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ABSTRACT  
 

Pleiotropy,  the  concept  that  a  single  gene  controls  multiple  distinct  traits,  is  prevalent  in               
most  organisms  and  has  broad  implications  for  medicine  and  agriculture.  Identifying  the             
molecular  mechanisms  underlying  pleiotropy  has  the  power  to  unveil  previously  unknown            
biological  connections  between  seemingly  unrelated  traits.  Additionally,  the  discovery  of           
pleiotropic  genes  increases  our  understanding  of  both  genetic  and  phenotypic  complexity  by             
characterizing  novel  gene  functions.  Quantitative  trait  locus  (QTL)  mapping  has  been  used  to              
identify  several  pleiotropic  regions  in  many  organisms.  However,  gene  knockout  studies  are             
needed  to  eliminate  the  possibility  of  tightly  linked,  non-pleiotropic  loci.  Here,  we  use  a  panel  of                 
296  recombinant  inbred  advanced  intercross  lines  of Caenorhabditis  elegans  and  a            
high-throughput  fitness  assay  to  identify  a  single  large-effect  QTL  on  the  center  of  chromosome               
V  associated  with  variation  in  responses  to  eight  chemotherapeutics.  We  validate  this  QTL  with               
near-isogenic  lines  and  pair  genome-wide  gene  expression  data  with  drug  response  traits  to              
perform  mediation  analysis,  leading  to  the  identification  of  a  pleiotropic  candidate  gene, scb-1 .              
Using  deletion  strains  created  by  genome  editing,  we  show  that scb-1 ,  which  was  previously               
implicated  in  response  to  bleomycin,  also  underlies  responses  to  other  double-strand  DNA             
break-inducing  chemotherapeutics.  This  finding  provides  new  evidence  for  the  role  of scb-1  in              
the  nematode  drug  response  and  highlights  the  power  of  mediation  analysis  to  identify  causal               
genes.  
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INTRODUCTION  
 

Pleiotropy  refers  to  the  well  established  notion  that  a  single  gene  or  genetic  variant               
affects  multiple  distinct  traits (Paaby  and  Rockman  2013) ,  and  the  discovery  of  pleiotropic              
genes  can  provide  meaningful  insights  into  the  molecular  mechanisms  of  these  traits (Tyler,              
Crawford,  and  Pendergrass  2016) .  It  has  become  easier  to  identify  pleiotropic  genes  with  the               
advent  of  reverse-genetic  screens  and  quantitative  trait  locus  (QTL)  mapping (Paaby  and             
Rockman  2013) .  For  example,  pleiotropic  QTL  for  diverse  growth  and  fitness  traits  have  been               
identified  in  organisms  such  as  yeast (Peltier  et  al.  2019;  Jerison  et  al.  2017;  Cubillos  et  al.                  
2011) , Arabidopsis (Fusari  et  al.  2017;  McKay,  Richards,  and  Mitchell-Olds  2003;  El-Assal  et  al.               
2004) , Drosophila (McGuigan  et  al.  2014;  Brown  et  al.  2013) ,  and  mice (White  et  al.  2013;                 
Leamy  et  al.  2014;  Lin  et  al.  2014) .  These  studies  have  led  to  important  questions  in  the  field  of                    
evolutionary  genetics  regarding  the  ‘cost  of  complexity’ (Fisher,  n.d.;  Orr  2000) ,  as  a  single               
mutation  might  be  beneficial  for  one  trait  and  harmful  for  another (Wagner  and  Zhang  2011) .                
Furthermore,  human  association  studies  have  identified  pleiotropic  variants  associated  with           
different  diseases (Sivakumaran  et  al.  2011;  Chesmore,  Bartlett,  and  Williams  2018;  Pavlides  et              
al.  2016) ,  highlighting  both  the  ubiquity  and  importance  of  certain  immune-related  genes  and              
oncogenes  across  unrelated  diseases (Gratten  and  Visscher  2016;  Borrello,  Degl’Innocenti,  and            
Pierotti  2008) .  Perhaps  the  strongest  evidence  of  pleiotropy  exists  for  molecular  phenotypes.             
Large-scale  expression  QTL  (eQTL)  mapping  studies  have  identified  single  regulatory  variants            
that  control  expression  and  likely  the  functions  of  hundreds  of  genes  at  once,  opening  a  window                 
into  the  mechanisms  for  how  traits  are  controlled (Rockman,  Skrovanek,  and  Kruglyak  2010;              
Breitling  et  al.  2008;  Hasin-Brumshtein  et  al.  2016;  Keurentjes  et  al.  2007;  Frank  Wolfgang               
Albert   et   al.   2018;   Frank   W.   Albert   and   Kruglyak   2015) .  

The  nematode Caenorhabditis  elegans  provides  a  tractable  metazoan  model  to  identify            
and  study  pleiotropic  QTL (Paaby  and  Rockman  2013) .  A  large  panel  of  recombinant  inbred               
advanced  intercross  lines  (RIAILs)  derived  from  two  divergent  strains,  N2  and  CB4856             
(Rockman  and  Kruglyak  2009;  Andersen  et  al.  2015) ,  has  been  leveraged  in  several  linkage               
mapping  analyses (McGrath  et  al.  2009;  Bendesky  and  Bargmann  2011;  Lee  et  al.  2017;  Singh                
et  al.  2016;  Zdraljevic  et  al.  2019;  Brady  et  al.  2019;  Zdraljevic  et  al.  2017;  Evans  et  al.  2018;                    
Andersen  et  al.  2014;  Viñuela  et  al.  2010;  Doroszuk  et  al.  2009;  Snoek  et  al.  2014;  Rodriguez  et                   
al.  2012;  Glater,  Rockman,  and  Bargmann  2014;  Rockman,  Skrovanek,  and  Kruglyak  2010;             
Zamanian  et  al.  2018a;  Bendesky  et  al.  2011,  2012;  Schmid  et  al.  2015;  Balla  et  al.  2015;                  
Kammenga  et  al.  2007;  Gutteling,  Riksen,  et  al.  2007;  Gutteling,  Doroszuk,  et  al.  2007;  Li  et  al.                  
2006;  Reddy  et  al.  2009;  Seidel  et  al.  2011;  Seidel,  Rockman,  and  Kruglyak  2008) .  Quantitative                
genetic  analysis  using  these  panels  and  a  high-throughput  phenotyping  assay (Andersen  et  al.              
2015)  has  facilitated  the  discovery  of  numerous  QTL (Zamanian  et  al.  2018b) ,  several              
quantitative  trait  genes  (QTG) (Brady  et  al.  2019)  and  quantitative  trait  nucleotides  (QTN)              
(Zdraljevic  et  al.  2019,  2017)  underlying  fitness-related  traits  in  the  nematode.  Additionally,  three              
pleiotropic  genomic  regions  were  recently  found  to  influence  responses  to  a  diverse  group  of               
toxins (Evans  et  al.  2018) .  However,  overlapping  genomic  regions  might  not  represent  true              
pleiotropy  but  could  demonstrate  the  co-existence  of  tightly  linked  loci (Paaby  and  Rockman              
2013) .   
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Here,  we  use  linkage  mapping  to  identify  a  single  overlapping  QTL  on  chromosome  V               
that  influences  the  responses  to  eight  chemotherapeutic  compounds.  We  show  that  these             
drug-response  QTL  also  overlap  with  an  expression  QTL  hotspot  that  contains  the  gene scb-1 ,               
previously  implicated  in  bleomycin  response (Brady  et  al.  2019) .  Although  the  exact  mechanism              
of scb-1  is  yet  unknown,  it  is  hypothesized  to  act  in  response  to  stress (Riedel  et  al.  2013)  and                    
has  weak  homology  to  a  viral  hydrolase (Zhang  et  al.  2018;  Kelley  et  al.  2015) .  Together,  these                  
data  suggest  that  the  importance  of scb-1  expression  might  extend  beyond  bleomycin  response.              
We  validated  the  QTL  using  near-isogenic  lines  (NILs)  and  performed  mediation  analysis  to              
predict  that scb-1  expression  explains  the  observed  QTL  for  five  of  the  eight  drugs.  Finally,  we                 
directly  tested  the  effect  of scb-1 loss  of  function  on  chemotherapeutic  responses.  We              
discovered  that  expression  of scb-1  underlies  differential  responses  to  several           
chemotherapeutics  that  cause  double-strand  DNA  breaks,  not  just  bleomycin.  This  discovery  of             
pleiotropy  helps  to  further  define  the  role  of scb-1  by  expanding  its  known  functions  and                
provides   insights   into   the   molecular   mechanisms   underlying   the   nematode   drug   response.  

 
MATERIALS   AND   METHODS  

 
Strains  

Animals  were  grown  at  20°C  on  modified  nematode  growth  media  (NGMA)  containing             
1%  agar  and  0.7%  agarose  to  prevent  burrowing  and  fed  OP50 (Ghosh  et  al.  2012) .  The  two                  
parental  strains,  the  canonical  laboratory  strain,  N2,  and  the  wild  isolate  from  Hawaii,  CB4856,               
were  used  to  generate  all  recombinant  lines.  208  recombinant  inbred  advanced  intercross  lines              
(RIAILs)  generated  previously  by  Rockman et  al. (Rockman  and  Kruglyak  2009)  (set  1  RIAILs)               
were  phenotyped  for  expression  QTL  mapping  (detailed  below).  A  second  set  of  296  RIAILs               
generated  previously  by  Andersen et  al. (Andersen  et  al.  2015)  (set  2  RIAILs)  was  used  more                 
extensively  for  drug  phenotyping  and  linkage  mapping.  Near-isogenic  lines  (NILs)  were            
generated  by  backcrossing  a  selected  RIAIL  for  several  generations (Brady  et  al.  2019) ,  using               
PCR  amplicons  for  insertion-deletion  (indels)  variants  to  track  the  introgressed  region.  NILs             
were  whole-genome  sequenced  to  verify  clean  introgressions.  CRISPR-Cas9-mediated         
deletions  of scb-1  were  described  in  Brady et  al. (Brady  et  al.  2019) .  All  strains  are  available                  
upon   request   or   from   the    C.   elegans    Natural   Diversity   Resource    (Cook   et   al.   2016) .  
 
High-throughput   fitness   assays   for   linkage   mapping  

For  dose  responses  and  RIAIL  phenotyping,  we  used  a  high-throughput  fitness  assay             
(HTA)  described  previously (Andersen  et  al.  2015) .  In  summary,  populations  of  each  strain  were               
passaged  and  amplified  on  NGMA  plates  for  four  generations.  In  the  fifth  generation,  gravid               
adults  were  bleach-synchronized  and  25-50  embryos  from  each  strain  were  aliquoted  into             
96-well  microtiter  plates  at  a  final  volume  of  50  µL  K  medium (Boyd,  Smith,  and  Freedman                 
2012) .  The  following  day,  arrested  L1s  were  fed  HB101  bacterial  lysate  (Pennsylvania  State              
University  Shared  Fermentation  Facility,  State  College,  PA; (García-González  et  al.  2017) )  at  a              
final  concentration  of  5  mg/mL  in  K  medium  and  were  grown  to  the  L4  larval  stage  for  48  hours                    
at  20°C  with  constant  shaking.  Three  L4  larvae  were  sorted  into  new  96-well  microtiter  plates                
containing  10  mg/mL  HB101  bacterial  lysate,  50  µM  kanamycin,  and  either  diluent  (1%  water  or                
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1%  DMSO)  or  drug  dissolved  in  the  diluent  using  a  large-particle  flow  cytometer  (COPAS               
BIOSORT,  Union  Biometrica;  Holliston,  MA).  Sorted  animals  were  grown  for  96  hours  at  20°C               
with  constant  shaking.  The  next  generation  of  animals  and  the  parents  were  treated  with  sodium                
azide  (50  mM  in  1X  M9)  to  straighten  their  bodies  for  more  accurate  length  measurements.                
Animal  length  (median.TOF),  optical  density  (median.norm.EXT),  and  brood  size  (norm.n)  were            
quantified  for  each  well  using  the  COPAS  BIOSORT.  Phenotypic  measurements  collected  by  the              
BIOSORT  were  processed  and  analyzed  using  the  R  package easysorter (Shimko  and             
Andersen   2014)    as   described   previously    (Brady   et   al.   2019) .  
 
Dose-response   assays  

Four  genetically  divergent  strains  (N2,  CB4856,  JU258,  and  DL238)  were  treated  with             
increasing  concentrations  of  each  of  the  eight  drugs  using  the  HTA  described  above.  The  dose                
of  each  drug  that  provided  a  reproducible  drug-specific  effect  that  maximizes  between-strain             
variation  while  minimizing  within-strain  variation  across  the  three  traits  was  selected  for  the              
linkage  mapping  experiments.  The  chosen  concentrations  are  as  follows:  100  µM  amsacrine             
hydrochloride  (Fisher  Scientific,  #A277720MG)  in  DMSO,  50  µM  bleomycin  sulfate  (Fisher,            
#50-148-546)  in  water,  2  µM  bortezomib  (VWR,  #AAJ60378-MA)  in  DMSO,  250  µM  carmustine              
(Sigma,  #1096724-75MG)  in  DMSO,  500  µM  cisplatin  (Sigma,  #479306-1G)  in  K  media,  500  µM               
etoposide  (Sigma,  #E1383)  in  DMSO,  500  µM  puromycin  dihydrochloride  (VWR,  #62111-170)  in             
water,   and   150   µM   silver   nitrate   (Sigma-Aldrich,   #S6506-5G)   in   water.  
 
Linkage   mapping  

Set  1  and  set  2  RIAILs  were  phenotyped  in  each  of  the  eight  drugs  and  controls  using                  
the  HTA  described  above.  Linkage  mapping  was  performed  on  each  of  the  drug  and  gene                
expression  traits  using  the  R  package linkagemapping        
( https://github.com/AndersenLab/linkagemapping )  as  described  previously (Brady  et  al.  2019) .         
The  cross  object  derived  from  the  whole-genome  sequencing  of  the  RIAILs  containing  13,003              
SNPs  was  loaded  using  the  function load_cross_obj(“N2xCB4856cross_full”) .  The  RIAIL          
phenotypes  were  merged  into  the  cross  object  using  the merge_pheno  function  with  the              
argument set  =  1  for  expression  QTL  mapping  and set  =  2  for  drug  phenotype  mapping.  A                  
forward  search  ( fsearch  function)  adapted  from  the R/qtl  package (Broman  et  al.  2003)  was               
used  to  calculate  the  logarithm  of  the  odds  (LOD)  scores  for  each  genetic  marker  and  each  trait                  
as -n(ln(1-R 2 )/2ln(10))  where  R  is  the  Pearson  correlation  coefficient  between  the  RIAIL             
genotypes  at  the  marker  and  trait  phenotypes (Bloom  et  al.  2013) .  A  5%  genome-wide  error  rate                 
was  calculated  by  permuting  the  RIAIL  phenotypes  1000  times.  The  marker  with  the  highest               
LOD  score  above  the  significance  threshold  was  selected  as  the  QTL  then  integrated  into  the                
model  as  a  cofactor  and  mapping  was  repeated  iteratively  until  no  further  significant  QTL  were                
identified.  Finally,  the annotate_lods  function  was  used  to  calculate  the  effect  size  of  each  QTL                
and  determine  95%  confidence  intervals  defined  by  a  1.5  LOD  drop  from  the  peak  marker  using                 
the   argument    cutoff   =   proximal .  
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Modified   HTA   for   NIL   validation  
NILs  and scb-1  deletion  strains  were  tested  using  a  modified  version  of  the  HTA  detailed                

above.  Strains  were  propagated  for  two  generations,  bleach-synchronized  in  three  independent            
replicates,  and  titered  at  a  concentration  of  25-50  embryos  per  well  of  a  96-well  microtiter  plate.                 
The  following  day,  arrested  L1s  were  fed  HB101  bacterial  lysate  at  a  final  concentration  of  5                 
mg/mL  with  either  diluent  or  drug.  After  48  hours  of  growth  at  20°C  with  constant  shaking,                 
nematodes  were  treated  with  sodium  azide  (5  mM  in  water)  prior  to  analysis  of  animal  length                 
and  optical  density  using  the  COPAS  BIOSORT.  As  only  one  generation  of  growth  is  observed,                
brood  size  was  not  calculated.  A  single  trait  (median.EXT)  was  chosen  to  represent  animal               
growth  generally,  as  the  trait  is  defined  by  optical  density  over  length.  Because  of  the  modified                 
timing  of  the  drug  delivery,  lower  drug  concentrations  were  needed  to  see  the  previous  effect.                
The  selected  doses  are  as  follows:  12.5  µM  amsacrine  in  DMSO,  12.5  µM  bleomycin  in  water,  2                  
µM  bortezomib  in  DMSO,  250  µM  carmustine  in  DMSO,  125  µM  cisplatin  in  K  media,  62.5  µM                  
etoposide   in   DMSO,   300   µM   puromycin   in   water,   and   100   µM   silver   in   water.  
 
Expression   QTL   analysis  

Microarray  data  for  gene  expression  using  15,888  probes  were  previously  collected  from             
synchronized  young  adult  populations  of  209  set  1  RIAILs (Rockman,  Skrovanek,  and  Kruglyak              
2010) .  Expression  data  were  corrected  for  dye  effects  and  probes  with  variants  were  removed               
(Andersen  et  al.  2014) .  Linkage  mapping  was  performed  as  described  above  for  the  remaining               
14,107  probes,  and  a  significance  threshold  was  determined  using  a  permutation-based  False             
Discovery  Rate  (FDR).  FDR  was  calculated  as  the  ratio  of  the  average  number  of  genes  across                 
10  permutations  expected  by  chance  to  show  a  maximum  LOD  score  greater  than  a  particular                
threshold  vs.  the  number  of  genes  observed  in  the  real  data  with  a  maximum  LOD  score  greater                  
than  that  threshold.  We  calculated  the  FDR  for  a  range  of  thresholds  from  2  to  10,  with                  
increasing   steps   of   0.01,   and   set   the   threshold   so   that   the   calculated   FDR   was   less   than   5%.  

Local  eQTL  were  defined  as  linkages  whose  peak  LOD  scores  were  within  1  Mb  of  the                 
starting  position  of  the  probe (Rockman,  Skrovanek,  and  Kruglyak  2010) .  eQTL  hotspots  were              
identified  by  dividing  the  genome  into  5  cM  bins  and  counting  the  number  of  distant  eQTL  that                  
mapped  to  each  bin.  Significance  was  determined  as  bins  with  more  eQTL  than  the               
Bonferroni-corrected  99 th  percentile  of  a  Poisson  distribution  with  a  mean  of  3.91  QTL  (total  QTL                
/   total   bins)    (Brem   et   al.   2002;   Evans   et   al.   2018;   Rockman,   Skrovanek,   and   Kruglyak   2010) .  
 
Mediation   analysis  

A  total  of  159  set  1  RIAILs  were  phenotyped  in  each  of  the  eight  drugs  and  controls                  
using  the  HTA  described  above.  Mediation  scores  were  calculated  with  bootstrapping  using  the              
mediate  function  from  the mediation  R  package  (version  4.4.7) (Tingley  et  al.  2014)  for  each                
QTL  identified  from  the  set  2  RIAILs  and  all  49  probes  (including scb-1,  A_12_P104350)  within                
the   chromosome   V   eQTL   hotspot   using   the   following   models:  

 
(1) Mediator   model:    lm(expression   ~   genotype)  
(2) Outcome   model:    lm(phenotype   ~   expression   +   genotype)  
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The  output  of  the mediate  function  can  be  summarized  as  follows:  the  total  effect  of                
genotype  on  phenotype,  ignoring  expression  ( tau.coef );  the  direct  effect  of  genotype  on             
phenotype,  while  holding  expression  constant  ( z0 );  the  estimated  effect  of  expression  on             
phenotype  ( d0 );  the  proportion  of  the  total  effect  that  can  be  explained  by  expression  data  ( n0 )                 
The  final  mediation  score  is  determined  as  the  proportion  of  the  total  QTL  effect  that  can  be                  
attributed  to  gene  expression  ( n0 ).  The  likelihood  of scb-1  mediating  a  given  QTL  effect  was                
calculated  relative  to  the  other  74  probes  in  the  region.  Traits  in  which scb-1  was  at  or  above  the                    
95 th    percentile   of   this   distribution   were   prioritized   over   other   traits.  

 
Statistical   analysis  

Broad-sense  heritability  was  calculated  from  the  dose  response  phenotypes  using  the            
lmer  function  in  the lme4  R  package (Bates  et  al.  2014)  with  the  formula phenotype  ~  1  +                   
(1|strain)  for  each  dose.  All  statistical  tests  of  phenotypic  differences  between  strains  were              
performed  using  the TukeyHSD  function (R  Core  Team  2017)  on  an  ANOVA  model  with  the                
formula    phenotype   ~   strain .   
 
Data   Availability  

File  S1  contains  the  results  of  the  original  dose  response  HTA. File  S2  contains  the                
residual  phenotypic  values  for  all  159  set  1  RIAILs,  296  set  2  RIAILs,  and  parent  strains  (N2  and                   
CB4856)  in  response  to  all  eight  chemotherapeutics. File  S3  contains  the  linkage  mapping              
results  for  the  set  2  RIAILs  for  all  24  drug-response  traits  tested  in  the  HTA. File  S4  contains  the                    
genotype  of  the  NILs  in  the  study. File  S5  contains  the  raw  pruned  phenotypes  for  the  NIL  dose                   
response  with  the  modified  HTA. File  S6  contains  the  pairwise  statistical  significance  for  all               
strains  and  high-throughput  assays. File  S7  contains  the  microarray  expression  data  for  14,107              
probes  from  Rockman et  al. 2010. File  S8  contains  the  linkage  mapping  results  for  the                
expression  data  obtained  with  the  set  1  RIAILs. File  S9  contains  the  location  of  each  eQTL                 
hotspot  and  a  list  of  genes  with  an  eQTL  in  each  hotspot. File  S10  contains  the  linkage  mapping                   
results  from  the  set  1  RIAILs  for  all  24  drug-response  traits  tested  in  the  HTA. File  S11  contains                   
the  pairwise  mediation  estimates  for  all  QTL  and  all  75  probes. File  S12  contains  the  raw                 
pruned  phenotypes  for  the scb-1  deletion  modified  HTA.  The  datasets  and  code  for  generating               
figures  can  be  found  at https://github.com/AndersenLab/scb1_mediation_manuscript .       
Supplemental   material   available   at   Figshare.  
 

RESULTS  
 

Natural  variation  on  chromosome  V  underlies  differences  in  responses  to  several            
chemotherapeutics  

We  measured C.  elegans  development  and  chemotherapeutic  sensitivity  as  a  function  of             
animal  length  (TOF),  optical  density  (EXT),  and  brood  size  (n)  with  a  high-throughput  assay               
developed  using  the  COPAS  BIOSORT  (see  Methods) (Zdraljevic  et  al.  2019;  Brady  et  al.  2019;                
Evans  et  al.  2018;  Zdraljevic  et  al.  2017;  Andersen  et  al.  2015) .  We  exposed  four  genetically                 
divergent  strains  (N2,  CB4856,  JU258,  and  DL238)  to  increasing  doses  of  eight             
chemotherapeutic  compounds.  Five  of  these  compounds  (bleomycin,  carmustine,  etoposide,          
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amsacrine,  and  cisplatin)  are  known  to  cause  double-strand  DNA  breaks  and/or  inhibit  DNA              
synthesis (Dorr  1992;  Dasari  and  Tchounwou  2014;  Montecucco,  Zanetta,  and  Biamonti  2015;             
Ketron  et  al.  2012;  Nikolova  et  al.  2017) .  The  remaining  three  compounds  either  inhibit  protein                
synthesis  (puromycin) (Azzam  and  Algranati  1973) ,  inhibit  the  proteosome  and  subsequent            
protein  degradation  (bortezomib) (Piperdi  et  al.  2011) ,  or  cause  cellular  toxicity  in  a  poorly               
defined  way  (silver  nitrate) (Kaplan,  Akalin  Ciftci,  and  Kutlu  2016)  ( Table  1 ).  In  the  presence  of                 
each  drug,  nematodes  were  generally  shorter,  less  optically  dense,  and  produced  smaller             
broods  compared  to  non-treated  nematodes  ( Figure  S1,  File  S1 ).  We  observed  significant             
phenotypic  variation  among  strains  and  identified  a  substantial  heritable  genetic  component  for             
most   traits   (average    H 2    =   0.51   +/-   0.24).  

We  exposed  a  panel  of  296  RIAILs  (set  2  RIAILs,  see  Methods)  to  all  eight                
chemotherapeutics  at  a  selected  concentration  that  both  maximizes  among-strain  and           
minimizes  within-strain  phenotypic  variation  ( File  S2 ).  Linkage  mapping  for  all  three  traits  for              
each  of  the  eight  drugs  (total  of  24  traits)  identified  56  QTL  from  23  traits  (one  trait  had  no                    
significant  QTL),  several  of  which  have  been  identified  previously (Brady  et  al.  2019;  Evans  et                
al.  2018;  Zdraljevic  et  al.  2017)  ( File  S3,  Figure  S2 ).  Strikingly,  a  QTL  on  the  center  of                  
chromosome  V  was  linked  to  variation  in  responses  to  all  eight  compounds  ( Figure  1 ).  In  all                 
cases,  the  CB4856  allele  on  chromosome  V  is  associated  with  greater  resistance  to  the  drug                
than  the  N2  allele  ( Figure  S2,  File  S2,  File  S3 ).  We  previously  identified  this  genomic  interval                 
as  a  QTL  hotspot,  defined  as  a  region  heavily  enriched  for  toxin-response  QTL (Evans  et  al.                 
2018) .  Because  several  of  the  chemotherapeutics  share  a  similar  mechanism  of  action,  a  single               
pleiotropic   gene   might   underlie   the   observed   QTL   for   multiple   drugs.  

In  order  to  isolate  and  validate  the  effect  of  this  QTL,  we  constructed  reciprocal               
near-isogenic  lines  (NILs)  by  introgressing  a  genomic  region  on  chromosome  V  from  the              
resistant  CB4856  strain  into  the  sensitive  N2  background  and  vice  versa  ( File  S4 ).  We  used  a                 
modified  high-throughput  assay  (see  Methods)  to  measure  length  and  optical  density  of  a              
population  of  animals  grown  in  the  presence  of  the  drug  for  48  hours  (from  larval  stages  L1  to                   
L4).  In  this  modified  assay,  less  drug  was  required  to  observe  the  same  phenotypic  effect  as                 
before  and  a  single  trait  (median.EXT)  that  combines  both  optical  density  and  length  serves  as                
a  proxy  for  the  complexity  of  animal  growth  ( Figure  S3,  File  S5 ).  For  all  eight                
chemotherapeutics  tested,  the  strain  with  the  N2  introgression  was  significantly  more  sensitive             
than  its  CB4856  parent  and/or  the  strain  with  the  CB4856  introgression  was  significantly  more               
resistant  than  its  N2  parent  ( Figure  2,  File  S5,  File  S6 ).  These  data  confirm  that  one  or  more                   
genetic   variant(s)   within   this   region   on   chromosome   V   cause   increased   drug   sensitivities   in   N2.   
 
Expression   QTL   mapping   identifies   a   hotspot   on   the   center   of   chromosome   V  

Genetic  variation  can  affect  a  phenotype  most  commonly  through  either  modifications  of             
the  amino  acid  sequence  that  lead  to  altered  protein  function  (or  even  loss  of  function)  or                 
changes  in  the  expression  level  of  the  protein.  In  the  latter  case,  measuring  the  intermediate                
phenotype  (gene  expression)  can  be  useful  in  elucidating  the  mechanism  by  which  genetic              
variation  causes  phenotypic  variation.  More  specifically,  cases  with  overlap  between  expression            
QTL  (eQTL)  and  drug-response  QTL  suggest  that  a  common  variant  could  underlie  both  traits               
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and  provide  evidence  in  support  of  causality  for  the  candidate  gene  in  question (Sasaki,               
Frommlet,   and   Nordborg   2018;   Huang   et   al.   2015) .  

To  identify  such  cases  of  overlap  between  expression  QTL  and  the  drug-response  QTL              
on  chromosome  V,  we  need  genome-wide  expression  data  for  the  RIAILs.  Expression  of  15,888               
probes  were  previously  measured  using  microarrays  for  a  panel  of  208  RIAILs  (set  1  RIAILs,                
see  Methods)  between  N2  and  CB4856 (Rockman  and  Kruglyak  2009)  ( File  S7 ).  The  variation               
in  gene  expression  was  used  as  a  phenotypic  trait  to  identify  eQTL  using  linkage  mapping  with                 
1,455  variants (Rockman,  Skrovanek,  and  Kruglyak  2010) .  Rockman et  al.  identified  2,309             
eQTL  and  three  regions  with  significantly  clustered  distant  eQTL  (eQTL  hotspots),  suggesting             
that  these  regions  are  pleiotropic,  wherein  one  or  more  variant(s)  are  affecting  expression  of               
multiple  genes.  We  performed  whole-genome  sequencing  for  these  strains  and  identified  13,003             
informative  variants (Brady  et  al.  2019) .  Linkage  mapping  with  these  variants  for  the  14,107               
probes  without  genetic  variation  in  CB4856 (Andersen  et  al.  2014)  identified  2,540  eQTL              
associated  with  variation  in  expression  of  2,196  genes  ( Figure  3A,  File  S8 ).  These  eQTL  have                
relatively  large  effect  sizes  compared  to  the  drug-response  QTL.  On  average,  each  eQTL              
explains  23%  of  the  phenotypic  variance  in  gene  expression  among  the  RIAIL  population.  Half               
of  the  eQTL  (50.2%;  1,276)  mapped  within  1  Mb  of  the  gene  whose  expression  was  measured                 
and  were  classified  as  local  (see  Methods).  The  other  half  (49.7%;  1,264)  were  found  distant                
from  their  respective  gene,  and  over  a  third  (37%;  940)  were  found  on  different  chromosomes                
entirely.  In  general,  eQTL  effect  sizes  increased,  max  LOD  scores  decreased,  and  confidence              
intervals  become  smaller  compared  to  the  original  mapping  results  ( File  S8 ).  These  differences              
and  the  additional  eQTL  observed  between  this  analysis  and  the  original  are  likely  due  to  the                 
integration   of   new   genetic   markers.   

In  total,  we  identified  nine  eQTL  hotspots  ( Figure  3B,  File  S9 ).  Three  of  which  were                
previously  identified  on  chromosome  IV  and  X (Rockman,  Skrovanek,  and  Kruglyak  2010) .             
Notably,  three  of  the  eQTL  hotspots  overlap  with  the  previously  identified  drug-response  QTL              
hotspots  on  chromosomes  IV  and  V (Evans  et  al.  2018) .  The  overlap  of  these  eQTL  and                 
drug-response  QTL  hotspots  could  provide  strong  candidate  genes  whose  expression  underlies            
the  differences  in  nematode  drug  responses  generally.  Expression  of  one  gene  of  interest,              
scb-1 ,  has  been  previously  implicated  in  response  to  bleomycin (Brady  et  al.  2019)  and  resides                
within  the  eQTL  hotspot  region  on  chromosome  V  ( File  S9 ).  Together  with  the  putative  role  for                 
scb-1  as  a  hydrolase (Zhang  et  al.  2018;  Kelley  et  al.  2015;  Brady  et  al.  2019) ,  these  data                   
suggest  that  variation  in  expression  of scb-1  and  responses  to  these  eight  chemotherapeutics              
(including   bleomycin)   could   be   mechanistically   linked.  
 
Mediation  analysis  suggests scb-1  expression  plays  a  role  in  responses  to  several             
chemotherapeutics  

Mediation  analysis  seeks  to  explain  the  relationship  between  an  independent  and            
dependent  variable  by  including  a  third  (non-observable)  intermediary  variable.  We  can  use             
mediation  analysis  to  understand  how  certain  genetic  variants  on  chromosome  V  (independent             
variable)  affect  drug  responses  (dependent  variable)  through  differential  gene  expression  of            
genes  within  the  eQTL  hotspot  (mediator  variable)  ( Figure  S4 ).  We  measured  brood  size,              
animal  length,  and  optical  density  in  response  to  all  eight  chemotherapeutics  in  the  set  1  RIAILs                 
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and  performed  linkage  mapping  for  these  traits  ( File  S2,  File  S10,  Figure  S5 ).  Although  the                
power  to  detect  QTL  with  these  strains  is  lower  than  in  our  original  mapping  set  (set  2  RIAILs)                   
(Andersen  et  al.  2015) ,  we  still  identified  overlapping  QTL  on  chromosome  V  for  half  of  the                 
drugs  tested  (bleomycin,  cisplatin,  silver,  and  amsacrine)  ( Figure  S5 ).  We  also  detected             
putative  small-effect  QTL  just  below  the  permutation-based  threshold  for  at  least  one  other              
chemotherapeutic   ( File   S10 ).  

We  calculated  the  proportion  of  QTL  effects  that  can  be  explained  by  variation  in               
expression  of scb-1  compared  to  the  other  48  genes  in  the  chromosome  V  eQTL  hotspot  using                 
mediation  analysis  (see  Methods).  We  estimated  that  expression  of scb-1  mediates  61.3%  of              
the  chromosome  V  QTL  for  bleomycin  response  ( Figure  4,  File  S11 ).  Moreover,  out  of  all  49                 
genes  in  the  region, scb-1  was  a  clear  mediation  score  outlier,  falling  in  the  99 th  percentile  of  all                   
local  genes.  Of  the  remaining  seven  chemotherapeutics,  we  showed  that  amsacrine,  cisplatin,             
etoposide,  and  puromycin  all  showed  moderate  evidence  of scb-1  mediation,  with scb-1  falling              
near  or  above  the  95 th  percentile  of  mediation  estimates  for  all  local  genes  ( Figure  4,  File  S11 ).                  
In  fact, scb-1  was  the  only  gene  with  a  significant  mediation  estimate  within  the  drug-response                
QTL  confidence  interval  for  cisplatin.  The  opposite  result  was  seen  for  bortezomib,  carmustine,              
and  silver,  in  which  all  showed  strong  evidence  against scb-1  mediation  ( Figure  4,  File  S11 ).                
This in  silico  approach  indicated  that  expression  of scb-1  might  be  an  intermediate  link  between                
genetic  variation  on  chromosome  V  and  responses  to  five  of  the  eight  chemotherapeutic  drugs               
tested.  

 
Expression  of scb-1  mediates  responses  to  several  chemotherapeutics  that  cause           
double-strand   DNA   breaks  

To  empirically  test  whether scb-1 expression  modulates  the  chromosome  V  QTL  effect             
for  each  drug,  we  exposed  two  independently  derived  strains  with scb-1  deletions (Brady  et  al.                
2019)  to  each  chemotherapeutic  ( Figure  5,  Figure  S6,  File  S6,  File  S12 ).  Because  RIAILs  with                
the  CB4856  allele  on  chromosome  V  express  higher  levels  of scb-1  than  RIAILs  with  the  N2                 
allele  ( File  S7,  File  S8 ),  we  expect  that  loss  of scb-1  will  cause  increased  drug  sensitivity  in  the                   
CB4856  background  but  might  not  have  an  effect  in  the  N2  background.  We  validated  the                
results  of  Brady et  al.  and  confirmed  that  ablated scb-1  expression  causes  robust  sensitivity  to                
bleomycin  in  both  N2  and  CB4856  ( Figure  5,  Figure  S6,  File  S6,  File  S12 ).  We  also  observed                  
similarly  increased  sensitivity  to  cisplatin  with scb-1  deletions  in  both  backgrounds.  Furthermore,             
removing scb-1  shows  moderately  increased  sensitivity  in  the  CB4856  background  for            
amsacrine  and  in  the  N2  background  for  carmustine.  The  remaining  four  drugs  did  not  show  a                 
significantly  different  phenotype  between  the  parental  N2  and  CB4856  strains,  suggesting  these             
traits  might  be  less  reproducible  or  that scb-1 variation  does  not  underlie  these  drug  differences.                
Overall,  these  results  provide  evidence  for  the  pleiotropic  effect  of scb-1 ,  which  appears  to               
mediate   responses   to   four   different   drugs.  
 

DISCUSSION  
 

In  this  study,  we  identified  overlapping  QTL  on  the  center  of  chromosome  V  that               
influence  sensitivities  to  eight  chemotherapeutic  drugs.  Because  five  of  these  drugs  are  known              
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to  cause  double-strand  DNA  breaks,  we  hypothesized  that  this  genomic  region  might  be              
pleiotropic  –  a  single  shared  genetic  variant  affects  the  responses  to  each  drug.  Because  this                
variant  might  affect  drug  responses  by  regulating  gene  expression  levels,  we  looked  for  the               
co-existence  of  drug-response  QTL  and  expression  QTL  on  chromosome  V.  We  identified  2,540              
eQTL  and  nine  eQTL  hotspots,  including  a  region  on  the  center  of  chromosome  V.  We                
calculated  the  mediation  effect  of  all  49  genes  with  an  eQTL  that  maps  to  this  hotspot  region                  
and  identified scb-1  as  a  candidate  gene  whose  expression  influences  the  responses  to  several               
chemotherapeutics.  We  used  CRISPR-Cas9-mediated scb-1  deletion  strains  to  empirically          
validate  the  role  of scb-1  in  the  chemotherapeutic  response.  In  addition  to  bleomycin (Brady  et                
al.  2019) ,  we  discovered  that  responses  to  cisplatin,  amsacrine,  and  carmustine  are  mediated              
by scb-1  expression.  In  this  study,  we  found  evidence  that  overlapping  QTL  are  representative               
of  pleiotropy  at  the  gene  level  and  further  elucidated  the  function  of scb-1  as  a  potential                 
response   to   double-strand   DNA   break   stress.  

 
Mediation   of   drug-response   QTL   using   gene   expression   to   identify   causal   genes  

Mediation  analysis  often  suggests  potential  candidate  genes  that  underlie  different  traits            
(Huang  et  al.  2015;  Sasaki,  Frommlet,  and  Nordborg  2018)  and  could  be  applied  to  drug                
responses.  Using C.  elegans strains  and  high-throughput  assays,  we  can  rapidly  validate             
hypotheses  generated  by  mediation  analysis.  Three  of  the  eight  chemotherapeutics  that  map  to              
an  overlapping  drug-response  QTL  and  were  potentially  mediated  by scb-1 were  validated  using              
targeted   deletion   strains.   

Although  mediation  analysis  provided  moderate  evidence  that  expression  of scb-1  may            
also  play  a  role  in  sensitivity  to  etoposide  and  puromycin,  we  observed  no  experimental               
evidence  of  this  relationship.  Additionally,  we  have  evidence  that  expression  of scb-1  might              
mediate  response  to  carmustine.  However,  mediation  analysis  disagrees.  The  discrepancy           
between  the  mediation  analysis  and  validation  of  causality  using  targeted  deletion  strains  could              
be  partially  explained  by  one  of  several  possibilities.  First,  different  traits  were  measured  in  each                
experiment.  The  mediation  analysis  used  traits  measured  over  96  hours  of  growth  in  drug               
conditions  spanning  two  generations,  but  the  causality  test  used  traits  measured  over  48  hours               
of  growth  in  drug  conditions  within  one  generation.  Second,  the  precision  of  our  mediation               
estimates  was  likely  reduced  by  the  poor  quality  drug  traits  for  the  set  1  RIAIL  panel (Andersen                  
et  al.  2015) .  Indeed,  bortezomib,  carmustine,  etoposide,  and  puromycin  did  not  map  to  the               
center  of  chromosome  V  using  the  set  1  RIAILs  ( Figure  S5 ).  Expression  data  for  the  set  2  RIAIL                   
panel  would  likely  generate  more  accurate  mediation  estimates,  especially  if  data  were  collected              
using  RNA  sequencing  to  avoid  the  inherent  reference  bias  of  microarray  data (Zhao  et  al.                
2014) .  Third,  our  mediation  analysis  was  performed  using  expression  data  collected  in  control              
conditions  and  phenotype  data  collected  in  drug  conditions.  This  analysis  will  only  provide              
evidence  of  mediation  if  the  baseline  expression  differences  affect  an  individual’s  response  to              
the  drug.  Collecting  expression  data  from  drug-treated  nematodes  could  help  us  learn  more              
about  how  gene  expression  varies  in  response  to  treatment  with  the  chemotherapeutic.  Finally,              
as  we  only  directly  assessed  the  complete  loss  of scb-1  in  drug  sensitivity,  it  is  still  possible  that                   
reduction  of  function  (or  change  in  function)  due  to  a  single  nucleotide  variant  or  other  structural                 
variation   in   CB4856   could   validate   the   role   of    scb-1    in   responses   to   these   drugs.  
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This  study  demonstrates  the  power  of  pairing  genome-wide  gene  expression  data  with             
QTL  mappings  for  other  traits  using  simple  colocalization  as  well  as  more  complex  mediation               
analysis  techniques.  In  addition  to  providing  a  resource  for  candidate  gene  prioritization  within  a               
QTL  interval,  mediation  analysis  can  help  to  identify  the  mechanism  by  which  genetic  variation               
causes  phenotypic  differences.  This  type  of  approach  could  be  even  more  powerful  using              
genome-wide  association  (GWA)  where  the  decreased  linkage  disequilibrium  between  variants           
generates  smaller  genomic  confidence  intervals.  Smaller  intervals  have  fewer  spurious           
overlapping  eQTL,  which  could  help  to  narrow  the  list  of  candidate  genes.  Although  mediation               
analysis  is  only  effective  if  a  change  in  expression  is  observed  and  might  not  be  useful  for                  
identifying  effects  from  protein-coding  variation,  many  current  studies  show  that  the  majority  of              
genetic  variants  associated  with  complex  traits  lie  in  regulatory  regions (Hindorff  et  al.  2009) .               
Whole-genome  expression  analysis  could  provide  the  missing  link  to  the  identification  of  causal              
genes   underlying   complex   traits.  
 
New   evidence   for   the   pleiotropic   function   of    scb-1  

We  identified  eight  chemotherapeutics  with  a  QTL  that  mapped  to  a  genomic  region              
defined  as  a  QTL  hotspot  on  the  center  of  chromosome  V (Evans  et  al.  2018) .  Multiple  genes  in                   
close  proximity,  each  regulating  an  aspect  of  cellular  growth  and  fitness,  might  underlie  each               
QTL  independently.  Alternatively,  genetic  variation  within  a  single  gene  might  regulate            
responses  to  multiple  (or  all)  of  the  eight  drugs  tested  if  the  mechanisms  of  action  were  shared                  
( e.g. repair  of  double-strand  DNA  breaks).  Expression  of scb-1 ,  a  gene  previously  implicated  in               
modulating  the  nematode’s  response  to  bleomycin,  was  found  to  reduce  sensitivity  to  half  of  the                
drugs  tested.  This  pleiotropic  effect  of scb-1  provides  new  evidence  for  the  function  of  the  gene                 
and  possible  molecular  mechanisms  underlying  nematode  drug  responses.  It  is  hypothesized            
that  SCB-1  might  function  as  a  hydrolase  that  breaks  down  compounds  like  bleomycin (Brady  et                
al.  2019)  or  plays  a  role  in  the  nematode  stress  response (Riedel  et  al.  2013) .  Both  hypotheses                  
are  consistent  with  our  data,  explaining  why  nematodes  with  low  expression  of scb-1  are  highly                
sensitive  to  the  compound.  Furthermore,  all  four  of  these  chemotherapeutics,  whose  responses             
are  mediated  by  expression  of scb-1 ,  are  known  to  cause  double-strand  DNA  breaks (Dorr               
1992;  Dasari  and  Tchounwou  2014;  Ketron  et  al.  2012;  Nikolova  et  al.  2017) .  Although  the                
results  for  bortezomib,  puromycin,  and  silver  were  inconclusive,  we  found  no  clear  evidence  that               
expression  of scb-1  dictates  their  responses.  Together,  these  data  suggest  a  potential  role  for               
scb-1  specifically  in  response  to  stress  induced  by  double-strand  DNA  breaks.  However,  the              
lack  of  sensitivity  in  etoposide,  which  also  causes  double-strand  DNA  breaks (Montecucco,             
Zanetta,   and   Biamonti   2015) ,   indicates   that   this   response   might   be   more   complex.   

The  exact  variant  that  causes  the  differential  expression  of scb-1  is  still  unknown.              
Importantly, scb-1  lies  within  an  eQTL  hotspot  region  where  it  is  hypothesized  that  genetic               
variation  at  a  single  locus  might  regulate  expression  of  the  49  nearby  genes.  It  is  possible  that                  
the  same  causal  variant  that  regulates  expression  of scb-1  could  also  underlie  the  QTL  for  the                 
remaining  four  chemotherapeutics  through  differential  expression  of  other  nearby  essential           
genes.  For  example,  mediation  analysis  for  both  bortezomib  and  etoposide  indicated  that             
expression  variation  of  a  dehydrogenase  ( D1054.8 )  may  underlie  their  differential  responses            
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(File  S11).  Overall,  our  study  highlights  the  power  of  using  mediation  analysis  to  connect  gene                
expression   to   organismal   traits   and   describes   a   novel   function   for   the   pleiotropic   gene    scb-1 .   
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FIGURES   &   TABLES  

 
Table   1   :   Main   mechanism   of   action   for   eight   chemotherapeutic   drugs  

Drug  Drug   class  Mechanism   of   action  

Amsacrine  Topoisomerase  
inhibitors  

DNA   intercalation   and   inhibition   of   topoisomerase  
II,   causing   DNA   double-strand   breaks,   cell   cycle  
arrest,   and   cell   death  

Bleomycin  Antitumor   antibiotic  Forms   complexes   with   iron   that   reduce   molecular  
oxygen   to   form   free   radicals   which   in   turn   cause  
DNA   single-   and   double-strand   breaks  

Bortezomib  Proteosome   inhibitors  Reversibly   inhibits   the   26S   proteosome   and  
inhibits   nuclear   factor   (NF)-kappaB   resulting   in  
disruption   of   various   cell   signaling   pathways,   cell  
cycle   arrest,   and   cell   death.  

Carmustine  Alkylating   agents  Alkylates   and   cross-links   DNA   causing   cell   cycle  
arrest   and   cell   death  

Cisplatin  Alkylating   agents  Alkylates   and   cross-links   DNA   causing   cell   cycle  
arrest   and   cell   death  

Etoposide  Topoisomerase  
inhibitors  

Binds   to   and   inhibits   topoisomerase   II   causing   an  
increase   of   DNA   single-   and   double-strand  
breaks,   cell   cycle   arrest,   and   cell   death  

Puromycin  Aminonucleoside  
antibiotic  

Acts   as   analog   of   3’   terminal   end   of  
aminoacyl-tRNA   and   incorporates   itself   into  
growing   polypeptide   chain   causing   premature  
termination   and   inhibition   of   protein   synthesis  

Silver  NA  Multi-faceted   induction   of   apoptosis  
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Figure  1. A  large-effect  QTL  on  the  center  of  chromosome  V  underlies  responses  to  several                
chemotherapeutics.  Linkage  mapping  results  for  a  representative  trait  for  each  drug  are  shown.              
Genomic  position  (x-axis)  is  plotted  against  the  logarithm  of  the  odds  (LOD)  score  (y-axis)  for                
13,003  genomic  markers.  Each  significant  QTL  is  indicated  by  a  red  triangle  at  the  peak  marker,                 
and  a  blue  rectangle  shows  the  95%  confidence  interval  around  the  peak  marker.  The               
percentage  of  the  total  variance  in  the  RIAIL  population  that  can  be  explained  by  each  QTL  is                  
shown   above   the   QTL.   The   dotted   vertical   line   represents   the   genomic   position   of    scb-1 .   
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Figure  2. Near-isogenic  lines  validate  the  chromosome  V  QTL.  (A)  NIL  genotypes  on              
chromosome  V  are  shown,  colored  orange  (N2)  and  blue  (CB4856).  From  top  to  bottom,  strains                
are  N2,  ECA232,  ECA1114,  and  CB4856.  The  dotted  vertical  line  represents  the  location  of               
scb-1 .  (B)  NIL  phenotypes  are  plotted  as  Tukey  box  plots  with  strain  (y-axis)  by  relative  residual                 
animal  length  (x-axis).  Statistical  significance  of  each  NIL  compared  to  its  parental  strain              
(ECA232  to  N2  and  ECA1114  to  CB4856)  is  shown  above  each  NIL  and  colored  by  the  parent                  
strain  against  which  it  was  tested  (ns  =  non-significant  (p-value  >  0.05);  *,  **,  ***,  and  ***  =                   
significant   (p-value   <   0.05,   0.01,   0.001,   or   0.0001,   respectively).  
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Figure  3. Expression  QTL  mapping  identifies  several  hotspots.  (A)  The  genomic  locations  of  the               
eQTL  peaks  (x-axis)  are  plotted  against  the  genomic  locations  of  the  probe  (y-axis).  The  size  of                 
the  point  corresponds  to  the  effect  size  of  the  QTL.  eQTL  are  colored  by  the  LOD  score,                  
increasing  from  purple  to  pink  to  yellow.  The  diagonal  band  represents  local  eQTL,  and  vertical                
bands  represent  eQTL  hotspots.  (B)  Quantification  of  eQTL  hotspots  identified  by  overlapping             
distant  eQTL.  The  number  of  distant  eQTL  (y-axis)  in  each  5  cM  bin  across  the  genome  (x-axis)                  
is  shown.  Bins  above  the  red  line  are  significant  and  marked  with  an  asterisk.  The  dotted                 
vertical   line   represents   the   genomic   position   of    scb-1 .  
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Figure  4. Local  mediation  analysis  for scb-1 .  Mediation  estimates  calculated  as  the  fraction  of               
the  total  QTL  effect  explained  by  differences  in  expression  of  each  gene  (y-axis)  are  plotted                
against  genomic  position  of  the  gene  (x-axis)  on  chromosome  V  for  74  probes  surrounding               
scb-1  (red  diamond).  The  95th  percentile  of  the  distribution  of  mediation  estimates  for  each  trait                
are  represented  by  the  horizontal  grey  lines.  The  confidence  intervals  for  QTL  are  shown  with                
the  vertical  blue  dotted  lines.  The  confidence  of  the  estimate  increases  (p-value  decreases)  as               
points   become   less   transparent.  
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Figure  5. Testing  the  role  of scb-1 in  drug  responses.  (A)  Strain  genotypes  on  chromosome  V                 
are  shown,  colored  orange  (N2)  and  blue  (CB4856).  From  top  to  bottom,  strains  are  N2,                
ECA1132,  ECA1134,  and  CB4856.  Deletion  of scb-1  is  indicated  by  a  grey  triangle.  The  dotted                
vertical  line  represents  the  location  of scb-1 .  (B)  Phenotypes  are  plotted  as  Tukey  box  plots  with                 
strain  (y-axis)  by  relative  residual  animal  length  (x-axis).  Statistical  significance  of  each  deletion              
strain  compared  to  its  parental  strain  (ECA1132  to  N2  and  ECA1134  to  CB4856)  is  shown                
above  each  strain  and  colored  by  the  parent  strain  against  which  it  was  tested  (ns  =                 
non-significant  (p-value  >  0.05);  *,  **,  ***,  and  ***  =  significant  (p-value  <  0.05,  0.01,  0.001,  or                  
0.0001,   respectively).  
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