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Abstract

While the steady-state behavior of stochastic gene expression with auto-regulation has been
extensively studied, its time-dependent behavior has received much less attention. Here, under the
assumption of fast promoter switching, we derive and solve a reduced chemical master equation for an
auto-regulatory gene circuit with translational bursting and cooperative protein-gene interactions. The
analytical expression for the time-dependent probability distribution of protein numbers enables a fast
exploration of large swaths of parameter space. For a unimodal initial distribution, we identify three
distinct types of stochastic dynamics: (i) the protein distribution remains unimodal at all times; (ii) the
protein distribution becomes bimodal at intermediate times and then reverts back to being unimodal
at long times (transient bimodality) and (iii) the protein distribution switches to being bimodal at long
times. For each of these, the deterministic model predicts either monostable or bistable behaviour and
hence there exist six dynamical phases in total. We investigate the relationship of the six phases to the
transcription rates, the protein binding and unbinding rates, the mean protein burst size, the degree
of cooperativity, the relaxation time to the steady state, the protein mean and the type of feedback
loop (positive or negative). We show that transient bimodality is a noise-induced phenomenon that
occurs when protein expression is sufficiently bursty and we use theory to estimate the observation
time window when it is manifest.

1 Introduction

Auto-regulation, whereby the protein expressed from a gene activates or suppresses its own tran-
scription, is the most common form of feedback in gene regulatory systems [1]. Experimental studies
have probed how feedback loops modulate fluctuations in the concentrations of gene products [2–4].
The exact distribution of protein numbers in four distinct stochastic models of auto-regulation [5–8] has
been obtained by solution of the chemical master equation (CME, [9]) in steady-state conditions. These
four models do not consider cooperativity of protein binding to the gene and are based on different
implicit assumptions, as follows. Hornos et al. [5] and Kumar et al. [6] neglect binding fluctuations
while Grima et al. [7] and Jia et al. [8] take them into account. Note that by binding fluctuations here
we mean a decrease (increase) in protein number whenever a binding (unbinding) reaction occurs. In
addition, Hornos et al. and Grima et al. assume non-bursty protein expression while Kumar et. al and
Jia et al. take into account bursty expression. Since protein expression is often bursty and since binding
fluctuations can be important for cases where the protein is in low numbers, it follows that the model
in [8] is the most realistic among the four. In all cases, the steady-state protein distributions can be
either unimodal or bimodal even though the corresponding deterministic model is always monostable
(since there is no cooperativity). Slow switching between the ON and OFF states of the gene can lead
to bimodality if the transcription rates in the two gene states are well separated, for both positive and

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985291
http://creativecommons.org/licenses/by-nc-nd/4.0/


negative feedback. Fast switching often leads to unimodality but under certain conditions, a positive
feedback loop can also produce bimodality with one of the modes approximately centered on zero [8].
For a recent review of these and other similar models, see [10]. For recently developed methods to
approximately solve for the steady-state distribution in models of auto-regulation, see [11–13].

The time-dependent solution for stochastically modelled chemical reaction systems has received
comparatively very little attention. Under certain conditions, for an initial joint distribution given by a
product of Poissons, the transient joint distribution remains a product of Poissons for all times [9, 14].
However, the conditions for this result to hold are very restrictive and not applicable to most systems of
biological relevance. To our knowledge, the only exact time-dependent solution for an auto-regulatory
feedback loop is the one derived by Ramos et al. [15], where the authors obtain a Heun function for
the generating function of a stochastic model neglecting translational bursting, cooperativity and bind-
ing fluctuations, i.e. the model of Hornos et al. [5]. An approximate time-dependent solution for
four different types of auto-regulatory feedback loops was obtained by Cao and Grima using the linear
mapping approximation [12], all of which have generating functions in terms of hypergeometric func-
tions. Approximate time-dependent solutions have also been recently reported for detailed models of
eukaryotic gene expressions with and without feedback and including binomial partitioning due to cell
division [16]. Another method by Veerman et al. calculates the approximate time-dependent solution
of auto-regulatory feedback loops by means of a perturbative approach [17]. However, the difficulty in
analyzing Heun and hypergeometric functions means that little information can be extracted about the
time-dependent behavior and hence different dynamical phases of auto-regulatory circuits still remain
unknown. Elucidating and understanding such behavior is important since living cells are constantly ex-
posed to an ever-changing environment that requires dynamic fine tuning of gene expression to maintain
healthy cellular functions.

In this article, by means of careful approximations, we derive an analytical time-dependent solution
for the CME of an auto-regulatory circuit in terms of a sum of simple functions and subsequently use
it to study the phase diagram characterizing the dynamics of the gene circuit. The paper is divided as
follows. In Section 2, starting from the CME of an auto-regulatory circuit with bursty protein expression
in two gene states, cooperative protein-gene interactions and taking into account binding fluctuations,
we use the method of multiscale averaging to obtain a reduced master equation valid in the limit of
fast promoter switching. In Section 3, this reduced master equation is solved in time, leading to a
time-dependent protein distribution that has the form of a sum of exponential functions; the analytical
solution is found to be in excellent agreement with the numerical solution obtained using the finite
state projection algorithm (FSP). In Section 4, we use the analytical solution to show that there are six
different ways in which the time-dependent dynamics can unfold. The relationship of these dynamical
phases to the values of model parameters, the relaxation time to the steady state and the mean protein
number is investigated. The most interesting of these phases is transient bimodality, whereby the protein
distribution is unimodal for short and long times but is bimodal for intermediate times; the theory is used
to estimate the time window when such behavior can be observed. We conclude in Section 5.

2 Deriving a reduced model of auto-regulated bursty gene expression

We start by considering a stochastic model of auto-regulation that includes promoter switching,
bursty protein expression, protein decay and feedback mediated by cooperative protein binding to the
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gene (see Fig. 1(a) for an illustration). Let G and G∗ denote the unbound and bound states of the gene,
respectively, and let P denote the corresponding protein. The effective reactions describing the model
are given by:

G+mP
σb−−→ G∗, G∗

σu−−→ G+mP, P
d−−→ ∅,

G
ρupkq−−−−→ G+ kP, G∗

ρbpkq−−−→ G∗ + kP, k ≥ 1,
(1)

where σb is the binding rate of the protein to the promoter, σu is the unbinding rate of the protein
from the promoter, ρb and ρu are the transcription rates when the protein is bound to or unbound from
the promoter, respectively, and d is the decay rate of the protein due to active protein degradation
and dilution during cell division [18]. The ratio L = σb/σu of the protein binding and unbinding
rates characterizes the strength of auto-regulation. In agreement with experiments [19, 20], protein
production is assumed to occur in bursts of random size sampled from a geometric distribution with
parameter p. Each burst is due to rapid translation of protein from a single, short-lived mRNA molecule;
hence the mRNA dynamics is modelled implicitly. The effective translation rate in the unbound or
bound gene state is then the product of the corresponding transcription rate, ρu or ρb, and the geometric
distribution pkq, where q = 1− p. Since the protein burst size is geometrically distributed, its expected
value is given by B =

∑∞
k=1 kp

kq = p/q. The reaction scheme describes a positive feedback loop
if ρb > ρu and a negative feedback loop if ρb < ρu. This model has been derived from a model that
explicitly takes into account mRNA dynamics in [8]. Note that our model takes into account protein-
gene binding fluctuations and hence as shown in [8] it is generally more realistic than the classical
model of Kumar et al. [6], resulting in more accurate protein distributions for the case of low protein
numbers.
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Fig. 1. Autoregulated bursty gene expression with cooperative binding. (a) Schematic diagram of the stochastic
model of auto-regulation. Here we depict the case when four protein molecules bind to the promoter cooperatively
to regulate gene expression. (b) Markovian dynamics of the stochastic model of auto-regulation. When the gene
switches rapidly between the unbound and bound states, for each n ≥ m, the two microstates (0, n) and (1, n−m)
can be combined into a group that is labelled by group n. (c) Transition diagram of the reduced model in the limit
of fast gene switching. When n ≥ m, group n is composed of two microstates with different protein numbers and
thus the group index n cannot be interpreted as the protein number. Note that translational bursting can cause jumps
from any group to another (this is shown for group 0 in the figure but is also true for any other groups).

The microstate of the gene of interest can be represented by an ordered pair (i, n): the state i of the
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gene with i = 0, 1 corresponding to the unbound and bound states, respectively, and the number n of
the protein. Let pi,n denote the probability of having n protein copies when the gene is in state i. Then
the stochastic gene expression kinetics in a single cell can be described by the Markov jump process
illustrated in Fig. 1(b). The evolution of the Markovian model is governed by the CME:

ṗ0,n =

n−1∑
k=0

ρup
n−kqp0,k + (n+ 1)dp0,n+1 + σup1,n−m − (ρup+ nd+ Cn,mσb)p0,n,

ṗ1,n =

n−1∑
k=0

ρbp
n−kqp1,k + (n+ 1)dp1,n+1 + Cn+m,mσbp0,n+m − (ρbp+ nd+ σu)p1,n,

(2)

where Cn,m = n!/m!(n−m)! is the number of ways of choosing an unordered subset of m molecules
from a set of n molecules. On the right-hand side of the first equation of the CME, the sum in the first
term is taken from 0 to n−1 because the burst size is≥ 1. Note also that ρup =

∑∞
k=1 ρup

kq in the last
term is the sum of all transition rates leaving microstate (0, n) due to random bursts of size ≥ 1. The
corresponding terms in the second equation of the CME can be understood in the same way.

We next focus on the regime of fast gene switching, i.e. σb, σu � ρb, ρu, d. While this is a common
simplifying assumption in many theoretical studies [21, 22], it is also supported by recent single-cell
data in bacteria [23]. In this case, the Markovian model illustrated in Fig. 1(b) can be reduced to
a much simpler one by using a classical simplification method of multiscale Markov jump processes
called averaging [24–26]. Since σb and σu are large, for each n ≥ m, the two microstates (0, n) and
(1, n −m) are in rapid equilibrium and thus can be aggregated into a group that is labelled by group
n, as depicted in Fig. 1(b). In addition, for each n < m, group n is composed of the single microstate
(0, n). In this way, the full Markovian model can be simplified to the reduced one shown in Fig. 1(c),
whose state space is given by

{group 0, group 1, · · · , group n, · · · }.

Here we emphasize that the group index n cannot be interpreted as the protein number. This is because
when n ≥ m, group n is composed of two microstates with different protein numbers.

The next step is to determine the transition diagram and calculate the effective transition rates of
the reduced model. In the fast switching limit, the two microstates (0, n) and (1, n −m) will reach a
quasi-steady state with quasi-steady-state distribution

pqss(0,n) =
σu

σu + Cn,mσb
, pqss(1,n−m) =

Cn,mσb
σu + Cn,mσb

.

Then the effective transcription rate is given by

cn = pqss(0,n)ρu + pqss(1,n−m)ρb =
σuρu + Cn,mσbρb
σu + Cn,mσb

,

and the effective protein decay rate is given by

dn = pqss(0,n)nd+ pqss(1,n−m)(n−m)d = nd

[
1− Cn−1,m−1σb

σu + Cn,mσb

]
.

It hence follows that the effective transition rate from group n to group n+ k due to a burst of size k is
given by q̂n,n+k = cnp

kq and the effective transition rate from group n to group n − 1 due to protein
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decay is given by q̂n,n−1 = dn. Since we have all effective transition rates of the reduced model, we
can now write down the effective reduced master equation in the limit of fast gene switching. Let pgroupn

denote the probability of being in group n. Then the time-evolution of the reduced model is governed
by the reduced master equation:

ṗgroupn =

n∑
k=1

q̂n−k,np
group
n−k + q̂n+1,np

group
n+1 −

∞∑
k=1

q̂n,n+kp
group
n − q̂n,n−1pgroupn ,

=

n−1∑
k=0

ckp
n−kqpgroupk + dn+1p

group
n+1 − (cnp+ dn)p

group
n . (3)

3 Solving the reduced master equation in steady-state conditions

3.1 General solution

We next solve the reduced master equation exactly in steady-state conditions and thus obtain the
steady-state protein number distribution. To solve Eq. (3), we note that it is recursive with respect to the
group index n. It involves two variables when n = 0, three variables when n = 1, and so on. Enforcing
steady-state conditions by setting the time derivative on the left-hand side to zero, it is straightforward
to prove by induction that the solution is given by

pgroupn = Kpn
c0
d1
· c1 + d1

d2
· · · cn−1 + dn−1

dn
, n ≥ 1, (4)

where K = pgroup0 is a normalization constant such that
∑∞

n=0 p
group
n = 1. Since Cn,m = Cn−1,m +

Cn−1,m−1, it is easy to check that

d1d2 · · · dn = n!dn
σu

σu + Cn,mσb
. (5)

Inserting Eq. (5) into Eq. (4) yields

pgroupn = K
(p/d)n

n!
· σu + Cn,mσb

σu
· c0(c1 + d1) · · · (cn−1 + dn−1). (6)

Let pn = p0,n + p1,n denote the probability of having n protein copies. Given that there are n protein
molecules in a single cell, the gene can exist in either microstate (0, n) or microstate (1, n). Since (0, n)
is contained in group n and (1, n) is contained in group n +m, the probability distribution of protein
numbers is given by

pn = pgroupn pqss(0,n) + pgroupn+m pqss(1,n). (7)

Inserting Eq. (6) into Eq. (7) gives the steady-state distribution of protein numbers:

pn = K
(p/d)n

n!
c0(c1 + d1) · · · (cn−1 + dn−1)

×
[
1 +

σb
σu
· (p/d)

m

m!
(cn + ndn) · · · (cn+m−1 + dn+m−1)

]
.

(8)

3.2 Special cases

We next focus on two important special cases. In the case of L = σb/σu � 1, protein binding
is much slower than protein unbinding and thus the gene is mostly in the unbound state. In this case,
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the second term in the square bracket of Eq. (8) is negligible and the effective transcription rate and
effective protein decay rate reduce to

cn = ρu, dn = nd. (9)

Therefore, the protein number has the negative binomial distribution

pn =
(r)n
n!

pnqr,

where r = ρu/d is the mean number of mRNA copies produced during the protein’s lifetime when the
gene is in the unbound state and (x)n = x(x+ 1) · · · (x+ n− 1) is the Pochhammer symbol.

Similarly, in the case of L = σb/σu � 1, protein binding is much faster than protein unbinding and
thus the gene is mostly in the bound state. In this case, the first term in the square bracket of Eq. (8) is
negligible and the effective transcription rate and effective protein decay rate reduce to

cn =

ρu, n < m,

ρb, n ≥ m,
dn =

nd, n < m,

(n−m)d, n ≥ m.
(10)

Therefore, the steady-state protein distribution reduces to the negative binomial distribution

pn =
(s)n
n!

pnqs, (11)

where s = ρb/d is the mean number of mRNA copies produced during the protein’s lifetime when the
gene is in the bound state.

3.3 Testing the accuracy of the analytical solution

As a check of our reduction method and the steady-state analytic solution, we compare it with the
numerical solution obtained using FSP [27] for the full master equation given in Eq. (2). The results
for positive and negative feedback loops are shown in Fig. 2(a) and Fig. 2(b), respectively. When using
FSP, we truncate the state space at a large integerN and solve the truncated master equation numerically
using the MATLAB function ODE45. The truncation size was chosen asN = 5max(ρbB, ρuB). Since
ρbB and ρuB are the typical protein numbers in the bound and unbound gene states, respectively, the
probability that the protein number is outside this truncation size is very small and practically can always
be ignored (according to our simulations, N = 3max(ρbB, ρuB) is already accurate enough). Note
that we used FSP rather than the stochastic simulation algorithm (SSA) since in the regime of fast gene
switching, the former is much faster computationally than the SSA, because a majority of the time in
the SSA is spent simulating gene switching events.

From Fig. 2(a),(b), it is clear that the analytic solution is in excellent agreement with FSP under fast
gene switching, but as expected, significant deviations appear for moderate or slow gene switching. Our
model predicts both unimodal and bimodal steady-state protein distributions. To gain a deeper insight
into bimodal gene expression, we define the strength of bimodality as

κ =
Hlow −Hvalley

Hhigh
, (12)

where Hlow and Hhigh are the heights of the low and high expression peaks, respectively, and Hvalley is
the height of the valley between them. As can be seen from the definition, κ is a quantity between 0
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and 1 for bimodal protein distributions and is set to 0 for unimodal protein distributions. In general, to
display strong bimodality, the following two conditions are necessary: (i) the two peaks should have
similar heights and (ii) there should be a deep valley between them. The former ensures that the time
periods spent in the low and high expression states are comparable while the latter guarantees that the
two expression levels are distinguishable. Clearly, κ is large if the two conditions are both satisfied
and is small if any one of the two conditions is violated; hence κ serves as an effective indicator that
characterizes the strength of bimodality [8]. We shall next refer to bimodality in steady-state conditions
as stationary bimodality (SB). In Fig. 2(c),(d), we investigate the relationship between SB (characterized
by its strength κ) and the type of feedback loop, the feedback strength L = σb/σu, the cooperativity m
and the smaller one of ρb and ρu (which represents the transcription rate in the repressed gene state). In
the positive feedback case, SB fails to be observed when ρu and ρb are comparable but can be observed
over a wide range of L when ρu � ρb (Fig. 2(c)). In particular, our stochastic model predicts that
positive feedback is capable of SB when gene switching is fast even in the absence of cooperative
binding (the case of m = 1). Increasing cooperativity enlarges the region where SB is observed. On
the other hand, a negative feedback loop does not exhibit SB under fast gene switching, independent of
whether there is cooperative binding or not (Fig. 2(d)).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

806040200 -3 -2 -1
-2

-1.5

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3 -2 -1 0 1 2 3 4

a c

b d

protein number log10L log10L

lo
g 1

0ρ
u

lo
g 1

0ρ
b

 p
ro

te
in

 d
is

tri
bu

tio
n

 p
ro

te
in

 d
is

tri
bu

tio
n

-2

-1.5

-1

-0.5

0

0.5

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

SB
SB

-2

-1.5

-1

-0.5

0

0.5

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3 4 -2

-1.5

-1

-0.5

0

0.5

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3 4

positive
feedback

negative
feedback

DBDB

SB

m = 1 m = 2 m = 4

log10L
-3 -2 -1 0 1 2 3 4 5 60

0.03

0.06

0.09

50403020100

Fig. 2. Steady-state behaviour of auto-regulated bursty gene expression with cooperative binding in fast
switching conditions. (a),(b) Comparison of the steady-state analytic solution (red circles) with FSP (coloured
curves) for different gene switching rates. The model parameters are chosen such that (a) shows a positive feedback
loop (ρb = 30, ρu = 5) and (b) shows a negative feedback loop (ρb = 5, ρu = 30). The rest of the model
parameters in (a),(b) are chosen as m = 4, d = 1, L = 1.16× 10−4, p = 0.6. The protein unbinding rate is chosen
as σu = 106 (blue), σu = 5, (green) and σu = 1 (yellow). (c) Regions in parameter space where SB (stochastic
bimodality) and DB (deterministic bistability) are exhibited for a positive feedback loop: the green curve encloses
the region for SB and the orange curve for DB. The region designated as SB is that satisfying the criterion κ > 0
and the region designated as DB is determined by finding the number of positive real roots of the rate equation
given by Eq. (14) in steady-state conditions, c(x)B = dx. If this equation has exactly three positive real roots (two
stable and one unstable), then the system will show DB. The strength of bimodality κ is also shown by the heat map,
depicting it as a function of the feedback strength L, cooperativity m and the transcription rate ρu in the unbound
gene state under fast gene switching. The model parameters are chosen as ρb = 10, d = 1, σu = 106, p = 0.5. (d)
Same as (c) but for a negative feedback loop with model parameters chosen as ρu = 10, d = 1, σu = 106, p = 0.5.
In (c),(d), the cooperativity is chosen as m = 1 (left), m = 2 (middle) and m = 4 (right).

Bimodality in the stochastic model can be seen as arising due to switching between two effective
phenotypic states of the system. A different definition of switching behaviour, albeit the classical one,
is that stemming from deterministic rate equations: if the steady-state solution of these equations has
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two stable fixed points then the system is bistable and if it has only one stable fixed point then it
is monostable. We shall refer to the former as deterministic bistability (DB) to clearly distinguish it
from SB. The deterministic rate equations follow from a mean-field approximation of the full CME of
the auto-regulatory feedback loop and is given by the following set of ODEs (see Appendix A for its
derivation): 

ġ =
1

m!
σbx

m(1− g)− σug,

ẋ = − 1

(m− 1)!
σbx

m(1− g) +mσug + ρuB(1− g) + ρbBg − dx,
(13)

where g is the mean number of genes in the bound state and x = 〈n〉 is the mean protein number. In the
limit of fast gene switching, the gene component is in fast equilibrium and thus we have

g =
σbx

m

m!σu + σbxm
.

Inserting this equation into the equation for mean protein number, we obtain the following effective rate
equation:

ẋ = c(x)B − dx, (14)

where
c(x) =

ρum!σu + ρbσbx
m

m!σu + σbxm
=
ρum! + ρbLx

m

m! + Lxm

is the effective transcription rate.
In Fig. 2(c),(d), we also depict the regions of parameter space where DB is observed. For negative

feedback loops, no DB is exhibited, as was also the case for SB (Fig. 2(d)). However for positive
feedback loops, the regions of SB and DB are different (Fig. 2(c)). For no cooperativity (m = 1), SB
is observed but not DB; for moderate cooperativity (m = 2), the region of DB becomes significantly
enlarged though still much smaller than that of SB; for high cooperativity (m = 4), the regions of SB
and DB overlap to a considerable extent. Hence the differences between SB and DB are most apparent
for positive feedback loops with low cooperativity. Note that within the mean-field approximation,
DB is associated with a bimodal distribution where each mode corresponds to one of the stable states.
Hence in the regions where there is SB but not DB, we can say that noise induces the bimodality of the
distribution. In contrast, in the regions where there is DB but not SB, we can say that noise induces the
unimodality of the distribution.

4 Solving the time-dependent reduced master equation

4.1 Analytic solution

Following the method proposed in [28], we next solve the reduced master equation in time and thus
obtain the time-dependent protein number distribution. For convenience, we truncate the state space at
a large integer N . Let pgroup = (pgroup0 , pgroup1 , · · · , pgroupN ) denote the time-dependent solution of the
reduced model. It then follows that the reduced master equation given by Eq. (3) can be rewritten in
matrix form as

ṗgroup = pgroupQ,

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985291
http://creativecommons.org/licenses/by-nc-nd/4.0/


where

Q =



−c0p c0pq c0p
2q c0p

3q · · ·
d1 −(c1p+ d1) c1pq c1p

2q · · ·
0 d2 −(c2p+ d2) c2pq · · ·
0 0 d3 −(c3p+ d3) · · ·
...

...
...

...
. . .


is the generator matrix of the reduced model. The solution to this ODE can be represented using the
matrix exponential as

pgroup(t) = pgroup(0)eQt.

It is usually difficult to compute the matrix exponential analytically. In general, we need to calculate
the eigenvalues and eigenvectors of Q. However, the special structure of Q allows us to bypass the
eigenvector calculation. By Cauchy’s integral formula for matrices [29], for any continuous function f ,
we have

f(Q) =
1

2πi

∮
C
(zI −Q)−1f(z)dz,

where C is an arbitrary simple closed curve in the complex plane that contains all eigenvalues of Q in
its interior. If we take f(z) = pgroup(0)etz , then we obtain

pgroup(t) =
1

2πi

∮
C
pgroup(0)(zI −Q)−1etzdz. (15)

Suppose now that initially we start from a fixed group n0; then the initial distribution of the reduced
model is given by pgroupn (0) = δn0

(n), where δn0
(n) is a Kronecker delta that takes the value of 1 when

n = n0 and the value of 0 otherwise. We shall explain later how to extend our results to more general
initial distributions. Under the point initial distribution, Eq. (15) can be simplified to

pgroupn (t) =
1

2πi

∮
C
(zI −Q)−1n0+1,n+1e

tzdz.

By Cramer’s rule of computing the inverse matrix, we can prove that

(zI −Q)−1n0+1,n+1 =
1

uN+1(z)
×

pn−n0
∏n−1
k=n0+1(z + ck + dk)[(z + cn0

+ dn0
)un0

(z)− un0+1(z)]wn(z), n0 < n,

un(z)vn(z), n0 = n,

dn+1 · · · dn0
un(z)vn0

(z), n0 > n,

where un(z) are polynomials defined recursively by

un(z) = [z + cn−1p+ dn−1(1 + p)]un−1(z)− dn−1p(z + cn−2 + dn−2)un−2(z), (16)

u0(z) = 1, u1(z) = z + c0p,

with uN+1(z) = det(zI − Q) being the characteristic polynomial of Q, and vn(z) are polynomials
defined recursively by

vn(z) = [z + cn+1p+ dn+1]wn+1(z)− dn+2p(z + cn+1 + dn+1)wn+2(z),

vN (z) = 1, vN−1(z) = z + cNp+ dN .
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Here vn(z) are defined with the aid of another sequence of polynomials wn(z), which are defined
recursively by

wn(z) = [z + cn+1p+ dn+1(1 + p)]wn+1(z)− dn+2p(z + cn+1 + dn+1)wn+2(z),

wN (z) = 1, wN−1(z) = z + cNp+ dN (1 + p).

Therefore, we obtain

pgroupn (t) =
1

2πi

∮
C

gn0n(z)

uN+1(z)
etzdz,

where gn0n(z) are polynomials defined as

gn0n(z) =


pn−n0

∏n−1
k=n0+1(z + ck + dk)[(z + cn0

+ dn0
)un0

(z)− un0+1(z)]wn(z), n0 < n,

un(z)vn(z), n0 = n,

dn+1 · · · dn0
un(z)vn0

(z), n0 > n.

Since uN+1(z) is the characteristic polynomial of Q, we have

uN+1(z) = (z − λ0)r0 · · · (z − λl)rl ,

where λ0, · · · , λl are all pairwise distinct eigenvalues of Q with r0, · · · , rl being their multiplicities,
respectively. We can then apply Cauchy’s residue theorem:∮

C
f(z)dz = 2πi

∑
k

Res(f ; ak),

where ak are all singularities of f inside the simple closed curve C. In our current case, the singularities
are all the eigenvalues λk and thus∮

C

gn0n(z)

uN+1(z)
etzdz = 2πi

l∑
k=0

1

(rk − 1)!

drk−1

dzrk−1
gn0n(z)e

tz∏
j 6=k(z − λj)rj

∣∣∣∣
z=λk

.

Therefore, once we have known all eigenvalues of Q, the time-dependent solution of the reduced model
is given by

pgroupn (t) =

l∑
k=0

1

(rk − 1)!

drk−1

dzrk−1
gn0n(z)e

tz∏
j 6=k(z − λj)rj

∣∣∣∣
z=λk

.

In most cases, the eigenvalues of Q are mutually different (any matrix can be approximated by such
matrices to any degree of accuracy). In this case, we have l = N and r0 = · · · = rl = 1 and thus the
time-dependent solution can be simplified as

pgroupn (t) =

N∑
k=0

gn0n(λk)e
λkt∏

j 6=k(λk − λj)
. (17)

Since we have found the transient solution of the reduced model, inserting Eq. (17) into Eq. (7) finally
gives the time-dependent distribution of protein numbers:

pn(t) =
σu

σu + Cn,mσb

N∑
k=0

gn0n(λk)e
λkt∏

j 6=k(λk − λj)
+

Cn+m,mσb
σu + Cn+m,mσb

N∑
k=0

gn0,n+m(λk)e
λkt∏

j 6=k(λk − λj)
. (18)
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In the general case that the reduced model starts from a general initial distribution pn(0) = πn, the
transition solution is given by

pgroupn (t) =

∞∑
n0=0

πn0
pgroupn (t|n0),

where pgroupn (t|n0) is the transient solution given that the reduced model starts from group n0. In what
follows, we assume that the initial protein number is zero, i.e. n0 = 0, and the gene is initially in the
unbound state, unless otherwise stated. This assumption is common in studies comparing experimental
data with deterministic model predictions for the time dependence of autoregulation [30]. We emphasize
here that although our theory is presented in the framework of auto-regulated bursty gene expression,
the time-dependent analytic solution derived above can be applied to an arbitrary bursty birth-death
processes with general birth rate cn and general death rate dn. This makes our method widely applicable
beyond the framework of stochastic gene expression.

4.2 Convergence to the steady-state solution

In fact, the steady-state solution obtained earlier can be recovered from the time-dependent solution
by taking t → ∞. By the Perron-Frobenius theorem [31], when the system is ergodic, the generator
matrix Q must have zero as its eigenvalue with multiplicity one and all other eigenvalues must have
negative real parts:

0 = λ0 > Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λl), (19)

where Re(z) is the real part of z. Therefore, the only term in Eq. (17) independent of time t is the first
term and all other terms tend to zero exponentially fast as t → ∞. Since the system is ergodic, the
steady-state solution is independent of the choice of the initial distribution. As a result, we can take n0
to be sufficiently large, allowing us to focus on to the case of n0 > n, which is now

pgroupn (t→∞) =
dn+1 · · · dn0

un(0)vn0
(0)∏

j 6=0(−λj)
.

Since the term vn0
(0)/

∏
j 6=0(−λj) contributes the same to each term, we can treat it as a normalizing

factor. We can also do the same with dn+1 · · · dn0
, which contributes the same as (d1 · · · dn)−1 up to

normalization. Therefore, the steady-state solution has the following simplified expression:

pgroupn (t→∞) = K
un(0)

d1 · · · dn
,

where K is a normalization constant. Moreover, we can prove by induction that

un(0) = pnc0(c1 + d1) · · · (cn−1 + dn−1),

which finally leads to

pgroupn (t→∞) = K
pn

n!

c0
d1
· c1 + d1

d2
· · · cn−1 + dn−1

dn
, n ≥ 1.

This is exactly the same as Eq. (4) obtained in the previous section.
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4.3 Approximate eigenvalues for the cases of fast and slow protein binding

Our analytic solution for the time-dependent protein distribution as given by Eq. (18) depends on
all eigenvalues of the generator matrix Q. In general, it is very difficult to compute these eigenvalues
analytically. However, as we now show, this can be done for two special cases, namely when protein
binding is much slower or much faster than protein unbinding.

We first focus on the case of L� 1, i.e. protein binding is much slower than protein unbinding. In
this case, all the eigenvalues of Q are approximately given by (see Appendix B for details)

λ ≈ −kd, k = 0, 1, 2, ... (20)

In other words, when L� 1, all the approximate eigenvalues of Q are nonpositive integer multiples of
the protein decay rate.
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Fig. 3. Comparison of the approximate time-dependent solution (red circles) with FSP (blue curve) when
protein binding is much slower (L � 1) or much faster (L � 1) than protein unbinding. (a) Case of slow
protein binding. The model parameters are chosen as m = 2, ρb = 10, ρu = 5, d = 1, σu = 106, L = 10−4, p =
0.6. The red circles are obtained by substituting the approximate eigenvalues given by Eq. (20) in our analytic
solution given by Eq. (18) for N = 200. (b) Case of fast protein binding. The model parameters are chosen as
m = 2, ρb = 10, ρu = 1, d = 1, σu = 104, L = 10, p = 0.6. The red circles are obtained by substituting the
approximate eigenvalues given by Eq. (21) in our analytic solution given by Eq. (18) for N = 200. The green
vertical line in (a) and (b) shows the mean protein number predicted by the deterministic rate equation.

We next focus on the case of L� 1, i.e. protein binding is much faster than protein unbinding. In
this case, all the eigenvalues of Q are approximately given by (see Appendix C for details)

λ ≈ x1, · · · , xm, 0,−d,−2d,−3d, ..., (21)

where x1, · · · , xm are all the zeros of the polynomial um(z) of degree m defined in Eq. (16). Using the
approximation given in Eq. (10), the polynomial um(z) is defined recursively by

um(z) = [z + ρup+ (m− 1)d(1 + p)]um−1(z)− (m− 1)dp[z + ρu + (m− 2)d]um−2(z),

u0(z) = 1, u1(z) = z + ρup.

In other words, when L � 1, all the approximate eigenvalues of Q are nonpositive integer multiples
of the protein decay rate combined with all the zeros of the polynomial um(z). In particular, in the
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non-cooperative case of m = 1, we have x1 = −ρup and thus all the approximate eigenvalues of Q are
given by

λ ≈ −ρup, 0,−d,−2d,−3d, ...

In the cooperative case of m = 2, we have

x1,2 =
−2ρup− d±

√
d2 + 4ρudpq

2
,

and thus all the approximate eigenvalues of Q are given by

λ ≈ x1, x2, 0,−d,−2d,−3d, ...

Substituting these approximate eigenvalues in Eq. (18) gives the approximate time-dependent protein
distribution.

Eigenvalues when L� 1

Real eigenvalues 0.000 -0.994 -1.986 -2.975 -3.961 -4.944 -5.925 -6.903

Approximate eigenvalues 0 -1 -2 -3 -4 -5 -6 -7

Eigenvalues when L� 1

Real eigenvalues 0.000 -0.394 -0.997 -1.791 -1.992 -2.975 3.954 -4.934

Approximate eigenvalues 0 -0.4 -1 -1.8 -2 -3 -4 -5

Table 1. The first eights real and approximate eigenvalues of the generator matrix Q when protein binding
is much slower (L � 1) or much faster (L � 1) than protein unbinding. In the case of L � 1, the
model parameters are chosen as m = 2, ρb = 10, ρu = 5, d = 1, σu = 106, L = 10−4, p = 0.6 and the
approximate eigenvalues are computed using Eq. (20). In the case of L � 1, the model parameters are chosen
as m = 2, ρb = 10, ρu = 1, d = 1, σu = 104, L = 10, p = 0.6 and the approximate eigenvalues are computed
using Eq. (21). Note that these two sets of parameters (and the associated eigenvalues) correspond to those used to
calculate the time-dependent distributions in Fig. 3(a),(b).

To verify the accuracy of the approximate time-dependent solution, we compare it with FSP in
the regimes of L � 1 (Fig. 3(a)) and L � 1 (Fig. 3(b)). Clearly, the approximate solution is in
excellent agreement with FSP. With the parameters chosen in Fig. 3, the first eight real and approximate
eigenvalues of Q are listed in Table 1, from which we can see that the approximate eigenvalues are very
accurate in the two limiting regimes. When L is neither too large nor too small, we can compute the
eigenvalues ofQ numerically and substituting them in Eq. (18) to obtain the semi-exact time-dependent
protein distribution. The transient solution obtained in this way is in full agreement with FSP for a large
range of model parameters and over time in the regime of fast gene switching (Fig. 4).

5 Classification of the time trajectories of an auto-regulating gene

5.1 Dynamical phase diagrams

According to both the numerical solution of the full CME and the semi-analytical solution shown
in Fig. 4, our auto-regulatory gene expression model can exhibit three different types of dynamic
behaviours: (i) the protein distribution is unimodal at all times (Fig. 4(a),(b)), (ii) the protein distribution
is unimodal at small and large times and is bimodal at intermediate times (Fig. 4(c),(d)), and (iii)
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Fig. 4. Comparison of the semi-analytical time-dependent solution with FSP for six distinct types of dynamic
behaviours at four time points. For an initial protein number equal to zero and the gene is initially in the unbound
state, the analytical solution is shown by red circles while FSP is shown by the solid blue line. Specifically the
red circles are obtained by substituting the numerically found eigenvalues of the generator matrix Q (truncated
at N = 200) in Eq. (18). The dash green vertical line shows the mean protein number predicted by the
deterministic rate equations. The black vertical line shows the other stable fixed point (if there exists one) of
the deterministic rate equation. For an initial protein distribution given by a Poisson with mean 5, we show the
numerical time-dependent distribution obtained using FSP in solid grey. U, TB and SB refer to the following
three properties: unimodality at all times, transient bimodality at intermediate times (unimodal at short and long
times) and bimodality at long times (unimodal at short times), respectively. DM and DB refer to deterministic
monostability and bistability, respectively. (a) U+DM. The model parameters are chosen as m = 2, ρb = 20, ρu =
5, d = 1, σu = 106, σb = 0.01σu, p = 0.6. (b) U+DB. The model parameters are chosen as m = 4, ρb =
10, ρu = 1, d = 1, σu = 106, σb = 0.009σu, p = 0.6. (c) TB+DM. The model parameters are chosen as
m = 2, ρb = 50, ρu = 5, d = 1, σu = 106, σb = 0.0045σu, p = 0.6. (d) TB+DB. The model parameters are
chosen as m = 4, ρb = 10, ρu = 0.1, d = 1, σu = 106, σb = 250σu, p = 0.5. (e) SB+DM. The model parameters
are chosen as m = 2, ρb = 50, ρu = 4, d = 1, σu = 106, σb = 0.0016σu, p = 0.6. (f) SB+DB. The model
parameters are chosen as m = 4, ρb = 10, ρu = 5, d = 0.5, σu = 106, σb = 0.3σu, p = 0.6.
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the protein distribution is unimodal at small times and is bimodal at large times (Fig. 4(e),(f)). To
distinguish between them, we refer to (i) as unimodality (U), to (ii) as transient bimodality (TB), and to
(iii) as stationary bimodality (SB; this has already been introduced earlier).

Phase Stochastic model Deterministic model

1 U DM

2 U DB

3 TB DM

4 TB DB

5 SB DM

6 SB DB

Table 2. Six dynamical phases of auto-regulated bursty gene expression in fast switching conditions. There
are three possible phases for the stochastic model (U, TB, and SB) and two possible phases for the deterministic
model (DM and DB), so that in sum there are six possible dynamical phases.

Each type of dynamic behaviour can be further divided into two phases according to whether the
deterministic model shows monostability (DM) or bistability (DB). Hence the dynamic behaviour of
our auto-regulatory gene expression model can be classified into six possible phases (Table 2). Phases
1 and 6 (U+DM and SB+DB, respectively) are cases where the stochastic and deterministic models
both predict the same behaviour; in other words the presence of noise has no effect on determining the
number of modes of the protein distribution. In contrast, in the other four phases 2-5, noise plays an
important role in the creation or destruction of bimodality. We further note that TB (the behaviour of
the stochastic model in phases 3 and 4) is a purely stochastic effect since bistability in the deterministic
model can only be determined at the steady state. The numerical solution obtained using FSP and the
analytical solution indicate that each of the six dynamical phases can appear when model parameters
are appropriately chosen (Fig. 4(a)-(f)). Note that the existence of these phases is not specific to an
initial condition given by a delta function; as shown by the grey distributions in Fig. 4, the same phases
are also found when the initial condition follows a Poisson distribution. To determine the regions for
the six phases in parameter space, we illustrate the L-ρu and L-B phase diagrams for positive feedback
loops (Fig. 5(a),(b)) and the L-ρb and L-B phase diagrams for negative feedback loops (Fig. 5(c),(d)).

We first focus on the positive feedback case (Fig. 5(a),(b)). From the phase diagrams, it can be
seen that the system exhibits TB when the feedback strength L is large. The dependence of TB on
the mean protein burst size B is less strong though it appears that B must be sufficiently large too (in
fact, B must be greater than 2/(s − 1), as will be proved later). In most biologically relevant cases,
the transcription rates in the two gene states are not of the same order of magnitude, i.e. ρu � ρb,
and the mean burst size B is large. In this situation, as the feedback strength L increases, a positive
auto-regulatory gene network typically undergoes two successive stochastic bifurcations, from the U
phase to the SB phase and then to the TB phase (Fig. 5(a),(b)). In both phase diagrams, there is a triple
point separating the U, SB, and TB phases of the stochastic model — this is analogous to the triple
point in the phase transition between solid, liquid, and gaseous states of a substance due to the effects
of temperature and pressure [32]. Note that all the six phases appear for high cooperativity (m = 4), but
for no cooperativity (m = 1) only three of the six phases are observed; hence increasing nonlinearity in
the mass action law for binding kinetics increases the richness of the system’s temporal behaviour. The
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rarest phases are phases 2 and 4 (U+DB and TB+DB, respectively), implying that when cooperativity is
sufficiently high such that there is deterministic bistability, the stochastic model is most likely to exhibit
stationary bimodality, i.e. to be in the phase 6 (SB+DB).

We next focus on the negative feedback case (Fig. 5(c),(d)). Since the stochastic model cannot
produce SB and the deterministic model cannot produce DB (as determined in Section 3), a negative
feedback loop only has two types of dynamic behaviours, i.e. phases 1 and 3 (U+DM and TB+DM,
respectively). This is in contrast to a positive feedback loop which possesses all six dynamical phases.
From the phase diagrams, it can be seen that the system exhibits TB when the feedback strength L
is relatively small but the mean protein burst size B is relatively large. For negative feedback loops,
the value of the transcriptional rate ρu in the repressed gene state practically seems uncorrelated with
TB. In the typical case that the transcription rates in the two gene states are not of the same order of
magnitude, i.e. ρb � ρu, and the mean burst size B is large, as the feedback strength L increases, a
negative auto-regulatory gene network undergoes a stochastic bifurcation from the TB phase to the U
phase (Fig. 5(c),(d)).

In both positive and negative feedback cases, we find that an increased protein burst size broadens
the region of TB to a large extent. When all model parameters are fixed (except a possible interchange
between ρu and ρb), a negative feedback loop requires a significantly larger burst size to produce TB
than a positive feedback loop (Fig. 5(b),(d)).
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Fig. 5. Dynamical phase diagrams for auto-regulated bursty gene expression with cooperative binding in
fast switching conditions. Different phases are labelled according to the classification in Table 2. (a) L-ρu phase
diagram for positive feedback loops. The model parameters are chosen as ρb = 10, d = 1, σu = 106, B = 1.
(b) L-B phase diagram for positive feedback loops. The model parameters are chosen as ρb = 10, ρu =
0.1, d = 1, σu = 106. (c) L-ρb phase diagram for negative feedback loops. The model parameters are chosen as
ρu = 10, d = 1, σu = 106, B = 2. (b) L-B phase diagram for negative feedback loops. The model parameters are
chosen as ρb = 0.1, ρu = 10, d = 1, σu = 106. In each phase diagram, we keep σu as a constant and change the
value of L by tuning σb. In (a)-(d), the cooperativity is chosen as m = 1 (up), m = 2 (middle) and m = 4 (down).
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5.2 Analytical estimation of the observation time window for transient bimodality

Phases displaying TB are the most interesting since they have no deterministic counterpart. Now we
shall use the theory developed earlier in Section 4.1 to verify the existence of TB theoretically and more
importantly to estimate the observation time window over which it can be detected. For convenience,
we rewrite Eq. (18) as

pn(t) =

N∑
k=0

γkne
λkt,

where
γkn =

σu
σu + Cn,mσb

gn0n(λk)∏
j 6=k(λk − λj)

+
Cn+m,mσb

σu + Cn+m,mσb

gn0,n+m(λk)∏
j 6=k(λk − λj)

.

The coefficients associated with the exponential functions satisfy (see Appendix D for details)

lim
L→∞
ρu→0

γkn = 0, for any k ≥ 2. (22)

This shows that when L� 1 (fast protein binding) and ρu � ρb (the transcription rate in the repressed
gene state is much smaller than that in the active gene state), all terms can be ignored except for the first
two exponential terms:

pn(t) ≈ γ0n + γ1ne
λ1t = (γ0n + γ1n)e

λ1t + γ0n(1− eλ1t).

Since the the initial protein number is assumed to be zero, we have

γ0n + γ1n ≈ pn(0) = δ0(n).

Moreover, since the system is ergodic and L� 1, it follows from Eq. (11) that

γ0n = pn(t→∞) =
(s)n
n!

pnqs.

Therefore, at each intermediate time t, the protein number has a zero-inflated negative binomial (ZINB)
distribution

pn(t) ≈ eλ1tδ0(n) +
(
1− eλ1t

) (s)n
n!

pnqs, (23)

which is a mixture of a point mass at zero and a negative binomial distribution with their coefficients
depending on time t. When t is relatively large, the time-dependent protein distribution only depends on
the first few exponential terms (the steady-state protein distribution only depends on the first exponential
term), while when t is very small, the time-dependent protein distribution depends on all exponential
terms. Since we only retain the first two exponential terms in the approximation, the ZINB distribution
may deviate from the real distribution when t is extremely small.

To understand when bimodality manifests, we note that the mode of the negative binomial part is
given by

µmode =

0 when s ≤ 1,

[(s− 1)B] when s > 1,

where [x] denotes the integer part of x. Hence the ZINB distribution peaks at both zero and the non-zero
mode [(s− 1)B], if and only if p0(t) > p1(t) and µmode ≥ 2, i.e.

2 ≤ (s− 1)B < 1 +
eλ1t

1− eλ1t
(1 +B)s+1. (24)
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From Eq. (24), we see that there is a critical time

tc = −
1

λ1
log

(
1 +

(1 +B)s+1

sB −B − 1

)
(25)

such that bimodality occurs if and only if (s − 1)B ≥ 2 and 0 < t < tc (Fig. 6). Note that while
the ZINB distribution predicts bimodality at very small times, the real distribution may be unimodal
because the approximate distribution may deviate from the real one when t� 1 (Fig. 6). Nevertheless
the calculation provides an accurate estimate of the observation time window for TB and furthermore
confirms the observation in Fig. 5 that for a positive feedback loop, the phenomenon occurs when the
burstiness of protein expression is sufficiently large and protein binding is much faster than unbinding.
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Fig. 6. Transient bimodality. When ρu � ρb and B ≥ 2/(s− 1), a positive feedback loop produces TB when
L� 1. The blue curve shows the real time-dependent protein distribution simulated using FSP and the red circles
show the approximate solution given by Eq. (23). The model parameters are chosen as m = 1, ρb = 10, ρu =
0.1, σu = 103, L = 100, p = 0.5. The critical time for TB is computed using Eq. (25) with λ1 ≈ −ρup (the
approximate eigenvalues for m = 1 and L� 1 are computed analytically in Appendix C). Note that FSP confirms
the theoretical prediction that TB disappears when t > tc.

Here we have looked at TB for positive feedback. As we have shown in Fig. 5, the phenomenon
also exists for negative feedback when protein binding is slow compared to unbinding. Unfortunately
the time-dependent solution in this case depends on many exponential terms (often > 10 terms) which
makes it almost impossible to analytically estimate the observation time window using the same method
as we have carried out for positive feedback.

5.3 Relationship between the phases, the relaxation time and the protein mean

From our numerical simulations using FSP in Fig. 4, we observe that the relaxation time of our
auto-regulatory gene expression model is closely related to its dynamic behaviour. When the system
shows U, it relaxes to the steady state rapidly (Fig. 4(a),(b)). When the system shows SB, it takes a
much longer time to reach the steady state (Fig. 4(e),(f)). However, when the system shows TB, it can
either relax rapidly Fig. 4(c) or relax very slowly Fig. 4(d).

To further study the possible link between the dynamical phases of the system and the relaxation
time, we compute the relaxation rate (the inverse of the relaxation time) of our stochastic model across
large regions of parameter space. Note that here the relaxation rate is to a good approximation given
by γ = |Re(λ1)|, i.e. the spectral gap between the zero eigenvalue (which is associated with the steady
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Fig. 7. Relaxation kinetics for auto-regulated bursty gene expression. (a) Heat plot shows the relaxation rate γ
as a function of the feedback strength L and the mean protein burst size B for positive feedback loops. The model
parameters are chosen as m = 1, ρb = 10, ρu = 0.1, d = 1, σu = 106. (b) Heat plot shows the relaxation rate γ as
a function of the feedback strength L and the transcription rate ρu in the unbound gene state for positive feedback
loops. The model parameters are chosen as m = 1, ρb = 10, d = 1, σu = 106, B = 1. (c) Heat plot shows the
relaxation rate γ as a function of the feedback strength L and the mean protein burst size B for negative feedback
loops. The model parameters are chosen as m = 1, ρb = 0.1, ρu = 10, d = 1, σu = 106. (d) Heat plot shows the
relaxation rate γ as a function of the feedback strength L and the transcription rate ρb in the bound gene state for
negative feedback loops. The model parameters are chosen as m = 1, ρu = 10, d = 1, σu = 106, B = 2. Different
phases (U, TB, and SB) are marked on each figure to show the relationship between the relaxation rate and the
dynamical phases.

state) and the first nonzero eigenvalue (which is associated with the slowest transient decay) of the
generator matrix Q [33]. In Fig. 7, using heat maps, we show the size of the relaxation rate as a
function of the parameters L, ρu, ρb and B for positive feedback loops (Fig. 7(a),(b)) and for negative
feedback loops (Fig. 7(c),(d)). The regions of parameter space where each of the three phases (U, SB
and TB) manifests are also shown.

In the positive feedback case, we find that SB (phases 5 and 6) is always contained in the subregion
with a small relaxation rate. This clearly shows that SB significantly prolongs the relaxation time of
stochastic gene expression. In contrast, U (phases 1 and 2) is associated with a large relaxation rate and
hence a short relaxation time. Moreover, we find that while TB (phases 3 and 4) occupies a large portion
of the subregion with a small relaxation rate, it also occupies a substantial portion of the subregion with
a large relaxation rate. This shows that TB does not always give rise to slow relaxation kinetics; it slows
down the relaxation time of a positive feedback loop only when ρu � ρb, i.e. when the transcription
rate in the repressed gene state is much smaller than that in the active gene state (Fig. 7(b)).

In the negative feedback case, we find no clear relationship between the relaxation rate and the two
possible phases of the system (U or TB) (Fig. 7(c),(d)), which is in contradistinction to what we have
observed in the positive feedback case. We emphasize here that while Fig. 7 displays the simulation
results in the non-cooperative case, simulations in the cooperative case bear out the same conclusions.

Next we seek to understand the relationship between the dynamical phases of the system and the
protein mean. In Fig. 8, we use heat maps to investigate how the size of the steady-state protein mean
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depends on the parameters L, ρu, ρb and B for positive feedback loops (Fig. 8(a),(b)) and for negative
feedback loops (Fig. 8(c),(d)). The regions of parameter space where each of the three phases (U, SB
and TB) manifests are also shown. The most notable observation is that the regions of parameter space
with the highest and lowest protein mean are also those where TB and U manifest, respectively. In
addition, SB also manifests in the region where the protein mean is large.

The connection between TB/SB and high protein mean regions can be understood as follows. Recall
that a positive auto-regulatory gene circuit exhibits TB/SB when L,B � 1. Now when L � 1, the
gene is mostly in the bound state which has a larger transcription rate than the unbound state. If both L
and B are large, then the mean protein number at the steady state is also large. Similarly, recall that a
negative auto-regulatory gene circuit exhibits TB when L � 1 and B � 1. When L � 1, the gene is
mostly in the unbound state which has a larger transcription rate than the bound state. If L is small and
B is large, then the mean protein number at the steady state is also large. Therefore, in both positive and
negative feedback cases, it is clear that the occurrence of TB/SB is closely related to the steady-state
protein mean. While Fig. 8 shows simulation results in the non-cooperative case, simulations including
cooperativity lead us to the same observations.
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Fig. 8. Steady-state protein mean for auto-regulated bursty gene expression. (a) Heat plot shows the steady-
state protein mean log10〈n〉 as a function of the feedback strength L and the mean protein burst size B for
positive feedback loops. (b) Heat plot shows the steady-state protein mean as a function of the strength L and the
transcription rate ρu in the unbound gene state for positive feedback loops. (c) Heat plot shows the steady-state
protein mean as a function of the feedback strength L and the mean protein burst size B for negative feedback loops.
(d) Heat plot shows the steady-state protein mean as a function of the feedback strength L and the transcription
rate ρb in the bound gene state for negative feedback loops. The model parameters in (a)-(d) are chosen to be the
same as in the four subfigures of Fig. 7. Different phases (U, TB, and SB) are marked on each figure to show the
relationship between the steady-state protein mean and the dynamical phases.

6 Summary and Discussion

In this paper, starting from a stochastic model of a bursty auto-regulating gene with cooperative
protein-gene interactions, we used the multiscale averaging method to derive a reduced stochastic model
describing protein dynamics in fast switching conditions. This model was then solved exactly in steady
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state and in time. The time-dependent solution is expressed in terms of the eigenvalues of the generator
matrix of the reduced model which can be evaluated either numerically or else can be obtained from
an approximate theory valid in the limit of fast or slow protein binding. The time-dependent solution
was shown to excellently agree with numerical simulations using FSP and were used to identify six
different dynamical phases of the system. The three main dynamical phases of the stochastic model are
associated with the following types of time-evolution: (i) the protein distribution remains unimodal at all
times (unimodality); (ii) the protein distribution becomes bimodal at intermediate times and then reverts
back to being unimodal at long times (transient bimodality) and (iii) the protein distribution switches to
being bimodal at long times (stationary bimodality). For each of these phases, the deterministic model
can show either monostable or bistable behaviour at long times, hence implying the existence of six
dynamical phases. If the deterministic and stochastic models share the same dynamic behaviour then
noise is not important, whereas the opposite is true if their dynamic behaviours are contrasting. Out of
the six phases, we find that only in two, noise is not important. Transient bimodality has no deterministic
counterpart and hence noise plays a central role behind its manifestation.

We investigated the relationship between the dynamical phases and the transcription rates, the ratio
of protein binding to unbinding rates, the relaxation rate and the mean protein number. While positive
feedback loops display all six phases for sufficiently high cooperativity, negative feedback loops display
only two. The most eclectic of these phases, namely the two phases which lead to transient bimodality
(a purely noise-induced phenomenon), manifest provided that the translational burstiness in protein
expression is large and protein binding to the gene is much faster (slower) than unbinding for positive
(negative) feedback loops. Furthermore, for positive feedback loops, we used the theory to estimate
the observation time window where transient bimodality occurs and showed that the phenomenon is
associated with regions of parameter space where the mean protein numbers and relaxation times are
large. In contrast, for negative feedback loops, we showed that there is no clear relationship between
transient bimodality and the relaxation time but it is also associated with regions of parameter space
where the mean protein numbers are high. We also demonstrated that in most biologically relevant cases,
as the feedback strength increases, a positive feedback loop undergoes two stochastic bifurcations from
the unimodality phase to the stationary bimodality phase and then to the transient bimodality phase,
while a negative feedback loop undergoes only one stochastic bifurcation from the transient bimodality
phase to the unimodality phase.

Our work thus advances our knowledge of the conditions under which it is possible to observe
two seemingly different subpopulations (each associated with a mode of the protein distribution) in a
population of identical cells. In particular, while it is currently thought that the transient appearance
of two subpopulations can be due to a temporally varying stimulus in gene circuits with slow promoter
switching (see Fig. 5 of Ref. [34]), we have shown that no such stimulus is needed in the presence
of fast switching conditions (transient bimodality in phases 3 and 4). Furthermore we have shown that
this mechanism does not rely on cooperativity and is enhanced when protein expression is sufficiently
bursty, that is when many proteins are produced from a single mRNA copy, a fairly common scenario in
eukaryotic cells because of the long lifetimes of eukaryotic mRNA and large translation rates [35, 36].

For simplicity and analytical tractability, we have here not included any explicit description of cell
cycle effects. While we have an implicit effective description of protein dilution due to cell division,
via the effective protein decay rate, it has recently been shown that in some parameter regimes, this
type of model cannot capture the stochastic dynamics predicted by models with an explicit description
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of the cell cycle [37]. We hence anticipate that the inclusion of cell division and DNA replication may
alter the time-evolution of protein distributions and may even introduce novel dynamical phases hitherto
undescribed. These effects are currently under investigation.
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Appendix

A. Derivation of the deterministic rate equations

The CME of the auto-regulatory gene expression model is given by Eq. (2). Here we derive its
mean-field approximation, i.e. we derive equations for the mean protein number and for the probability
of the gene being in the bound or unbound state, under the assumption that the protein number is large
and its fluctuations are negligible. Let pG∗ =

∑∞
n=0 p1,n denote the probability of the gene being in

the bound state and let 〈n〉 =
∑∞

n=0 npn denote the mean of the protein number. If we interchange the
order of the two sums, we obtain (when all terms are nonnegative, it follows from Fubini’s theorem that
we can always interchange the order of the two sums)

∞∑
n=0

n−1∑
k=0

ρbp
n−kqp1,k =

∞∑
k=0

ρbp1,k

∞∑
n=k+1

pn−kq =

∞∑
k=0

ρbp1,k

∞∑
n=1

pnq = ρbppG∗ .

Moreover, it is easy to verify that

∞∑
n=0

Cn+m,mσbp0,n+m =
σb
m!

∞∑
n=0

(n−m+ 1) · · ·np0,n.

Combining the above two equations, it follows from of the CME that the evolution of pG∗ is governed
by the ordinary differential equation:

d

dt
pG∗ =

σb
m!

∞∑
n=0

(n−m+ 1) · · ·np0,n − σupG∗ .

On the other hand, if we interchange the order of the two sums, we obtain

∞∑
n=0

n

n−1∑
k=0

ρbp
n−kqp1,k =

∞∑
k=0

ρbp1,k

∞∑
n=k+1

npn−kq =

∞∑
k=0

ρbp1,k

∞∑
n=1

(n+ k)pnq

= ρbBpG∗ + ρbp

∞∑
n=0

np1,n.

Moreover, it is easy to see that

∞∑
n=0

nCn+m,mσbp0,n+m −
∞∑
n=0

nCn,mσbp0,n = − σb
(m− 1)!

∞∑
n=0

(n−m+ 1) · · ·np0,n.

22

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Combining the above two equations, it follows from of the CME that the evolution of 〈n〉 is governed
by the ordinary differential equation:

d

dt
〈n〉 = − σb

(m− 1)!

∞∑
n=0

(n−m+ 1) · · ·np0,n +mσupG∗ + ρuB(1− pG∗) + ρbBpG∗ − d〈n〉.

By the mean-field approximation, we assume that the protein number is large and its fluctuations are
negligible, i.e. n ≈ n− 1 ≈ · · · ≈ n−m+ 1 ≈ 〈n〉. This shows that

∞∑
n=0

(n−m+ 1) · · ·np0,n = 〈n〉m
∞∑
n=0

p0,n = 〈n〉m(1− pG∗).

Thus, under the mean-field approximation, the evolution of pG∗ and 〈n〉 is governed by the following
coupled set of ordinary differential equations:

d

dt
pG∗ =

1

m!
σb〈n〉m(1− pG∗)− σupG∗ ,

d

dt
〈n〉 = − 1

(m− 1)!
σb〈n〉m(1− pG∗) +mσupG∗ + ρuB(1− pG∗) + ρbBpG∗ − d〈n〉.

These are the deterministic rate equations given by Eq. (13) in the main text.

B. Approximate eigenvalues for the case of slow protein binding

Our analytic solution for the time-dependent protein distribution, Eq. (18), depends on all eigenval-
ues of the generator matrix Q. In general, it is very difficult to compute these eigenvalues analytically.
However, this can be done in two special cases: protein binding is much slower or much faster than
protein unbinding.

We first focus on the case of L � 1. In this case, protein binding is much slower than protein
unbinding. Since the effective transcription rate cn and effective protein decay rate dn have the approx-
imations given in Eq. (9), the generator matrix of the reduced model is then given by

Q =


−ρup ρupq ρup

2q · · ·
d −(ρup+ d) ρupq · · ·
0 2d −(ρup+ 2d) · · ·
...

...
...

. . .

 (26)

Recall that an eigenvalue-eigenvector pair (λ, v) of Q is related by the characteristic equation vQ = λv,
which can be written in components as

n−1∑
k=0

ckp
n−kqvk + dn+1vn+1 − (cnp+ dn)vn = λvn, (27)

where we normalize the eigenvector v = (vn) so that v0 = 1. Using the approximation given in Eq. (9),
the characteristic equation can be rewritten as

n−1∑
k=0

ρup
n−kqvk + (n+ 1)dvn+1 = (λ+ ρup+ nd)vn. (28)
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To proceed, we define the function f(z) to be the generating function of the eigenvector:

f(z) =

∞∑
n=0

vnz
n. (29)

Since v0 = 1, we have f(0) = 1. Then Eq. (28) can be converted into the ordinary differential equation:

d(1− z)(1− pz)f ′(z) = [λ(1− pz) + ρup(1− z)]f(z), f(0) = 1.

The solution of this equation is given by

f(z) = (1− z)−λ/d(1− pz)−ρu/d.

We next make a crucial observation that the components of the eigenvector v = (vn) must decay
exponentially with respect to n when the system is ergodic [38]. In other words, vn has the following
approximation when n� 1:

|vn| ∼ Ke−γn,

where K is a constant and γ > 0 describes the decay rate of vn with respect to n. Thus, we have

lim sup
n→∞

n
√
|vn| = e−γ < 1.

This shows that the convergence radius of the power series given in Eq. (29) must be greater than 1 and
thus the generating function f(z) must be holomorphic on the unit circle. Here f(z) is the product of
two terms, (1 − z)−λ/d and (1 − pz)−ρu/d. Since p < 1, the second term must be holomorphic on the
unit circle. On the other hand, it is easy to see that the first term is holomorphic on the unit circle if and
only if −λ/d is a nonnegative integer. This imposes a strong constraint on possible eigenvalues. Using
this constraint, all the approximate eigenvalues of Q are given by

λk ≈ −kd, k = 0, 1, 2, · · · .

Substituting these approximate eigenvalues in Eq. (18) gives the approximate time-dependent protein
distribution for slow protein binding conditions.

C. Approximate eigenvalues for the case of fast protein binding

We consider the case of L � 1, i.e. protein binding is much faster than protein unbinding. In this
case, the effective transcription rate cn and effective protein decay rate dn have the approximation given
in Eq. (10). Since dn = (n−m)d for any n ≥ m, we have dm = 0 and thus the generator matrix

Q =

(
Q1 ∗
0 Q2

)

is an upper triangular block matrix, where the upper-left block is given by

Q1 =


−ρup ρupq · · · ρup

m−1q

d −(ρup+ d) · · · ρup
m−2q

. . . . . .

0 0 (m− 1)d −(ρup+ (m− 1)d)

 , (30)
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and the lower-right block is given by

Q2 =


−ρbp ρbpq ρ2bpq · · ·
d −(ρbp+ d) ρbpq · · ·
0 2d −(ρbp+ 2d) · · ·
...

...
...

. . .

 .

Therefore, the eigenvalues of Q are composed of the eigenvalues of both Q1 and Q2. Using elementary
transformations, it is easy to prove that the eigenvalues of Q1 are given by the roots of the polynomial
equation um(z) = 0, where um(z) is the polynomial defined in Eq. (16). Using the approximation
given in Eq. (10), the polynomial um(z) is defined recursively by

um(z) = [z + ρup+ (m− 1)d(1 + p)]um−1(z)− (m− 1)dp[z + ρu + (m− 2)d]um−2(z),

u0(z) = 1, u1(z) = z + ρup.

Since um(z) is a polynomial of degree m, it has m zeros, say x1, · · · , xm. Moreover, we note that Q2

is exactly the matrix defined in Eq. (26) with ρu replaced by ρb. Therefore, all the eigenvalues of Q2

are given by 0,−d,−2d,−3d, · · · . Then all the eigenvalues of Q are approximately given by

λ ≈ x1, .., xm, 0,−d,−2d,−3d, ...

In particular, in the non-cooperative case of m = 1, we have x1 = −ρup and thus all the approximate
eigenvalues of Q are given by

λ ≈ −ρup, 0,−d,−2d,−3d, ...

In the cooperative case of m = 2, we have

x1,2 =
−2ρup− d±

√
d2 + 4ρudpq

2
,

and thus all the approximate eigenvalues of Q are given by

λ ≈ x1, x2, 0,−d,−2d,−3d, ...

Substituting these approximate eigenvalues in Eq. (18) gives the approximate time-dependent protein
distribution for fast protein binding conditions.

D. Proof of a non-trivial equality

Here we shall give the proof of Eq. (22). In the main text, we have proved that

pn(t) =

N∑
k=0

γkne
λkt,

where
γkn =

σu
σu + Cn,mσb

gn0n(λk)∏
j 6=k(λk − λj)

+
Cn+m,mσb

σu + Cn+m,mσb

gn0,n+m(λk)∏
j 6=k(λk − λj)

. (31)

When L� 1, we have computed all the approximate eigenvalues of Q in Appendix B. In particular, the
first nonzero eigenvalue λ1 must satisfy

−ρup ≤ λ1 < 0.
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When m = 1, this is clear because the first nonzero eigenvalue is given by

λ1 = −min(ρup, d).

When m ≥ 2, it is easy to prove that the above inequality also holds. This clearly shows that

lim
L→∞
ρu→0

λ1 = 0.

Since we have assumed that the initial protein number is zero, we have n0 = 0 and thus

g0n(z) = pn
n−1∏
k=1

(z + ck + dk)[(z + c0 + d0)u0(z)− u1(z)]wn(z).

When L� 1, we have c0 = ρu and d0 = 0. Since u0(z) = 1 and u1(z) = z + c0p, we have

g0n(z) = ρup
nq

n−1∏
k=1

(z + ck + dk)wn(z).

Since λ0 = 0 and λ1 � 1, we have

lim
L→∞
ρu→0

∏
j 6=k

(λk − λj)

{
= 0, if k = 0, 1,

> 0, if k ≥ 2.

Combining the above two equations shows that for any k ≥ 2,

lim
L→∞
ρu→0

g0n(λk)∏
j 6=k(λk − λj)

= 0.

Inserting this equation into Eq. (31) gives Eq. (22).
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