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Abstract

Alzheimer disease (AD) is the leading cause of dementia in the elderly and occurs in all ethnic and
racial groups. ApoE &4 is the most significant genetic risk factor for late-onset AD and shows the
strongest effect among East Asian populations followed by non-Hispanic White populations and
has a relatively lower effect in African descent populations. Admixture analysis in the African
American and Puerto Rican populations showed that the variation in &4 risk is correlated with the
genetic ancestral background local to the ApoE gene. Native American populations are
substantially underrepresented in AD genetic studies. The Peruvian population with up to ~80 of
Amerindian ancestry provides a unique opportunity to assess the role of Amerindian ancestry in
Alzheimer disease. In this study we assess the effect of the ApoE &4 allele on AD in the Peruvian

population.

A total of 78 AD cases and 128 unrelated cognitive healthy controls were included in the
study. Genome-wide genotyping was performed using the Illumina Global screening array. Global
ancestry and local ancestry analyses were assessed. The effect of the ApoE ¢4 allele on Alzheimer
disease was tested using a logistic regression model by adjusting for age, gender, and population
substructure (first three principal components). Logistic regression results showed that ApoE ¢4
allele is significantly associated with AD in Peruvian population with the high-risk effect (OR =
5.02, CI: 2.3-12.5, p-value = 2e-4). The average values of the local ancestries surrounding the
ApoE gene (chr19:44Mb-46Mb) have the highest proportion of Amerindian (60.6%), followed by
European (33.9%) and African (5.5%) ancestral backgrounds.

Our results showed that the risk for AD from ApoE &4 in Peruvians is higher than we have
observed in non-Hispanic White populations. Given the high admixture of Amerindian ancestry in
the Peruvian population, it suggests that the Amerindian local ancestry is contributing to a strong
risk for AD in ApoE ¢4 carriers. Our data also support the findings of an interaction between the
genetic risk allele ApoE ¢4 and the ancestral backgrounds located around the genomic region of

ApoE gene.


https://doi.org/10.1101/2020.03.10.985846
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.985846; this version posted March 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Background

Alzheimer disease (AD) is a neurodegenerative disease accounting for over 70% of dementia cases
in individuals >70 years of age’. AD has a multifactorial etiology, with both genetic and non-
genetic risk factors, with liability-scale heritability estimates based on twin studies ranging

between 0.58 and 0.79 with over 25 genetic risk factors contributing to AS risk?2,

The apolipoprotein E (ApoE) gene (19q13.32) is the strongest known genetic risk factor
for AD explaining up to 6% of the liablity-scale phenotypic variance*®. ApoE codes for a protein
that transports cholesterol through the interaction with cell surface receptors®. There are three
ApoE alleles, €2, €3 and €4, defined by two polymorphisms rs429358 and rs7412, that code for
three protein isoforms ApoE2 (Cys130, Cys176), ApoE3 (Cys130, Argl76) and ApoE4 (Argl30,

Arg176)’.

The association of ApoE with AD risk differs between populations and is not clearly
established in groups of Amerindian (Al) descent. The strongest association of ApoE and AD risk
has been observed in East Asian (EA) populations (¢3/e4 odds ratio OR: 3.1-5.6; g4/e4 OR: 11.8—
33.1) followed by non-Hispanic White (NHW) populations (e3/e4 OR: 3.2; e4/e4 OR: 14.9) 8°,
Its effect is weaker in African-descent and Hispanic populations (e3/e4 OR:1.1-2.2; g4/e4 OR:
2.2-5.7)1%14 Genetic studies examining the interaction of genetic ancestry and risk effect of the
ApoE in Caribbean Hispanic populations (Puerto Rican and Dominican Republic) showed that
the effect of the &4 is correlated with the ancestral background around ApoE with the attenuated

effect on African-originated haplotypes!®1,

Peruvian population exhibits ~83% Amerindian ancestral background, higher than other

Latin American populations, such as Mexico (50%), Chile (40%), Colombia (28%), Argentina
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(28%) and Puerto Rico (16%)-1°. Peruvian Native American inhabitants show ancestry of three
ancestral groups that originated by the split of an ancient group that migrated down the Americas
after diverging from the East Asians and crossing the Bering Strait?®. By admixing together and
with non-Native inhabitants that arrived after Peru’s Spanish colonization, these Al groups gave
rise to the current Peruvian mestizo population, resulting from admixture with European (EU),
Asian and small African (AF) component!®2°, Distribution of ApoE alleles in a sample of Mestizo
Peruvian population from northern Lima suggest large contribution of ApoE €3 genotypes, with
approximately 9.5 % of cases harboring one or two ApoE ¢4 alleles?. No previous published

studies have been addresses association of ApoE and AD in Peruvian population.

The heterogeneous ancestral make-up of Peruvians provides a unique opportunity to study
the effect of global and local Amerindian ancestry on the effect of the ¢4 allele over the risk of
AD. If the discrepancies seen in the effect of the ¢4 allele across populations is caused by social
factors, global, but not local to ApoE, ancestry is expected to also be associated to AD risk. Our
goal is to use data from the Peruvian population to assess the role of Al genetic ancestry and the

ApoE gene on AD.
Methods

Study samples and ascertainment

Unrelated cases and controls were ascertained from the Instituto Nacional de Ciencias
Neurologicas in Peru as part of a genetics study in AD. All cases were assessed by trained
neurologists following NINCDS-ADRDA criteria for probable AD 22, Cognitively intact controls
were screened using the Clock drawing test, and the Pfeffer functional activities questionnaire 2324,

Controls were defined as individuals with no evidence of cognitive problems and age of exam
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(AOE) higher than 65 years of age. The dataset contained 79 AD cases (67.0% female, mean age
at onset (AAO) = 72.3 years [SD=8.4]) and 128 cognitively healthy controls (59.1 % female, mean
AOE = 75.0 years [SD =6.6]). This study was approved by the Ethical Committee of Instituto
Nacional de Ciencias Neurologicas of Lima and the IRB of the University of Miami. Miller School

of Medicine.

Genotyping and quality control procedures

Genome-wide genotyping have been performed using llumina Global Screening Array. Quality
control (QC) analyses were performed using software PLINK v.22°. Variants with the call score
less than 95%, minor allele frequency less than 0.01, or not in Hardy-Weinberg equilibrium (HWE)
(p<l.e-6) were eliminated. The concordance between reported sex and genotype-inferred sex was
checked using X-chromosome data. The relatedness among the individuals were assessed using
“identical by descent” (IBD) allele sharing. ApoE genotyping was performed as in Saunders et

a|.26
Assessment of Genetic Ancestry

Global ancestry was evaluated using GENESIS software program that is robust to known and
cryptic relatedness?’. Firstly, the KING-Robust kinship coefficient estimator was used to calculate
the KING matrix that includes pairwise relatedness and measures of pairwise ancestry
divergence®®. PC-AiR method was then applied to calculate “preliminary” principal components
(PC) by using KING matrix. Default kinship and divergence threshold values have been used. The
PC-Relate method that uses “preliminary” PCs to account for the samples ancestry variation and
calculate the genetic relationship matrix (GRM) that is robust for the population structure,
admixture, and departure from HWE was applied to the data. PC-AiR method was once more

applied to the data by using the robust kinship estimates (GRM) and calculated PCs that accurately
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capture population structure. PCs were calculated with and without population reference datasets.
Four reference populations were used including Al, EU, AF, and EA from Human Genome

Diversity Project (HGDP) data for the reference populations?®.

To estimate the admixture proportion, a model-based clustering algorithm was performed
as implemented in the ADMIXTURE software®. Supervised ADMIXTURE analysis was used at
K =4 by including the same four reference populations from HGDP reference panel we used in

PC-AIR approach.

To assess the local ancestry, HGDP reference panel was combined with the Peruvian data
using the PLINK v2 software including approximately the same number of individuals from three
reference populations EU, AF and Al (~ 100). Then, all individuals in combined dataset were
phased using the SHAPEIT tool ver. 2 with default settings and 1000 Genomes Phase 3 reference
panel®>%, Finally, RFMix was performed using the discriminative modeling approach, to infer
the local ancestry at each loci across the genome. We ran RFMix with the PopPhased option and

a minimum node size of 5%,

The heterogenous risk effect of the ApoE gene across the populations is suggested to be
correlated with the ancestral background local to the ApoE gene. Thus, to examine the ancestral
background in our dataset we calculated the average ancestry proportions at the ApoE by taking
the average of the local ancestry estimates around the ApoE gene (from 44 Mb to 46 Mb on
chromosome 19)*°. The pipeline to calculate the global and local ancestries was developed by our

group using R and Python scripts.

Statistical Analysis
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To assess the effect of the ApoE ¢4 allele in Peruvian population we performed logistic regression
approach. In this model, the association was tested between the affection status and gene dose of
the ApoE &4 allele by adjusting for age, gender, and populations substructure (PC1, PC2, and PC3).
Statistical analysis was performed using the “GLM2” package available in R computing

environment®?,

Results

The supervised ADMIXTURE analysis showed that Peruvians are four-way admixed population
with the 63.6% Al, 29.7% EU, 3.8% AF and 2.9% EA ancestral background. Figure 1A shows the
box-plot of the average ancestry across the all individuals in the dataset. The ancestral proportion
of each individual is illustrated in the bar-plot Figure 1B, where each column reflects the admixture
structure of a single individual as the proportion of different colors. Admixture analysis results
confirm the recent genetic studies showing a four-way admixture (Al, EU, AF, and EA) structure

in Peruvians.
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Figure 1 A. The box-plot of the four parental ancestries in Peruvian dataset B. Bar-plot of four-
way admixed Peruvian individuals estimated using ADMIXTURE software at K = 4

The allele frequency distribution of the ApoE alleles are illustrated in Table 1. The affected
individuals have higher frequency of ApoE ¢4 allele (9.2%) than individuals (4.6%) that are
cognitively normal. Logistic regression results showed that the ApoE &4 allele is significantly
associated with AD in Peruvian population with the high-risk effect (OR =5.02, CI: 2.3-12.5, p-
value = 2e-4). The average of the local ancestries around the ApoE gene showed that the
distribution of the parental ancestries local to the ApoE gene is the similar to the average ancestry
across the genome with the highest proportion of Al (60.6%), followed by EU (33.9%) and AF

(5.5%) ancestral backgrounds.

Cases (%0) Controls (%)
Genotypes
e2e3 3(1.4) 8(3.9)
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£3e3 43(20.8) 102(49.3)
e3ed 28(13.5) 17(8.2)
eded 5(2.4) 1(0.5)
Alleles

&2 3(0.7) 8(1.9)
e3 117(28.3) 229(55.3)
¢4 38(9.2) 19(4.6)
Total 79 128

Table 1 ApoE genotype and allele frequencies in cases and controls

Discussion
The ApoE &4 allele is the most significant genetic risk factor for late-onset AD with the differences
in effect size among the populations. Our results showed that the risk for AD from ApoE &4 allele
in Peruvians is higher than we have observed in NHW populations. Given the high admixture of
Al in the Peruvian population, it suggests that the Al local ancestry is contributing to a strong risk
for AD in ApoE ¢4 carriers. This would align with the current believed migration pattern of Al
from East Asia, where ApoE &4 carriers have the highest ApoE &4 risk for AD.

The prevalence of AD varies among the diverse populations. Moreover, AD genetic studies
in different ethnic groups have shown variation in both risk effect size and variants (e.g. ApoE,
ABCA7, SORL1, etc.)®%-% This heterogeneity suggests that distinct genetic architecture can lead

to differing disease susceptibility. Thus, studying the diverse populations is critical to the
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understanding of the molecular mechanism underlying the disease pathogenesis and the success of
precision medicine. However, diverse populations and especially populations with the Al ancestry
are substantially underrepresented in AD genetic studies. The Peruvian population with a large
proportion of Al ancestry provides a unique opportunity to assess the role of Al ancestry in AD.
This study by confirming the correlation of the genetic ancestry with the risk effect in €4 allele
shows the importance of studying different populations to evaluate the ancestry-specific genetic
modifiers correlated with ancestry. Ultimately, studying diverse populations is essential to
understand the genetic factors initiating AD pathogenesis that may contribute to health disparities

and ultimately the development of effective therapies.
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