaffolds, mainly due to the different roles of the proteins encoded by
these identified CDSs and because these pathways were already reported as being associated with plant responses to different
pathogens123, 128–135, further corroborating our findings. The indication of possible mutation events in these regions provides
evidence of differences in protein expression and phenotypic characteristics.

The identified regions with putative variants and high predictive performance for brown rust phenotypic groups can be
employed as novel regions to investigate susceptibility-related traits. This proposed strategy can complement traditional
methodologies for deciphering sugarcane genomic regions associated with pathogen infection responses and susceptibility.
Although these SNPs were identified for only one biparental population, the strategy can be used for different populations,
and the genes can be further investigated to validate the influence of the genomic regions on different phenotypes. This study
represents an initial step in employing ML and FS strategies in sugarcane genomic studies. We illustrated the great potential of
applying these methodologies to predict phenotypes by using a highly complex polyploid species.
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Figure 1. Figures (I) and (II) present ploidy estimates based on the intersection of SNPs between Tassel and at least one other
tool (I) and Tassel-filtered SNPs not present in the intersection (II). Categories A, B and C are based on posterior probabilities
(A represents probabilities larger than or equal to 0.8, B represents probabilities between 0.5 and 0.8, and C represents
probabilities smaller than 0.5). In (III), a Venn diagram of SNPs called using the MF reference together with GATK, SAMtools,
FreeBayes, Tassel and Stacks is shown.
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Figure 2. (a) Accuracy distribution using the different datasets for the ML strategies separated by FS strategy and colored
based on the groups identified with multiple comparisons by Tukey’s test (ANOVA p-value of 0.000000000000455); (b)
intersection of SNPs selected from FS1, FS2 and FS4; (c) intersection of MF scaffolds selected from FS1, FS2 and FS4.
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Figure 3. Receiving operating characteristic (ROC) curves showing the performance of the 8 ML strategies when using (a)
the entire dataset of SNPs (14,540 SNPs) or (b) the SNPs shared by FS1, FS2 and FS4 (131 SNPs).
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Figure 4. Treemaps plotted based on GO categories identified in (a) S. spontaneum CDSs corresponding to BAC sequences
related to brown rust QTLs and (b) S. spontaneum CDSs corresponding to the scaffolds with the SNPs identified from the Inter
2 dataset.
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Table 1. Final SNP sets obtained using the MF reference and different tools.

Quantity Raw SNPs Biallelic SNPs
Tassel 135,979 135,594
Stacks 106,881 106,881
GATK 61,023 60,338
SAMtools 353,715 349,574
FreeBayes 72,391 71,999
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Table 2. Quantity of SNPs selected by the FS techniques when using allele proportions (APs) and allele dosages (ADs).

Method SNPs (AD) SNPs (AP)
Total SNP dataset (All) 5,224 14,540
Gradient Tree Boosting (FS1) 283 345
L1-based SVC (FS2) 135 140
Extra Trees (FS3) 1,991 2,595
F statistic from ANOVA (FS4) 327 922
Random Forests (FS5) 1,345 1,253

21/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985960doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985960
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Performance of the intersection of FS1, FS2 and FS4 compared with the other strategies.

Performance
Model Accuracy (AP) Recall (AP) Precision (AP) Specificity (AP)
AB 79.70 80.71 88.84 77.43
DT 64.71 64.84 80.23 64.43
GP 91.54 93.18 94.49 87.91
KNN 77.61 98.43 76.12 31.26
MLP 94.93 94.53 98.05 95.81
GNB 92.04 91.17 97.12 93.98
RF 72.29 67.15 90.19 83.74
SVM 87.29 84.44 96.73 93.64

Means
Mean All 51.14 47.77 71.37 57.24
Mean FS1 77.80 80.54 86.89 72.94
Mean FS2 82.01 89.60 86.70 76.69
Mean FS4 77.61 86.67 85.80 74.75
Mean Inter 2 83.50 87.81 92.34 85.83
Mean Inter 3 72.28 72.77 84.90 71.18
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