

1 **Reprogramming the endogenous type III-A CRISPR-Cas system for genome editing, RNA
2 interference and CRISPRi screening in *Mycobacterium tuberculosis***

3 Khaista Rahman^{1,3#}, Muhammad Jamal^{1,3#}, Xi Chen^{1,3}, Wei Zhou^{1,3}, Bin Yang^{1,3}, Yanyan Zou^{1,3},
4 Weize Xu^{1,3}, Yingying Lei^{1,3}, Chengchao Wu^{1,3}, Xiaojian Cao^{1,3}, Rohit Tyagi^{1,3}, Muhammad
5 Ahsan Naeem^{1,3}, Da Lin^{1,3}, Zeshan Habib^{1,3}, Nan Peng¹, Zhen F. Fu^{1,3,4*} & Gang Cao^{1,2,3,5*}

6 ¹State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan,
7 China. ²Bio-Medical Center, Huazhong Agricultural University, Wuhan, China. ³College of

8 Veterinary Medicine, Huazhong Agricultural University, Wuhan, China. ⁴ The Department of
9 Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.

10 ⁵Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative
11 Innovation Center for Sustainable Pig Production, Wuhan, China

12 [#]equally contributed to this work as a first author.

13 * Correspondence (zhenfu@uga.edu, gcao@mail.hzau.edu.cn).

14 **Summary:** Tuberculosis caused by
15 *Mycobacterium tuberculosis* (*M.tb*) is the current leading infectious disease affecting more than
16 ten million people annually. To dissect the functional genomics and understand its virulence,
17 persistence, and antibiotics resistance, a powerful genome editing tool and high-throughput
18 screening methods are desperately wanted. Our study developed an efficient and a robust tool for
19 genome editing and RNA interference in *M.tb* using its endogenous CRISPR cas10 system.
20 Moreover, the system has been successfully applied for genome-wide CRISPR interference
21 screening. This tool could be employed to explore the functional genomics of *M.tb* and facilitate
22 the development of anti-*M.tb* drugs and vaccines.

23 **Abstract:**

24 *Mycobacterium tuberculosis* (*M.tb*) causes the current leading infectious disease. Examination of
25 the functional genomics of *M.tb* and development of drugs and vaccines are hampered by the
26 complicated and time-consuming genetic manipulation techniques for *M.tb*. Here, we
27 reprogrammed *M.tb* endogenous type III-A CRISPR-Cas10 system for simple and efficient gene
28 editing, RNA interference and screening *via* simple delivery of a plasmid harboring a
29 mini-CRISPR array, thereby avoiding the introduction of exogenous proteins and minimizing
30 proteotoxicity. We demonstrated that *M.tb* genes were efficiently and specifically knocked-in/out
31 by this system, which was confirmed by whole-genome sequencing. This system was further
32 employed for single and simultaneous multiple-gene RNA interference. Moreover, we
33 successfully applied this system for genome-wide CRISPR interference screening to identify the
34 *in-vitro* and intracellular growth-regulating genes. This system can be extensively used to
35 explore the functional genomics of *M.tb* and facilitate the development of new
36 anti-*Mycobacterial* drugs and vaccines.

37 **Key words:**

38 *Mycobacterium tuberculosis*, type III-A CRISPR-Cas system, gene editing, gene interference,
39 Genome-wide CRISPR interference screening.

40

41 **Introduction**

42 *Mycobacterium tuberculosis* (*M.tb*) is the powerful etiological agent of tuberculosis (TB).
43 Currently, it is the deadliest pathogen, ranking above HIV, causing approximately 1.3 million
44 deaths and 10 million new cases globally (Floyd et al., 2018). Currently, the treatment for TB
45 comprises the extensive administration of antibiotics, which often leads to the emergence of
46 extensively drug resistance bacteria (Mittal and Gupta, 2011). Meanwhile, the intake of
47 rifampicin, isoniazid or pyrazinamide could adversely affect the composition of gut microbiota
48 (Hu et al., 2019; Khan et al., 2019). Functional genomic analysis of *M.tb* and elucidation of the
49 molecular mechanism underlying TB pathophysiology are crucial for identification of new drug
50 targets and vaccine candidate genes. However, advances in *M.tb* functional genomic studies are
51 greatly impeded by inefficient tools for gene editing and silencing. The conventional methods for
52 gene editing based on simple homologous recombination using tools such as non-replicating

53 plasmids (Husson et al., 1990), incompatible plasmids (Pashley et al., 2003), linear DNA
54 substrates (Balasubramanian et al., 1996) and phage-based transduction (Bardarov et al., 2002)
55 are less efficient. Although phage transduction can increase the efficiency of *M.tb* genetic
56 manipulation, this technique is laborious and time consuming (Choudhary et al., 2016; Tufariello
57 et al., 2014; Van Kessel and Hatfull, 2007). Recently a method called ORBIT
58 (oligonucleotide-mediated recombineering followed by Bxb1 integrase targeting) was developed
59 for gene editing in *M.tb* based on the integration of a targeting oligonucleotide in the genome via
60 homologous recombination mediated by the phage Che9c RecT annealase. However, this method
61 needs the transformation of a single stranded DNA probe along with a non-replicating plasmid
62 (Murphy et al., 2018).

63 The clustered regularly interspaced short palindromic repeats (CRISPR) and associated genes
64 (Cas) system has been extensively used for genome editing in bacteria (Jiang et al., 2013;
65 Nishimasu et al., 2014). The CRISPR-Cas9 systems from *Streptococcus pyogenes* and
66 *Streptococcus thermophilus* have been used for sequence-specific transcriptional repression in
67 *M.tb*, achieving substantial gene silencing (Choudhary et al., 2015; Rock et al., 2017; Singh et
68 al., 2016). Recently, Rock. et al screened a group of Cas9 proteins for gene silencing in *M.tb*
69 and found that dCas9 from *S. thermophiles* was more efficient for gene silencing in *M.tb* with a
70 reduced proteotoxicity (Rock et al., 2017). Yet, the application of CRISPR-Cas9 failed to disrupt
71 genes in *M.bovis*, *M.smegmatis* and *M.bovis* BCG. (Sun et al., 2018; Vandewalle, 2015).
72 Moreover, to date, none of these methods have been applied to simultaneously silence multiple
73 genes to dissect gene function and study genetic interactions in *M.tb*.

74 The type III CRISPR-Cas system is present in approximately 75% of archaea and 40% of
75 bacteria, including pathogenic *Mycobacterium* and *Staphylococcus* species (Makarova et al.,
76 2011). This system is further classified into four subtypes that are characterized by the Csm
77 complex (type III-A and D) or Cmr (type III-B and C) (Koonin et al., 2017). The initial
78 transcription of CRISPR array yields an immature long transcript known as pre-crRNA, which is
79 processed by Cas6 along with other nuclease to produce mature crRNAs. The mature crRNA
80 harbors an 8nt tag at its 5'-end known as “crRNA-tag”, which is of pivotal importance in
81 auto-immunity scenario. (Carte et al., 2008; Deltcheva et al., 2011; Hatoum-Aslan et al., 2011;
82 Estrella et al., 2016; Hatoum-Aslan et al., 2011; Kazlauskienė et al., 2016). Once the mature

83 crRNA has been generated, the Csm protein complex interacts with the crRNA to form a
84 ribonucleoprotein complex (Samai et al., 2015).

85 The type III CRISPR-Cas system possess transcription dependent RNA and DNA cleavage
86 capabilities, hence efficiently providing immunity against invading genomic elements in
87 *Staphylococcus epidermidis* (Koonin and Makarova, 2013; Samai et al., 2015; Guo et al., 2019).
88 The RNA cleavage is mediated by the Csm3/cmr4 or csm6/csx1 complex, while the DNA
89 cleavage is catalyzed by Cas10 (Csm1) (Grüschor et al., 2019a; Park et al., 2017; Samai et al.,
90 2015; Tamulaitis et al., 2017). Upon activation, Cas10 cleaves the ssDNA (Estrella et al., 2016;
91 Kazlauskiene et al., 2016) and generates the cyclic oligoadenylate (cOA) signaling molecules
92 from ATP, which further act as an activator for the RNA targeting proteins (Kazlauskiene et al.,
93 2017; Niewohner et al., 2017).

94 The type III CRISPR system can be reprogrammed for RNA editing in *Streptococcus*
95 *thermophiles* and *Sulfolobus islandicus* (Tamulaitis et al., 2014 Li et al., 2015; Peng et al., 2015).
96 Meanwhile, this system has also been reprogrammed for chromosomal targeting and to achieve
97 large-scale genomic deletion and alteration in *Staphylococcus aureus* (Guan et al., 2017). Bari et
98 al. has also been used this system for DNA editing of Virulent *Staphylococcal* phages (Bari et al.,
99 2017). Recently, Wei et al. reported that *Mycobacterium* species contain a typical features of
100 type III-A systems and are highly active (Wei et al.). More recently Grüschor et al. showed that
101 the *M.tb* CRISPR system effectively targets RNA and DNA upon expression in *E.coli*
102 (Grüschor et al., 2019b; Wei et al., 2019). However, application of this system in *M.tb* for gene
103 editing, RNA interference and CRISPR interference (CRISPRi) screening has not been reported.

104
105 The aim of this study is, therefore, employing the *M.tb* endogenous type III-A CRISPR-Cas
106 system to develop a versatile and robust tool for efficient gene editing, RNA interference and
107 genome wide CRISPRi screening. We demonstrate that this system can be used for robust and
108 facile gene knock-in/out. Moreover, this system can be utilized for single and simultaneous
109 multiple-gene RNA interference to precisely dissect the functions of specific genes. Furthermore,
110 we applied this system for genome-scale CRISPRi screening of growth-regulating genes. This

111 “killing two birds with one stone” tool may shed light on genetic and functional studies of *M.tb*
112 and facilitate the development of anti-*M.tb* drugs and potent vaccines.

113

114 MATERIALS AND METHODS

115 Bacterial culture, competence cell preparation, eletrotransformation and *in-vitro* growth 116 analysis

117 For culturing *Escherichia coli* (*E.coli*) the bacteria was cultured in lysogeny broth (LB) medium
118 (with or without kenamycin) for 12-14 hours at 37 °C in a shaking incubator. For culturing the
119 *M.tb*, the baccili was cultured in Middle brook 7H9 broth supplemented with (Becton Dickinson)
120 supplemented with 10 % OADC (oleic albumin dextrose catalase), 0.02 % tween 80 and 0.5 %
121 glycerol or on Middle brook 7H10 agar petri plate supplemented with 10% OADC and 0.5 %
122 glycerol containing kanamycin (25 µg/mL) when needed. For *in-vitro* growth analysis, the
123 bacteria were cultured in Middle brook 7H9 broth and adjusted OD_{600nm} to 0.15. Bacterial
124 suspension (0.2 mL) was used to examine OD_{600nm} each day for 18 days. All the experiments
125 were performed in triplicates for each sample.

126 The competence cells were made with the following manner: 100 mL of *M.tb* H37Ra was
127 pelleted by centrifuging at 8,000g for 10 minutes, 4 °C and washed 3 times with 10 % ice chilled
128 glycerol. The pellet was washed with 4 mL of 10 % ice chilled glycerol three times and aliquot
129 into 80 Eppendorf tubes with 200 µL suspension. For electro-transformation, *M.tb* H37Ra was
130 electro-transformed using Gene Pulser Xcell (BIO-RAD) with the default setting of 2.5 kV, 25
131 µF, and 1000 Ω resistance. The bacterial suspension was transferred to a fresh Eppendorf tube
132 containing 1 mL of Middle brook 7H9 broth. The cell suspension was pelleted after 24 h
133 incubation and plated onto Middle brook 7H10 agar plates containing kanamycin.

134

135 Cell culture and infection

136 Human monocyte cell line (THP1, ATCC® TIB-202) was cultured in RPMI-1640 complete
137 growth medium supplemented with 10% FBS, and were differentiated for 24 h using culture
138 medium containing 40 ng/mL phorbol 12-myristate 13-acetate (PMA) before infection. For
139 infection, the cells were seeded in a T75 flasks for 24 h and were incubated with H37Ra bacilli

140 (MOI=10) for 6 h at 37°C in 5% CO₂. The cells were washed three times with pre-warmed PBS
141 to remove extracellular bacilli, and supplied with fresh RPMI complete medium containing
142 amikacin (50 µg/mL). The intracellular bacteria were isolated 3 days post infection and subjected
143 to plasmid isolation.

144 **Plasmid construction and preparation**

145 To generate pMV-261-crRNA, two 36 bp repeats from *M.tb* H37Ra type III-A CRISPR array
146 flanked by *Bbs*I sites on both side commercially were synthesized (Wuhan GeneCreate
147 Biological Engineering Co., Ltd., Wuhan, China) and cloned into pMV-261. A 40bp guide RNA
148 sequence corresponding to the sequence of the spacer in CRISPR-array was selected from the
149 target genes. The spacer fragments were generated by annealing of the corresponding
150 complementary oligonucleotides and cloned into the pMV-261-crRNA plasmid at *Bbs*I sites to
151 generate pMV-261-gRNA. The guide RNA sequences corresponding to each gene are listed in
152 Table S1. Homology-directed repair (HDR) templates (approximately 400bp) containing either
153 GFP or BFP was generated by overlapping PCR using specific primers(Table S2) and inserted
154 into pMV-261-crRNA at *Pst*I site. For gene knock-out study, the templates were generated by
155 replacing the whole coding sequence of the target gene with GFP or BFP. To carryout gene
156 interference, a 40 bp guide RNA sequence from the non-coding strands of the target gene flanked
157 by the penta-nucleotide motif (5'-GAAAC-3') of crRNA-tag (8 repeat handle) was taken as
158 gRNA. The gRNA sequence of the genes and the controls are listed in Table S1. For multiple
159 gene silencing, plasmid containing three spacers (40 bp) flanked by 36 bp repeats on both sides
160 was commercially synthesized (Wuhan GeneCreate Biological Engineering Co., Ltd., Wuhan,
161 China), of which the sequences are listed in Table S1.

162

163 **Fluorescence imaging**

164 For transformants identification, the fluorescent colonies were either directly observed or
165 re-suspended in sterilized PBS (Phosphate Buffer Saline) and spread on the microscopic slide,
166 and then examined using Olympus IX73 microscope (Japan). Each selected colony was imaged
167 for several different views using a filter with excitation wavelength of 465 - 495 nm and an
168 emission filter of 515 - 555 nm for GFP and 55 - 375 nm and barrier filter of 400 nm for BFP.
169 All Experiments were performed in triplicate.

170 **Identification of gene knock-in/out**

171 Specific primers designed in the upstream and downstream of the HDR template or in the
172 fluorescent gene shown in Table S2 were used for PCR screening of mutant strains. Forward
173 primer (F) and reverse primer (R) designed upstream and downstream of the left arm and right
174 arm of HDR template respectively, and R1 primer designed in e knock-in were used for PCR
175 amplification (Figure S1. B). The PCR product was sequenced by Sanger sequencing (TsingKe
176 Biological Technology, Wuhan, China) and analyzed by NCBI BLAST.

177

178 **RNA extraction and quantitative real-time PCR**

179 *M.tb* H37Ra were pelleted and re-suspended in 1 mL Trizol Reagent (TAKARA), and then
180 homogenized using Lysing Matrix B (MP Bio Medical, USA). 0.2 mL of chloroform was added
181 to the bacterial suspension and centrifuge at 10,000 rpm for 10 min at 4 °C, of which the aqueous
182 layer were transferred to a new RNase free Eppendorf tube. Isopropanol was used to precipitate
183 RNA at room temperature for 10 min. RNA was then pelleted and washed twice with fresh made
184 80% EtOH. RNA pellet was air dried and dissolved in DEPC water and treated with TURBO
185 DNase (Ambion) following manufacturer's instruction to remove DNA. RNA was reverse
186 transcribed to cDNA using ReverTra Ace® qPCR RT Kit (Toyobo, Japan). The quantitative PCR
187 was carried out using PerfeCTa SYBR Green SuperMix applied Biosystems 7300 real-time PCR
188 system with Sequence Detection Software version v1.4.0. Data were analyzed using the $2^{-\Delta\Delta CT}$
189 method with *gyrB* gene as the reference gene. The primers used for qRT-PCR are shown in
190 Table S2.

191

192 **RNA immunoprecipitation q-PCR (RIP q-PCR) Assay.**

193 The RNA immunoprecipitation q-PCR (RIP q-PCR) assay was performed according to the
194 method described by Minch, K. J. et al with some modifications (Minch et al., 2015). Briefly,
195 bacteria was harvested from the mid-log phase and fixed with nuclease and proteases free 3%
196 formaldehyde, lysed using Lysing Matrix B tubes followed by two rounds of bead beating at
197 maximum speed for 40s. The tubes were then centrifuged at 4°C for 60s at 150g and the
198 supernatant was transferred into a 0.5 mL Eppendorf tubes. The volume was normalized to 0.4
199 mL with CHIP buffer and sonicated. The samples were then incubated with 10 µg anti-HA CHIP
200 grade antibody (Arigo bio lab, Cat. No ARG55095) at 4 °C for 8h. The csm complex was

201 captured via HA-tagged csm6 by incubation with CHIP grade protein G magnetic beads. The
202 tubes were then kept on a magnetic stand, the supernatant was removed and the beads were
203 washed twice with CHIP buffer, twice with RNase free IPP150 buffer and finally with 1X TE
204 buffer. The RNA was extracted with Trizole method. After the DNA digestion, the mRNA was
205 reverse transcribed into cDNA. The qRT-PCR was performed with *KatG* and *lpqE* specific
206 primers (table S1). The data was normalized to the negative control and analyzed by using
207 GraphPad prims 5.

208

209 **gRNA library designing and construction**

210 The 40 base pairs sequence after the ‘GAAAC’ motif in *M.tb* H37Ra (Genome assembly:
211 ASM1614v1) genome sequence was selected as the gRNA sequence candidates (Figure 7.1, S6
212 and Table S3). The library pool containing 5658 target fragments with identical ends were
213 generated through on-chip oligo synthesis (Twist Biosciences USA) (Table S3). The oligo pool
214 was dissolved in nuclease free TE Buffer (pH = 8.5) to a final concentration of 2.5 ng/mL and
215 then was amplified with Phanta Max Super-Fidelity DNA Polymerase Kit (Vazyme biotech,
216 China) using Lib-seq primer F and R (Table S2) for 12 cycles. The amplified product was run on
217 2% agarose gel and purified by OMEGA Gel purification Kit (OMEGA Bio-Tek). Next, the
218 library was cloned into pMV-261-crRNA through homologues recombination using one step
219 cloning kit (Vazyme biotech, China). The recombinant plasmids were then transformed into
220 highly competent *E.coli* DH5 α (Thremo fisher scientific catalogue #18265017). The efficiency
221 and construction of library was validated by Sanger sequencing.

222

223 **Library screening and high throughput sequencing**

224 For genome wide CRISPRi screening the plasmid DNA were isolated from all the three cultures
225 of *M.tb* H37Ra. Then 20 μ L from each plasmid was used as a template to amplify the crRNA
226 along with repeats (Figure S4). 20 μ L of the plasmid isolated from *E.coli* was also used as a
227 reference. Briefly, 20 μ L templates from each sample were amplified with library-seq primer F
228 and R using Phanta Max Super-Fidelity DNA Polymerase Kit (Vazyme biotech, China). The
229 PCR reaction was set as following: 98 °C for 4 min, 20 cycles (98 °C for 10 s; 56 °C for 10 s;
230 72 °C for 25 s), 72 °C for 5 min, 4 °C hold). The sequencing library of the gRNA library was

231 prepared by VAHTS Universal DNA Library Prep Kit V3 for Illumina (Vazyme biotech, China)
232 following the manufacturer's instruction.

233 Briefly, the fragments were treated with End Prep Mix for end repairing, 5' Phosphorylation,
234 dA-tailing and purification using VAHTS DNA clean beads (Vazyme biotech, China). Then
235 fragments were ligated with indexed adapters with a 'T' overhang. Subsequently, the ligated
236 products were purified using the VAHTS DNA clean beads and amplified by PCR for 10 cycles.
237 The libraries were run on gel, purified and validated by an Agilent 2100 Bioanalyzer (Agilent
238 Technologies, Palo Alto, CA, USA). For *M.tb* H37Ra whole genome sequencing, the whole
239 genomic DNA was isolated and subjected to fragmentation by sonication using Diagenode
240 Bioruptor Pico System (Diagenode Inc. USA). The fragmented DNA was run on 1% agarose gel
241 and the 150 to 350 bp fragments were obtained and purified, end repaired, ligated with adapters,
242 and sequenced after amplification. Then the libraries with different indexes were pooled and
243 loaded on Illumina X10 instrument for sequencing (Illumina, San Diego, CA, USA).

244 **High throughput sequencing data analysis**

245 For *M.tb* whole-genome sequencing analysis, the adapters were trimmed from the raw data by
246 Trimmomatic (Bolger et al., 2014). Clean data for each accession were mapped to the *M.tb*
247 H37Ra reference genome (Genome assembly: ASM76770v1) using BWA (Li and Durbin, 2009)
248 with default parameters. SNP and insertion-deletion (Indel) detection was achieved by using
249 SAMtools and BCFtools (Danecek and McCarthy, 2017; Li et al., 2009; McKenna et al., 2010).
250 The 20 bp up-stream and down-stream regions of the homologous segment in the guide RNA
251 (gRNA) were selected as potential candidate off-target regions (Zumla et al., 2016). EDILIB was
252 used (Sosic and Sikic, 2016) to align the gRNA against the reference genome with up to 15
253 mismatches, which was visualized as a bar plot. Bedtools (v2.26.0) was used to validate the gene
254 knock-out (Quinlan and Hall, 2010).

255 For CRISPRi analysis, the raw data were first filtered according to the repeat-gRNA-repeat
256 structure. Next, the gRNA sequences were extracted and counted. To normalize the total reads
257 from different libraries to the equivalent size and maintain the read composition of each gRNA,
258 the total count number of each sample was normalized using the following formula:

259

$$\text{NTSC}_{ij} = \frac{\text{TSC}_{ij}}{s_j}$$

260 Where TSC_{ij} represents the i^{th} gRNA count in the sample j , and s_j is the size factor of sample j . The
261 median-of-ratios method in the DESeq R package was applied for this TSC normalization
262 (Anders and Huber, 2010): $s_j = \text{median}_i \frac{\text{TSC}_{ij}}{\left(\prod_{v=1}^m \text{TSC}_{iv}\right)^{1/m}}$

263 After normalization, the reads count ratio of each targets between *M.tb* and *E.coli* were
264 calculated. For screening, the significantly increased/decreased targets, both *P*-value and the fold
265 changes were considered. The independent *t*-test was performed to calculate the *P*-value and
266 adjusted by BH method. *P*-value threshold is 0.05, fold change threshold is 4 for down counted
267 targets, and 10 for up counted targets.

268 To check the similarity of significantly down counted *M.tb* proteins with the proteomes of the 43
269 most common probiotics (https://www.kegg.jp/kegg/catalog/org_list.html), the classic
270 Needleman-Wunsch algorithm was applied (Needleman and Wunsch, 1970). The similarity is
271 presented as a heatmap, which was generated using the pheatmap R package
272 (<https://cran.r-project.org/web/packages/pheatmap/>).

273

274 RESULTS

275 Genomic and functional analysis of *Mycobacterium* type III-A CRISPR system

276 The CRISPR systems of three different species of *Mycobacterium* were explored and compared
277 using the NCBI BLAST, Mycobrowser (<https://mycobrowser.epfl.ch/>), and KEGG genome
278 databases (<http://www.genome.jp/>). The CRISPR systems of *M.tb* H37Rv and H37Ra comprise
279 three CRISPR loci in association with 10 *cas* genes, namely, *cas2*, *cas1*, *csm6*, *csm5*, *csm4*, *csm3*,
280 *csm2*, *cas10*, *cas6* and *cas4* (Figure 1.A). The CRISPR locus 1 (from left to right in Figure 1.A)
281 of *M.tb* contains only two repeats flank by two spacers and is distant from the other two CRISPR
282 loci and their associated *Cas* genes. Loci 2 and 3 are interspaced by two transposase genes
283 belonging to the insertion sequence (*IS6110*) gene family followed by a cluster of 9 consecutive
284 *cas* genes. Loci 2 and 3 contain 18 and 24 repeats, respectively, with a well-characterized leader
285 sequence at the 5' ends. Similarly, the CRISPR systems of *M.bovis* and *M.bovis* BCG have the

286 same number and length of repeats and spacers as that of *M.tb* (Figure 1.A). However, the
287 CRISPR system of *M.avium* has an uncharacterized and a fully characterized long CRISPR locus
288 in association with 5 *cas4* genes and 11 repeats (Figure 1.A).

289 To investigate the expression of type III-A CRISPR system genes in *M.tb*, we performed
290 qRT-PCR with three functional candidate genes (*csm3*, *csm6*, and *cas10*). As shown in Figure
291 1.C, *csm3*, *csm6*, and *cas10* are constitutively expressed in *M.tb* (primers are listed in Table S2).
292 To determine whether the expression of the CRISPR array can stimulate the expression of this
293 *cas* genes in *M.tb*, we constructed an expression plasmid (pMV-261 psmyc crRNA) harboring
294 two 36-bp repeat sequences from CRISPR locus 3 were synthesized and cloned into pMV-261 to
295 generate pMV-261-crRNA. Next, a 40-bp gRNA was cloned in between the spacers in the
296 pMV-261-crRNA plasmid (Figure 1.B). Notably, the expression levels of these three genes
297 increased significantly when *M.tb* were transformed with the plasmid expressing the
298 mini-CRISPR array under the control of Psmyc promoter compared to wild-type strain (Figure
299 1.D-F). The Sanger sequencing of the PCR amplicon confirmed the sequence of the three genes.
300 (Figure S2.E). A (-RT) control was also used to ensure that there is no genomic DNA
301 contamination. Together, these results suggested that the expression of *cas* genes was enhanced
302 upon the expression of CRISPR array.

303 As the type III-A CRISPR system can cut single stranded DNA (Kazlauskienė et al., 2016), we
304 harnessed this system for *M.tb* self-DNA targeting by designing a 40-bp gRNA complementary
305 to the coding strand of the target region and the corresponding homology directed repair (HDR)
306 template (Figure S1. A and C, Table S1). The gRNA and HDR templates were cloned into the
307 pMV-261-crRNA plasmid. The plasmids containing gRNA plus HDR, gRNA only or HDR only
308 were then transformed into *M.tb*, respectively. A fourth plasmid without any gRNA or HDR
309 (vector control) was also transformed into *M.tb* as a control. Figure S5.A demonstrate a
310 significant reduction in cfus of the bacteria transferred with only gRNA plasmid compared to the
311 bacteria transformed with gRNA plus HDR. Notably, there was still a significant reduction in the
312 number of cfus of *M.tb* transformed with gRNA plus HDR as compared to the bacteria
313 transformed with vector control (Figure S5.A). These data suggested that the self-DNA
314 targeting caused a certain level of lethality to the bacteria but can be partially rescued by HDR
315 template.

316

317 **Gene knock-in in *M.tb* using the type III-A CRISPR-Cas system**

318 As *M.tb* contains an active endogenous type III-A CRISPR-Cas system, we next aimed to apply
319 this system for gene knock-in in *M.tb* (Figure 2.A). First, we aimed to introduce a *GFP* gene into
320 the *M.tb*H37Ra genome and construct a *gyrA*-*GFP* fusion protein strain using a 40-bp gRNA that
321 was complementary to the coding strand of *gyrA* (Table S1). To facilitate site-specific
322 recombination, an HDR template containing a *GFP* gene as a selection marker was inserted into
323 the pMV-261-gRNA-*gyrA* and then transformed into *M.tb*. As shown in Figure 2.B, fluorescence
324 was observed in colonies transformed with the plasmid containing the HDR template plus gRNA
325 but not in colonies transformed with the HDR template only. Upon examining the fluorescence
326 of multiple colonies (100), we observed fluorescence in more than 80% of colonies. To confirm
327 insertion of the *GFP* gene in the correct position into the *M.tb* genome, the fluorescent colonies
328 were boiled for PCR identification. The PCR was performed by using the primer pairs F/R and
329 F/R1 (Figure S1.B, Table S2) yielded bands that were 1.72 and 1.1kb in size, respectively,
330 indicating that the *GFP* had been knocked-in (FigureS3.A). This finding was further confirmed
331 by Sanger sequencing of the PCR products (Figure 2.C). Together this data demonstrating that
332 the type III-A CRISPR system can be used for gene knock-in in *M.tb*.

333

334 **Gene knock-out using the type III-A CRISPR-Cas system**

335 Next, we attempted to knock out 9 genes belonging to the early secretory family and lipoprotein
336 family via the type III-A CRISPR system as a proof of concept. For this purpose a 40-bp gRNAs
337 targeting the coding strands of the corresponding genes (Table S1) were cloned into the
338 pMV-261-crRNA plasmid. As a selection marker, the *BFP* or *GFP* gene fused with the
339 corresponding HDR template arms was cloned into plasmids containing gRNAs and then
340 transformed into *M.tb*. Fluorescence was observed in colonies transformed with the plasmid
341 containing the gRNA and HDR template arms but not in the control colonies (without gRNA)
342 (Figure 2.D-F and Figure S3.A).To further confirm the knock-out of the target genes (*lpqN*, *lpqE*,
343 *lpqD*, *esxA* etc.), the fluorescent colonies were selected for PCR amplification with the specific
344 primers listed in Table S2.The PCR of $\Delta lpqD::BFP$ and $\Delta esxQ::BFP$ yielded a product with the
345 expected size (1.2 kb), suggesting replacement of respective genes by *BFP* gene (Figure S3.B
346 and D). A 1.75 kb band, indicating $\Delta lpqE::BFP$, was amplified from the colonies expressing BFP,
347 while amplification of the control (plasmid with only gRNA and or only HDR template) bacilli

348 yielded a 1.5 kb band (Figure S3.C and E). The PCR products were further subjected to Sanger
349 sequencing, which confirmed the replacement of target genes by the *BFP* gene (Figure
350 S2.B-D.).

351 **Efficiency and off-target rate evaluation of endogenous type III-A CRISPR-Cas
352 system-mediated gene editing**

353 To evaluate the off-target effects of the type III-A CRISPR-Cas system, whole-genomic DNA
354 libraries were constructed for the wild-type and *H37Ra* Δ *essQ*::BFP, Δ *lpqD*::BFP,
355 Δ *Rv0839*::BFP strains and subjected to high-throughput sequencing (at least 250 \times for each
356 sample) (Figure 3.A) The raw data were trimmed using Trimmomatic (Bolger et al., 2014), and
357 the clean reads were mapped with the *M.tb**H37Ra* reference genome using BWA (Li and Durbin,
358 2009) (Figure 4.B). The off-target rate was examined by SAMtools (Li et al., 2009) and BEF
359 tools (Danecek and McCarthy, 2017). The *BFP* gene has been inserted at the target position
360 (Figure 3.C, S4.C & D) without any potential off-target Indels in the genomic regions which
361 includes gRNA and 20bp flanking region (80 bp in total) (Figure 3.D and E).

362 To check the genome editing efficiency of this system, *M.tb* *H37Ra* was transformed with
363 plasmids containing the gRNA and HDR template corresponding to *Rv0847* (*lpqE*) and two
364 control plasmids (one containing the HDR template only but no gRNA and the other containing
365 the gRNA without the HDR template). Fluorescence was observed in approximately 80% of the
366 colonies transformed with the plasmids containing the gRNA plus HDR template, while no
367 fluorescence was observed in the control (Figure 2E). To further verify the efficiency, 11
368 randomly picked colonies were cultured for 5 to 7 days and amplified with the primers of *lpqE*
369 KO detection F and R (see Table S2 for primer information). As shown in Figure S3.F, 10 clones
370 out of 11 exhibited insertion of BFP, while 1/11 sample showed a same band with wild type
371 strain. The Sanger sequencing of these PCR bands showed that the *lpqE* gene was replaced by
372 BFP (Figure S2.D).

373

374 **Harnessing the endogenous Type III-A CRISPR system for CRISPR interference in *M.tb***

375 Next, we aimed to reprogram type III-A CRISPR system for gene interference in *M.tb*. To this
376 end, a 40 bp gRNA on the noncoding strand flanked by the pentanucleotide 5'-GAAAC-3',
377 matching the repeat handle sequence, was selected as a target sequence (Figure 4.A). This

378 sequence would mimic the endogenous CRISPR array and thus circumvent DNA cleavage but
379 allow RNA interference. Accordingly, a 40 bp gRNA in the *katG* gene flanked by the
380 pentanucleotide motif at 1228-1232 bp (5'-GAAAC-3') was used as a gRNA to specifically
381 target the RNA of the *katG* gene without any DNA interference(Figure 4.B). The gRNA (Table
382 S1) was cloned into pMV-261-crRNA and transformed into *M.tb*. The qPCR results showed that
383 the expression of *katG* was significantly inhibited compared to that of the wild-type control
384 (Figure 4.C). Two genes, namely, *dcd* (dCTP deaminase) and *esxT*, were used to further
385 investigate the CRISPRi of the gene using the same strategy. The 40 bp gRNA flanked by
386 5'-GAAAC-3' in both genes was selected (TableS1) and cloned into pMV-261-crRNA.
387 pMV-261-crRNA without a gRNA was also included as a plasmid control. The qRT-PCR results
388 showed that *esxT* and *dcd* significant different compared to the wild type and plasmid control
389 (Figure 4.D and E).

390 To determine whether RNA interference could be achieved by targeting the noncoding strand,
391 we selected the *lpqN* gene as a target. Two 40-bp gRNAs, designated spacer-S1 (targeting the
392 noncoding strand) and spacer-S2 (targeting the coding strand), of the *lpqN* gene were then
393 inserted into pMV-261-crRNA and then transformed into *M.tb* H37Ra (Figure 4.F). The gRNA
394 targeting the noncoding strand (spacer-S1) should not bind to the mRNA and thus should
395 theoretically be unable to inhibit the expression of the target gene. Consistent with this
396 hypothesis, the qRT-PCR results showed that the mature gRNA targeting the *lpqN*-coding strand
397 (spacer-S2) efficiently inhibited the expression of the gene, whereas no significant
398 downregulation was observed for spacer-S1, the plasmid and the wild-type control (Figure 4.G).
399 Taken together, these results suggest that the type III-A CRISPR-Cas system can efficiently
400 inhibit gene expression by targeting the coding strand.

401 To confirm that the system is successfully binding to and cuts the target mRNA, we performed
402 RNA immune precipitation qPCR (RIP-qPCR) assay. The CRISPR complex was purified
403 through csm6-HA tag from the bacteria containing RNA targeting plasmid for *kaG* and *lpqE*
404 genes respectively (Figure S5.G). Upon normalization to negative control, we found that the
405 groups with csm6-HA tag plus gRNA were highly enriched in *katG* and *lpqE* mRNA as compare
406 to the groups containing no gRNA (Figure S5.E). To confirm the RNA interference is not due to
407 the cutting of the template DNA, we amplified *katG* gene from *katG* RNA interference strain for
408 Sanger sequencing, which demonstrated no mutation in *katG* gene (Figure S2.F). To validate this

409 phenomenon, two more different gRNAs targeting *katG* DNA and RNA, were cloned into
410 pMV-261-crRNA plasmid, respectively (table S1) and transformed into *M.tb* individually. A
411 pMV-261-crRNA plasmid without any gRNA was also transformed into *M.tb* as a control.
412 Figure S5.F showed that the number of cfus was highly reduced in the DNA targeting group as
413 compared to the RNA targeting group or empty plasmid group. Of note, there was no significant
414 difference between the cfus of RNA targeting group and empty plasmid group. These data
415 demonstrated that the gRNAs designed for RNA interference may lack the DNA cutting. To
416 check the polar effects of type III A CRISPR system mediated RNA interference, we performed
417 qRT-PCR for the neighbor genes of *lpqE* and *dcD* knocked down genes respectively. Figure
418 S5.B & C showed little polar effect on the neighbor genes in case of *lpqE* knocked down, while
419 there was a slight polar effect of *dcD* knocked down gene..

420 **Simultaneous multiple-gene interference in *M.tb* by the endogenous type III-A CRISPR**

421 In the endogenous type III-A CRISPR-Cas system, the CRISPR array comprising multiple
422 spacers flanked by repeats is transcribed into a long primary transcript known as the
423 precursor-crRNA (pre-crRNA). This RNA is processed into its mature form by the endogenous
424 Cas enzyme, yielding multiple mature crRNAs that bind to the corresponding sites on mRNA,
425 causing cleavage at multiple sites on targeted genes (Figure 5.A). Therefore, we aimed to
426 accomplish simultaneous silencing of multiple genes by a single plasmid using type III-A
427 CRISPR-Cas as an interference system. Three spacers targeting the *lpqE*, *katG* and *inhA* genes
428 flanked by repeats on both sides were then synthesized and cloned into pMV-261-crRNA and
429 transformed into *M.tb* (Figure 5.B). The qRT-PCR results demonstrated that the expression of
430 these three genes was simultaneously downregulated with a high efficiency compared to that of
431 the control (Figure 5.C) , indicating that the endogenous type III-A CRISPR-Cas system can be
432 employed for simultaneous silencing of multiple genes with high efficiency.

433 **Genome-wide CRISPRi screening for *M.tb* *in-vitro* growth-regulating genes**

434 Next, we aimed to accomplish genome-wide CRISPRi screening based on the reprogrammed
435 type III-A CRISPR-Cas system. For this purpose, a library pool containing 5658 gRNA
436 fragments (Table S3) was generated via on-chip oligo synthesis and cloned into the
437 pMV-261-crRNA plasmid. This library was first transformed into *E.coli* for plasmid

438 amplification and gRNA input composition analysis. After amplification, this gRNA library was
439 electroporated into *M.tb* for screening growth-regulating genes (Figure 6.A).

440 As a proof of concept, we collected approximately 1.5 million *E.coli* colonies and prepared a
441 mixed gRNA library construct. This library was aliquoted and electrotransformed into three
442 independent competent *M.tb*. After 3 to 4 weeks of incubation, a total of approximately 1.5
443 million *M.tb* CFUs from 330 plates were harvested for plasmid preparation. The gRNA were
444 amplified from *E.coli* and *M.tb* plasmids by PCR and subjected to library construction for
445 high-throughput sequencing.

446 We hypothesized that the *M.tb* gRNAs with significantly reduced counts compared to *E.coli*
447 gRNAs would likely target growth-facilitating genes, while the gRNAs with significantly
448 increased counts probably targeted growth-repressing genes. We first screened the reads matched
449 with repeat-gRNA-repeat structure and then trimmed the target sequences for further analysis.
450 The counts of each target sequence were normalized using the median-of-ratios method (Rousset
451 et al., 2018). The high Pearson correlation coefficient between the three independent *M.tb* gRNA
452 libraries indicated that the composition and distribution of the target sequences and the
453 corresponding read counts were highly similar; therefore, the screening assay was highly
454 reproducible (Figure 6.B-C). Next, we analyzed the normalized count distribution of each target
455 in the *E.coli* and *M.tb* libraries. The count distribution of most of the targets in *E. coli* library was
456 equally distributed, whereas the counts of many targets in the *M.tb* library were highly scattered
457 (Figure 6.C-E), suggesting that many of the gRNAs influenced *M.tb* growth.

458 We further screened the gRNAs with significantly reduced or increased count numbers in the
459 *M.tb* library compared to the *E.coli* library (Figure 6.F and G, Table S4). Finally, we identified
460 228 genes as potential *M.tb* growth-facilitating genes and 385 genes as potential *M.tb*
461 growth-repressing genes (Figure 6.F and G, table S4.H). Notably, among the top 50 potential
462 growth-facilitating genes, 39 (78%) have been reported to be essential for growth (DeJesus et al.,
463 2017; Griffin et al., 2011; Sassetti et al., 2003; Zhang et al., 2012), which supports the reliability
464 of this CRISPRi screening method (Figure 6.H). Among the top 50 potential growth-repressing
465 genes, we found that 15% belonged to the toxins family, 35% were stress-related proteins, 10%
466 contained unknown regions, 15% were hypothetical proteins, and 25% were uncharacterized
467 proteins (Figure 6.I).

468 Because genes that facilitate or are essential for growth could potentially be used as anti-*M.tb*
469 drug targets, we next analyzed the similarity between the 208 growth-facilitating genes from
470 *M.tb* and the whole proteomes of 43 probiotics. The top 31 genes in the heat map in Figure 6.J
471 exhibited the least similarity with the whole proteomes of 43 probiotics. This data suggest that
472 these genes could be used as a drug target with conceivable fewer side effects on probiotics than
473 other genes and could be ideal anti-*M.tb* drug targets (Table S5).

474

475 **Genome-wide CRISPRi screening for *M.tb* intracellular growth-regulating genes**

476 Finally, we aimed to apply this system to perform genome-wide CRISPRi screening for
477 growth-regulating genes during intracellular growth (growth inside macrophages). To this end, a
478 total of approximately 1.5 million *M.tb* CFUs containing 5658 gRNA library in triplicate were
479 infected with Thp-1 cells and grew for 3 days after removing the extracellular bacteria. As a
480 reference, the *M.tb* containing 5658 gRNA library in triplicate were cultured *in-vitro* in
481 Middlebrook 7H9 broth (Figure 7.A). In this assay, the *M.tb* gRNAs with significantly reduced
482 counts during intracellular growth would likely to be the genes that are highly required for
483 intracellular *M.tb* growth (Figure 7.A).

484 The gRNA from both *in vitro* culture and intracellular bacteria was amplified and subjected to
485 library construction for high-throughput sequencing. The raw reads were screened according to
486 the repeat-gRNA-repeat structure and then normalized using the median-of-ratios method
487 (Rousset et al., 2018). As shown in Figure 7.B, the high Pearson correlation coefficient between
488 the three independent *M.tb* gRNA libraries indicated that the composition and distribution of the
489 target sequences and the corresponding read counts were highly reproducible. Next, we analyzed
490 the normalized count distribution of each gRNA target in the *in-vitro* and intracellular groups
491 (Figure 7.C-E). Furthermore, the gRNAs with significantly reduced or increased numbers in the
492 intracellular groups compared to the *in-vitro* group were screened (Figure 7.F and G). Finally,
493 we identified 29 highly lower count genes as potential *M.tb* intracellular growth-facilitating
494 genes and 4 highly counted genes as potential intracellular growth-repressing genes (Table S8).
495 Among the top 20 highly growth essential genes, 5 genes were coding for secretory proteins, 11
496 genes belong to the membrane and cell wall component proteins while 4 belong to the cytosol
497 and membrane proteins (de Souza et al., 2011; Mawuenyega et al., 2005; Xiong et al., 2005)
498 (Figure 7.H)

499

500 **Discussion**

501 In this study, we reprogrammed the endogenous type III-A CRISPR-Cas system to develop a
502 robust and versatile tool for gene knock-in, gene knock-out, gene interference and CRIPSRi
503 screening in *M.tb* by simple delivery of a plasmid containing the mini-CRISPR array. We
504 demonstrated that the type III-A CRISPR-Cas system can dramatically enhance the site-specific
505 recombination frequency, the positive rate of which can reach up to 80%. In addition to high
506 efficiency, this system has the advantage of a simple procedure, requiring only two-step cloning
507 (first of the gRNA and then of the cognate donor DNA). In this regard, the currently, used gene
508 editing tool in *M.tb*-based phage transduction is laborious and time consuming due to the
509 multiple cloning steps involved and the screening for positive phages; in addition this tool
510 requires expensive kits and expertise (Bardarov et al., 2002; Choudhary et al., 2016).

511 The type III-A and B systems exert an anti-plasmid immunity effect by degradation of the
512 plasmid DNA and the target transcript (Deng et al., 2013; Samai et al., 2015). The type III-B
513 system has been used for gene editing and gene silencing in *Sulfolobus islandicus* (Li et al.,
514 2015; Peng et al., 2015). Recently, Guan et al. reported the first application of the type III-A
515 system for gene deletion (Guan et al., 2017). To the best of our knowledge, the present study is
516 the first to demonstrate the type III-A CRISPR-Cas system-mediated “killing two birds with one
517 stone” tool for robust gene editing and silencing in *M.tb*.

518 Genetic manipulation, especially of essential genes in *M.tb*, is crucial for understanding gene
519 function and identifying targets for anti-*M.tb* drugs and vaccines. A codon-optimized gene
520 interference approach based on the dCas9 system has been developed to silence specific genes in
521 *M.tb*, which can reduce gene expression by approximately 4-fold (Choudhary et al., 2015; Singh
522 et al., 2016). Recently, dCas9 from *S. thermophilus* was used for gene silencing in *M.tb* with
523 reduced toxicity (Rock et al., 2017). However, these systems need to express the exogenous Cas9
524 proteins, making it difficult to avoid proteotoxicity. The endogenous type III-A
525 CRISPR-Cas-based specific gene silencing system was obtained by simply transforming a
526 plasmid expressing a mini-CRISPR array with a gRNA into *M.tb*.

527 After transcription, the mini-CRISPR RNA is reprogrammed by the endogenous Csm complex to
528 bind with the mRNA of the target gene, thus inhibiting expression of the target gene. This system
529 offers several advantages over the CRISPR-Cas9 system, such as the simplicity of cloning of the

530 mini-CRISPR array and gRNA without introducing any exogenous *Cas9* gene, minimizing the
531 toxicity of the system. Unlike Cas9, there is no stringent requirement of the PAM sequence for
532 gene targeting. Similar to the endogenous type III-A CRISPR-Cas system, the reprogrammed
533 CRISPR array can also simultaneously generate multiple spacers. These spacers can be
534 processed into multiple mature crRNAs that bind to the corresponding target sites and inhibit the
535 expression of multiple genes simultaneously. This approach can solve the problem of functional
536 redundancy in functional genomic research on *M.tb*. *M.tb* causes the leading infectious disease in
537 the world, the pathophysiology and functional genomics of this organism remain poorly
538 understood, which greatly hampers the development of new anti-*M.tb* vaccines and drugs.
539 Whole-genome screening via gene silencing based on the CRISPR-Cas system is a powerful
540 approach and has been widely used to explore gene function (Rousset et al., 2018; Wang et al.,
541 2018). Recently, Wet et al. applied CRISPR-dCas9 screens for functional characterization of
542 transcription factors in *M.smegmatis* (de Wet et al., 2018). However, no study has been
543 performed on the genome scale in *M.tb*. In this study, we identified 5656 and 5658 potential
544 targets for the H37Rv and H37Ra strains, respectively, covering almost all the coding sequences
545 of the *M.tb* genome. We used this gRNA library for whole-genome-scale screening of
546 growth-regulating genes as a proof of concept. Using this approach, we identified 208 genes that
547 facilitated growth and 385 growth-repressing genes from H37Ra.

548 Notably, among the top 50 identified growth-facilitating genes, 78% have been previously
549 reported to be essential for growth, which supports the reliability of this screening system. As
550 most of the CRISPRi-identified growth-facilitating genes are also essential for bacterial growth,
551 these genes could be used as potential anti-*M.tb* drug targets. In this study, we further analyzed
552 the similarity between these growth-facilitating genes of *M.tb* and the whole proteomes of 43
553 probiotics and identified 31 genes as potential anti-*M.tb* drug targets that possibly have fewer
554 side effects on probiotics than the other identified genes. The identification of new drug targets
555 could be of great importance for protein-structure-based drug design and screening, considering
556 the current severity of antibiotic resistance in *M.tb*.

557 The CRISPRi screening also identified a certain number of the toxin family genes and
558 stress-related genes as potential growth-repressing genes. Interference of the toxins family genes
559 could conceivably inhibit the growth of *M.tb* via attenuated repression of toxin proteins.
560 Therefore, our database of growth-repressing genes may be used to screen for toxin-antitoxin

561 family genes. In this regard, previously identified antitoxin genes were present in our database of
562 growth-repressing genes, such as *dinX* and *vapB5* (Gupta, 2009). Furthermore, the knock-down
563 of some stress regulons and other transcriptional factor regulators for non-replicating persistence,
564 such as *devR/dosR* and *sigA*, could also increase the growth of *M.tb* (Gengenbacher and
565 Kaufmann, 2012). Thus, our CRISPRi screening method may contribute to the identification of
566 genes involved in toxin-antitoxin regulation, stress regulation and transition from active *M.tb* to
567 the persistent form. The procedure for this screening system requires only one step of gRNA
568 library cloning and electrotransformation into *M.tb*, which is much simpler and cost effective
569 than the procedures of other screening systems, such as transposon-based mutagenesis. Moreover,
570 in contrast to gene knock-out, this CRISPRi system only knocked down gene expression; thus,
571 this system can also be used for genetic screening and investigation of the functions of genes
572 essential for growth.

573 In our study, we also applied this CRISPRi system to screen the genes regulating growth in the
574 host cells, by which we identified 29 genes as potential *M.tb* growth facilitating genes and 4
575 genes as potential *M.tb* intracellular growth repressing genes. Among the top 20 highly down
576 regulated genes, 18 genes have been reported to be essential for growth inside macrophages
577 (Akhter et al., 2008; Ma et al., 2018; McAdam et al., 2002; Monahan et al., 2001; Sassetti and
578 Rubin, 2003; Venugopal et al., 2011; Ward et al., 2010), whereas 2 genes were novel *M.tb*
579 intracellular (inside Thp-1 derived macrophages) growth-facilitating genes. As examples among
580 the highly down regulated genes, the *Senx3* belongs to the two component regulatory system and
581 *groEL1* gene that belongs to the membrane protein genes of *M.tb*. It has been demonstrated that
582 both of these genes are required for survival of *M.tb* inside the macrophages but not *in-vitro*
583 (Lamichhane et al., 2003; Ojha et al., 2005). As these genes are dispensable genes for the growth
584 of *M.tb* during *in-vitro* growth but, highly required during intracellular survival, they could be
585 the potential vaccine candidates for tuberculosis. In our study, we also identified intracellular
586 growth repressing genes, such as *ponA-1* gene, which is involved in stress regulation (Saxena et
587 al., 2008; Talaat et al., 2004). It would be of great interest to further investigate whether the
588 knock-down of this gene could prevent *M.tb* from going to the latency stage inside macrophages.
589 The limitation of this endogenous CRISPR-Cas system-based gene silencing is the dependency
590 of this method on the pent nucleotide motif for gene silencing, although the system can cover a
591 majority of the *M.tb* genome. Further research is needed to determine whether a motif with less

592 than 5 bp (i.e., a di-, tri- or tetra nucleotide motif) could also be efficiently used for gene
593 silencing and DNA targeting. Moreover, understanding the structure of the Csm-crRNA
594 complex, target binding and molecular mechanism of DNAs/RNAs involved in natural immunity
595 for genetic manipulation of the type III-A CRISPR-Cas system could make this tool broadly
596 applicable in related research fields.

597 In summary, we reprogrammed the *M.tb* endogenous type III-A CRISPR-Cas10 system for
598 simple and efficient genome editing, gene interference and CRISPRi screening. This system
599 greatly facilitates genetic manipulation with high specificity and efficiency and provides an
600 opportunity for genome-scale gene interference-based screening in *M.tb*. This system can be
601 extensively used to explore the functional genomics of *M.tb* and will contribute to basic research
602 on *M.tb* biology and to the development of anti-*M.tb* vaccines and drugs.

603

604

605 **Acknowledgments**

606 This work was supported by The National Key Research and Development Program of China
607 (Grant No.2017YFD0500303), the National Natural Science Foundation of China (Grant No.
608 C180501, 31602061), the Huazhong Agricultural University Scientific &Technological
609 Self-innovation Foundation (Program No. 2662017PY105 2662017PY105), Doctoral Fund of
610 Ministry of Education of China (Grant No. 131012). We'd like to thank Wuhan GeneCreate
611 Biological Engineering Co., Ltd. for their technique support.

612 **Author Contributions**

613 G.C and M.J conceived the idea. M.J and K.R performed experiments. W.X and W.L performed
614 the bioinformatics analysis. X.C, L.D provided some experiment materials. M.J, K.R, G.C wrote
615 the manuscript, with inputs from all other authors. Z.F.F, X.C, Z.H, M.A.N, N.P and R.T
616 reviewed and edited the manuscript. All the authors discussed the results and commented on the
617 manuscript.

618

619

620 **References:**

621 Akhter, Y., Yellaboina, S., Farhana, A., Ranjan, A., Ahmed, N., and Hasnain, S.E. (2008).
622 Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their
623 role in pathogenesis. *Gene* *407*, 148-158.

624 Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data.
625 *Genome Biology* *11*, R106.

626 Balasubramanian, V., Pavelka, M., Bardarov, S.S., Martin, J., Weisbrod, T.R., McAdam, R.A.,
627 Bloom, B.R., and Jacobs, W. (1996). Allelic exchange in *Mycobacterium tuberculosis* with long
628 linear recombination substrates. *Journal of bacteriology* *178*, 273-279.

629 Bardarov, S., Bardarov Jr, S., Pavelka Jr, M.S., Sambandamurthy, V., Larsen, M., Tufariello, J.,
630 Chan, J., Hatfull, G., and Jacobs Jr, W.R. (2002). Specialized transduction: an efficient method
631 for generating marked and unmarked targeted gene disruptions in *Mycobacterium tuberculosis*,
632 *M. bovis* BCG and *M. smegmatis*. *Microbiology* *148*, 3007-3017.

633 Bari, S.M.N., Walker, F.C., Cater, K., Aslan, B., and Hatoum-Aslan, A. (2017). Strategies for
634 Editing Virulent Staphylococcal Phages Using CRISPR-Cas10. *ACS Synthetic Biology* *6*,
635 2316-2325.

636 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
637 sequence data. *Bioinformatics* *30*, 2114-2120.

638 Carte, J., Wang, R., Li, H., Terns, R.M., and Terns, M.P. (2008). Cas6 is an endoribonuclease
639 that generates guide RNAs for invader defense in prokaryotes. *Genes & Development* *22*,
640 3489-3496.

641 Choudhary, E., Lunge, A., and Agarwal, N. (2016). Strategies of genome editing in
642 mycobacteria: Achievements and challenges. *Tuberculosis* *98*, 132-138.

643 Choudhary, E., Thakur, P., Pareek, M., and Agarwal, N. (2015). Gene silencing by CRISPR
644 interference in mycobacteria. *Nature communications* *6*.

645 Danecek, P., and McCarthy, S.A. (2017). BCFtools/csq: haplotype-aware variant consequences.
646 *Bioinformatics* *33*, 2037-2039.

647 de Souza, G.A., Leversen, N.A., Målen, H., and Wiker, H.G. (2011). Bacterial proteins with
648 cleaved or uncleaved signal peptides of the general secretory pathway. *Journal of Proteomics* *75*,
649 502-510.

650 de Wet, T.J., Gobe, I., Mhlanga, M.M., and Warner, D.F. (2018). CRISPRi-Seq for the
651 Identification and Characterisation of Essential Mycobacterial Genes and Transcriptional Units.
652 bioRxiv, 358275.

653 DeJesus, M.A., Gerrick, E.R., Xu, W., Park, S.W., Long, J.E., Boutte, C.C., Rubin, E.J.,
654 Schnappinger, D., Ehrt, S., Fortune, S.M., *et al.* (2017). Comprehensive Essentiality Analysis of
655 the *Mycobacterium tuberculosis* Genome via Saturating Transposon Mutagenesis.
656 mBio 8, e02133-02116.

657 Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R.,
658 Vogel, J., and Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA
659 and host factor RNase III. Nature 471, 602-607.

660 Deng, L., Garrett, R.A., Shah, S.A., Peng, X., and She, Q. (2013). A novel interference
661 mechanism by a type IIIB CRISPR-Cmr module in *Sulfolobus*. Molecular microbiology 87,
662 1088-1099.

663 Estrella, M.A., Kuo, F.-T., and Bailey, S. (2016). RNA-activated DNA cleavage by the Type
664 III-B CRISPR–Cas effector complex. Genes & Development 30, 460-470.

665 Floyd, K., Glaziou, P., Zumla, A., and Raviglione, M. (2018). The global tuberculosis epidemic
666 and progress in care, prevention, and research: an overview in year 3 of the End TB era. The
667 Lancet Respiratory Medicine 6, 299-314.

668 Fu, J., Yang, F., Xie, H., and Gu, F. (2019). Application and optimization of CRISPR/Cas
669 system in bacteria. Sheng wu gong cheng xue bao= Chinese journal of biotechnology 35,
670 341-350.

671 Gengenbacher, M., and Kaufmann, S.H.E. (2012). *Mycobacterium tuberculosis*: success through
672 dormancy. FEMS Microbiology Reviews 36, 514-532.

673 Griffin, J.E., Gawronski, J.D., DeJesus, M.A., Ioerger, T.R., Akerley, B.J., and Sassetti, C.M.
674 (2011). High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial
675 Growth and Cholesterol Catabolism. PLOS Pathogens 7, e1002251.

676 Grüschorw, S., Athukoralage, J., Hoogeboom, T., and White, M.F. (2019a). The Type III
677 CRISPR-Cas system of *Mycobacterium tuberculosis*. Access Microbiology 1.

678 Grüschorw, S., Athukoralage, J.S., Graham, S., Hoogeboom, T., and White, M.F. (2019b). Cyclic
679 oligoadenylylate signalling mediates *Mycobacterium tuberculosis* CRISPR defence. Nucleic Acids
680 Research 47, 9259-9270.

681 Guan, J., Wang, W., and Sun, B. (2017). Chromosomal Targeting by the Type III-A
682 CRISPR-Cas System Can Reshape Genomes in *Staphylococcus aureus*. *mSphere* 2,
683 e00403-00417.

684 Guo, M., Zhang, K., Zhu, Y., Pintilie, G.D., Guan, X., Li, S., Schmid, M.F., Ma, Z., Chiu, W.,
685 and Huang, Z. (2019). Coupling of ssRNA cleavage with DNase activity in type III-A
686 CRISPR-Csm revealed by cryo-EM and biochemistry. *Cell research*, 1.

687 Gupta, A. (2009). Killing activity and rescue function of genome-wide toxin–antitoxin loci of
688 *Mycobacterium tuberculosis*. *FEMS Microbiology Letters* 290, 45-53.

689 Hatoum-Aslan, A., Maniv, I., and Marraffini, L.A. (2011). Mature clustered, regularly
690 interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism
691 anchored at the precursor processing site. *Proceedings of the National Academy of Sciences* 108,
692 21218-21222.

693 Hu, Y., Yang, Q., Liu, B., Dong, J., Sun, L., Zhu, Y., Su, H., Yang, J., Yang, F., Chen, X., *et al.*
694 (2019). Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by
695 anti-tuberculosis drugs. *Journal of Infection* 78, 317-322.

696 Husson, R., James, B., and Young, R. (1990). Gene replacement and expression of foreign DNA
697 in mycobacteria. *Journal of bacteriology* 172, 519-524.

698 Jiang, W., Bikard, D., Cox, D., Zhang, F., and Marraffini, L.A. (2013). RNA-guided editing of
699 bacterial genomes using CRISPR-Cas systems. *Nature biotechnology* 31, 233-239.

700 Kazlauskiene, M., Kostiuk, G., Venclovas, Č., Tamulaitis, G., and Siksnys, V. (2017). A cyclic
701 oligonucleotide signaling pathway in type III CRISPR-Cas systems. *Science* 357, 605-609.

702 Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, Č., and Siksnys, V. (2016).
703 Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with
704 the Target RNA Recognition. *Molecular Cell* 62, 295-306.

705 Khan, N., Mendonca, L., Dhariwal, A., Fontes, G., Menzies, D., Xia, J., Divangahi, M., and
706 King, I.L. (2019). Intestinal dysbiosis compromises alveolar macrophage immunity to
707 *Mycobacterium tuberculosis*. *Mucosal Immunology* 12, 772-783.

708 Koonin, E.V., and Makarova, K.S. (2013). CRISPR-Cas: evolution of an RNA-based adaptive
709 immunity system in prokaryotes. *RNA biology* 10, 679-686.

710 Koonin, E.V., Makarova, K.S., and Zhang, F. (2017). Diversity, classification and evolution of
711 CRISPR-Cas systems. *Current Opinion in Microbiology* 37, 67-78.

712 Lamichhane, G., Zignol, M., Blades, N.J., Geiman, D.E., Dougherty, A., Grossset, J., Broman,
713 K.W., and Bishai, W.R. (2003). A postgenomic method for predicting essential genes at
714 subsaturation levels of mutagenesis: Application to *Mycobacterium tuberculosis*.
715 *Proceedings of the National Academy of Sciences* *100*, 7213-7218.

716 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
717 transform. *Bioinformatics* *25*, 1754-1760.

718 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
719 and Durbin, R. (2009). The sequence alignment/map format and SAMtools. *Bioinformatics* *25*,
720 2078-2079.

721 Li, Y., Pan, S., Zhang, Y., Ren, M., Feng, M., Peng, N., Chen, L., Liang, Y.X., and She, Q.
722 (2015). Harnessing Type I and Type III CRISPR-Cas systems for genome editing. *Nucleic acids*
723 *research*, gkv1044.

724 Ma, Z., Strickland, K.T., Cherne, M.D., Sehanobish, E., Rohde, K.H., Self, W.T., and Davidson,
725 V.L. (2018). The Rv2633c protein of *Mycobacterium tuberculosis* is a non-heme di-iron catalase
726 with a possible role in defenses against oxidative stress. *Journal of Biological Chemistry* *293*,
727 1590-1595.

728 Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., Moineau,
729 S., Mojica, F.J., Wolf, Y.I., and Yakunin, A.F. (2011). Evolution and classification of the
730 CRISPR-Cas systems. *Nature Reviews Microbiology* *9*, 467-477.

731 Makarova, K.S., and Koonin, E.V. (2015). Annotation and classification of CRISPR-Cas
732 systems. *CRISPR: Methods and Protocols*, 47-75.

733 Mawuenyega, K.G., Forst, C.V., Dobos, K.M., Belisle, J.T., Chen, J., Bradbury, E.M., Bradbury,
734 A.R.M., and Chen, X. (2005). *Mycobacterium tuberculosis* Functional Network Analysis by
735 Global Subcellular Protein Profiling. *Molecular Biology of the Cell* *16*, 396-404.

736 McAdam, R.A., Quan, S., Smith, D.A., Bardarov, S., Betts, J.C., Cook, F.C., Hooker, E.U.,
737 Lewis, A.P., Woppard, P., Everett, M.J., *et al.* (2002). Characterization of a *Mycobacterium*
738 tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered
739 virulence. *Microbiology* *148*, 2975-2986.

740 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella,
741 K., Altshuler, D., Gabriel, S., and Daly, M. (2010). The Genome Analysis Toolkit: a MapReduce

742 framework for analyzing next-generation DNA sequencing data. *Genome research* *20*,
743 1297-1303.

744 Minch, K.J., Rustad, T.R., Peterson, E.J.R., Winkler, J., Reiss, D.J., Ma, S., Hickey, M., Brabant,
745 W., Morrison, B., Turkarslan, S., *et al.* (2015). The DNA-binding network of *Mycobacterium*
746 tuberculosis. *Nature Communications* *6*, 5829.

747 Mittal, C., and Gupta, S. (2011). Noncompliance to DOTS: How it can be decreased. *Indian*
748 *Journal of Community Medicine* *36*, 27-30.

749 Monahan, I.M., Betts, J., Banerjee, D.K., and Butcher, P.D. (2001). Differential expression of
750 mycobacterial proteins following phagocytosis by macrophages. *Microbiology* *147*, 459-471.

751 Murphy, K.C., Nelson, S.J., Nambi, S., Papavinasasundaram, K., Baer, C.E., and Sassetti, C.M.
752 (2018). ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes.
753 *mBio* *9*, e01467-01418.

754 Needleman, S.B., and Wunsch, C.D. (1970). A general method applicable to the search for
755 similarities in the amino acid sequence of two proteins. *Journal of Molecular Biology* *48*,
756 443-453.

757 Niewoehner, O., Garcia-Doval, C., Rostøl, J.T., Berk, C., Schwede, F., Bigler, L., Hall, J.,
758 Marraffini, L.A., and Jinek, M. (2017). Type III CRISPR–Cas systems produce cyclic
759 oligoadenylate second messengers. *Nature* *548*, 543.

760 Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R.,
761 Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and
762 target DNA. *Cell* *156*, 935-949.

763 Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R., and Hatfull, G.F. (2005). GroEL1: A
764 Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in
765 *Mycobacteria*. *Cell* *123*, 861-873.

766 Park, K.-H., An, Y., Jung, T.-Y., Baek, I.-Y., Noh, H., Ahn, W.-C., Hebert, H., Song, J.-J., Kim,
767 J.-H., Oh, B.-H., *et al.* (2017). RNA activation-independent DNA targeting of the Type III
768 CRISPR-Cas system by a Csm complex. *EMBO reports* *18*, 826-840.

769 Pashley, C.A., Parish, T., McAdam, R.A., Duncan, K., and Stoker, N.G. (2003). Gene
770 replacement in mycobacteria by using incompatible plasmids. *Applied and environmental*
771 *microbiology* *69*, 517-523.

772 Peng, W., Feng, M., Feng, X., Liang, Y.X., and She, Q. (2015). An archaeal CRISPR type III-B
773 system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA
774 interference. *Nucleic acids research* *43*, 406-417.

775 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing
776 genomic features. *Bioinformatics* *26*, 841-842.

777 Rock, J.M., Hopkins, F.F., Chavez, A., Diallo, M., Chase, M.R., Gerrick, E.R., Pritchard, J.R.,
778 Church, G.M., Rubin, E.J., and Sassetti, C.M. (2017). Programmable transcriptional repression
779 in mycobacteria using an orthogonal CRISPR interference platform. *Nature Microbiology* *2*,
780 16274.

781 Rousset, F., Cui, L., Siouve, E., Becavin, C., Depardieu, F., and Bikard, D. (2018).
782 Genome-wide CRISPR-dCas9 screens in *E. coli* identify essential genes and phage host factors.
783 *PLOS Genetics* *14*, e1007749.

784 Samai, P., Pyenson, N., Jiang, W., Goldberg, G.W., Hatoum-Aslan, A., and Marraffini, L.A.
785 (2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. *Cell*
786 *161*, 1164-1174.

787 Sassetti, C.M., Boyd, D.H., and Rubin, E.J. (2003). Genes required for mycobacterial growth
788 defined by high density mutagenesis. *Molecular Microbiology* *48*, 77-84.

789 Sassetti, C.M., and Rubin, E.J. (2003). Genetic requirements for mycobacterial survival during
790 infection. *Proceedings of the National Academy of Sciences* *100*, 12989-12994.

791 Saxena, A., Srivastava, V., Srivastava, R., and Srivastava, B.S. (2008). Identification of genes of
792 *Mycobacterium tuberculosis* upregulated during anaerobic persistence by fluorescence and
793 kanamycin resistance selection. *Tuberculosis* *88*, 518-525.

794 Singh, A.K., Carette, X., Potluri, L.-P., Sharp, J.D., Xu, R., Prsic, S., and Husson, R.N. (2016).
795 Investigating essential gene function in *Mycobacterium tuberculosis* using an efficient CRISPR
796 interference system. *Nucleic acids research*, gkw625.

797 Sosic, M., and Sikic, M. (2016). Edlib: A C/C++ library for fast, exact sequence alignment using
798 edit distance. *bioRxiv*, 070649.

799 Sun, B., Yang, J., Yang, S., Ye, R.D., Chen, D., and Jiang, Y. (2018). A CRISPR-Cpf1-Assisted
800 Non-Homologous End Joining Genome Editing System of *Mycobacterium smegmatis*.
801 *Biotechnology Journal* *13*, 1700588.

802 Talaat, A.M., Lyons, R., Howard, S.T., and Johnston, S.A. (2004). The temporal expression
803 profile of *Mycobacterium tuberculosis* infection in mice. *Proceedings of the*
804 *National Academy of Sciences of the United States of America* *101*, 4602-4607.

805 Tamulaitis, G., Kazlauskiene, M., Manakova, E., Venclovas, Č., Nwokeoji, Alison O., Dickman,
806 Mark J., Horvath, P., and Siksnys, V. (2014). Programmable RNA Shredding by the Type III-A
807 CRISPR-Cas System of *Streptococcus thermophilus*. *Molecular Cell* *56*, 506-517.

808 Tamulaitis, G., Venclovas, Č., and Siksnys, V. (2017). Type III CRISPR-Cas Immunity: Major
809 Differences Brushed Aside. *Trends in Microbiology* *25*, 49-61.

810 Tufariello, J.M., Malek, A.A., Vilchèze, C., Cole, L.E., Ratner, H.K., González, P.A., Jain, P.,
811 Hatfull, G.F., Larsen, M.H., and Jacobs, W.R. (2014). Enhanced specialized transduction using
812 recombineering in *Mycobacterium tuberculosis*. *MBio* *5*, e01179-01114.

813 Van Kessel, J.C., and Hatfull, G.F. (2007). Recombineering in *Mycobacterium tuberculosis*.
814 *Nature methods* *4*, 147.

815 Vandewalle, K. (2015). Building genome-wide mutant resources in slow-growing mycobacteria
816 (Ghent University).

817 Venugopal, A., Bryk, R., Shi, S., Rhee, K., Rath, P., Schnappinger, D., Ehrt, S., and Nathan, C.
818 (2011). Virulence of *Mycobacterium tuberculosis* Depends on Lipoamide Dehydrogenase, a
819 Member of Three Multienzyme Complexes. *Cell Host & Microbe* *9*, 21-31.

820 Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., Zhang, C., and Xing, X.-H. (2018). Pooled
821 CRISPR interference screening enables genome-scale functional genomics study in bacteria with
822 superior performance. *Nature Communications* *9*, 2475.

823 Ward, S.K., Abomoelak, B., Hoye, E.A., Steinberg, H., and Talaat, A.M. (2010). CtpV: a
824 putative copper exporter required for full virulence of *Mycobacterium tuberculosis*. *Molecular*
825 *Microbiology* *77*, 1096-1110.

826 Wei, W., Zhang, S., Fleming, J., Chen, Y., Li, Z., Fan, S., Liu, Y., Wang, W., Wang, T., Liu, Y.,
827 *et al.* *Mycobacterium tuberculosis* type III-A CRISPR/Cas system crRNA and its maturation
828 have atypical features. *The FASEB Journal* *0*, fj.201800557RR.

829 Wei, W., Zhang, S., Fleming, J., Chen, Y., Li, Z., Fan, S., Liu, Y., Wang, W., Wang, T., Liu, Y.,
830 *et al.* (2019). *Mycobacterium tuberculosis* type III-A CRISPR/Cas system crRNA and its
831 maturation have atypical features. *The FASEB Journal* *33*, 1496-1509.

832 Xiong, Y., Chalmers, M.J., Gao, F.P., Cross, T.A., and Marshall, A.G. (2005). Identification of
833 *Mycobacterium tuberculosis* H37Rv Integral Membrane Proteins by One-Dimensional Gel
834 Electrophoresis and Liquid Chromatography Electrospray Ionization Tandem Mass
835 Spectrometry. *Journal of Proteome Research* 4, 855-861.

836 Zhang, Y.J., Ioerger, T.R., Huttenhower, C., Long, J.E., Sasseeti, C.M., Sacchettini, J.C., and
837 Rubin, E.J. (2012). Global Assessment of Genomic Regions Required for Growth in
838 *Mycobacterium tuberculosis*. *PLOS Pathogens* 8, e1002946.

839 Zumla, A., Rao, M., Wallis, R.S., Kaufmann, S.H.E., Rustomjee, R., Mwaba, P., Vilaplana, C.,
840 Yeboah-Manu, D., Chakaya, J., and Ippolito, G. (2016). Host-directed therapies for infectious
841 diseases: current status, recent progress, and future prospects. *Lancet Infectious Diseases* 16,
842 e47-e63.

843

844

845 **Legends:**

846 **Figure 1: Schematic representation of the type III-A CRISPR-Cas10 system loci, crRNA**
847 **biogenesis, and Cas gene expression in the *Mycobacterium tuberculosis* complex.**

848 (A) Type III-A CRISPR-Cas10 system in *M.tb*, *M.bovis*, and *M.avium*. (B) Schematic show of
849 crRNA biogenesis by the type III-A CRISPR crRNA-csm complex. This crRNA-csm complex
850 then cleavage RNA or DNA through a transcription dependent manner (C) Expression of Csm3,
851 Csm6 and Cas10 in *M.tb*. (D-F) Real-time PCR identification of the expression of Csm3, Csm6
852 and Cas10 in wild-type and gRNA-overexpressing strains.

853

854 **Figure 2: Endogenous CRISPR-Cas10 system-mediated gene knock-in and out in *M.tb*.**

855 (A) *M.tb* gene editing strategy in which CRISPR-Cas10-mediated specific DNA cleavage
856 through a transcription dependent manner that can facilitates gene knock-in/out. (B) Green
857 fluorescence in bacteria with the GFP gene was integrated after the *gyrA* gene locus by the
858 endogenous CRISPR-Cas10 system. Fluorescence was lacking in the control group transformed
859 with the HDR template only. (C) Cartoon representation of GFP insertion in the locus after *gyrA*

860 and confirmation of insertion by Sanger sequencing. (D-F) Fluorescence and bright-field images
861 of the colonies of *lpqE*, *lpqD*, and *esxQ* deleted strains.

862 **Figure 3: Gene knock-out and off-target effect analysis by whole-genome sequencing.**

863 (A) Schematic diagram for the gene knock-out and off-target effect analysis from DNA library
864 preparation to *in silico* analysis. (B) Circos plot showing the genomic outline of the wild-type
865 and *esxQ* knock-out mutant strains. (C) Representation of the sequencing reads aligned on the
866 *esxQ* locus in the wild-type and $\Delta esxQ$ strains. (D) The polar chart represents genome-wide
867 SNPs in the $\Delta esxQ$ strain compared to the wild-type strain. The colors indicate the number of
868 SNP events at the specific sites, and the circle represents the whole genome. (E) Whole-genome
869 off-target effect evaluation in the $\Delta esxQ$ strain with different mismatch cutoff values. No
870 off-target effect was observed in the locus considered the gRNA length flanking by 20 bp region
871 at both side.

872 **Figure 4: Endogenous CRISPR-Cas10-mediated gene interference in *M.tb*.**

873 (A) Schema for the CRISPR interference strategy in which the targeting sequence was flanked
874 with a 5'-GAAAC-3' tag, this tag recognize by the CRISPR cas complex which stop the
875 nuclease activity of cas10 and switch it to synthesize coA (cyclic oligoadenylate) from ATP
876 which leads to the activation of csm3 and csm6 resulting in RNA cleavage without DNA
877 targeting. (B) Map and position of the gRNA for the *katG* gene. The pentanucleotide motif at
878 1227-1232 bp on the noncoding strand of *katG* gene along with the flanking region (40 bp) from
879 1232-1272 bp as potential gRNAs. (C) Inhibition of *katG* expression in the *katG* interference
880 strain in comparison to the wild-type control strain. (D and E) Fold change in *dcD* and *esxT* gene
881 expression in the *dcD* and *esxT* interference strains, respectively, in comparison to the vector
882 control strain and the wild-type control strain. (F) Position of the gRNA on the coding and
883 noncoding strands of the *lpqN* gene, designated as S1 and S2, respectively. (G) Inhibition of
884 *lpqN* gene expression in comparison to the vector, S1 gRNA and wild-type control strains (*P <
885 0.01; ***P < 0.0001).

886

887 **Figure 5: Schema for endogenous CRISPR-Cas10 mediated simultaneous multiple-gene**
888 **interference in *M.tb*.**

889 (A) Binding of multiple crRNAs to the corresponding targeting mRNAs. (B) Schema for the
890 expression of multiple spacers, generation of multiple crRNAs and the binding of the mRNAs to
891 the corresponding target mRNAs. (C) Simultaneous inhibition of *lpqE*, *katG* and *inhA* genes
892 expression by the three spacers in comparison to the wild-type strain. Significant difference is
893 indicated by the asterisks above the bars (**P< 0.0001).

894

895 **Figure 6: Genome-wide CRISPR interference screening for growth-facilitating genes in**
896 ***M.tb*.** (A) Schematic representation gRNA library construction and screening: 5658 gRNAs were
897 synthesized and cloned into *E.coli* and then subjected to high-throughput sequencing, for which
898 the gRNA read count distribution was used as input. The gRNA library was electroporated into
899 *M.tb* to interfere with target gene expression. gRNAs targeting growth-regulating genes
900 influence *M.tb* growth, which can be revealed by high-throughput sequencing and analysis of the
901 gRNA read counts from the *M.tb* plasmids in comparison with that of the input from *E.coli*. (B)
902 Pearson correlation of gRNA sequence count distribution of three *M.tb* samples with *E.coli*
903 (input). (C) Heat map of the gRNA read count of three *M.tb* samples in comparison with the
904 *E.coli* input. (D-E) Global distribution of gRNA reads in the *E.coli* genome and *M.tb* genome
905 (mean values). Each point represents a gRNA, and the radius represents the read count. (F)
906 Circle plot of the CRIPSRi screening result. The red points and blue points represent gRNAs
907 with significantly increased and decreased levels (*M.tb* vs *E.coli*), respectively, aligned to the
908 corresponding target genes in the genome. The distance to the inner circle of each point
909 represents the fold change value. (G) MA plot of the CRIPSRi screening result shown in (F). The
910 x-axis shows the average gRNA read count, and the y-axis shows the log2 fold change (*M.tb* vs
911 *E.coli*) values. (H) Pie chart showing the properties of the top 50 low-counted target genes,
912 among which 78% have been previously reported to be essential for growth. (I) Percent of
913 different types of genes among the top 50 high counted gRNAs. (J) Heat map representing the
914 similarity of the 208 growth-facilitating genes between *M.tb* and the 43 most common probiotics.

915 **Figure7: Genome-wide CRISPR interference screening for *M.tb* intracellular
916 growth-regulating genes.**

917 (A) Schema for Genome-wide CRISPR interference screening for *M.tb* intracellular
918 growth-regulating genes. (B) Pearson correlation of gRNA sequence count distribution of
919 three independent *in-vitro* *M.tb* cultures with intracellular *M.tb*. (C) Heat map of the gRNA read
920 count of three independent *in-vitro* cultures in comparison with the intracellular *M.tb*. (D-E)
921 Global distribution of gRNA reads in the *in-vitro* and intracellular *M.tb* (mean values). Each
922 point represents a gRNA, and the radius represents the read count. (F) Circle plot of the
923 CRIPSRi screening result. The red points and blue points represent gRNAs with significantly
924 increased and decreased levels (*in vitro* vs inside THp-1), respectively, aligned to the
925 corresponding target genes in the genome. The distance to the inner circle of each point
926 represents the fold change value. (G) MA plot of the CRIPSRi screening result shown in (F).
927 The x-axis shows the average gRNA read count, and the y-axis shows the log2 fold change (*in*
928 *vitro* vs intracellular) values. (H) Venn diagram represents different category of the intracellular
929 growth-regulating genes.

930 (B)

931 **Supplementary Figure 1:** (A) Vector map of the construct for CRISPR-mediated gene editing
932 and interference. (B) Map of primers used to identify GFP knock-in, in which the forward and
933 reverse primers are located 100 bp upstream and downstream of the left and right arms,
934 respectively. (C) Sequences of different parts of the plasmid, such as psmyc, which represents
935 the promoter required for expression of the crRNA; the gRNA sequence was cloned into the
936 plasmid pMV-261 at the BbsI site between the two repeat; and T1, which represent the
937 terminator. (D) Sequences of the spacer used for simultaneous multiple-gene interference.

938 **Supplementary Figure 2:** Supplementary Figure 2: Type III-A CRISPR-Cas system-based gene
939 deletion in *M.tb*. (A) Fluorescent colonies expressing BFP as a selection marker representing
940 gene knock-out after replacement of the target genes indicated in each panel. (B, C and D)
941 Representative Sanger sequencing chromatographs revealing BFP and GFP insertion into the
942 target sites. (E) Sanger sequencing chromatographs of qRT-PCR products of the respective
943 *cas/csm* genes. (F) Sanger sequencing chromatographs of *katG* gene from the wild type and *katG*
944 knocked down strain.

945 **Supplementary Figure 3:** PCR confirmation of gene knocked Out/In in *M.tb* mediated by the
946 endogenous CRISPR-Cas10 system. (A) PCR Confirmation of EGF knock-In into the *gyrA* locu.
947 (B-E) PCR confirmation of gene knock-Out. (F) DNA targeting efficiency of the type III-A
948 CRISPR system in *M.tb*. PCR amplification showing successful insertion of BFP in 10 out of 11
949 colonies. The bands on the gel from 1 to 11 represent H37Ra transformed with the plasmid
950 containing the gRNA and HDR template for *lpqE*; 13 and 14 are the clones transformed with the
951 plasmid containing only the gRNA or HDR template individually. 15 is the WT control and 16 is
952 the water control.

953 **Supplementary Figure 4** (A and B) Circos plots showing the genomic outlines of the *esxC* and
954 *lpqD* mutants strains along with their wild type strains. (C and C) Representation of the
955 sequencing reads aligned on the *esxC* and *lpqD* locus in the wild type and the respective mutant
956 strains

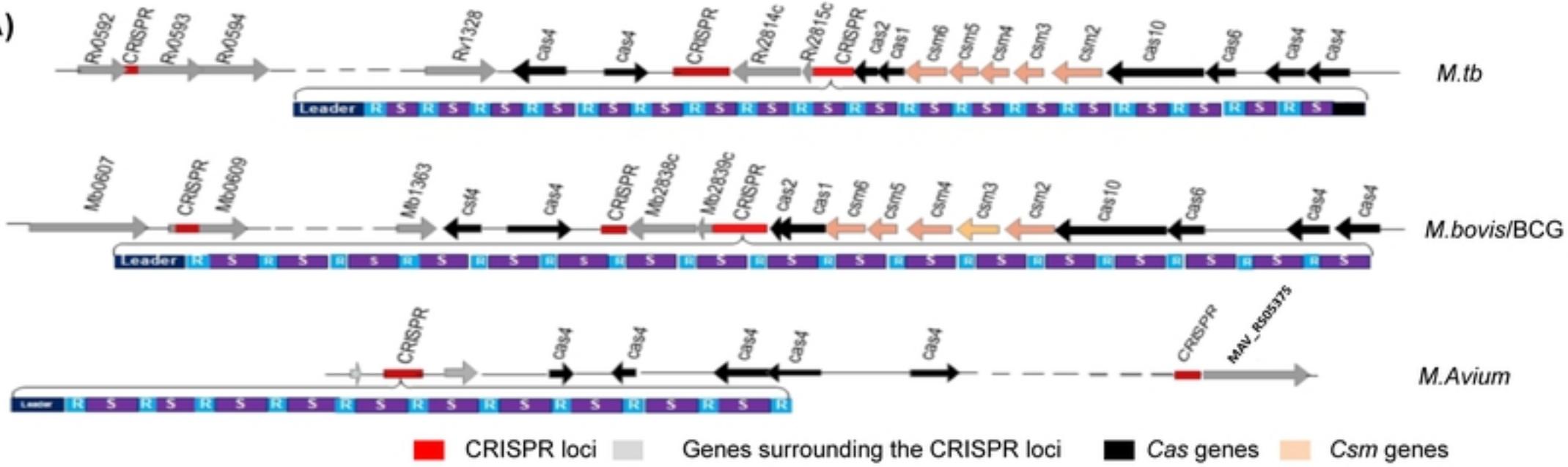
957 **Supplementary Figure 5:** (A) Targeting of Self DNA by the endogenous type III-A CRISPR
958 system directed by a gRNA designed from the *gyrA* gene. (B and C) polar effects of the
959 endogenous type III-A CRISPR mediated RNA interference on the neighbor genes of *lpqE* and
960 *dcd* genes. (D) RNA immune precipitation assay performed for the detection Type III-A
961 CRISPR complex binding to the target mRNA. (E) qRT-PCR based enrichment of the *inhA* and
962 *lpqE* mRNA from the immune precipitated RNA. The fold enrichment has been normalized to
963 the samples with no gRNA and no tagged csm6 samples. Then the normalized values of each
964 sample were compared to the respective controls. (F) Effect of the type III-A CRISPR assisted
965 RNA and DNA targeting on the cfus of *M.tb*.

966 **Supplementary Figure 6:** Strategy for gRNA library design for genome wide CRISPRi
967 Screening in *M.tb*

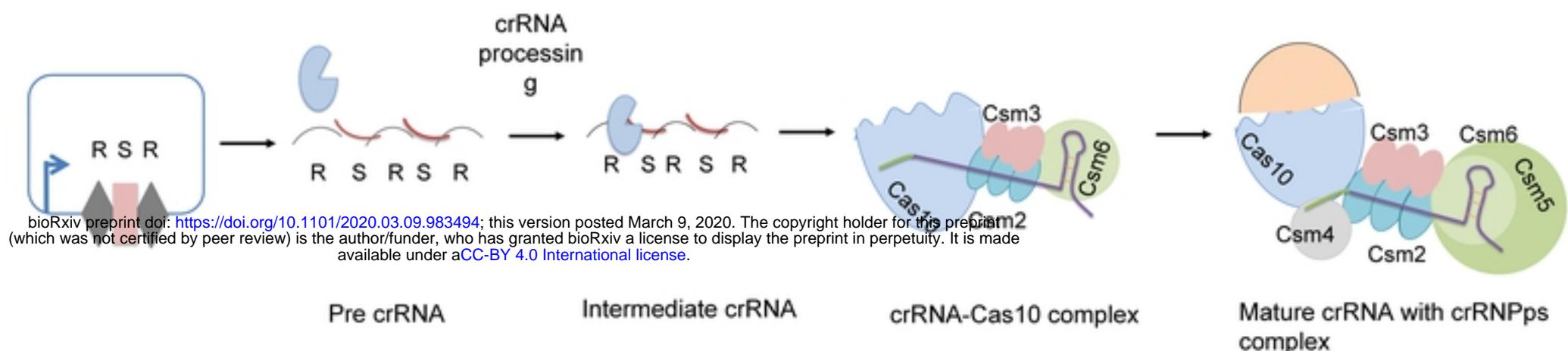
968 **Table SI:** List of gRNA sequences used for gene knock-out/in and RNA interference.

969 **Table S2:** List of primers for gene knocked out and qPCR analysis.

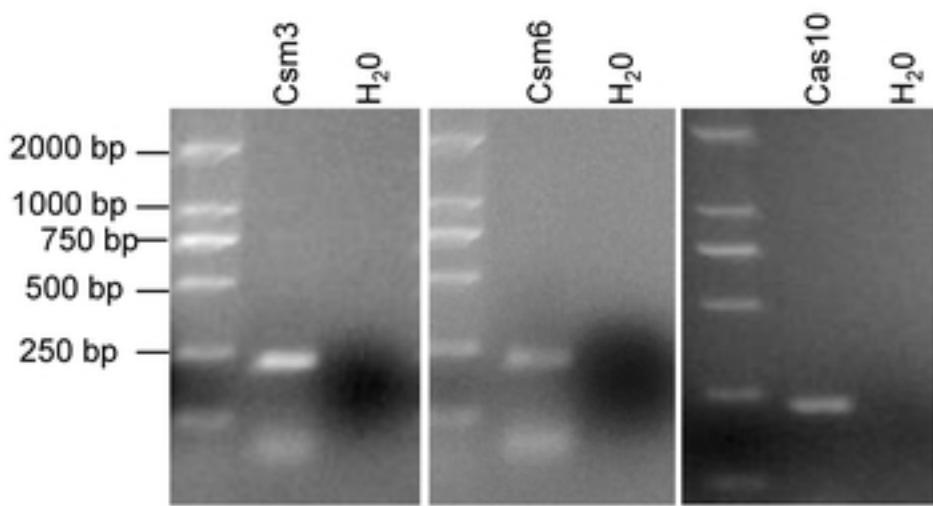
970 **Table S3:** List of gRNAs synthesized for genome wide CRISPRi.

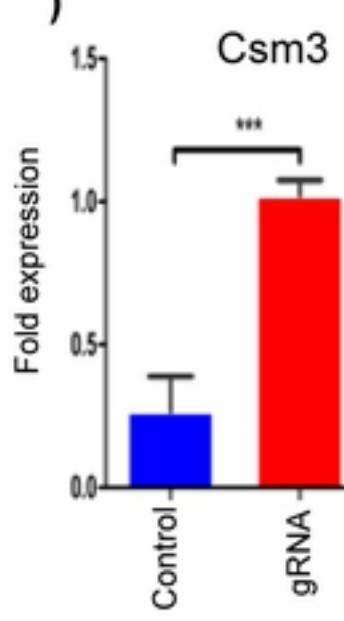

971 **Table S4:** List of differentially distributed targets sequences during *in vitro* screening of *M.tb*.

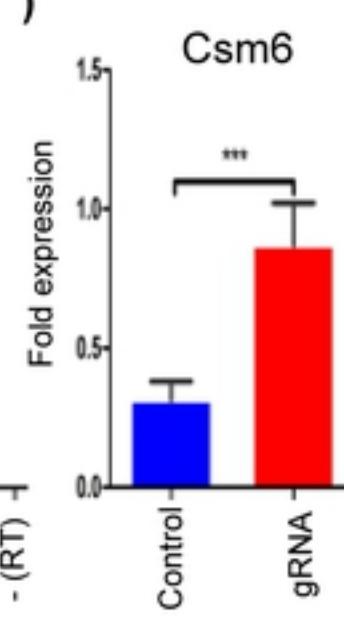
972 **Table S5:** List of *M.tb* drug target genes. The top 31 genes from the list show least similarity
973 with the probiotics proteome.

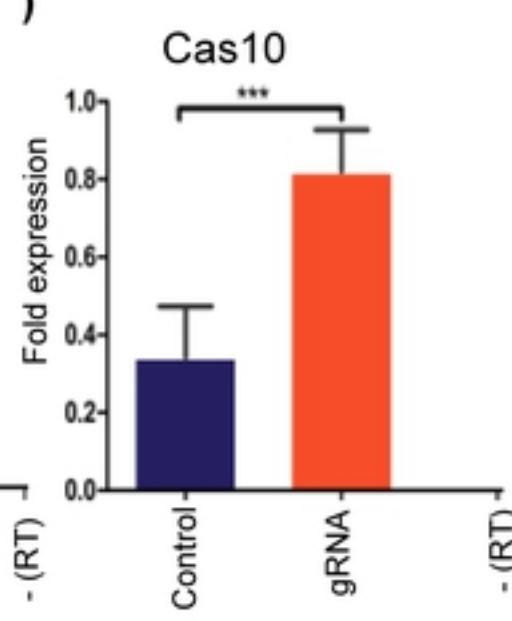

974 **Table S6:** List of differentially distributed targets genes of *M.tb* growth inside Thp-1 derived
975 macrophages.

976


(A)


(B)


(C)


(D)

(E)

(F)

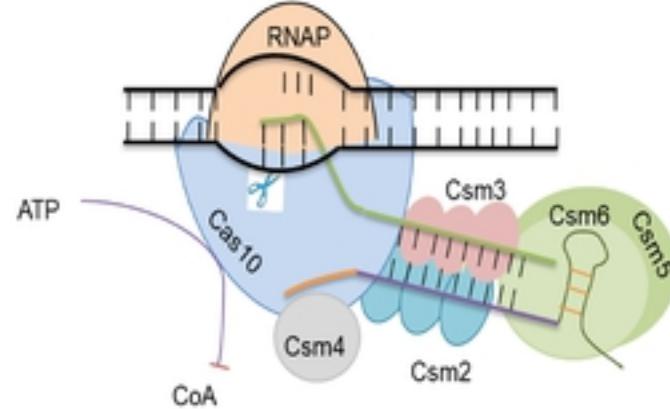
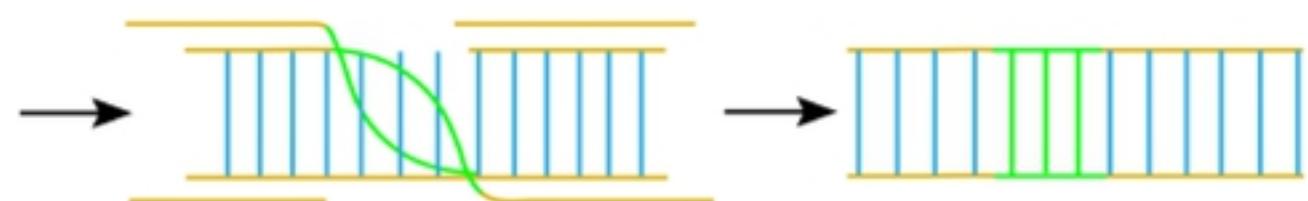
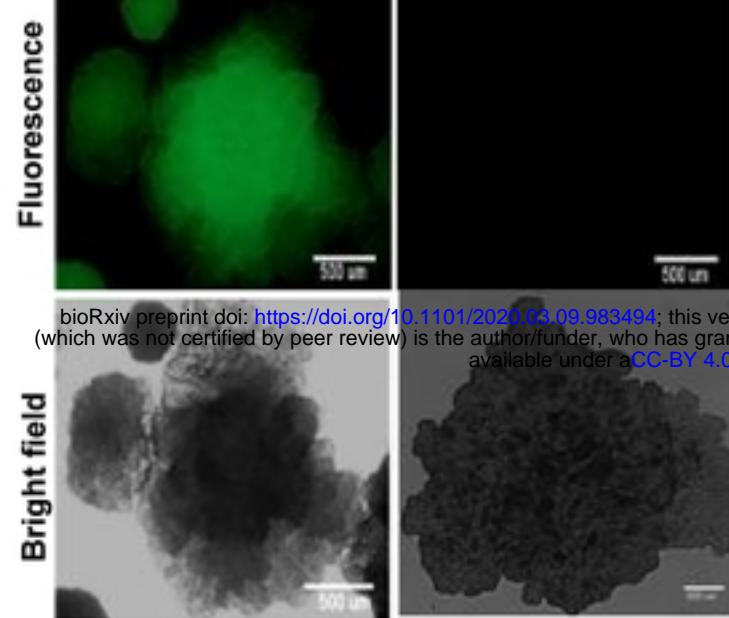


Figure 1: Schematic representation of the type III-A CRISPR-Cas10 system loci, crRNA biogenesis, and Cas gene expression in the *Mycobacterium tuberculosis* complex.

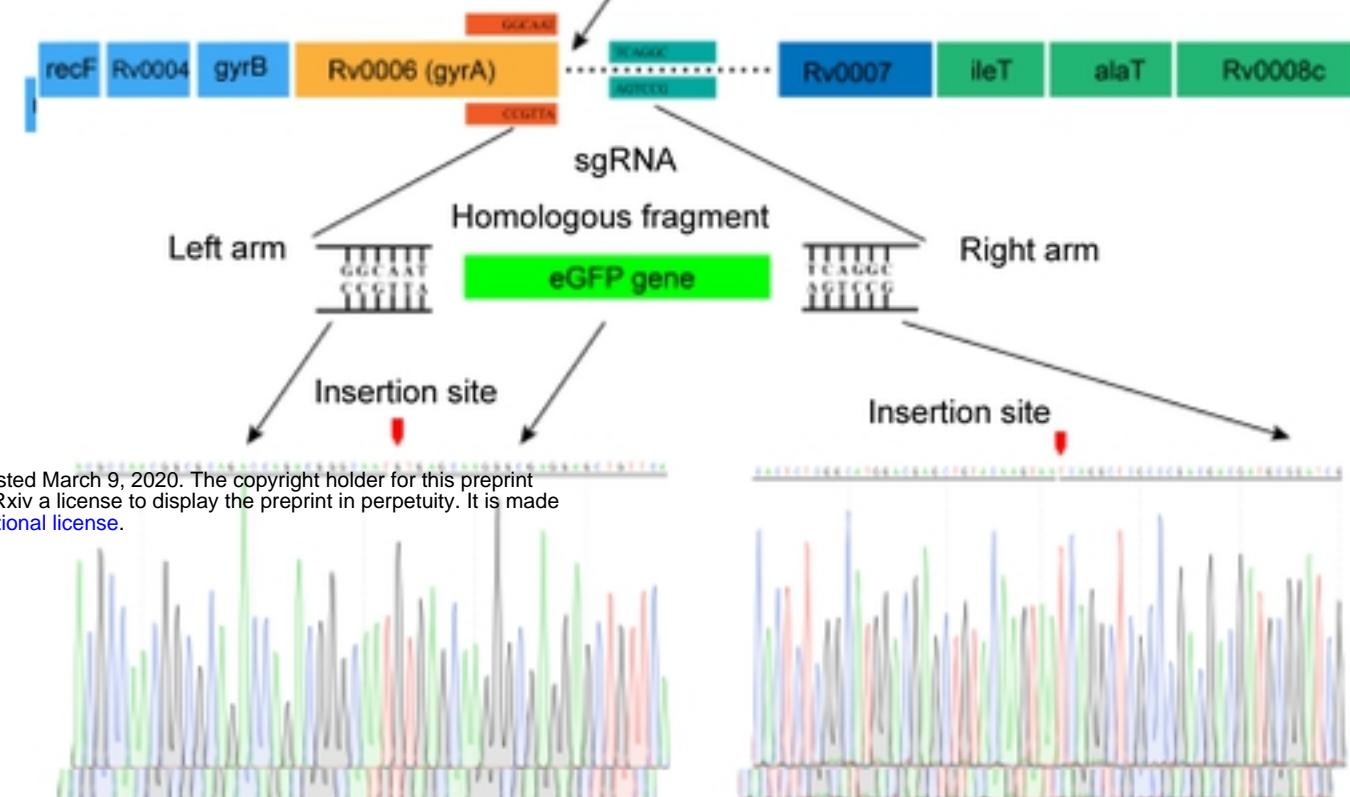
(A) Type III-A CRISPR-Cas10 system in *M.tb*, *M.bovis*, and *M.avium*. (B) Schematic show of crRNA biogenesis by the type III-A CRISPR crRNA-csm complex. This crRNA-csm complex then cleavage RNA or DNA through a transcription dependent manner (C) Expression of *Csm3*, *Csm6* and *Cas10* genes in *M.tb*. (D-F) Real-time PCR identification of the expression of *Csm3*, *Csm6* and *Cas10* in wild-type and gRNA-overexpressing strains.


(A)

Unmatched crRNA tag dynamics cas10

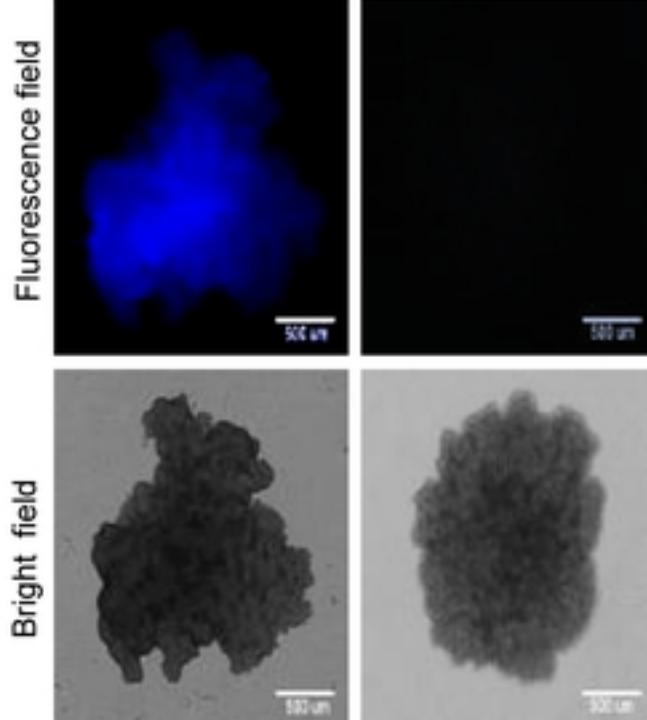

Homologous recombination

eGFP gene inserted


(B)

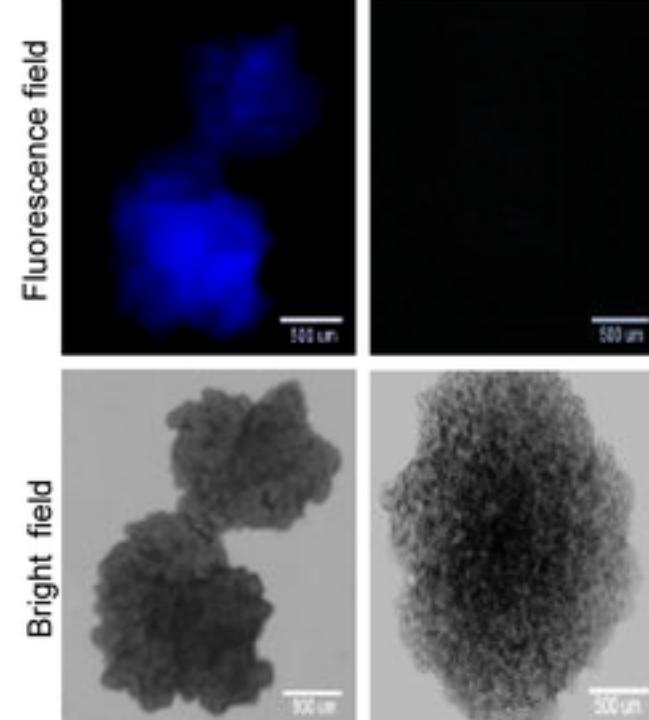
gRNA plus HDR template HDR template only

bioRxiv preprint doi: <https://doi.org/10.1101/2020.03.09.983494>; this version posted March 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


(C)

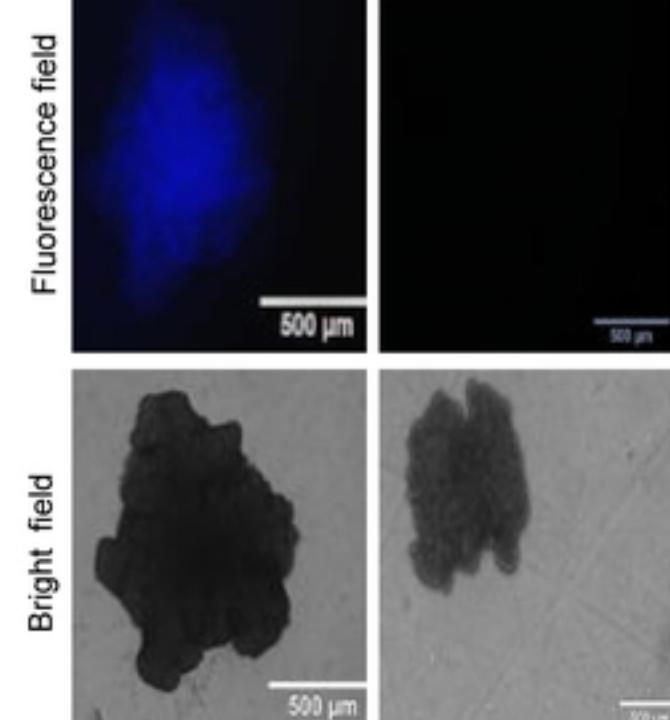
(D)

ΔlpqD::BFP

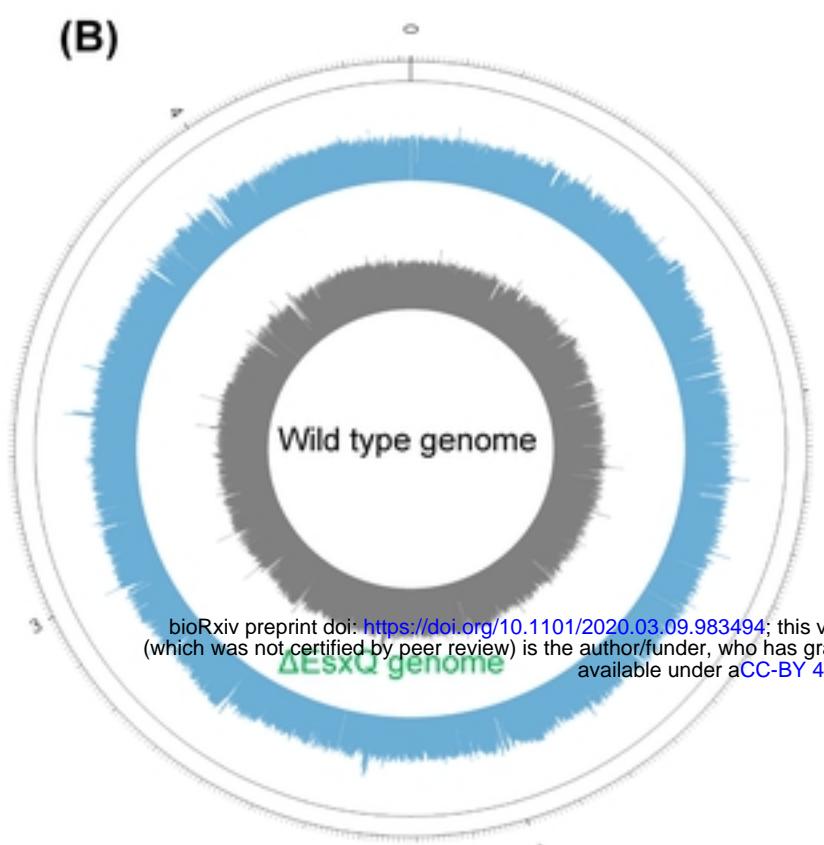
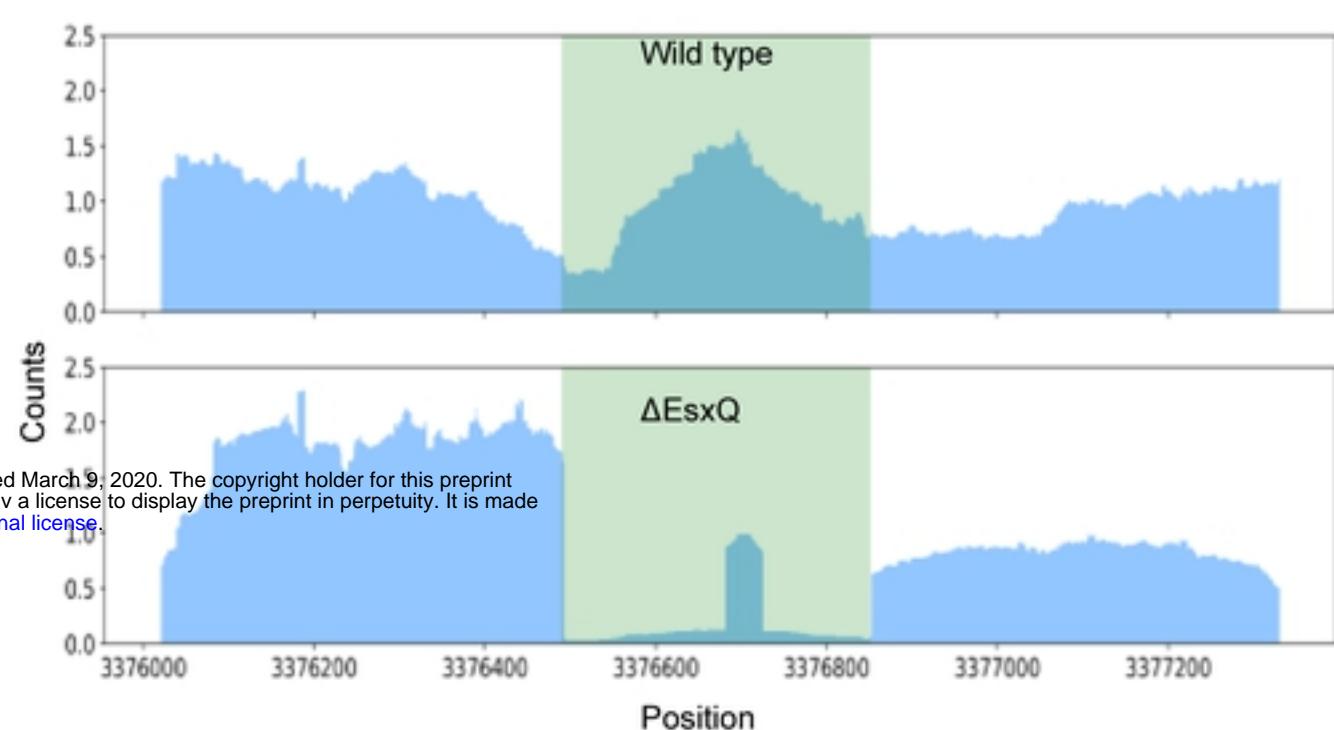
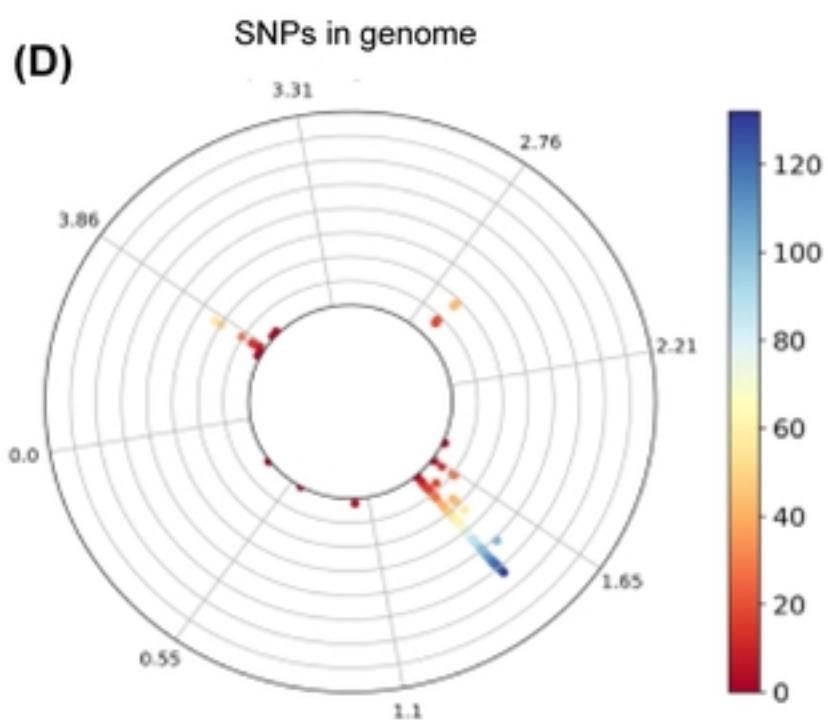
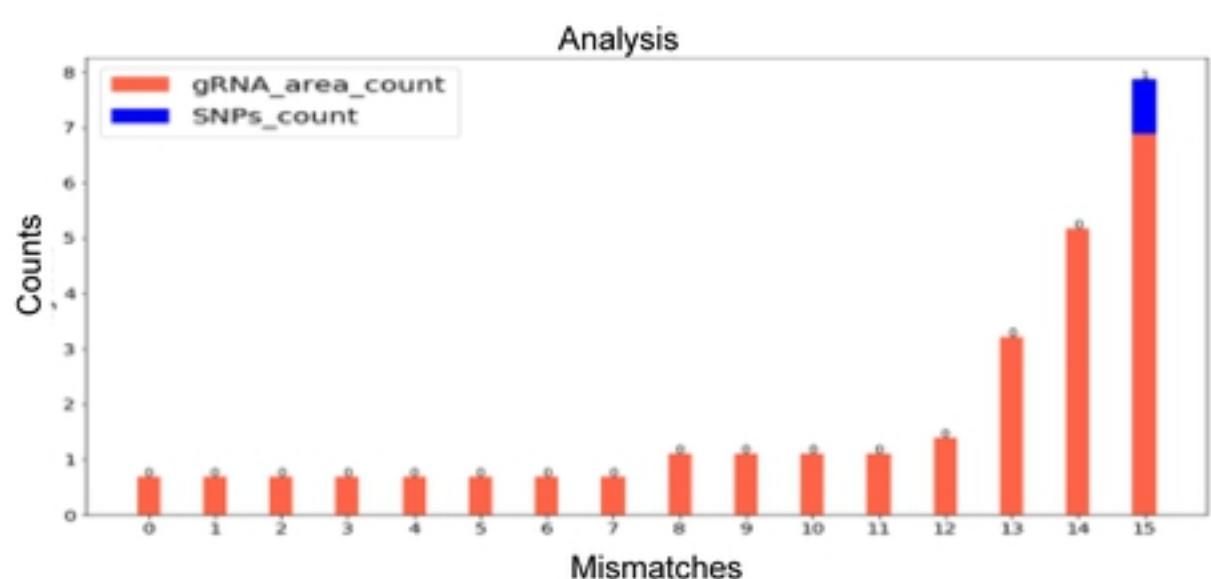

HDR only

(E)

ΔlpqE::BFP


HDR only

(F)





ΔEsxQ::BFP

HDR only

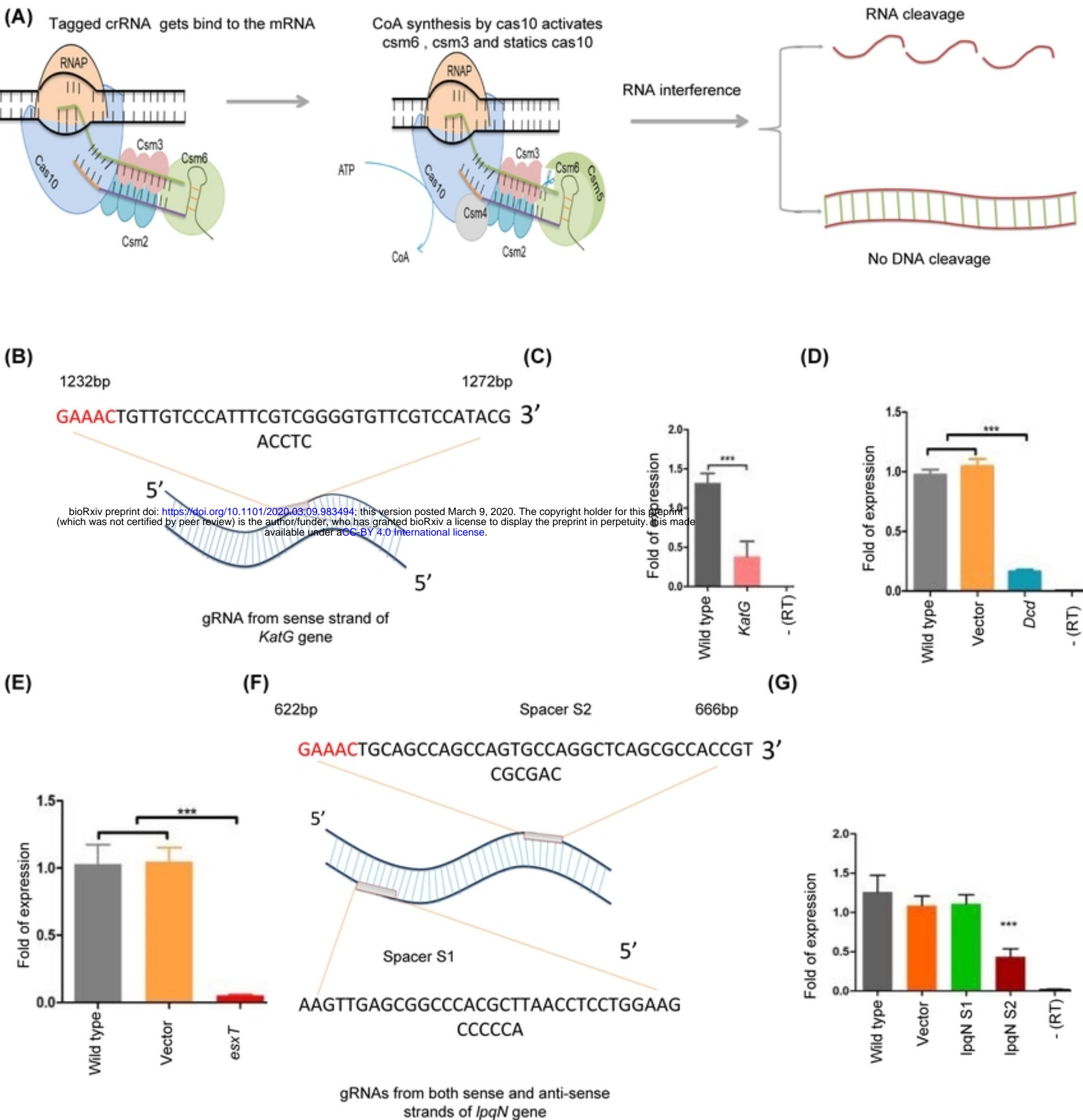
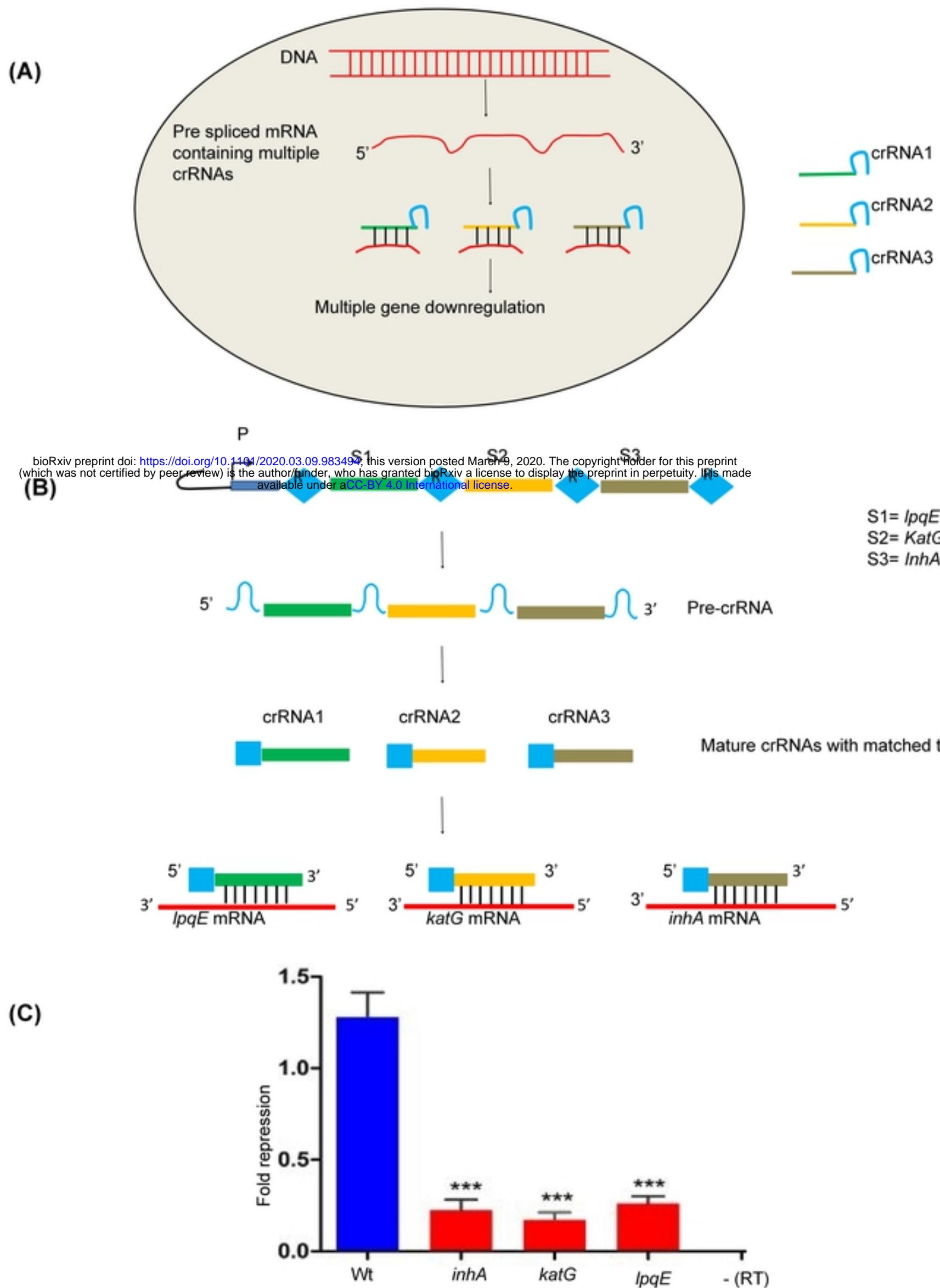
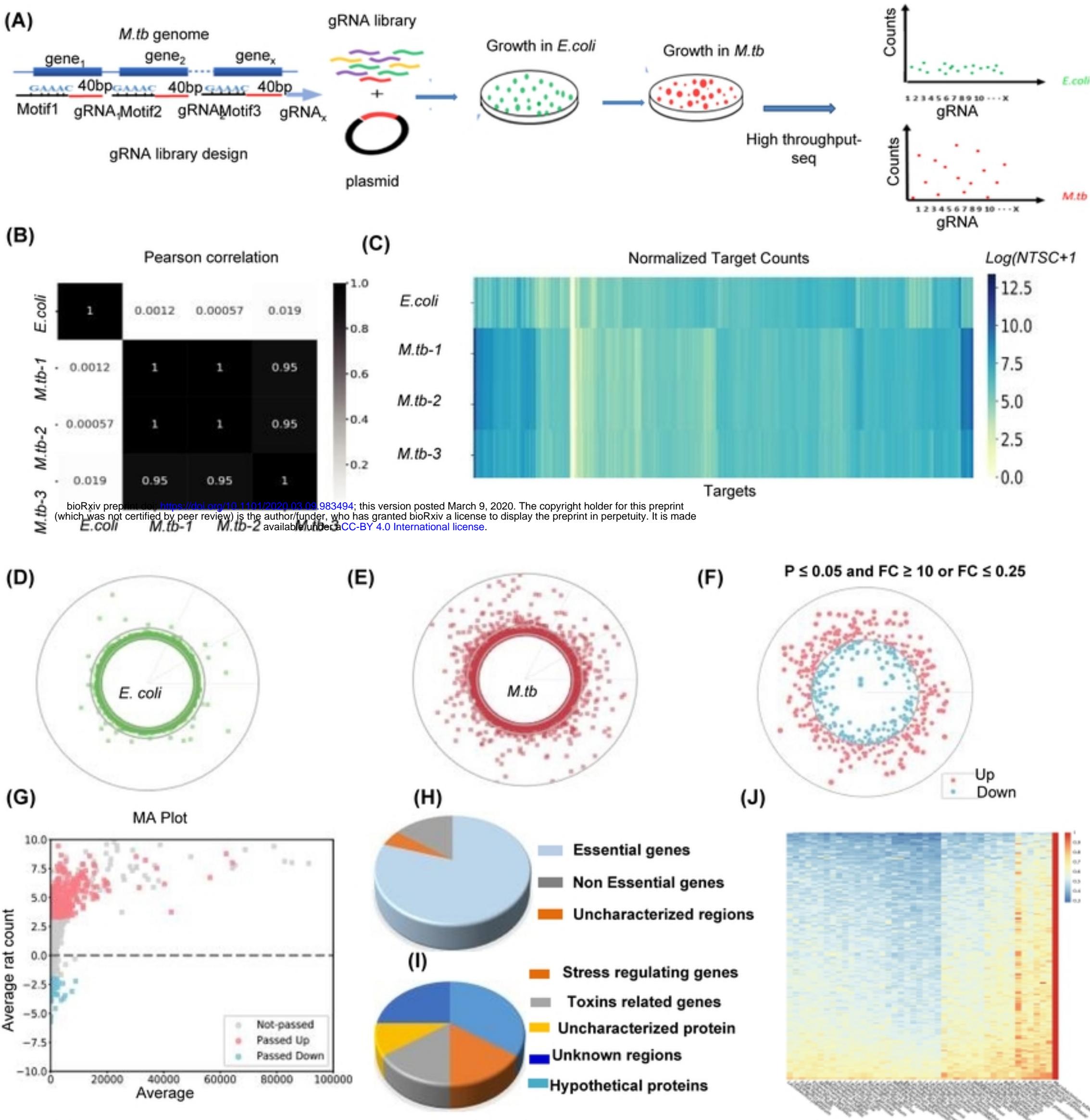


Figure 2: Endogenous CRISPR-Cas10 system-mediated gene knock-in and out in *M.tb*.

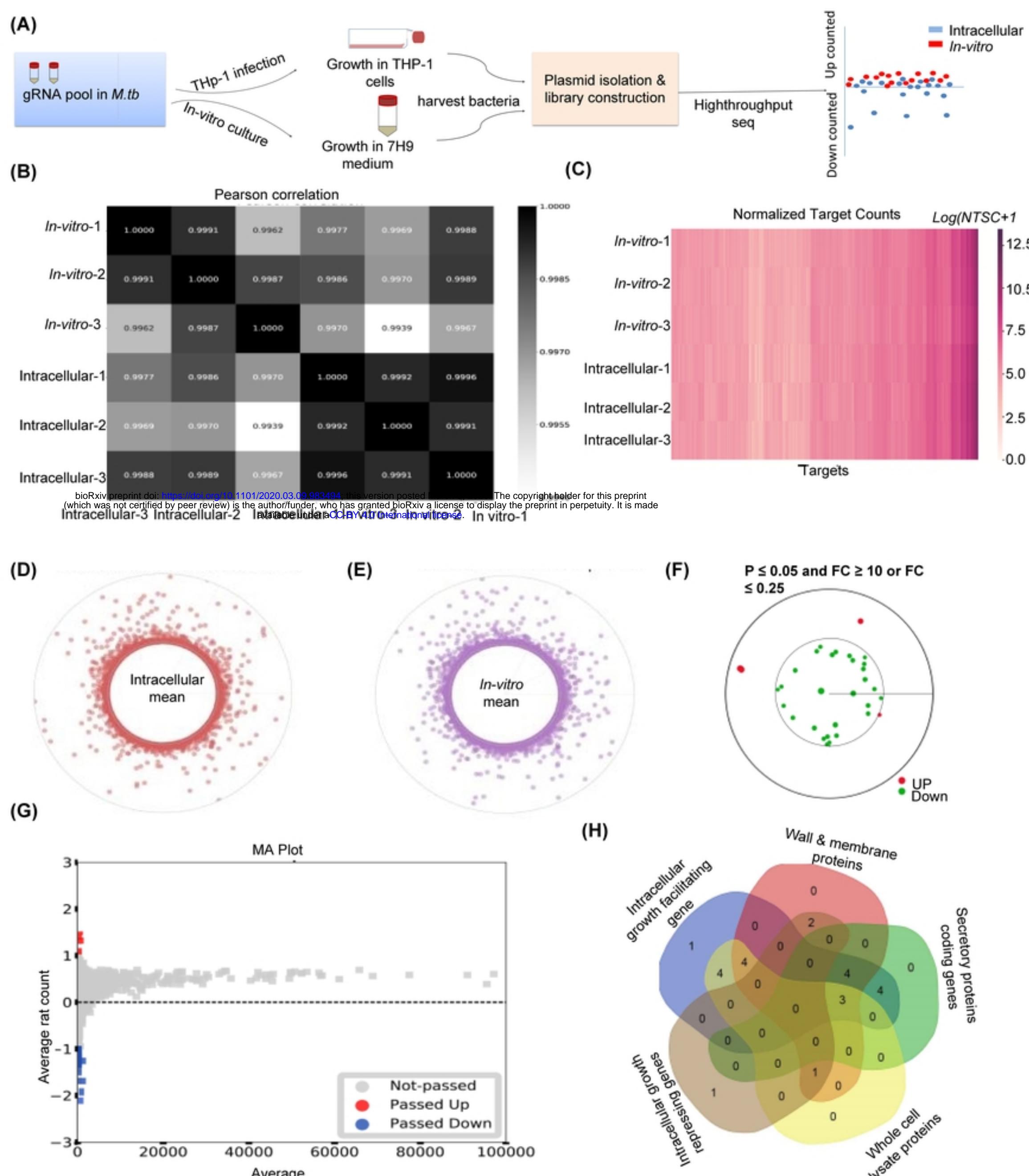
(A) *M.tb* gene editing strategy in which CRISPR-Cas10-mediated specific DNA cleavage through a transcription dependent manner that can facilitates gene knock-in/out. (B) Green fluorescence in bacteria with the GFP gene was integrated after the *gyrA* gene locus by the endogenous CRISPR-Cas10 system. Fluorescence was lacking in the control group transformed with the HDR template only. (C) Cartoon representation of GFP insertion in the locus after *gyrA* and confirmation of insertion by Sanger sequencing. (D-F) Fluorescence and bright-field images of the colonies of *lpqE*, *lpqD*, and *esxQ* deleted strains.


(A)**(B)****(C)****(D)****(E)****Figure 3: Gene knock-out and off-target effect analysis by whole-genome sequencing.**

(A) Schematic diagram for the gene knock-out and off-target effect analysis from DNA library preparation to in silico analysis. (B) Circos plot showing the genomic outline of the wild-type and esxQ knock-out mutant strains. (C) Representation of the sequencing reads aligned on the esxQ locus in the wild-type and Δ esxQ strains. (D) The polar chart represents genome-wide SNPs in the Δ esxQ strain compared to the wild-type strain. The colors indicate the number of SNP events at the specific sites, and the circle represents the whole genome. (E) Whole-genome off-target effect evaluation in the Δ esxQ strain with different mismatch cutoff values. No off-target effect was observed in the locus considered the gRNA length flanking by 20 bp region at both sides.


Figure 4: Endogenous CRISPR-Cas10-mediated gene interference in *M.tb*.

(A) Schema for the CRISPR interference strategy in which the targeting sequence was flanked with a 5'-GAAAC-3' tag, this tag recognize by the CRISPR cas complex which stop the nuclease activity of cas10 and switch it to synthesize coA (cyclic oligoadenylate) from ATP that leads to the activation of csm3 and csm6 resulting in RNA cleavage without DNA targeting. **(B)** Map and position of the gRNA for the *katG* gene. The pentanucleotide motif at 1227-1232 bp on the noncoding strand and the flanking region (40 bp) from 1232-1272 bp as a potential gRNA. **(C)** Inhibition of *katG* expression in the *katG* interference strain in comparison to the wild-type control strain. **(D and E)** Fold change in *dcD* and *esxT* gene expression in the *dcD* and *esxT* interference strains, respectively, in comparison to the vector control strain and the wild-type control strain. **(F)** Position of the gRNA on the coding and noncoding strands of the *lpqN* gene, designated as S1 and S2, respectively. **(G)** Inhibition of *lpqN* gene expression in comparison to the vector, S1 gRNA and wild-type control strains (*P < 0.01; ***P < 0.0001).


Figure 5: Schema for endogenous CRISPR-Cas10 mediated simultaneous multiple-gene interference in *M.tb*.

(A) Binding of multiple crRNAs to the corresponding targeting mRNAs. **(B)** Schema for the expression of multiple spacers, generation of multiple crRNAs and the binding of the mRNAs to the corresponding target mRNAs. **(C)** Simultaneous inhibition of *IpqE*, *katG* and *inhA* genes expression by the three spacers in comparison to the wild-type strain. Significant difference is indicated by the asterisks above the bars (**P< 0.0001).

Figure 6: Genome-wide CRISPR interference screening for growth-facilitating genes in *M.tb*.

(A) Schematic representation gRNA library construction and screening: 5658 gRNAs were synthesized and cloned into *E.coli* and then subjected to high-throughput sequencing, for which the gRNA read count distribution was used as input. The gRNA library was electroporated into *M.tb* to interfere with target gene expression. gRNAs targeting growth-regulating genes influence *M.tb* growth, which can be revealed by high-throughput sequencing and analysis of the gRNA read counts from the *M.tb* plasmids in comparison with that of the input from *E.coli*. **(B)** Pearson correlation of gRNA sequence count distribution of three *M.tb* samples with *E.coli* (input). **(C)** Heat map of the gRNA read count of three *M.tb* samples in comparison with the *E.coli* input. **(D-E)** Global distribution of gRNA reads in the *E.coli* genome and *M.tb* genome (mean values). Each point represents a gRNA, and the radius represents the read count. **(F)** Circle plot of the CRISPRi screening result. The red points and blue points represent gRNAs with significantly increased and decreased levels (*M.tb* vs *E.coli*), respectively, aligned to the corresponding target genes in the genome. The distance to the inner circle of each point represents the fold change value. **(G)** MA plot of the CRISPRi screening result shown in (F). The x-axis shows the average gRNA read count, and the y-axis shows the log2 fold change (*M.tb* vs *E.coli*) values. **(H)** Pie chart showing the properties of the top 50 low counted target genes, among which 78% have been previously reported to be essential for growth. **(I)** Percent distribution of different categories among the genes associated with the top 50 high counted gRNAs. **(J)** Heat map representing the similarity of the 208 growth-facilitating genes between *M.tb* and the 43 most common probiotics.

Figure 7: Genome-wide CRISPR interference screening for *M.tb* intracellular growth-regulating genes.

(A) Schema for Genome-wide CRISPR interference screening for *M.tb* intracellular growth-regulating genes. **(B)** Pearson correlation of gRNA sequence count distribution of three independent *in-vitro* *M.tb* cultures with intracellular *M.tb*. **(C)** Heat map of the gRNA read count of three independent *in-vitro* cultures in comparison with the intracellular *M.tb*. **(D-E)** Global distribution of gRNA reads in the *in vitro* and intracellular *M.tb* (mean values). Each point represents a gRNA, and the radius represents the read count. **(F)** Circle plot of the CRISPRi screening result. The red points and blue points represent gRNAs with significantly increased and decreased levels (*in-vitro* vs inside THp-1), respectively, aligned to the corresponding target genes in the genome. The distance to the inner circle of each point represents the fold change value. **(G)** MA plot of the CRISPRi screening result shown in (F). The x-axis shows the average gRNA read count, and the y-axis shows the log2 fold change (*in vitro* vs inside THp-1) values. **(H)** Venn diagram represents different category of the intracellular growth-regulating genes.