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Abstract: (up to 70 words)

APOE¢4 African local genomic ancestry (LA) confers less risk for Alzheimer disease (AD) relative
to European LA (LA) carriers. Single nucleus RNA sequencing from AD-4APOEg4/4 frontal cortex
found European LA carriers have a 1.45-fold greater APOEe4 expression (p< 1.8 E107!) and are
associated with a unique Al reactive astrocyte cluster. This suggests a potential mechanism for

the increased risk for AD seen in European LA carriers of APOE¢e4.
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Main

Alzheimer disease (AD) is the most common form of dementia!. The APOE¢4 allele is the
strongest common genetic risk factor for AD?. However, the risk for AD conveyed by the 4APOEe4
allele varies between populations, with a stronger risk for APOEe4 homozygotes in Non-Hispanic
Whites (NHW) (Odds Ratio (OR) ~15)*¢ than for African-Americans (AA) (OR~8) and Africans
(OR~3 for)*?. Recent studies have shown the lower risk in African and AA APOEe4 carriers is
associated with the African local genomic ancestry (LA) around the APOE¢4 allele'®. As there are
no distinct amino acid changes in APOEe4 between AA and NHW, we hypothesized that non-
coding variants affecting gene expression are likely involved.

To identify a protective factor in AA LA that could provide insight into potential
therapeutic interventions, we obtained frozen frontal cortex tissue (Brodmann area 9) from four
AA and four NHW Alzheimer patients, who were homozygous carriers of the African or European
LA APOE&4/4 genotype (Supplementary Table 1) respectively. Single nucleus RNA-sequencing
(snRNA-seq) was performed to dissect tissue complexity. After quality control, we obtained data
from a total of 47,113 total nuclei (3,112-8,599 nuclei per sample), sequenced at a median depth
of ~131,000 reads per cell with ~1800 genes/nucleus (Supplementary Table 2). Figure 1a shows a
two-dimensional UMAP plot showing cellular heterogeneity in 42 distinct clusters for the
combined  eight  samples. The  Allen Brain Map (https://celltypes.brain-
map.org/rnaseq/human/cortex) (Supplementary File 1) and Single-cell atlas of the Entorhinal
Cortex in Human Alzheimer’s Disease!! (http://adsn.ddnetbio.com) were used to identify cell
types. Expression of defining genes for each cluster is shown in Supplementary Figure 1, cell

grouping in a UMAP plot in Figure 1b, and a list of cell types in Supplementary Table 3.
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APOEe4 expression was significantly higher overall in EU LA compared to AA LA
(adjusted p-value < 1.8E>!%) and significantly increased in 17 of the 42 clusters (Figure 2 and
Supplementary Table 4). Importantly, the expression of APOEe4 was lower in all four African
LA samples, supporting the biological importance between the two groups. Only seven other out
of 220 genes within 2Mb on either side of APOE had significantly differential expression between
AA and NHW in any cluster: CEACAM19, ERCCI, a long noncoding transcript AC004784.1,
CALM3, PLAUR, ARHGAP35, and HIF3A4 (Supplementary Table 5). Of these, none have
previously been implicated in AD risk, though CALM3 encodes for a subunit of calmodulin, and
neuronal APOEe4'*'> has been associated with a dysregulated calcium metabolism. However,
none had the consistent and robust differential expression seen in APOEe4, strongly supporting
this as being the important difference between the African and European APOEe4 LA.

We also evaluated differential expression of other known AD genes, including Mendelian
(4APP, PS1, PS2, and MAPT) and genes suggested by GWAS and rare variant association studies
in both ethnic groups'®!”. We observed differential expression between NHW and AA in six
reported AD genes including APP, APOE, CLU, BINI, PICALM, CRI, PTK2B, SIPI, and the
novel potential AD gene ADAM 0. Interestingly, we also found significant differential expression
in five recently identified novel African-American AD genes'’: RBFOX1, IGFIR, ALCAM, GPC6,
and WDR?70 (Supplementary Table 6).

To better understand the molecular pathways altered by ancestry-specific changes in gene
expression, we performed an unbiased analysis of enriched pathways. We pooled the DEG
between AA and EU LA from all clusters of a given cell-type (Supplementary File 2) to achieve a
more complete cell-type transcriptome representation (Supplementary File 3). Pathways enriched

in DEG in neurons (both, in inhibitory and excitatory) include neuronal development, synaptic
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transmission and cell adhesion. DEG in oligodendrocytes are enriched in pathways related to
synaptic transmission, brain development, neuronal migration, calcium signaling and response to
stimuli. Microglia DEG were enriched in pathways of brain development and signaling. DEG in
endothelial cells are enriched in pathways related to responses to stress and angiogenesis.

The most prominent difference between cellular composition between AA and EU LA was
in cluster 21 where the proportion of the total cell number in EU LA is ~12 times greater than in
the AA LA samples. As the cell proportions of the majority of the clusters are similar
(Supplementary Table 3), this finding is unlikely to be secondary to a technical artifact, despite
the brain samples being ascertained from different sources. Examination of the transcriptional
signature of cluster 21 revealed a strong enrichment for known astrocyte-specific markers
(Supplementary Figure 2). To further characterize cluster 21, we compared the transcriptome of
this cluster with the other astrocyte clusters (4, 8 and 16). Analysis of the identified DEG from this
analysis indicates that cluster 21 preferentially expressed markers of reactive astrocytes'®!”, with
significantly higher levels of GFAP, VIM, LGALSI, FGF2, and HSBPI compared to other
astrocyte clusters (Supplementary Table 7). Interestingly, compared to the other astrocyte clusters,
Cluster 21 also overexpressed IFITM3, CHI3L1, and B2M, which are specifically upregulated by
neuroinflammation in A1-type reactive astrocytes in mice'®. CHI3LI (also known as YKL-40) has
been proposed as a biomarker for neuroinflammation in early AD?>?! and IFITM3 was shown to
be upregulated in response to beta-amyloid treatment??.

Consistent with an overrepresentation of A1l reactive astrocytes in the EU LA samples as
compared to the AA LA samples, enriched pathways using DEG in the astrocytic lineages (clusters
4, 8, 16, and 21) include “regulation of cellular response to heat” (GO:1900034), “response to

unfolded protein” (GO:0006986), “protein refolding” (GO:0042026) and “chaperone binding”
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(GO:0051087) suggestive of differential cellular stress responses between the ancestries. Al
reactive astrocytes are thought to be activated by neuroinflammatory conditions, creating a “toxic”
astrocyte, resulting in destructive actions towards neuronal synapses=>.

Thus, we propose that the higher APOE¢4 expression of APOEe4 carriers of European LA
contributes to a detrimental increase in reactive Al astrocytes in NHW carriers of the Eu LA
APOEe4, leading to increased neuronal stress, and increasing the risk for AD. The lower
expression of APOEe4 in AA with the African LA appears to have less effect in driving astrocytes
to the A1 reactive phenotype, resulting in the lower risk for AD secondary to APOEe4 (Figure 2).
How this difference in expression is caused by the European LA is currently not known. It could
be secondary to sequence differences between the two LA leading to differences in methylation or
affecting enhancer activity. Further, little is known about the similarity of open reading frames or
topologically associated domains between the two ancestries in the brain, which could affect
expression as well. Recently, a SNP in the promoter of APOE has been suggested to be related to
the risk difference for AD between NHW and Koreans (rs405509)°. However, rs405509 is not
significantly different in allele frequency between AA and NHW LAs on the APOE &4 haplotype.
Alternatively, the observed increased expression of APOEe4 could be secondary to an elevation in
Al reactive astrocytes'®, but this seems unlikely given the increased APOEe&4 expression in
multiple cell types. As reactive Al astrocytes have been shown to be induced through microglia,
it seems likely that the final scenario explaining the difference in AD risk in APOEe4 carriers with
NHW vs. AA LA involves a complex interaction of microglia, astrocytes and the observed increase
in APOE expression*.

While this study was designed to evaluate the differences in African and European local

ancestry, it also provides one of the first looks at comparing snRNA-seq data between AA and
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NHW AD patients. The top ten significant DEG between AA and NHW across all clusters are
shown in Supplementary Table 8. It includes the ABCBI gene involved in the transport of P-
glycoprotein and efflux of B-amyloid (AB) from the brain, and the 7NR gene implicated in neurite
outgrowth, neural cell adhesion and modulation of sodium channel function. The DEG of the full
set of clusters is shown on Supplementary File 2.

One of the challenges in this study was identifying African-American brains for study. The
number of African and AA tissue samples currently available for study is limited relative to NHW
samples. Further, as an admixed population, many AA samples had mixed LA or even
homozygous Eu LA ancestry surrounding APOE¢4 in individuals who self-reported as AA. Our
study and that of Rajabli et. al'® demonstrate the value of including AA samples and other
ancestries in AD studies, including genomic and autopsy research. It also points out that in
admixed populations of the Americas, such as AA and Hispanics, the ancestry surrounding the
APOE¢e4 allele is an important consideration when calculating an individual’s risk for AD.

In summary, this study suggests that the difference in risk between the European and
African LAs is secondary to significant differences in the expression of APOEe4. The increased
expression is strongly associated with an increase in reactive Al astrocytes in the EU LA. Reactive
A1 astrocytes have been shown to cause neuronal stress and eventual cell death, and have been
reported in patients with several neurodegenerative diseases including AD*%’. Future studies are
needed to identify the mechanism producing this expression difference. Identification of the
underlying basis for APOE overexpression in NHW could lead to therapeutic interventions aimed
to reduce the expression of APOE4 in its carriers, which could have a major effect on the overall

risk for AD in the NHW populations.
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Methods

Sample Source

All patients presented clinically with a progressive dementia consistent with AD, had a confirmed
diagnosis  of  Alzheimer Disease upon  neuropathological = examination, and
were APOEg4 homozygotes. To identify African ancestry patients, the National Alzheimer
Coordinating Center (NACC) was screened for patients who self-identified as AA and were
APOE¢e4 carriers. Autopsy material for the NACC-selected AA samples were obtained from the
Department of Neurology Alzheimer Disease Research Centers (ADRC) at Emory University
and Northwestern University. NHW autopsy samples were obtained from the John P. Hussman
Institute for Human Genomics (HIHG) autopsy programs for AD. All samples were acquired with
informed consent for research use and approved by the institutional review board of each
center. Frozen frontal cortex tissue (Brodmann area 9) was used for all analyses.

Selection of Brain Samples

Review of the NACC database initially identified African-American samples with clinical AD
confirmed by pathology and an APOE&4/4 genotype. Material Transfer Agreements (MTA) were
successfully completed with two of the largest listed data sets (total 45 samples) containing African
American samples, i.e. Northwestern University and Emory University Alzheimer Disease
Research Centers (ADRC). Subsequent evaluation revealed that only 14 AA samples were
currently available for study. Those 14 samples were assessed for local ancestry in the APOE
region. Three of the AA samples were homozygous for European LA, and three were heterozygous
for European and African LA, excluding them for the study. Two additional samples were
eliminated due to the presence of other identified neurologic abnormalities (e.g. global head injury,

glioblastoma) that could affect the analysis. This left four samples (three females, one male) that
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were found to be homozygous for APOE¢4 and consistent for African local ancestry. The African
global ancestry of these four samples ranged from 85 to 92%, with the remaining admixture
European.

Four NHW samples (three females, one male) were obtained from the HIHG Brain Bank,
of which samples collected prior to 2007 were collected at Duke University. Samples were chosen
based on tissue availability, sex match, neuropathology (had no other identified neurologic
abnormalities that would affect expression), APOE¢4/4 genotype and European local ancestry.
Global ancestry was also assessed for all samples, with the NHW samples having >96% European
global ancestry.

All donors included in the study were clinically diagnosed with AD using standard
cognitive testing (Clinical Dementia Rating (CDR) or Mini-Mental State Exam (MMSE)), and met
the neuropathological criteria of the National Institute on Aging-Alzheimer’s Association for the
diagnosis of AD. The four AA donors had an age-of-death ranging from 82 to 86 years, versus 70
to 76 years for the four NHW donors. The BRAAK stage from all samples ranged from IV to VI.
Description of the samples is shown in Table 1. Whole genome sequencing revealed absence of
mutations in any known Mendelian genes for AD (PSENI, PSEN2, APP, and MAPT) as well as
absence of known rare variants in ABCA7, TREM?2 and SORLI in all samples.

Assessment of Genetic Ancestry

All samples were assessed for both Global (GA) and Local Ancestry (LA) using genome-wide
genotyping from either the Expanded Multi-Ethnic Genotyping Array, [llumina 1M-duo (v3), or
the Global Screening Array (Illumina, San Diego, CA, USA). Global ancestry was

estimated by performing Principal Components Analysis (PCA) using the GENESIS R package®.

The AA and NHW samples were combined with the Human Genome Diversity Project (HGDP)
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reference panel representing diverse ancestries. To assess the LA, we phased our datasets
(SHAPEIT version 2%°) using 1000 Genomes Phase 3 (1kGP) reference panel and used RFMix to
infer LA at loci across the genome’®. We defined an initial region (chr19:44,000,000—
46,000,000Mb) around the APOE locus that was broad enough to include potential enhancers,
topological associated domains, and other regulatory factors while narrow enough to ensure
contiguous LA blocks '°. After selecting the A4POE LA region, we selected individuals
homozygous for European (n=4) and African (n=4) local ancestry haplotypes. All individuals used
in the study were confirmed homozygous for the APOEe4 allele by Sanger and whole genome
sequencing.

Known AD mutation screening

Whole Genome Sequencing (WGS) was performed from 1ug of DNA extracted from the
brains using the Illumina TruSeq DNA PCR-Free Kit and sequencing to 30X on
the Illumina NovaSeq 6000 at either the Center for Genome Technology at the John P. Hussman
Institute for Human Genomics or The American Genome Center at Uniformed Services University
of the Health Sciences (USUHS). Resulting FASTQ files were aligned to the GRCh38 human
reference genome with BWA?!, followed by Genome Analysis Toolkit (GATK)* base quality
score recalibration, duplicate removal, and joint genotype calling across all eight samples with the
GATK Haplotype Caller according to GATK Best Practices recommendations®® 3*. Variant
annotation was performed with ANNOVAR?® and each sample screened for known pathogenic
variants in AD genes.

Nuclei isolation

Nuclei were isolated from ~100mg of frozen frontal cortex brain tissue from Brodmann area 9 at

the HIHG using the Nuclei Isolation Kit: Nuclei EZ Prep (Sigma, #NUC101). All tissues were

12


https://doi.org/10.1101/2020.03.09.983817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.983817; this version posted March 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

homogenized in ice-cold EZ Lysis buffer with a glass-on-glass dounce homogenizer, 10 strokes
with the tight pestle, followed by 10 strokes of the loose pestle, followed by 5 min
incubation. Centrifuged nuclei (500% g, 5 min and 4 °C) were washed in ice-cold EZ Lysis buffer,
and Nuclei Suspension Buffer (NSB; consisting of 1X PBS, 1% BSA and 0.2 U/ul RNase
inhibitor (NXGEN #97065-224). Isolated nuclei were resuspended in NSB, filtered through
a 70 pm and 40 pm cell strainer and pellet re-suspended in 2% BSA in PBS. Then, homogenates
(2 mL) were layered onto a 1.8M sucrose cushion and ultra-centrifuged at 24,400 rpm at 4°C for
2 hours using a SW28 swinging bucket rotor (Beckman Coulter Optimal centrifuge #L90K). The
nuclear pellet was re-suspended in 2% BSA in 1X PBS. After resuspension, nuclei were re-filtered
through a 40 um cell strainer and an aliquot was trypan-blue stained for visual quality assessment,
and counted using the Countess Automated Cell Counter (Thermo Fisher).

Single nucleus RNA sequencing

Single nucleus sequencing was performed in the Center for Genome Technology at the HIHG.
Briefly, nuclei at a concentration of 1200 nuclei/mL were loaded on the 10X Genomics Chromium
platform to isolate ~7,000 nuclei per sample and create individually barcoded Gel bead-in-
Emulsions (GEMs). GEMs were then subjected to reverse transcription to generate unique
molecular identified RNA using the Chromium Single Cell 3° Reagent Version 3 Kit. Sequencing
libraries were evaluated for quality on the Agilent Tape Station (Agilent Technologies, Palo Alto,
CA, USA), and quantified using a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA). Pooled
libraries were quantified using qPCR prior to loading on the Illumina NovaSeq 6000. We targeted
100,000 reads per cell with sequencing parameters suggested by 10X Genomics: Readl, 28 cycles;
Index1, 8 cycles; Read2, 98 cycles.

RNA-seq alienment
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We utilized the 10X Genomics CellRanger v3.0.2 software for primary bioinformatics, first
creating de-multiplexed FASTQ files from the raw sequencing output with the {-mkfastq}
command. The CellRanger {-count} command was then used to map and quantify sequencing
reads. Since nuclear RNA includes an abundance of un-spliced RNA, we aligned to a customized
GRCh38 reference genome that includes intronic reads in the gene quantification as suggested by
the 10X Genomics manual (https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/advanced/references#premrna) and previous single nucleus
6

sequencing publications>®.

Sequencing quality control and integration

Gene expression matrices created by CellRanger were analyzed further with the Seurat 3.1
pipeline*’” implemented in R v3.6.1 and RStudio v1.2.1335_64x for data filtering, normalization,
integration, and downstream analysis. First, we removed poor quality nuclei or potential doublets
by removing nuclei with fewer than 200 or greater than 8000 total genes. Next, nuclei with greater
than 10% mitochondrial reads were removed to exclude nuclei with excess associated
mitochondria. Global-normalization was then performed on all cells from sample independently
using the {NormalizeData} function in Seurat to normalize gene expression of each cell by total
expression per sample, followed by log transformation. Seurat’s {FindVariableFeatures} function
was used to identify the top 5000 variable genes in each sample.

Data integration was performed to identify shared cell states across different samples following a
recently published protocol®®. First {FindIntegrationAnchors} was used to identify ‘anchors’
between samples that represent pairwise correspondences between individual cells that likely
originate from the same cell type. Then, these ‘anchors’ were used to harmonize the samples using

the {IntegrateData} command to create a fully integrated R object. Finally, global-scaling of the
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integrated data set to remove batch effects and unwanted sources of biological variation was
performed using {ScaleData}.

Single nucleus clustering

The scaled integrated object was used for further downstream processing to identify common cell
types and enable comparative analyses across the samples. First, the first 50 principal components
were calculated on the scaled data and the PCs were projected into two dimensions using the
UMAP algorithm®. Similar cells were clustered from the principal components with the
{FindNeighbors} command and clusters defined using a resolution of 1.2 in the {FindClusters}
command resulting in 42 distinct clusters.

Finally, {FindConservedMarkers} was used to identify canonical marker genes for each cluster
conserved across samples by performing differential gene expression between clusters and
combining the p-values using meta-analysis methods from the MetaDE R package.

Differential gene expression

Comparisons of cellular composition (e.g. counts and proportions of cells of a certain cluster
within each group) was investigated using the {table} command. Furthermore, differentially
expressed genes (DEG) between conditions and within each cluster was identified using the
{FindMarkers} function using the MAST test which employs a generalized linear model

framework using cell detection rate across groups as a co-variate*”.

Cluster identification

Each cluster was assigned to a cell class on the basis of expression of marker genes from two

sources, 1) the Allen Brain Map (https://celltypes.brain-map.org/rnaseq/human/cortex)
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(Supplementary  File 1) and 2) the website developed by the Polo
laboratory!!(http://adsn.ddnetbio.com). Identification of the reactive Al astrocyte cluster used
18,19, 41

available literature characterizing transcriptome of that cell type

Pathway analysis of transcriptome data

Pathway analysis was performed using the gene enrichment analysis tools DAVID*? and Enrichr**
4 As input lists we used: (i) genes differentially expressed in African vs European LA samples in
each identified cell cluster, (i1) genes differentially expressed in African vs European LA samples
in multiple clusters representing similar cell types, and (iii) genes differentially expressed in
African vs European LA samples in all clusters. Cell type specific background gene lists were
obtained from the Allen Brain Map and converted to ensemble IDs to be used as input for DAVID.
Enrichment of genes in KEGG pathways and Gene Ontology Biological Process and Molecular
Function libraries was determined. An FDR adjusted p-value of 0.05 was used as a cut-off to

determine significant enrichment of a pathway.
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Figure Legends

Figure 1. a) UMAP reduction plot of 47,113 nuclei from frontal cortex; n = 8 patients. b) UMAP
reduction plot showing cell type by color designated in legend and by labels.

Figure 2. Visualization of APOFE expression in nuclei from AA local ancestry and EU local
ancestry. Cells are overlaid with gene expression information with expression is depicted from

gray (low) to purple (high).

Supplementary Figure Legends

Supplementary Figure 1. Heatmap of top 10 marker genes defining each cell type.

Supplementary Figure 2. Bubble plot of the top 30 marker genes for cluster 21 (significant
adjusted p-value and positive fold change when compared to all other clusters) generated at
http://adsn.ddnetbio.com

Supplementary File Legends

Supplementary File 1. Single cell Allen Brain Map (https://celltypes.brain-
map.org/rnaseq/human/cortex) heatmap for the top 20 marker genes for each cluster (one per
page) used to identify cell types.

Supplementary File 2. List of all differentially expressed genes between AA and EU ancestry
within each cluster. avg logFC is the log base 2 fold change. p val adj is the MAST FDR
corrected p-value.

Supplementary File 3. Pathway enrichment analysis in KEGG and GO Ontology Biological
Process for the differentially expressed genes from all clusters of a given cell-type. Each tap
represents a different cell type.
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Figure 1. UMAP dimensionality reduction plots for integrated data.
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Figure 2. APOE expression between ancestries.
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AA: African American, EU: European.
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Supplementary Figure 1. Heatmap of top 10 marker genes from each cell type.
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Supplementary Figure 2. Top 30 gene markers of cluster 21
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