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ABSTRACT

Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in
most organisms and has broad implications for medicine and agriculture. Identifying the
molecular mechanisms underlying pleiotropy has the power to unveil previously unknown
biological connections between seemingly unrelated traits. Additionally, the discovery of
pleiotropic genes increases our understanding of both genetic and phenotypic complexity by
characterizing novel gene functions. Quantitative trait locus (QTL) mapping has been used to
identify several pleiotropic regions in many organisms. However, gene knockout studies are
needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we use a panel of
296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a
high-throughput fitness assay to identify a single large-effect QTL on the center of chromosome
V associated with variation in responses to eight chemotherapeutics. We validate this QTL with
near-isogenic lines and pair genome-wide gene expression data with drug response traits to
perform mediation analysis, leading to the identification of a pleiotropic candidate gene, scb-1.
Using deletion strains created by genome editing, we show that scb-1, which was previously
implicated in response to bleomycin, also underlies responses to other double-strand DNA
break-inducing chemotherapeutics. This finding provides new evidence for the role of scb-1 in
the nematode drug response and highlights the power of mediation analysis to identify causal
genes.
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INTRODUCTION

Pleiotropy refers to the well established notion that a single gene or genetic variant
affects multiple distinct traits (Paaby and Rockman 2013), and the discovery of pleiotropic
genes can provide meaningful insights into the molecular mechanisms of these traits (Tyler,
Crawford, and Pendergrass 2016). It has become easier to identify pleiotropic genes with the
advent of reverse-genetic screens and quantitative trait locus (QTL) mapping (Paaby and
Rockman 2013). For example, pleiotropic QTL for diverse growth and fitness traits have been
identified in organisms such as yeast (Peltier et al. 2019; Jerison et al. 2017; Cubillos et al.
2011), Arabidopsis (Fusari et al. 2017; McKay, Richards, and Mitchell-Olds 2003; El-Assal et al.
2004), Drosophila (McGuigan et al. 2014; Brown et al. 2013), and mice (White et al. 2013;
Leamy et al. 2014; Lin et al. 2014). These studies have led to important questions in the field of
evolutionary genetics regarding the ‘cost of complexity’ (Fisher, n.d.; Orr 2000), as a single
mutation might be beneficial for one trait and harmful for another (Wagner and Zhang 2011).
Furthermore, human association studies have identified pleiotropic variants associated with
different diseases (Sivakumaran et al. 2011; Chesmore, Bartlett, and Williams 2018; Pavlides et
al. 2016), highlighting both the ubiquity and importance of certain immune-related genes and
oncogenes across unrelated diseases (Gratten and Visscher 2016; Borrello, Degl’lnnocenti, and
Pierotti 2008). Perhaps the strongest evidence of pleiotropy exists for molecular phenotypes.
Large-scale expression QTL (eQTL) mapping studies have identified single regulatory variants
that control expression and likely the functions of hundreds of genes at once, opening a window
into the mechanisms for how traits are controlled (Rockman, Skrovanek, and Kruglyak 2010;
Breitling et al. 2008; Hasin-Brumshtein et al. 2016; Keurentjes et al. 2007; Frank Wolfgang
Albert et al. 2018; Frank W. Albert and Kruglyak 2015).

The nematode Caenorhabditis elegans provides a tractable metazoan model to identify
and study pleiotropic QTL (Paaby and Rockman 2013). A large panel of recombinant inbred
advanced intercross lines (RIAILs) derived from two divergent strains, N2 and CB4856
(Rockman and Kruglyak 2009; Andersen et al. 2015), has been leveraged in several linkage
mapping analyses (McGrath et al. 2009; Bendesky and Bargmann 2011; Lee et al. 2017; Singh
et al. 2016; Zdraljevic et al. 2019; Brady et al. 2019; Zdraljevic et al. 2017; Evans et al. 2018;
Andersen et al. 2014; Vifuela et al. 2010; Doroszuk et al. 2009; Snoek et al. 2014; Rodriguez et
al. 2012; Glater, Rockman, and Bargmann 2014; Rockman, Skrovanek, and Kruglyak 2010;
Zamanian et al. 2018a; Bendesky et al. 2011, 2012; Schmid et al. 2015; Balla et al. 2015;
Kammenga et al. 2007; Gutteling, Riksen, et al. 2007; Gutteling, Doroszuk, et al. 2007; Li et al.
2006; Reddy et al. 2009; Seidel et al. 2011; Seidel, Rockman, and Kruglyak 2008). Quantitative
genetic analysis using these panels and a high-throughput phenotyping assay (Andersen et al.
2015) has facilitated the discovery of numerous QTL (Zamanian et al. 2018b), several
quantitative trait genes (QTG) (Brady et al. 2019) and quantitative trait nucleotides (QTN)
(Zdraljevic et al. 2019, 2017) underlying fitness-related traits in the nematode. Additionally, three
pleiotropic genomic regions were recently found to influence responses to a diverse group of
toxins (Evans et al. 2018). However, overlapping genomic regions might not represent true
pleiotropy but could demonstrate the co-existence of tightly linked loci (Paaby and Rockman
2013).
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Here, we use linkage mapping to identify a single overlapping QTL on chromosome V
that influences the responses to eight chemotherapeutic compounds. We show that these
drug-response QTL also overlap with an expression QTL hotspot that contains the gene scb-1,
previously implicated in bleomycin response (Brady et al. 2019). Although the exact mechanism
of sch-1 is yet unknown, it is hypothesized to act in response to stress (Riedel et al. 2013) and
has weak homology to a viral hydrolase (Zhang et al. 2018; Kelley et al. 2015). Together, these
data suggest that the importance of sch-1 expression might extend beyond bleomycin response.
We validated the QTL using near-isogenic lines (NILs) and performed mediation analysis to
predict that scb-1 expression explains the observed QTL for five of the eight drugs. Finally, we
directly tested the effect of schb-1 loss of function on chemotherapeutic responses. We
discovered that expression of scb-17 underlies differential responses to several
chemotherapeutics that cause double-strand DNA breaks, not just bleomycin. This discovery of
pleiotropy helps to further define the role of sch-1 by expanding its known functions and
provides insights into the molecular mechanisms underlying the nematode drug response.

MATERIALS AND METHODS

Strains

Animals were grown at 20°C on modified nematode growth media (NGMA) containing
1% agar and 0.7% agarose to prevent burrowing and fed OP50 (Ghosh et al. 2012). The two
parental strains, the canonical laboratory strain, N2, and the wild isolate from Hawaii, CB4856,
were used to generate all recombinant lines. 208 recombinant inbred advanced intercross lines
(RIAILs) generated previously by Rockman et al. (Rockman and Kruglyak 2009) (set 1 RIAILS)
were phenotyped for expression QTL mapping (detailed below). A second set of 296 RIAILs
generated previously by Andersen et al. (Andersen et al. 2015) (set 2 RIAILs) was used more
extensively for drug phenotyping and linkage mapping. Near-isogenic lines (NILs) were
generated by backcrossing a selected RIAIL for several generations (Brady et al. 2019), using
PCR amplicons for insertion-deletion (indels) variants to track the introgressed region. NILs
were whole-genome sequenced to verify clean introgressions. CRISPR-Cas9-mediated
deletions of scb-71 were described in Brady et al. (Brady et al. 2019). All strains are available
upon request or from the C. elegans Natural Diversity Resource (Cook et al. 2016).

High-throughput fitness assays for linkage mapping

For dose responses and RIAIL phenotyping, we used a high-throughput fitness assay
(HTA) described previously (Andersen et al. 2015). In summary, populations of each strain were
passaged and amplified on NGMA plates for four generations. In the fifth generation, gravid
adults were bleach-synchronized and 25-50 embryos from each strain were aliquoted into
96-well microtiter plates at a final volume of 50 pL K medium (Boyd, Smith, and Freedman
2012). The following day, arrested L1s were fed HB101 bacterial lysate (Pennsylvania State
University Shared Fermentation Facility, State College, PA; (Garcia-Gonzalez et al. 2017)) at a
final concentration of 5 mg/mL in K medium and were grown to the L4 larval stage for 48 hours
at 20°C with constant shaking. Three L4 larvae were sorted into new 96-well microtiter plates
containing 10 mg/mL HB101 bacterial lysate, 50 yM kanamycin, and either diluent (1% water or
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1% DMSO) or drug dissolved in the diluent using a large-particle flow cytometer (COPAS
BIOSORT, Union Biometrica; Holliston, MA). Sorted animals were grown for 96 hours at 20°C
with constant shaking. The next generation of animals and the parents were treated with sodium
azide (50 mM in 1X M9) to straighten their bodies for more accurate length measurements.
Animal length (median.TOF), optical density (median.norm.EXT), and brood size (norm.n) were
quantified for each well using the COPAS BIOSORT. Phenotypic measurements collected by the
BIOSORT were processed and analyzed using the R package easysorter (Shimko and
Andersen 2014) as described previously (Brady et al. 2019).

Dose-response assays

Four genetically divergent strains (N2, CB4856, JU258, and DL238) were treated with
increasing concentrations of each of the eight drugs using the HTA described above. The dose
of each drug that provided a reproducible drug-specific effect that maximizes between-strain
variation while minimizing within-strain variation across the three traits was selected for the
linkage mapping experiments. The chosen concentrations are as follows: 100 yM amsacrine
hydrochloride (Fisher Scientific, #A277720MG) in DMSO, 50 yM bleomycin sulfate (Fisher,
#50-148-546) in water, 2 uM bortezomib (VWR, #AAJ60378-MA) in DMSO, 250 uM carmustine
(Sigma, #1096724-75MG) in DMSO, 500 uM cisplatin (Sigma, #479306-1G) in K media, 500 uM
etoposide (Sigma, #£1383) in DMSO, 500 yM puromycin dihydrochloride (VWR, #62111-170) in
water, and 150 uM silver nitrate (Sigma-Aldrich, #S6506-5G) in water.

Linkage mapping

Set 1 and set 2 RIAILs were phenotyped in each of the eight drugs and controls using
the HTA described above. Linkage mapping was performed on each of the drug and gene
expression traits using the R package linkagemapping
(https://github.com/AndersenLabl/linkagemapping) as described previously (Brady et al. 2019).
The cross object derived from the whole-genome sequencing of the RIAILs containing 13,003
SNPs was loaded using the function load cross_obj(“N2xCB4856cross full’). The RIAIL
phenotypes were merged into the cross object using the merge pheno function with the
argument set = 1 for expression QTL mapping and set = 2 for drug phenotype mapping. A
forward search (fsearch function) adapted from the R/qtl package (Broman et al. 2003) was
used to calculate the logarithm of the odds (LOD) scores for each genetic marker and each trait
as -n(In(1-R?)/2In(10)) where R is the Pearson correlation coefficient between the RIAIL
genotypes at the marker and trait phenotypes (Bloom et al. 2013). A 5% genome-wide error rate
was calculated by permuting the RIAIL phenotypes 1000 times. The marker with the highest
LOD score above the significance threshold was selected as the QTL then integrated into the
model as a cofactor and mapping was repeated iteratively until no further significant QTL were
identified. Finally, the annotate lods function was used to calculate the effect size of each QTL
and determine 95% confidence intervals defined by a 1.5 LOD drop from the peak marker using
the argument cutoff = proximal.
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Modified HTA for NIL validation

NILs and scb-1 deletion strains were tested using a modified version of the HTA detailed
above. Strains were propagated for two generations, bleach-synchronized in three independent
replicates, and titered at a concentration of 25-50 embryos per well of a 96-well microtiter plate.
The following day, arrested L1s were fed HB101 bacterial lysate at a final concentration of 5
mg/mL with either diluent or drug. After 48 hours of growth at 20°C with constant shaking,
nematodes were treated with sodium azide (5 mM in water) prior to analysis of animal length
and optical density using the COPAS BIOSORT. As only one generation of growth is observed,
brood size was not calculated. A single trait (median.EXT) was chosen to represent animal
growth generally, as the trait is defined by optical density over length. Because of the modified
timing of the drug delivery, lower drug concentrations were needed to see the previous effect.
The selected doses are as follows: 12.5 yM amsacrine in DMSO, 12.5 yM bleomycin in water, 2
MM bortezomib in DMSO, 250 uM carmustine in DMSO, 125 uM cisplatin in K media, 62.5 uM
etoposide in DMSO, 300 uM puromycin in water, and 100 uM silver in water.

Expression QTL analysis

Microarray data for gene expression using 15,888 probes were previously collected from
synchronized young adult populations of 209 set 1 RIAILs (Rockman, Skrovanek, and Kruglyak
2010). Expression data were corrected for dye effects and probes with variants were removed
(Andersen et al. 2014). Linkage mapping was performed as described above for the remaining
14,107 probes, and a significance threshold was determined using a permutation-based False
Discovery Rate (FDR). FDR was calculated as the ratio of the average number of genes across
10 permutations expected by chance to show a maximum LOD score greater than a particular
threshold vs. the number of genes observed in the real data with a maximum LOD score greater
than that threshold. We calculated the FDR for a range of thresholds from 2 to 10, with
increasing steps of 0.01, and set the threshold so that the calculated FDR was less than 5%.

Local eQTL were defined as linkages whose peak LOD scores were within 1 Mb of the
starting position of the probe (Rockman, Skrovanek, and Kruglyak 2010). eQTL hotspots were
identified by dividing the genome into 5 cM bins and counting the number of distant eQTL that
mapped to each bin. Significance was determined as bins with more eQTL than the
Bonferroni-corrected 99" percentile of a Poisson distribution with a mean of 3.91 QTL (total QTL
/ total bins) (Brem et al. 2002; Evans et al. 2018; Rockman, Skrovanek, and Kruglyak 2010).

Mediation analysis

A total of 159 set 1 RIAILs were phenotyped in each of the eight drugs and controls
using the HTA described above. Mediation scores were calculated with bootstrapping using the
mediate function from the mediation R package (version 4.4.7) (Tingley et al. 2014) for each
QTL identified from the set 2 RIAILs and all 49 probes (including scb-1, A_12_P104350) within
the chromosome V eQTL hotspot using the following models:

(1) Mediator model: Im(expression ~ genotype)
(2) Outcome model: Im(phenotype ~ expression + genotype)
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The output of the mediate function can be summarized as follows: the total effect of
genotype on phenotype, ignoring expression (tau.coef); the direct effect of genotype on
phenotype, while holding expression constant (z0); the estimated effect of expression on
phenotype (d0); the proportion of the total effect that can be explained by expression data (n0)
The final mediation score is determined as the proportion of the total QTL effect that can be
attributed to gene expression (n0). The likelihood of scb-1 mediating a given QTL effect was
calculated relative to the other 74 probes in the region. Traits in which scb-1 was at or above the
95" percentile of this distribution were prioritized over other traits.

Statistical analysis

Broad-sense heritability was calculated from the dose response phenotypes using the
Imer function in the Ime4 R package (Bates et al. 2014) with the formula phenotype ~ 1 +
(1|strain) for each dose. All statistical tests of phenotypic differences between strains were
performed using the TukeyHSD function (R Core Team 2017) on an ANOVA model with the
formula phenotype ~ strain.

Data Availability

File S1 contains the results of the original dose response HTA. File S2 contains the
residual phenotypic values for all 159 set 1 RIAILs, 296 set 2 RIAILs, and parent strains (N2 and
CB4856) in response to all eight chemotherapeutics. File S3 contains the linkage mapping
results for the set 2 RIAILs for all 24 drug-response traits tested in the HTA. File S4 contains the
genotype of the NILs in the study. File S5 contains the raw pruned phenotypes for the NIL dose
response with the modified HTA. File S6 contains the pairwise statistical significance for all
strains and high-throughput assays. File S7 contains the microarray expression data for 14,107
probes from Rockman et al. 2010. File S8 contains the linkage mapping results for the
expression data obtained with the set 1 RIAILs. File 89 contains the location of each eQTL
hotspot and a list of genes with an eQTL in each hotspot. File S10 contains the linkage mapping
results from the set 1 RIAILs for all 24 drug-response traits tested in the HTA. File S11 contains
the pairwise mediation estimates for all QTL and all 75 probes. File S12 contains the raw
pruned phenotypes for the scb-1 deletion modified HTA. The datasets and code for generating
figures can be found at hitps://github.com/AndersenlLab/scb1_mediation_manuscript.
Supplemental material available at Figshare.

RESULTS

Natural variation on chromosome V underlies differences in responses to several
chemotherapeutics

We measured C. elegans development and chemotherapeutic sensitivity as a function of
animal length (TOF), optical density (EXT), and brood size (n) with a high-throughput assay
developed using the COPAS BIOSORT (see Methods) (Zdraljevic et al. 2019; Brady et al. 2019;
Evans et al. 2018; Zdraljevic et al. 2017; Andersen et al. 2015). We exposed four genetically
divergent strains (N2, CB4856, JU258, and DL238) to increasing doses of eight
chemotherapeutic compounds. Five of these compounds (bleomycin, carmustine, etoposide,
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amsacrine, and cisplatin) are known to cause double-strand DNA breaks and/or inhibit DNA
synthesis (Dorr 1992; Dasari and Tchounwou 2014; Montecucco, Zanetta, and Biamonti 2015;
Ketron et al. 2012; Nikolova et al. 2017). The remaining three compounds either inhibit protein
synthesis (puromycin) (Azzam and Algranati 1973), inhibit the proteosome and subsequent
protein degradation (bortezomib) (Piperdi et al. 2011), or cause cellular toxicity in a poorly
defined way (silver nitrate) (Kaplan, Akalin Ciftci, and Kutlu 2016) (Table 1). In the presence of
each drug, nematodes were generally shorter, less optically dense, and produced smaller
broods compared to non-treated nematodes (Figure S1, File S1). We observed significant
phenotypic variation among strains and identified a substantial heritable genetic component for
most traits (average H? = 0.51 +/- 0.24).

We exposed a panel of 296 RIAILs (set 2 RIAILs, see Methods) to all eight
chemotherapeutics at a selected concentration that both maximizes among-strain and
minimizes within-strain phenotypic variation (File $2). Linkage mapping for all three traits for
each of the eight drugs (total of 24 traits) identified 56 QTL from 23 traits (one trait had no
significant QTL), several of which have been identified previously (Brady et al. 2019; Evans et
al. 2018; Zdraljevic et al. 2017) (File S3, Figure S2). Strikingly, a QTL on the center of
chromosome V was linked to variation in responses to all eight compounds (Figure 1). In all
cases, the CB4856 allele on chromosome V is associated with greater resistance to the drug
than the N2 allele (Figure S2, File S2, File S3). We previously identified this genomic interval
as a QTL hotspot, defined as a region heavily enriched for toxin-response QTL (Evans et al.
2018). Because several of the chemotherapeutics share a similar mechanism of action, a single
pleiotropic gene might underlie the observed QTL for multiple drugs.

In order to isolate and validate the effect of this QTL, we constructed reciprocal
near-isogenic lines (NILs) by introgressing a genomic region on chromosome V from the
resistant CB4856 strain into the sensitive N2 background and vice versa (File S4). We used a
modified high-throughput assay (see Methods) to measure length and optical density of a
population of animals grown in the presence of the drug for 48 hours (from larval stages L1 to
L4). In this modified assay, less drug was required to observe the same phenotypic effect as
before and a single trait (median.EXT) that combines both optical density and length serves as
a proxy for the complexity of animal growth (Figure S3, File S5). For all eight
chemotherapeutics tested, the strain with the N2 introgression was significantly more sensitive
than its CB4856 parent and/or the strain with the CB4856 introgression was significantly more
resistant than its N2 parent (Figure 2, File S5, File S6). These data confirm that one or more
genetic variant(s) within this region on chromosome V cause increased drug sensitivities in N2.

Expression QTL mapping identifies a hotspot on the center of chromosome V

Genetic variation can affect a phenotype most commonly through either modifications of
the amino acid sequence that lead to altered protein function (or even loss of function) or
changes in the expression level of the protein. In the latter case, measuring the intermediate
phenotype (gene expression) can be useful in elucidating the mechanism by which genetic
variation causes phenotypic variation. More specifically, cases with overlap between expression
QTL (eQTL) and drug-response QTL suggest that a common variant could underlie both traits
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and provide evidence in support of causality for the candidate gene in question (Sasaki,
Frommlet, and Nordborg 2018; Huang et al. 2015).

To identify such cases of overlap between expression QTL and the drug-response QTL
on chromosome V, we need genome-wide expression data for the RIAILs. Expression of 15,888
probes were previously measured using microarrays for a panel of 208 RIAILs (set 1 RIAILs,
see Methods) between N2 and CB4856 (Rockman and Kruglyak 2009) (File S7). The variation
in gene expression was used as a phenotypic trait to identify eQTL using linkage mapping with
1,455 variants (Rockman, Skrovanek, and Kruglyak 2010). Rockman et al. identified 2,309
eQTL and three regions with significantly clustered distant eQTL (eQTL hotspots), suggesting
that these regions are pleiotropic, wherein one or more variant(s) are affecting expression of
multiple genes. We performed whole-genome sequencing for these strains and identified 13,003
informative variants (Brady et al. 2019). Linkage mapping with these variants for the 14,107
probes without genetic variation in CB4856 (Andersen et al. 2014) identified 2,540 eQTL
associated with variation in expression of 2,196 genes (Figure 3A, File S8). These eQTL have
relatively large effect sizes compared to the drug-response QTL. On average, each eQTL
explains 23% of the phenotypic variance in gene expression among the RIAIL population. Half
of the eQTL (50.2%; 1,276) mapped within 1 Mb of the gene whose expression was measured
and were classified as local (see Methods). The other half (49.7%; 1,264) were found distant
from their respective gene, and over a third (37%; 940) were found on different chromosomes
entirely. In general, eQTL effect sizes increased, max LOD scores decreased, and confidence
intervals become smaller compared to the original mapping results (File S8). These differences
and the additional eQTL observed between this analysis and the original are likely due to the
integration of new genetic markers.

In total, we identified nine eQTL hotspots (Figure 3B, File S9). Three of which were
previously identified on chromosome IV and X (Rockman, Skrovanek, and Kruglyak 2010).
Notably, three of the eQTL hotspots overlap with the previously identified drug-response QTL
hotspots on chromosomes IV and V (Evans et al. 2018). The overlap of these eQTL and
drug-response QTL hotspots could provide strong candidate genes whose expression underlies
the differences in nematode drug responses generally. Expression of one gene of interest,
sch-1, has been previously implicated in response to bleomycin (Brady et al. 2019) and resides
within the eQTL hotspot region on chromosome V (File S9). Together with the putative role for
schb-1 as a hydrolase (Zhang et al. 2018; Kelley et al. 2015; Brady et al. 2019), these data
suggest that variation in expression of scb-71 and responses to these eight chemotherapeutics
(including bleomycin) could be mechanistically linked.

Mediation analysis suggests scb-71 expression plays a role in responses to several
chemotherapeutics

Mediation analysis seeks to explain the relationship between an independent and
dependent variable by including a third (non-observable) intermediary variable. We can use
mediation analysis to understand how certain genetic variants on chromosome V (independent
variable) affect drug responses (dependent variable) through differential gene expression of
genes within the eQTL hotspot (mediator variable) (Figure S4). We measured brood size,
animal length, and optical density in response to all eight chemotherapeutics in the set 1 RIAILs
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and performed linkage mapping for these traits (File S2, File $10, Figure S5). Although the
power to detect QTL with these strains is lower than in our original mapping set (set 2 RIAILs)
(Andersen et al. 2015), we still identified overlapping QTL on chromosome V for half of the
drugs tested (bleomycin, cisplatin, silver, and amsacrine) (Figure S5). We also detected
putative small-effect QTL just below the permutation-based threshold for at least one other
chemotherapeutic (File $10).

We calculated the proportion of QTL effects that can be explained by variation in
expression of scb-1 compared to the other 48 genes in the chromosome V eQTL hotspot using
mediation analysis (see Methods). We estimated that expression of scb-1 mediates 61.3% of
the chromosome V QTL for bleomycin response (Figure 4, File $11). Moreover, out of all 49
genes in the region, scb-1 was a clear mediation score outlier, falling in the 99" percentile of all
local genes. Of the remaining seven chemotherapeutics, we showed that amsacrine, cisplatin,
etoposide, and puromycin all showed moderate evidence of scb-1 mediation, with scb-7 falling
near or above the 95" percentile of mediation estimates for all local genes (Figure 4, File $11).
In fact, scb-1 was the only gene with a significant mediation estimate within the drug-response
QTL confidence interval for cisplatin. The opposite result was seen for bortezomib, carmustine,
and silver, in which all showed strong evidence against scb-1 mediation (Figure 4, File S11).
This in silico approach indicated that expression of sch-7 might be an intermediate link between
genetic variation on chromosome V and responses to five of the eight chemotherapeutic drugs
tested.

Expression of scb-1 mediates responses to several chemotherapeutics that cause
double-strand DNA breaks

To empirically test whether scb-71 expression modulates the chromosome V QTL effect
for each drug, we exposed two independently derived strains with scb-1 deletions (Brady et al.
2019) to each chemotherapeutic (Figure 5, Figure S6, File S6, File S12). Because RIAILs with
the CB4856 allele on chromosome V express higher levels of scb-1 than RIAILs with the N2
allele (File S7, File S8), we expect that loss of scb-1 will cause increased drug sensitivity in the
CB4856 background but might not have an effect in the N2 background. We validated the
results of Brady et al. and confirmed that ablated scb-71 expression causes robust sensitivity to
bleomycin in both N2 and CB4856 (Figure 5, Figure S6, File S6, File S12). We also observed
similarly increased sensitivity to cisplatin with scb-1 deletions in both backgrounds. Furthermore,
removing scb-1 shows moderately increased sensitivity in the CB4856 background for
amsacrine and in the N2 background for carmustine. The remaining four drugs did not show a
significantly different phenotype between the parental N2 and CB4856 strains, suggesting these
traits might be less reproducible or that scb-1 variation does not underlie these drug differences.
Overall, these results provide evidence for the pleiotropic effect of scb-1, which appears to
mediate responses to four different drugs.

DISCUSSION

In this study, we identified overlapping QTL on the center of chromosome V that
influence sensitivities to eight chemotherapeutic drugs. Because five of these drugs are known
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to cause double-strand DNA breaks, we hypothesized that this genomic region might be
pleiotropic — a single shared genetic variant affects the responses to each drug. Because this
variant might affect drug responses by regulating gene expression levels, we looked for the
co-existence of drug-response QTL and expression QTL on chromosome V. We identified 2,540
eQTL and nine eQTL hotspots, including a region on the center of chromosome V. We
calculated the mediation effect of all 49 genes with an eQTL that maps to this hotspot region
and identified scb-1 as a candidate gene whose expression influences the responses to several
chemotherapeutics. We used CRISPR-Cas9-mediated scb-1 deletion strains to empirically
validate the role of scb-1 in the chemotherapeutic response. In addition to bleomycin (Brady et
al. 2019), we discovered that responses to cisplatin, amsacrine, and carmustine are mediated
by scb-1 expression. In this study, we found evidence that overlapping QTL are representative
of pleiotropy at the gene level and further elucidated the function of scb-7 as a potential
response to double-strand DNA break stress.

Mediation of drug-response QTL using gene expression to identify causal genes

Mediation analysis often suggests potential candidate genes that underlie different traits
(Huang et al. 2015; Sasaki, Frommlet, and Nordborg 2018) and could be applied to drug
responses. Using C. elegans strains and high-throughput assays, we can rapidly validate
hypotheses generated by mediation analysis. Three of the eight chemotherapeutics that map to
an overlapping drug-response QTL and were potentially mediated by sch-1 were validated using
targeted deletion strains.

Although mediation analysis provided moderate evidence that expression of scb-1 may
also play a role in sensitivity to etoposide and puromycin, we observed no experimental
evidence of this relationship. Additionally, we have evidence that expression of scb-7 might
mediate response to carmustine. However, mediation analysis disagrees. The discrepancy
between the mediation analysis and validation of causality using targeted deletion strains could
be partially explained by one of several possibilities. First, different traits were measured in each
experiment. The mediation analysis used traits measured over 96 hours of growth in drug
conditions spanning two generations, but the causality test used traits measured over 48 hours
of growth in drug conditions within one generation. Second, the precision of our mediation
estimates was likely reduced by the poor quality drug traits for the set 1 RIAIL panel (Andersen
et al. 2015). Indeed, bortezomib, carmustine, etoposide, and puromycin did not map to the
center of chromosome V using the set 1 RIAILs (Figure S5). Expression data for the set 2 RIAIL
panel would likely generate more accurate mediation estimates, especially if data were collected
using RNA sequencing to avoid the inherent reference bias of microarray data (Zhao et al.
2014). Third, our mediation analysis was performed using expression data collected in control
conditions and phenotype data collected in drug conditions. This analysis will only provide
evidence of mediation if the baseline expression differences affect an individual’s response to
the drug. Collecting expression data from drug-treated nematodes could help us learn more
about how gene expression varies in response to treatment with the chemotherapeutic. Finally,
as we only directly assessed the complete loss of scb-7 in drug sensitivity, it is still possible that
reduction of function (or change in function) due to a single nucleotide variant or other structural
variation in CB4856 could validate the role of scb-1 in responses to these drugs.
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This study demonstrates the power of pairing genome-wide gene expression data with
QTL mappings for other traits using simple colocalization as well as more complex mediation
analysis techniques. In addition to providing a resource for candidate gene prioritization within a
QTL interval, mediation analysis can help to identify the mechanism by which genetic variation
causes phenotypic differences. This type of approach could be even more powerful using
genome-wide association (GWA) where the decreased linkage disequilibrium between variants
generates smaller genomic confidence intervals. Smaller intervals have fewer spurious
overlapping eQTL, which could help to narrow the list of candidate genes. Although mediation
analysis is only effective if a change in expression is observed and might not be useful for
identifying effects from protein-coding variation, many current studies show that the majority of
genetic variants associated with complex traits lie in regulatory regions (Hindorff et al. 2009).
Whole-genome expression analysis could provide the missing link to the identification of causal
genes underlying complex traits.

New evidence for the pleiotropic function of scb-1

We identified eight chemotherapeutics with a QTL that mapped to a genomic region
defined as a QTL hotspot on the center of chromosome V (Evans et al. 2018). Multiple genes in
close proximity, each regulating an aspect of cellular growth and fitness, might underlie each
QTL independently. Alternatively, genetic variation within a single gene might regulate
responses to multiple (or all) of the eight drugs tested if the mechanisms of action were shared
(e.g. repair of double-strand DNA breaks). Expression of scb-1, a gene previously implicated in
modulating the nematode’s response to bleomycin, was found to reduce sensitivity to half of the
drugs tested. This pleiotropic effect of scb-1 provides new evidence for the function of the gene
and possible molecular mechanisms underlying nematode drug responses. It is hypothesized
that SCB-1 might function as a hydrolase that breaks down compounds like bleomycin (Brady et
al. 2019) or plays a role in the nematode stress response (Riedel et al. 2013). Both hypotheses
are consistent with our data, explaining why nematodes with low expression of scb-1 are highly
sensitive to the compound. Furthermore, all four of these chemotherapeutics, whose responses
are mediated by expression of scb-71, are known to cause double-strand DNA breaks (Dorr
1992; Dasari and Tchounwou 2014; Ketron et al. 2012; Nikolova et al. 2017). Although the
results for bortezomib, puromycin, and silver were inconclusive, we found no clear evidence that
expression of scb-1 dictates their responses. Together, these data suggest a potential role for
scb-1 specifically in response to stress induced by double-strand DNA breaks. However, the
lack of sensitivity in etoposide, which also causes double-strand DNA breaks (Montecucco,
Zanetta, and Biamonti 2015), indicates that this response might be more complex.

The exact variant that causes the differential expression of scb-1 is still unknown.
Importantly, scb-1 lies within an eQTL hotspot region where it is hypothesized that genetic
variation at a single locus might regulate expression of the 49 nearby genes. It is possible that
the same causal variant that regulates expression of scb-71 could also underlie the QTL for the
remaining four chemotherapeutics through differential expression of other nearby essential
genes. For example, mediation analysis for both bortezomib and etoposide indicated that
expression variation of a dehydrogenase (D7054.8) may underlie their differential responses
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(File S11). Overall, our study highlights the power of using mediation analysis to connect gene
expression to organismal traits and describes a novel function for the pleiotropic gene scb-1.
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FIGURES & TABLES

Table 1 : Main mechanism of action for eight chemotherapeutic drugs

Drug Drug class Mechanism of action
Amsacrine Topoisomerase DNA intercalation and inhibition of topoisomerase
inhibitors Il, causing DNA double-strand breaks, cell cycle
arrest, and cell death
Bleomycin Antitumor antibiotic Forms complexes with iron that reduce molecular
oxygen to form free radicals which in turn cause
DNA single- and double-strand breaks
Bortezomib Proteosome inhibitors | Reversibly inhibits the 26S proteosome and
inhibits nuclear factor (NF)-kappaB resulting in
disruption of various cell signaling pathways, cell
cycle arrest, and cell death.
Carmustine Alkylating agents Alkylates and cross-links DNA causing cell cycle
arrest and cell death
Cisplatin Alkylating agents Alkylates and cross-links DNA causing cell cycle
arrest and cell death
Etoposide Topoisomerase Binds to and inhibits topoisomerase Il causing an
inhibitors increase of DNA single- and double-strand
breaks, cell cycle arrest, and cell death
Puromycin Aminonucleoside Acts as analog of 3’ terminal end of
antibiotic aminoacyl-tRNA and incorporates itself into
growing polypeptide chain causing premature
termination and inhibition of protein synthesis
Silver NA Multi-faceted induction of apoptosis
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Figure 1. A large-effect QTL on the center of chromosome V underlies responses to several
chemotherapeutics. Linkage mapping results for a representative trait for each drug are shown.
Genomic position (x-axis) is plotted against the logarithm of the odds (LOD) score (y-axis) for
13,003 genomic markers. Each significant QTL is indicated by a red triangle at the peak marker,
and a blue rectangle shows the 95% confidence interval around the peak marker. The
percentage of the total variance in the RIAIL population that can be explained by each QTL is
shown above the QTL. The dotted vertical line represents the genomic position of scb-1.
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Figure 2. Near-isogenic lines validate the chromosome V QTL. (A) NIL genotypes on
chromosome V are shown, colored orange (N2) and blue (CB4856). From top to bottom, strains
are N2, ECA232, ECA1114, and CB4856. The dotted vertical line represents the location of
scb-1. (B) NIL phenotypes are plotted as Tukey box plots with strain (y-axis) by relative residual
animal length (x-axis). Statistical significance of each NIL compared to its parental strain
(ECA232 to N2 and ECA1114 to CB4856) is shown above each NIL and colored by the parent
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strain against which it was tested (ns = non-significant (p-value > 0.05); *, **, ***,
significant (p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).
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Figure 3. Expression QTL mapping identifies several hotspots. (A) The genomic locations of the
eQTL peaks (x-axis) are plotted against the genomic locations of the probe (y-axis). The size of
the point corresponds to the effect size of the QTL. eQTL are colored by the LOD score,
increasing from purple to pink to yellow. The diagonal band represents local eQTL, and vertical
bands represent eQTL hotspots. (B) Quantification of eQTL hotspots identified by overlapping
distant eQTL. The number of distant eQTL (y-axis) in each 5 cM bin across the genome (x-axis)
is shown. Bins above the red line are significant and marked with an asterisk. The dotted
vertical line represents the genomic position of scb-1.
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Figure 4. Local mediation analysis for scb-1. Mediation estimates calculated as the fraction of
the total QTL effect explained by differences in expression of each gene (y-axis) are plotted
against genomic position of the gene (x-axis) on chromosome V for 74 probes surrounding
scb-1 (red diamond). The 95th percentile of the distribution of mediation estimates for each trait
are represented by the horizontal grey lines. The confidence intervals for QTL are shown with
the vertical blue dotted lines. The confidence of the estimate increases (p-value decreases) as
points become less transparent.
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Figure 5. Testing the role of scb-1 in drug responses. (A) Strain genotypes on chromosome V
are shown, colored orange (N2) and blue (CB4856). From top to bottom, strains are N2,
ECA1132, ECA1134, and CB4856. Deletion of scb-1 is indicated by a grey triangle. The dotted
vertical line represents the location of scb-1. (B) Phenotypes are plotted as Tukey box plots with
strain (y-axis) by relative residual animal length (x-axis). Statistical significance of each deletion
strain compared to its parental strain (ECA1132 to N2 and ECA1134 to CB4856) is shown
above each strain and colored by the parent strain against which it was tested (ns =
non-significant (p-value > 0.05); *, **, ***, and *** = significant (p-value < 0.05, 0.01, 0.001, or
0.0001, respectively).
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