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Abstract: (up to 70 words)   

APOEε4 African local genomic ancestry (LA) confers less risk for Alzheimer disease (AD) relative 

to European LA (LA) carriers. Single nucleus RNA sequencing from AD-APOE4/4 frontal cortex 

found European LA carriers have a 1.45-fold greater APOEε4 expression (p< 1.8 E10-313) and are 

associated with a unique A1 reactive astrocyte cluster. This suggests a potential mechanism for 

the increased risk for AD seen in European LA carriers of APOEε4.  

 

Key words: Alzheimer Disease, APOE, Single-nucleus RNA-seq, Local Ancestry, reactive 

astrocytes 
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Main 

Alzheimer disease (AD) is the most common form of dementia1. The APOEε4 allele is the 

strongest common genetic risk factor for AD2. However, the risk for AD conveyed by the APOEε4 

allele varies between populations, with a stronger risk for APOEε4 homozygotes in Non-Hispanic 

Whites (NHW) (Odds Ratio (OR) ~15)3-6 than for African-Americans (AA) (OR~8) and Africans 

(OR~3 for)3-9. Recent studies have shown the lower risk in African and AA APOEε4 carriers is 

associated with the African local genomic ancestry (LA) around the APOEε4 allele10. As there are 

no distinct amino acid changes in APOEε4 between AA and NHW, we hypothesized that non-

coding variants affecting gene expression are likely involved.  

To identify a protective factor in AA LA that could provide insight into potential 

therapeutic interventions, we obtained frozen frontal cortex tissue (Brodmann area 9) from four 

AA and four NHW Alzheimer patients, who were homozygous carriers of the African or European 

LA APOE4/4 genotype (Supplementary Table 1) respectively. Single nucleus RNA-sequencing 

(snRNA-seq) was performed to dissect tissue complexity. After quality control, we obtained data 

from a total of 47,113 total nuclei (3,112-8,599 nuclei per sample), sequenced at a median depth 

of ~131,000 reads per cell with ~1800 genes/nucleus (Supplementary Table 2). Figure 1a shows a 

two-dimensional UMAP plot showing cellular heterogeneity in 42 distinct clusters for the 

combined eight samples. The Allen Brain Map (https://celltypes.brain-

map.org/rnaseq/human/cortex) (Supplementary File 1) and Single-cell atlas of the Entorhinal 

Cortex in Human Alzheimer’s Disease11 (http://adsn.ddnetbio.com) were used to identify cell 

types.  Expression of defining genes for each cluster is shown in Supplementary Figure 1, cell 

grouping in a UMAP plot in Figure 1b, and a list of cell types in Supplementary Table 3. 
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APOEε4 expression was significantly higher overall in EU LA compared to AA LA 

(adjusted p-value < 1.8E-313) and significantly increased in 17 of the 42 clusters (Figure 2 and 

Supplementary Table 4).  Importantly, the expression of APOEε4 was lower in all four African 

LA samples, supporting the biological importance between the two groups.  Only seven other out 

of 220 genes within 2Mb on either side of APOE had significantly differential expression between 

AA and NHW in any cluster: CEACAM19, ERCC1, a long noncoding transcript AC004784.1, 

CALM3, PLAUR, ARHGAP35, and HIF3A (Supplementary Table 5). Of these, none have 

previously been implicated in AD risk, though CALM3 encodes for a subunit of calmodulin, and 

neuronal APOEε412-15 has been associated with a dysregulated calcium metabolism. However, 

none had the consistent and robust differential expression seen in APOEε4, strongly supporting 

this as being the important difference between the African and European APOEε4 LA.    

 We also evaluated differential expression of other known AD genes, including Mendelian 

(APP, PS1, PS2, and MAPT) and genes suggested by GWAS and rare variant association studies 

in both ethnic groups16,17. We observed differential expression between NHW and AA in six 

reported AD genes including APP, APOE, CLU, BIN1, PICALM, CR1, PTK2B, SIP1, and the 

novel potential AD gene ADAM10. Interestingly, we also found significant differential expression 

in five recently identified novel African-American AD genes17: RBFOX1, IGF1R, ALCAM, GPC6, 

and WDR70 (Supplementary Table 6). 

To better understand the molecular pathways altered by ancestry-specific changes in gene 

expression, we performed an unbiased analysis of enriched pathways. We pooled the DEG 

between AA and EU LA from all clusters of a given cell-type (Supplementary File 2) to achieve a 

more complete cell-type transcriptome representation (Supplementary File 3). Pathways enriched 

in DEG in neurons (both, in inhibitory and excitatory) include neuronal development, synaptic 
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transmission and cell adhesion. DEG in oligodendrocytes are enriched in pathways related to 

synaptic transmission, brain development, neuronal migration, calcium signaling and response to 

stimuli. Microglia DEG were enriched in pathways of brain development and signaling.  DEG in 

endothelial cells are enriched in pathways related to responses to stress and angiogenesis. 

The most prominent difference between cellular composition between AA and EU LA was 

in cluster 21 where the proportion of the total cell number in EU LA is ~12 times greater than in 

the AA LA samples. As the cell proportions of the majority of the clusters are similar 

(Supplementary Table 3), this finding is unlikely to be secondary to a technical artifact, despite 

the brain samples being ascertained from different sources.  Examination of the transcriptional 

signature of cluster 21 revealed a strong enrichment for known astrocyte-specific markers 

(Supplementary Figure 2). To further characterize cluster 21, we compared the transcriptome of 

this cluster with the other astrocyte clusters (4, 8 and 16). Analysis of the identified DEG from this 

analysis indicates that cluster 21 preferentially expressed markers of reactive astrocytes18,19, with 

significantly higher levels of GFAP, VIM, LGALS1, FGF2, and HSBP1 compared to other 

astrocyte clusters (Supplementary Table 7). Interestingly, compared to the other astrocyte clusters, 

Cluster 21 also overexpressed IFITM3, CHI3L1, and B2M, which are specifically upregulated by 

neuroinflammation in A1-type reactive astrocytes in mice18. CHI3L1 (also known as YKL-40) has 

been proposed as a biomarker for neuroinflammation in early AD20,21  and IFITM3 was shown to 

be upregulated in response to beta-amyloid treatment22.  

Consistent with an overrepresentation of A1 reactive astrocytes in the EU LA samples as 

compared to the AA LA samples, enriched pathways using DEG in the astrocytic lineages (clusters 

4, 8, 16, and 21) include “regulation of cellular response to heat” (GO:1900034), “response to 

unfolded protein” (GO:0006986), “protein refolding” (GO:0042026) and “chaperone binding” 
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(GO:0051087) suggestive of differential cellular stress responses between the ancestries.  A1 

reactive astrocytes are thought to be activated by neuroinflammatory conditions, creating a “toxic” 

astrocyte, resulting in destructive actions towards neuronal synapses23.  

Thus, we propose that the higher APOEε4 expression of APOEε4 carriers of European LA 

contributes to a detrimental increase in reactive A1 astrocytes in NHW carriers of the Eu LA 

APOEε4, leading to increased neuronal stress, and increasing the risk for AD. The lower 

expression of APOEε4 in AA with the African LA appears to have less effect in driving astrocytes 

to the A1 reactive phenotype, resulting in the lower risk for AD secondary to APOEε4 (Figure 2).  

How this difference in expression is caused by the European LA is currently not known.  It could 

be secondary to sequence differences between the two LA leading to differences in methylation or 

affecting enhancer activity. Further, little is known about the similarity of open reading frames or 

topologically associated domains between the two ancestries in the brain, which could affect 

expression as well.  Recently, a SNP in the promoter of APOE has been suggested to be related to 

the risk difference for AD between NHW and Koreans (rs405509)9. However, rs405509 is not 

significantly different in allele frequency between AA and NHW LAs on the APOE4 haplotype.  

Alternatively, the observed increased expression of APOEε4 could be secondary to an elevation in 

A1 reactive astrocytes18, but this seems unlikely given the increased APOE4 expression in 

multiple cell types. As reactive A1 astrocytes have been shown to be induced through microglia, 

it  seems likely that the final scenario explaining the difference in AD risk in APOEε4 carriers with 

NHW vs. AA LA involves a complex interaction of microglia, astrocytes and the observed increase 

in APOE expression24.  

While this study was designed to evaluate the differences in African and European local 

ancestry, it also provides one of the first looks at comparing snRNA-seq data between AA and 
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NHW AD patients. The top ten significant DEG between AA and NHW across all clusters are 

shown in Supplementary Table 8.  It includes the ABCB1 gene involved in the transport of P-

glycoprotein and efflux of β-amyloid (Aβ) from the brain, and the TNR gene implicated in neurite 

outgrowth, neural cell adhesion and modulation of sodium channel function. The DEG of the full 

set of clusters is shown on Supplementary File 2.   

 One of the challenges in this study was identifying African-American brains for study. The 

number of African and AA tissue samples currently available for study is limited relative to NHW 

samples. Further, as an admixed population, many AA samples had mixed LA or even 

homozygous Eu LA ancestry surrounding APOEε4 in individuals who self-reported as AA.   Our 

study and that of Rajabli et. al10 demonstrate the value of including AA samples and other 

ancestries in AD studies, including genomic and autopsy research. It also points out that in 

admixed populations of the Americas, such as AA and Hispanics, the ancestry surrounding the 

APOEε4 allele is an important consideration when calculating an individual’s risk for AD.   

 In summary, this study suggests that the difference in risk between the European and 

African LAs is secondary to significant differences in the expression of APOEε4.  The increased 

expression is strongly associated with an increase in reactive A1 astrocytes in the EU LA.  Reactive 

A1 astrocytes have been shown to cause neuronal stress and eventual cell death, and have been 

reported in patients with several neurodegenerative diseases including AD25-27. Future studies are 

needed to identify the mechanism producing this expression difference.  Identification of the 

underlying basis for APOE overexpression in NHW could lead to therapeutic interventions aimed 

to reduce the expression of APOE4 in its carriers, which could have a major effect on the overall 

risk for AD in the NHW populations. 
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Methods 

Sample Source 

All patients presented clinically with a progressive dementia consistent with AD, had a confirmed 

diagnosis of Alzheimer Disease upon neuropathological examination, and 

were APOE4 homozygotes. To identify African ancestry patients, the National Alzheimer 

Coordinating Center (NACC) was screened for patients who self-identified as AA and were 

APOEε4 carriers.  Autopsy material for the NACC-selected AA samples were obtained from the 

Department of Neurology Alzheimer Disease Research Centers (ADRC) at Emory University 

and Northwestern University. NHW autopsy samples were obtained from the John P. Hussman 

Institute for Human Genomics (HIHG) autopsy programs for AD. All samples were acquired with 

informed consent for research use and approved by the institutional review board of each 

center. Frozen frontal cortex tissue (Brodmann area 9) was used for all analyses. 

Selection of Brain Samples  

Review of the NACC database initially identified African-American samples with clinical AD 

confirmed by pathology and an APOE4/4  genotype.  Material Transfer Agreements (MTA) were 

successfully completed with two of the largest listed data sets (total 45 samples) containing African 

American samples, i.e. Northwestern University and Emory University Alzheimer Disease 

Research Centers (ADRC).  Subsequent evaluation revealed that only 14 AA samples were 

currently available for study. Those 14 samples were assessed for local ancestry in the APOE 

region. Three of the AA samples were homozygous for European LA, and three were heterozygous 

for European and African LA, excluding them for the study. Two additional samples were 

eliminated due to the presence of other identified neurologic abnormalities (e.g. global head injury, 

glioblastoma) that could affect the analysis.  This left four samples (three females, one male) that 
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were found to be homozygous for APOEε4 and consistent for African local ancestry.  The African 

global ancestry of these four samples ranged from 85 to 92%, with the remaining admixture 

European.  

 Four NHW samples (three females, one male) were obtained from the HIHG Brain Bank, 

of which samples collected prior to 2007 were collected at Duke University.  Samples were chosen 

based on tissue availability, sex match, neuropathology (had no other identified neurologic 

abnormalities that would affect expression), APOE4/4 genotype and European local ancestry. 

Global ancestry was also assessed for all samples, with the NHW samples having >96% European 

global ancestry.     

  All donors included in the study were clinically diagnosed with AD using standard 

cognitive testing (Clinical Dementia Rating (CDR) or Mini-Mental State Exam (MMSE)), and met 

the neuropathological criteria of the National Institute on Aging-Alzheimer’s Association for the 

diagnosis of AD. The four AA donors had an age-of-death ranging from 82 to 86 years, versus 70 

to 76 years for the four NHW donors. The BRAAK stage from all samples ranged from IV to VI. 

Description of the samples is shown in Table 1.  Whole genome sequencing revealed absence of 

mutations in any known Mendelian genes for AD (PSEN1, PSEN2, APP, and MAPT) as well as 

absence of known rare variants in ABCA7, TREM2 and SORL1 in all samples. 

Assessment of Genetic Ancestry  

All samples were assessed for both Global (GA) and Local Ancestry (LA) using genome-wide 

genotyping from either the Expanded Multi-Ethnic Genotyping Array, Illumina 1M-duo (v3), or 

the Global Screening Array (Illumina, San Diego, CA, USA).  Global ancestry was 

estimated by performing Principal Components Analysis (PCA) using the GENESIS R package28. 

The AA and NHW samples were combined with the Human Genome Diversity Project (HGDP) 
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reference panel representing diverse ancestries.  To assess the LA, we phased our datasets 

(SHAPEIT version 229) using 1000 Genomes Phase 3 (1kGP) reference panel and used RFMix to 

infer LA at loci across the genome30. We defined an initial region (chr19:44,000,000–

46,000,000Mb) around the APOE locus that was broad enough to include potential enhancers, 

topological associated domains, and other regulatory factors while narrow enough to ensure 

contiguous LA blocks 10. After selecting the APOE  LA region, we selected individuals 

homozygous for European (n=4) and African (n=4) local ancestry haplotypes. All individuals used 

in the study were confirmed homozygous for the APOEε4 allele by Sanger and whole genome 

sequencing.  

Known AD mutation screening 

Whole Genome Sequencing (WGS) was performed from 1g of DNA extracted from the 

brains using the Illumina TruSeq DNA PCR-Free Kit and sequencing to 30X on 

the Illumina NovaSeq 6000 at either the Center for Genome Technology at the John P. Hussman 

Institute for Human Genomics or The American Genome Center at Uniformed Services University 

of the Health Sciences (USUHS). Resulting FASTQ files were aligned to the GRCh38 human 

reference genome with BWA31, followed by Genome Analysis Toolkit (GATK)32 base quality 

score recalibration, duplicate removal, and joint genotype calling across all eight samples with the 

GATK Haplotype Caller according to GATK Best Practices recommendations33, 34. Variant 

annotation was performed with ANNOVAR35 and each sample screened for known pathogenic 

variants in AD genes.   

Nuclei isolation 

Nuclei were isolated from ~100mg of frozen frontal cortex brain tissue from Brodmann area 9 at 

the HIHG using the Nuclei Isolation Kit: Nuclei EZ Prep (Sigma, #NUC101). All tissues were 
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homogenized in ice-cold EZ Lysis buffer with a glass-on-glass dounce homogenizer, 10 strokes 

with the tight pestle, followed by 10 strokes of the loose pestle, followed by 5 min 

incubation. Centrifuged nuclei (500× g, 5 min and 4 °C) were washed in ice-cold EZ Lysis buffer, 

and Nuclei Suspension Buffer (NSB; consisting of 1X PBS, 1%  BSA and 0.2 U/μl RNase 

inhibitor (NxGEN #97065-224). Isolated nuclei were resuspended in NSB, filtered through 

a 70 μm and 40 μm cell strainer and pellet re-suspended in 2% BSA in PBS. Then, homogenates 

(2 mL) were layered onto a 1.8M sucrose cushion and ultra-centrifuged at 24,400 rpm at 4°C for 

2 hours using a SW28 swinging bucket rotor (Beckman Coulter Optimal centrifuge #L90K). The 

nuclear pellet was re-suspended in 2% BSA in 1X PBS. After resuspension, nuclei were re-filtered 

through a 40 μm cell strainer and an aliquot was trypan-blue stained for visual quality assessment, 

and counted using the Countess Automated Cell Counter (Thermo Fisher).   

Single nucleus RNA sequencing  

Single nucleus sequencing was performed in the Center for Genome Technology at the HIHG. 

Briefly, nuclei at a concentration of 1200 nuclei/mL were loaded on the 10X Genomics Chromium 

platform to isolate ~7,000 nuclei per sample and create individually barcoded Gel bead-in-

Emulsions (GEMs). GEMs were then subjected to reverse transcription to generate unique 

molecular identified RNA using the Chromium Single Cell 3’ Reagent Version 3 Kit. Sequencing 

libraries were evaluated for quality on the Agilent Tape Station (Agilent Technologies, Palo Alto, 

CA, USA), and quantified using a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA). Pooled 

libraries were quantified using qPCR prior to loading on the Illumina NovaSeq 6000. We targeted 

100,000 reads per cell with sequencing parameters suggested by 10X Genomics: Read1, 28 cycles; 

Index1, 8 cycles; Read2, 98 cycles.  

RNA-seq alignment  
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We utilized the 10X Genomics CellRanger v3.0.2 software for primary bioinformatics, first 

creating de-multiplexed FASTQ files from the raw sequencing output with the {-mkfastq} 

command. The CellRanger {-count} command was then used to map and quantify sequencing 

reads. Since nuclear RNA includes an abundance of un-spliced RNA, we aligned to a customized 

GRCh38 reference genome that includes intronic reads in the gene quantification as suggested by 

the 10X Genomics manual (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/advanced/references#premrna) and previous single nucleus 

sequencing publications36.   

Sequencing quality control and integration  

Gene expression matrices created by CellRanger were analyzed further with the Seurat 3.1 

pipeline37  implemented in R v3.6.1 and RStudio v1.2.1335_64x for data filtering, normalization, 

integration, and downstream analysis. First, we removed poor quality nuclei or potential doublets 

by removing nuclei with fewer than 200 or greater than 8000 total genes. Next, nuclei with greater 

than 10% mitochondrial reads were removed to exclude nuclei with excess associated 

mitochondria. Global-normalization was then performed on all cells from sample independently 

using the {NormalizeData} function in Seurat to normalize gene expression of each cell by total 

expression per sample, followed by log transformation. Seurat’s {FindVariableFeatures} function 

was used to identify the top 5000 variable genes in each sample.   

Data integration was performed to identify shared cell states across different samples following a 

recently published protocol38. First {FindIntegrationAnchors} was used to identify ‘anchors’ 

between samples that represent pairwise correspondences between individual cells that likely 

originate from the same cell type. Then, these ‘anchors’ were used to harmonize the samples using 

the {IntegrateData} command to create a fully integrated R object. Finally, global-scaling of the 
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integrated data set to remove batch effects and unwanted sources of biological variation was 

performed using {ScaleData}.   

Single nucleus clustering  

The scaled integrated object was used for further downstream processing to identify common cell 

types and enable comparative analyses across the samples.  First, the first 50 principal components 

were calculated on the scaled data and the PCs were projected into two dimensions using the 

UMAP algorithm39. Similar cells were clustered from the principal components with the 

{FindNeighbors} command and clusters defined using a resolution of 1.2 in the {FindClusters} 

command resulting in 42 distinct clusters. 

Finally, {FindConservedMarkers} was used to identify canonical marker genes for each cluster 

conserved across samples by performing differential gene expression between clusters and 

combining the p-values using meta-analysis methods from the MetaDE R package.   

Differential gene expression  

Comparisons of cellular composition (e.g. counts and proportions of cells of a certain cluster 

within each group) was investigated using the {table} command. Furthermore, differentially 

expressed genes (DEG) between conditions and within each cluster was identified using the 

{FindMarkers} function using the MAST test which employs a generalized linear model 

framework using cell detection rate across groups as a co-variate40.  

 

 

Cluster identification 

Each cluster was assigned to a cell class on the basis of expression of marker genes from two 

sources, 1) the Allen Brain Map (https://celltypes.brain-map.org/rnaseq/human/cortex) 
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(Supplementary File 1) and 2) the website developed by the Polo 

laboratory11(http://adsn.ddnetbio.com). Identification of the reactive A1 astrocyte cluster used 

available literature characterizing transcriptome of that cell type18, 19, 41  

Pathway analysis of transcriptome data  

Pathway analysis was performed using the gene enrichment analysis tools DAVID42 and Enrichr43, 

44. As input lists we used: (i) genes differentially expressed in African vs European LA samples in 

each identified cell cluster, (ii) genes differentially expressed in African vs European LA samples 

in multiple clusters representing similar cell types, and (iii) genes differentially expressed in 

African vs European LA samples in all clusters. Cell type specific background gene lists were 

obtained from the Allen Brain Map and converted to ensemble IDs to be used as input for DAVID. 

Enrichment of genes in KEGG pathways and Gene Ontology Biological Process and Molecular 

Function libraries was determined. An FDR adjusted p-value of 0.05 was used as a cut-off to 

determine significant enrichment of a pathway.   
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Figure Legends 

Figure 1. a) UMAP reduction plot of 47,113 nuclei from frontal cortex; n = 8 patients. b) UMAP 
reduction plot showing cell type by color designated in legend and by labels. 

Figure 2. Visualization of APOE expression in nuclei from AA local ancestry and EU local 
ancestry. Cells are overlaid with gene expression information with expression is depicted from 
gray (low) to purple (high). 

 

 

Supplementary Figure Legends 

Supplementary Figure 1. Heatmap of top 10 marker genes defining each cell type.  

Supplementary Figure 2. Bubble plot of the top 30 marker genes for cluster 21 (significant 
adjusted p-value and positive fold change when compared to all other clusters) generated at 
http://adsn.ddnetbio.com 

 

 

Supplementary File Legends 

Supplementary File 1. Single cell Allen Brain Map (https://celltypes.brain-
map.org/rnaseq/human/cortex) heatmap for the top 20 marker genes for each cluster (one per 
page) used to identify cell types. 

Supplementary File 2. List of all differentially expressed genes between AA and EU ancestry 
within each cluster. avg_logFC is the log base 2 fold change. p_val_adj is the MAST FDR 
corrected p-value. 

Supplementary File 3. Pathway enrichment analysis in KEGG and GO Ontology Biological 
Process for the differentially expressed genes from all clusters of a given cell-type. Each tap 
represents a different cell type.  
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Figure 1. UMAP dimensionality reduction plots for integrated data. 
 

 

  

a. 

b. 
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Figure 2. APOE expression between ancestries.  
 

 

AA: African American, EU: European. 
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Supplementary Figure 1. Heatmap of top 10 marker genes from each cell type. 

  

Pericytes 
Endothelial Cells 
OPCs 
 
Microglia 
 
 
 
Astrocytes 
 
 
 
 
 
 
 
Excitatory Neurons 
 
 
 
 
 
 
 
 
 
Inhibitory Neurons 
 
 
 
 
 
 
 
 
 
 
Oligodendrocytes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.983817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.983817
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Supplementary Figure 2. Top 30 gene markers of cluster 21 
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