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Abstract

Viruses hijack the host cell machinery to promote viral replication; however, the mechanism
by which metabolic reprogramming regulates innate antiviral immunity in the host remains
elusive. Herein, we found that Hepatitis B virus (HBV) infection upregulates glucose
transporter lexpression, promotes hexosamine biosynthesis pathway (HBP) activity, and
enhances O-linked 3-N-acetylglucosamine (O-GIcNAc) modification of downstream proteins.
HBP-mediated O-GIcNAcylation positively regulates host antiviral response against HBV in
vitro and in vivo. Mechanistically, O-GIcNAc transferase (OGT)-mediated O-GIcNAcylation
of sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) on
Ser93 stabilizes SAMHD1 and enhances its antiviral activity. In addition, O-GIcNAcylation of
SAMHDL1 promoted its antiviral activity against human immunodeficiency virus-1 in vitro. In
conclusion, the results of our study reveal a link between HBP, O-GIcNAc modification, and
innate antiviral immunity by targeting SAMHD1. Therefore, the results of this study
demonstrate a strategy for the potential treatment of HBV infection by modulating HBP

activity.

Keywords: Hepatitis B virus / O-linked 3-N-acetylglucosamine modification / sterile alpha
motif and histidine/aspartic acid domain-containing protein 1 / antiviral immunity

/Hexosamine biosynthetic pathway
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Introduction

Immunometabolism is an emerging field that highlights the importance of specific metabolic
pathways in immune regulation. Metabolic enzymes, such as glyceraldehyde 3-phosphate
dehydrogenase and pyruvate kinase isozyme M2 can directly modulate immune cell
activation (Chang et al, 2013; Palsson-McDermott et al, 2015). In addition to providing
energy and building blocks for biosynthesis, metabolites have been shown to participate in
epigenetic modification and signaling transduction. the glycolytic product lactate not only
regulates gene expression by histone acetylation (Zhang et al, 2019a), but also acts as a
suppressor of type | interferon signaling by interacting with the mitochondrial antiviral
signaling protein MAVS (Zhang et al, 2019b). Iltaconate—another important metabolite for
immune function—downregulates type | interferon signaling during viral infection by
promoting alkylation of Kelch-like ECH-associated protein 1 and activation of
anti-inflammatory proteins, including nuclear factor erythroid 2-related factor 2 (Mills et al,

2018, 1; O'Neill & Artyomov, 2019).

Viruses are obligate parasites that rely on the biosynthetic machinery of the host to complete
their life cycle. They hijack the host cell machinery upon entry to fulfill their energetic and
biosynthetic demands for viral replication. Human cytomegalovirus (HCMV) and herpes
simplex virus-1 (HSV-1) remodel host cells to perform distinct, virus-specific metabolic
programs (Vastag et al, 2011). HCMV reprograms host metabolism by upregulating the
expression of carbohydrate-response element binding protein and glucose transporter 4
(GLUTA4) to provide materials for viral replication(Yu et al, 2014).Glucose uptake, glycolysis,
and lipogenesis are enhanced in HCMV-infected cells to synthesize biomolecules. Moreover,

HSV-1 promotes central carbon metabolism to synthesize pyrimidine nucleotides.
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On the other hand, hosts may recognize virus-induced signaling and reprogram metabolic
pathways to protect themselves from further damage. Increased glucose utilization,
increased aerobic glycolysis, and inhibition of oxidative metabolism have emerged as the
hallmarks of macrophage activation (Jung et al, 2019). Pattern recognition molecules as well
as several metabolic pathways and metabolites have been reported to play an important role
in regulating host innate immune response (Haské & Cronstein, 2004; Skelly et al, 2019;
Tsalikis et al, 2013).Therefore, it is important to identify the key metabolites that regulate
innate immune response during viral infection. Understanding the relationship between cell
metabolism, innate immunity, and viral infection may provide insights to develop new

therapeutic targets to control viral infection.

Recent studies have emphasized the emerging role of the hexosamine biosynthesis
pathway (HBP)—a branch of glucose metabolism—in host innate immunity. HBP links
cellular glucose, glutamine, acetyl-CoA, and uridine triphosphate (UTP) concentrations with
signaling transduction(Hanover et al, 2012). Approximately 2—5% of the total glucose
entering a cell is converted to uridine diphosphate N-acetylglucosamine (UDP-GIcNAC)
(McClain & Crook, 1996)—the end-product of HBP—and serves as a donor for O-linked
B-N-acetylglucosamine (O-GIcNAc) modification (also known as O-GIcNAcylation) (Torres &
Hart, 1984). O-GIcNAc transferase (OGT) and O-GIcNAcase (OGA) are responsible for the
addition and removal of N-acetylglucosamine (GIcNAc) from Ser and Thr residues of target
proteins. Several key host proteins involved in immune modulation, including signal
transducer and activator of transcription-3 (STAT3), MAVS, and receptor-interacting
serine/threonine-protein kinase 3 (RIPK3), are targets for O-GIcNAcylation (Li et al, 2017,
2018, 2019a; Song et al, 2019). However, the mechanism by which HBP-mediated

O-GIcNAc modifications enhance antiviral innate immunity remains to be fully understood.
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Hepatitis B virus (HBV) infection causes liver diseases, including acute and chronic hepatitis,
cirrhosis, and hepatocellular carcinoma, which is a major global public health concern (Tsai
et al, 2018). Current therapies improve both the quality of life and survival of patients with
hepatitis B. However, new therapeutic approaches are needed to achieve functional cure of

HBV infection (Fanning et al, 2019).

In this study, we investigated metabolic responses of host cells to HBV infection.

Our results show that HBP-mediated O-GIcNAcylation regulates the antiviral activity of
SAMHD1. Moreover, OGT promotes O-GIcNAcylation on Ser93 to enhance SAMHD1
stability and tetramerization, which is important for its antiviral activity. Our study established
a link between HBP, O-GIcNAc modification, and antiviral innate immunity by targeting
SAMHD1, thereby providing a potential drug target for treating HBV and human

immunodeficiency virus-1 (HIV-1) infection.
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Results

HBYV infection upregulates GLUT1 expression and enhances HBP activity and protein
O-GIcNAcylation

To explore metabolic changes in response to HBV infection, a metabolomics assay was
performed in AdHBV-1.3-infected HepG2 cells (HepG2-HBV1.3) and AdGFP-infected
HepG2 cells (HepG2-GFP). Principal component analysis showed that HBV infection
dramatically changes the intracellular metabolic profile of HepG2 cells (Fig. 1A). Several
metabolic pathways, including central carbon metabolism, amino sugar and nucleotide
sugar metabolism(Supplementary Fig.1A) were significantly affected. Recent studies have
shown that glucose metabolism plays a key role in host antiviral immunity (Li et al, 2018;
Song et al, 2019). Hence, we determined the effect of altering glucose metabolism in
HepG2-HBV1.3 cells. The expression level of several intermediate metabolites in glucose
metabolism, including 3-phospho-glycerate, GIcNAc, N-acetyl glucosamine 6- phosphate
(GIcNAc-6-P), and UDP-GIcNAc-the end-product of HBP-was increased upon HBYV infection
(Fig. 1B-D). To confirm this result, we established a strain of HepG2 cells engineered to
express the human solute carrier family 10 member 1 (SLC10A1l, also called NTCP) gene
(HepG2-NTCP cells), which allows them susceptible to HBV infection (Hu et al, 2019).
Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) results showed a
significant increase in UDP-GIcNAc and glucose levels in HBV-infected HepG2-NTCP,
stable HBV-expressing HepAD38 (a tetracycline (Tet) inducible HBV expression cell line)
(Fig. 1E-F), and AdHBV-1.3-infected HepG2 (Supplementary Fig.1B-1C) cells. These results
were consistent with those observed in HepG2.2.15, an HBV-replicating cell line (Li et al,
2015). Because OGT-mediated protein O-GlcNAcylation is highly dependent on the
intracellular concentration of the donor substrate UDP-GICNAc, we examined whether HBV

infection can affect O-GIcNAc modification in host cells. Total protein O-GlcNAcylation in
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HBV-infected HepG2-NTCP cells significantly increased 6 to 9 days post HBV infection. A
similar result was observed in HepAD38 (Tet-off) cells (3 to 7 days after Tet removal from
the medium) (Fig. 1G). Further, GLUT1 expression was markedly enhanced in our HBV cell
models (Fig. 1H-I and Supplementary Fig.1D-E). Elevated glucose levels can increase HBP
flux and enhance UDP-GIcNAc synthesis (Housley et al, 2008). However, we did not
observe significant changes in the protein levels of OGT, OGA, and GFPT1—the key
enzymes that regulate HBP flux and protein O-GIcNAcylation (Supplementary
Fig.1F-G).These findings demonstrate that HBV infection upregulates GLUT1 expression,
promotes glucose uptake, and increases UDP-GIcNAc synthesis and protein

O-GlIcNAcylation in host cells.

Inhibition of protein O-GIcNAcylation promotes HBV replication in host cells

Next, we evaluated the effects of protein O-GIcNAcylation on HBV replication. HBV-infected
HepG2-NTCP cells, HepAD38 (Tet-off) cells, and ADHBV-1.3-infected HepG2 cells were
treated with inhibitors of GLUT1, GFPT1, OGT, and OGA. Pharmacological inhibition of
GLUTL, GFPT1, and OGT reduced total protein O-GIcNAcylation levels (Fig. 2A-C,
Supplementary Fig. 2A-C and Supplementary Fig. 3A-C), and promoted HBYV replication (Fig.
2D-I,Supplementary Fig. 2D-F and Supplementary Fig. 3D-F). Conversely, pharmacological
inhibition of OGA increased protein O-GIcNAcylation levels (Fig. 2J, Supplementary Fig. 2G
and Supplementary Fig. 3G) but suppressed HBYV replication (Fig. 2K-L, Supplementary Fig.
2H and Supplementary Fig. 3H). These data suggest that HBP-mediated O-GIcNAcylation
positively regulates host antiviral immune response against HBV. The results of
pharmacological inhibitor studies were similar to those obtained from shRNA-mediated
knockdown of GLUT1, GFPT, OGT, or OGA in HepAD38 (Tet-off), HBV-infected

HepG2-NTCP, and AdHBV-1.3-infected HepG2 cells (Fig. 3 and Supplementary Fig. 4).
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Taken together, these results indicate that inhibition of HBP or protein O-GIcNAcylation
promotes HBV replication, whereas increased O-GIcNAc modifications can enhance host

antiviral innate immune response against HBV.

OGT mediates O-GIcNAcylation of SAMHD1 upon HBYV infection

To further investigate the mechanism by which OGT-mediated protein O-GIcNAcylation
promotes host antiviral innate immunity during HBV infection, we screened putative
O-GIcNAc-modified proteins in HepAD38 (Tet-off) cells using the immunoprecipitation assay
coupled with mass spectrometry (IP-MS). Cell lysates were immunoprecipitated with
O-GIcNAc antibodies and analyzed by LC-MS/MS. A total of 1,034 candidate
O-GIcNAc-modified proteins were identified (Supplementary Table 1). Gene ontology
analysis showed that several proteins were involved in innate immune and inflammatory
responses (Supplementary Fig. 5A). We next focused on SAMHD1, which plays an
important role in promoting host antiviral innate immunity (Ballana & Esté, 2015).
Interactions between OGT and SAMHD1 were demonstrated by co-immunoprecipitation
(co-1P) experiments in HepG2 cells (Fig. 4A-B). Confocal analysis indicated that OGT and
SAMHD1 are co-localized in the nucleus (Fig. 4C). We subsequently constructed three
SAMHD1 deletion mutants (Fig. 4D) and showed that the SAM domain of SAMHDL1 is
required for its interaction with OGT (Fig. 4E). Immunoprecipitated Flag-tagged SAMHD1
exhibited a strong O-GIcNAc modification signal in HEK293 cells upon treatment with the
OGA inhibitor PUGNACc (Fig. 4F). Meanwhile, HBV replication enhanced SAMHD1
O-GIcNAcylation in HepAD38 (Tet-off) cells (Fig. 4G) and HBV-infected HepG2-NTCP cells
(Supplementary Fig. 5B).These results were further confirmed by affinity chromatography

using the succinylated wheat germ agglutinin (SWGA), a modified lectin that specifically
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binds O-GIcNAc-containing proteins (Fig. 4H-I). Collectively, these data indicate that

SAMHD1 interacts with and can be O-GIcNAcylated by OGT upon HBV infection.

OGT-mediated O-GIcNAcylation on Ser93 enhances SAMHD1 stability

Next, we sought to map the O-GIcNAcylation site(s) on SAMHD1. Flag-tagged SAMHD1
was purified from HepG2-HBV1.3 cells and analyzed by MS. As shown in Fig. 4J, SAMHD1
was O-GIcNAcylated on Ser93 (S93). Interestingly, SAMHD1 S93 is well conserved among
mammalian species (Fig. 4K). We then generated site-specific point mutants of SAMHD1.
Mutation of S93 with Ala (S93A) largely reduced O-GIcNAc signal (Fig. 4L-M, and
Supplementary Fig. 5C). To further examine the effect of O-GlcNAcylation on SAMHD1
stability, Flag-tagged wild-type or S93A mutant SAMHD1 was overexpressed alone or with
shOGT in HepAD38 cells. The stability of exogenous SAMHD1 was decreased upon the
expression of shOGT or S93A mutant (Fig. 5A-D). Moreover, SAMHD1 stability and
ubiquitination was increased upon HBYV infection (Fig. 5A-E). Furthermore, the
administration of PUGNAC dramatically suppressed total and K48-linked ubiquitination of
wild-type SAMHDL1 (Fig. 5F); however, the effect on S93A ubiquitination was minimal (Fig.
5G). The S93A mutant was more ubiquitinated than wild-type SAMHD1 (Fig. 5G). These
data indicate that O-GIcNAcylation of SAMDH1 at Ser93 stabilizes SAMHD1 by preventing

its ubiquitination.

O-GlcNAcylation of SAMHD1 on Ser93 enhances its antiviral activity

It is known that the tetramer conformation of SAMHDL1 is required for its dNTP
triphosphohydrolase (ANTPase) activity (Yan et al, 2013). Herein, we sought to determine
whether the S93A mutant affects SAMHD1 tetramerization and dNTPase activity.

Recombinant WT and S93A SAMHD1 were expressed and purified (Supplementary Fig.
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6A-B). We found that S93A mutation destabilized SAMDHL1 tetramers in HepAD38 cells (Fig.
6A) and reduced its dNTPase activity in vitro (Supplementary Fig. 6C-D). To test the effect of
S93 O-GIcNAcylation on SAMHD1 antiviral activity, we deleted endogenous SAMHDL in our
HBV cell models and THP-1 cells using CRISPR-Cas9-mediated gene editing, and
transfected wild-type or SAMHDL1 variants into SAMHD1-knockout HepAD38 (Tet-off) (Fig.
6B), AdHBV-1.3-infected HepG2 (Fig. 6C), and HepG2-NTCP cells. A phospho-mimetic
mutation (T592E) was used as a control that also decreased SAMHD1 dNTPase activity and
abrogated its antiviral activity (Sommer et al, 2016). Both southern blotting (Fig. 6B-C) and
gPCR (Fig. 6D-F) results indicated that S93A mutation impairs the ability of SAMHD1 to
inhibit HBV replication in vitro. A previous study showed that SAMHD1 dNTPase activity is
essential for HIV-1 restriction (Hansen et al, 2014). Therefore, we investigated the effect of
SAMHD1 O-GIcNAcylation on HIV-1 infection. THP-1 cells were infected with a vesicular
stomatitis virus G (VSV-G) protein pseudotyped HIV-1 molecular clone carrying the
luciferase gene reporter, and virus replication was assessed by quantifying luciferase activity.
Our results showed that protein O-GIcNAcylation was increased upon HIV-1 infection in
THP-1 cells (Fig. 6G). Subsequently, wild-type or SAMHD1 variants were transfected into
SAMHD1-KO THP-1 cells. S93A mutation also impaired the ability of SAMHDL1 to restrict
HIV-1 replication in this single-round HIV-1 infection model (Fig. 6H). Treatment of cells with
the GFPT inhibitor 6-diazo-5-oxo-L-norleucine (DON) and the OGT inhibitor ST045849
significantly increased luciferase activity, whereas treatment with the OGA inhibitor PUGNACc
reduced luciferase activity (Fig. 61). Taken together, these results indicate that

O-GlcNAcylation of SAMHD1 S93 promotes its antiviral activity in vitro.

HBYV infection promotes UDP-GIcNAc biosynthesis and O-GIcNAcylation in vivo

10
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We used an HBV-transgenic (HBV-Tg) mouse model to verify our results in vivo
(Fig.7A).The level of O-GIcNAcylation was significantly higher in the liver tissues of HBV-Tg
mice than in those of normal C57BL/6 mice (Fig. 7B). Consistent with our in vitro data, the
administration of DON significantly reduced UDP-GIcNAc levels (Fig. 7C) and stimulated
HBYV replication (Fig. 7D-F) in the mouse model of HBV infection, whereas the administration
of Thiamet G decreased serum HBV DNA (Fig. 7E), liver HBcAg (Fig. 7F) and HBV DNA
(Fig. 7G) levels in mice. Protein O-GIcNAcylation levels in the liver tissues of HBV-Tg mice
were increased upon Thiamet G administration, but decreased upon DON administration
(Fig. 7H). These results indicate that Thiamet G can promote host antiviral immunity by
increasing protein O-GlcNAcylation.Finally, we examined UDP-GIcNAc biosynthesis and
O-GIcNAcylation levels in patients with chronic hepatitis B (CHB). The levels of serum
UDP-GIcNAc (Fig. 71), GLUT1 protein (Fig. 7J), and total O-GIcNAcylation (Fig. 7J and 7K)
were markedly higher in the liver tissues of patients with CHB than in those of normal
controls. In addition, SAMHD1 O-GIcNAcylation was significantly increased in the liver
tissues of the patients with CHB (Fig. 7K). Overall, our study suggests that HBV infection
upregulates GLUTL1 expression and increases UDP-GIcNAc biosynthesis and
O-GlIcNAcylation in vivo. As an essential O-GIcNAcylated protein, SAMHD1 can exert its

antiviral activity and elicit a robust host innate immune response against HBV infection.

11
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Discussion

Although previous studies have demonstrated that HBV infection can alter glucose
metabolism in host cells, the role and underlying mechanisms of metabolic regulation of
antiviral immune responses remain elusive. In this study, we demonstrate that HBV
increases GLUT1 expression on hepatocyte surface, thereby facilitating glucose uptake.
This enhanced nutrient state consequently provides substrates to HBP to produce
UDP-GIcNAC, leading to an increase in protein O-GlcNAcylation. Importantly, we found that
pharmacological or transcriptional inhibition of HBP and O-GIcNAcylation can promote HBV
replication. Furthermore, we showed that OGT-mediated O-GIcNAcylation of SAMHD1 on
Ser93 is critical for its antiviral activity. Our results therefore indicate that O-GIcNAcylation

can positively regulate host antiviral immune response against HBV infection.

Similar to the metabolic reprogramming in proliferating cancer cells, virus reprogram host
cell metabolism. It has been reported that several viruses increase glucose consumption
and reprogram glucose metabolism in the host cell (Purdy & Luftig, 2019; Thaker et al, 2019).
GLUT1 expression was increased in host cells infected with HIV-1 (Loisel-Meyer et al, 2012;
Palmer et al, 2014), Kaposi's sarcoma-associated herpes virus (Gonnella et al, 2013),
dengue virus (Fontaine et al, 2015), and Epstein-Barr virus (Zhang et al, 2017). Our findings
are consistent with previous transcriptome-wide analyses, which have also shown
HBV-mediated upregulation of GLUT1 (Lamontagne et al, 2016). It has been suggested that
HBV pre-S2 mutant increases GLUT1 expression via mammalian target of rapamycin
signaling cascade, leading to enhanced glucose uptake (Teng et al, 2015, 2). However, the
precise molecular mechanism by which HBV upregulates GLUT1 remains poorly

understood.
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The enhanced glucose uptake by glucose transporter not only accelerates glycolysis, but
may also increase flux into branch pathways, such as the pentose phosphate pathway and
HBP, which occur in cancer cells (Ma & Vosseller, 2014). Previous studies have reported
that HBP plays an important role in host innate immunity. Consistent with the results of a
previous study with HepG2.2.15 cells (Li et al, 2015), our results showed that HBV infection
can promote HBP activity and increase UDP-GICNAc levels in different cell models. Li et al.
reported that enhanced HBP activity is essential for HBV replication because
pharmacological or transcription suppression of GFPTL1 inhibits HBV replication in
HepG2.2.15 cells. However, they did not use an in vivo HBV model to study the underlying
mechanism. In contrast, we showed that blockade of HBP promotes HBV replication,
whereas stimulation of HBP significantly suppresses HBV replication both in vitro and in vivo.
In addition, we observed similar results upon HIV-1 infection using a single-round infection
model. Although we could not exclude the possibility that differences between HBV cell
models cause this discrepancy, our results show that increased HBP flux and
hyper-O-GIcNAcylation can upregulate host antiviral innate response. Several other studies
have reported that HBP and/or protein O-GIcNAcylation promotes host antiviral immunity
against RNA viruses, including VSV (Li et al, 2018), influenza virus (Song et al, 2019), and
hepatitis C virus (Herzog et al, 2019). Thus, the present study confirms and expands our
current understanding of the antiviral activity of HBP and protein O-GIcNAcylation upon DNA

virus infection, which is similar to its antiviral activity upon infection by certain RNA viruses.

By characterizing the role of protein O-GlcNAcylation during HBV replication, we uncovered
SAMHD1 as an important target of OGT and established a link between O-GIcNAcylation
and antiviral immune response against HBV infection. SAMHD1, an effector of innate

immunity, can restrict most retroviruses (such as HIV-1) and several DNA viruses (including
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HBV) by depleting the intracellular pool of NTPs (Ballana & Esté, 2015). Several
post-translational modifications, including phosphorylation (White et al, 2013, 1) and
ubiquitination (Li et al, 2019b) have been reported to be critical for SAMHD1 function. Herein,
we identified Ser93 as a key O-GIcNAcylation site on SAMHD1 using LC-MS/MS.
Importantly, loss of O-GIcNAcylation by S93A mutation increased K48-linked ubiquitination,
thus decreased the stability and dNTPase activity of SAMHD1, suggesting that

O-GlIcNAcylation promotes the antiviral activity of SAMHD1.

Because these results demonstrated the importance of protein O-GIcNAcylation in host
antiviral innate immunity against HBV, we proposed that an increase in SAMHD1
O-GlcNAcylation by inhibiting OGA activity could be used as a potential antiviral strategy.
This is in line with recent results indicating that increased MAVS O-GIcNAcylation is
essential to activate host innate immunity against RNA viruses (Li et al, 2018; Song et al,
2019). However, hyper-O-GIcNAcylation has been reported to stabilize several oncogenic
factors in several cancers associated with oncogenic virus infection (Makwana et al, 2019).
Human papillomavirus 16 E6 protein can upregulate OGT and stabilize c-MYC via
O-GlcNAcylation, thus promoting HPV-induced carcinogenesis (Zeng et al, 2016). Herzog et
al. demonstrated that protein O-GIcNAcylation is involved in HCV-induced disease
progression and carcinogenesis (Herzog et al, 2019). Thus, the role of protein
O-GlcNAcylation in HBV pathogenesis and the antiviral response through enhanced protein

O-GIcNAcylation remain to be further studied.

In conclusion, we uncovered a link between metabolic reprogramming and antiviral innate
immunity against HBV infection. We demonstrated that HBV infection upregulates GLUT1

expression and promotes HBP flux in vitro and in vivo. In addition, increased UDP-GIcNAc
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biosynthesis and hyper-O-GlcNAcylation can enhance host antiviral innate response.
Mechanistically, OGT-mediated O-GIlcNAcylation of SAMHD1 on Ser93 stabilizes SAMHD1
and enhances its antiviral activity (Fig. 71). This study broadens our understanding of
SAMHD1 post-translational modification and provides new insights into the importance of

HBP and protein O-GIcNAcylation in antiviral innate immunity.

15


https://doi.org/10.1101/2020.03.09.983338
http://creativecommons.org/licenses/by-nc-nd/4.0/

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.983338; this version posted March 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods

Animal models

HBV-transgenic (HBV-Tg) mice (n = 6 for each group) were kindly provided by Prof.
Ning-shao Xia, School of Public Health, Xiamen University(Huang et al, 2006). C57BL/6J
mice (6- to-8-week-old, six per group) were provided by the Laboratory Animal Center of
Chongging Medical University (SCXK (YU) 2018-0003). Mice were intraperitoneally injected
with Don (1 mg/kg body weight), Thiamet G (20 mg/kg body weight), or PBS (control) every
other day for 10 times. On day 20 post-administration, mouse serum and liver tissue
specimens were collected for real-time PCR, southern blotting, and immunohistochemical
staining. Mice were treated in accordance with the guidelines established by the Institutional
Animal Care and Use Committee at the Laboratory Animal Center of Chongqging Medical
University. The animal care and use protocols adhered to the National Regulations for the

Administration of Laboratory Animals to ensure minimal suffering.

Samples from patients with chronic hepatitis B virus infection
The study protocol was approved by the Medical Ethics Committee of Chongging Medical
University. Informed consent was obtained from patients who met the inclusion criteria for

chronic HBV infection.

Metabolites analysis

To extract metabolites from quenched serum/plasma samples or cell culture supernatants,
400 pL chilled methanol: acetonitrile (2:2, v/v) was added to 100 pL of each sample. The
mixture was vortexed three times for 1 min each with 5-min incubation at 4°C after each
vortexing step. After the final vortexing step of 30 s, the mixture was incubated on ice for 10

min. Thereafter, 100 uL chilled HPLC-certified water was added to the samples, mixed for 1
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min, and centrifuged at 13,0009 for 10 min at 4°C. Finally, the liquid phase (supernatant) of
each sample was transferred into a new tube for UHPLC-QTOF-MS analysis in Shanghai
Applied Protein Technology Co., Ltd. UDP-GIcNAc and glucose were quantified using
targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data
acquisition, principal component analysis, heatmap and pathway impact analysis were

performed by Shanghai Applied Protein Technology Co., Ltd.

Immunoprecipitation assay coupled with mass spectrometry (IP-MS)

HepAD38 (Tet-off) cell lysates were incubated overnight with an anti-O-GIcNAc antibody at
4°C, followed by a 4-h incubation with protein A/G agarose beads. Immunoprecipitated
complexes were eluted and stained with Coomassie blue. Stained protein bands were sent
to Shanghai Applied Protein Technology Co., Ltd for identification of potential
O-GlcNAc-modified proteins. Protein bands were dissolved in 1 mL chilled methanol:
acetonitrile: H20 (2:2:1, v/vlv) and sonicated at low temperature (30 min); this process was
repeated twice. The supernatant was dried in a vacuum centrifuge. For LC-MS analysis,
samples were re-dissolved in 100 uL acetonitrile: water (1:1, v/v). Sample analyses were
performed using a UHPLC system (1290 Infinity LC, Agilent Technologies) coupled to a
guadrupole time-of-flight analyzer (AB Sciex Triple TOF6600) at Shanghai Applied Protein

Technology Co., Ltd.

SAMHD1 O-GlcNAcylation site mapping

Mass spectrometry was performed to identify SAMHD1 O-GIcNAcylation sites, as described
previously (Peng et al, 2017). Briefly, immunoprecipitated SAMHD1 from HEK293T cells
was subjected to SDS-PAGE. The band corresponding to SAMHD1 was excised, digested

overnight with trypsin, and subjected to liquid chromatography-tandem mass spectrometry
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(LC-MS/MS) analysis. An online LC-MS/MS setup consisting of an Easy-nLC system and an
Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific, Germany) equipped
with a nanoelectrospray ion source was used for all LC-MS/MS experiments. Raw MS files
were searched against the UniProt database using MaxQuant software (version 1.5.2.8).
The fixed modification was set to C (carbamidomethyl) and the variable modifications were
set to M (oxidation), protein N-term (acetyl), and S/T (O-GIcNAc). The peptide tolerance for
the first search was set at 20 ppm and that for the main search was set at 6 ppm. The
MS/MS tolerance was 0.02 Da. The false discovery level in PSM and protein was 1%. The

match between runs was used and the minimum score for modified peptides was set at 40.

Statistical Analysis

All data are expressed as the mean * standard deviation (SD). All statistical analyses were
performed using GraphPad Prism 5.0 software (GraphPad Software Inc.). Statistical
significance was determined using one-way ANOVA for multiple comparisons. Student’s

t-test was used to compare two groups. P<0.05 was considered statistically significant.

For detailed descriptions of other methods, please refer to Supplementary Methods.
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Fig. 1. HBV infection promotes HBP and increases protein O-GlIcNAcylation

(A) Principal component analysis of metabolite profiles obtained using a metabolomics

24



https://doi.org/10.1101/2020.03.09.983338
http://creativecommons.org/licenses/by-nc-nd/4.0/

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.983338; this version posted March 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

assay in HepG2 cells infected with AHBV1.3 or AAGFP for 72 h.

(B) Heatmap of differentially expressed metabolites subjected to identical treatment
conditions as in (a). n = 5.

(C) An overview of the hexosamine biosynthesis pathway (HBP).

(D) Fold changes in the expression of differentially expressed intermediate metabolites of
HBP. n = 5.

(E-F)Fold change in the expression of UDP-GIcNAc (E) and glucose (F) in HBV-infected
HepG2-NTCP cells and HepAD38 cells with tetracycline inducible (Tet-off) HBV expression
was determined using the LC-MS/MS targeted metabolomics assay. n = 6.

(G) Immunoblot of total O-GIcNAc from HepG2-NTCP and HepAD38 cells treated for the
indicated periods.

(H-1) gPCR quantification (H) and immunofluorescence staining (I) of GLUT1 in
HepG2-NTCP and HepAD38 cells, DAPI (blue) was used to counterstain nuclei, n = 9. Scale
bar, 10 um.

Data are expressed as the mean + SD. P values were derived from unpaired, two-tailed

Student’s t-test in E, F, and H; (***P< 0.001).
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(A-C) Immunoblot of total O-GIcNAc from tetracycline-inducible HepAD38 cells treated with
or without GLUT1 inhibitor WZB117 (50 uM) (A), GFPT1 inhibitor Don (30 uM) (B), or OGT
inhibitor ST04 (100 uM) (C) for 72 h. Don, 6-Diazo-5-oxo-L-norleucine; ST04, ST045849.
(D-F) HBV DNA were detected by Southern blot assay in stable HBV-expressing HepAD38
cells treated as above. rc DNA, relaxed circular DNA; ds DNA, double-stranded DNA; ss
DNA, single-stranded DNA.

(G-I) Quantification of HBV core DNA levels in stable HBV-expressing HepAD38 cells
treated as indicated using qPCR, n=9.

(J) Immunoblot of total O-GIcNAc from tetracycline-inducible HepAD38 cells treated with or
without OGA inhibitor TMG (100 uM) for 72 h. TMG, Thiamet G.

(K-L) Southern blot analysis of HBV DNA and gPCR quantification of HBV core DNA levels
in stable HBV-expressing HepAD38 cells treated as in (J), n=9.

Data are expressed as the mean + SD. P values were derived from unpaired, two-tailed

Student’s t-test in G-l and L; (***P< 0.001).
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(A-D) Immunoblot of total O-GIcNAc from tetracycline-inducible HepAD38 cells (A-B) and
HBV-infected HepG2-NTCP cells (C-D) following shRNA-mediated knockdown of GFPT1
and OGT.

(E-H) Southern blot analysis of HBV DNA (E-F) and qPCR quantification of HBV core DNA
levels (G-H) in stable HBV-expressing HepAD38 cells treated as above, n=9.

(I-J) Quantification of HBV core DNA levels in HBV-infected HepG2-NTCP cells treated as
indicated using gPCR, n=9.

(K-L) Immunobilot of total O-GIcNAc from OGA-knockdown HepAD38 (Tet-off) cells (K) and
OGA-knockdown HBV-infected HepG2-NTCP cells (L).

(M) Southern blot analysis of HBV DNA in stable HBV-expressing HepAD38 cells treated as
in K.

(N-O) Quantification of HBV core DNA levels in stable HBV-expressing HepAD38 cells (N)
and HBV-infected HepG2-NTCP cells (O) treated as in (M) using gPCR, n=9.

Data are expressed as the mean = SD. P values were derived from one-way ANOVA in G-H,

-3, and N-O; (***P< 0.001).
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Fig. 4. OGT mediates O-GIcNAcylation of SAMHD1 on Ser93.

(A) Immunoprecipitation (IP) of SAMHD1 with anti-HA antibody in HEK293T cells
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co-transfected with Flag-OGT and HA-SAMHD1 expression constructs. The
immunoprecipitated and input proteins were probed with the indicated antibodies.

(B) Immunoprecipitation of OGT with anti-HA antibody in HEK293T cells co-transfected with
HA-OGT and Flag-SAMHD1 expression constructs.

(C) Representative confocal images of HepG2 (top) and HepAD38 cells (bottom)
co-transfected with FLAG-SAMHD1 and HA-OGT. DAPI (blue) was used to counterstain
nuclei. Scale bar, 10 ym.

(D-E) Theinteraction between OGT and the full-length or the truncated SAMHD1 (1-150aa,
151-328aa, 329-626aa), as indicated in the diagram (D), were determined by Co-IP in
HEK293T cells(E).

(F) HEK293T cells were transfected with the Flag-SAMHD1 construct and the control vector
for 48 h and treated with 100 yMPUGNACc for 12 h. Following cell lysis, SAMHD1 was
immunoprecipitated using anti-FLAG M2 Agarose Beads. The immunoprecipitated and input
proteins were probed with an anti-O-GIcNAc or anti-Flag antibody.

(G) Immunoprecipitation of SAMHD1 with anti-Flag M2 agarose in tetracycline-inducible
HepAD38 cells transfected with Flag-SAMHD1 and the control vector.

(H-J) HEK293T cells (H) were treated as in (F) and tetracycline-inducible HepAD38 cells (I)
were treated as in (G). After cell lysis, O-GIcNAc-modified proteins were purified using
succinylated wheat germ agglutinin (SWGA)-conjugated agarose beads and probed with an
anti-Flag or anti-O-GIcNAc antibody. GICNAc served as a negative control.

(J) LC-MS/MS analysis of FLAG-tagged SAMHD1 identified Ser93 as the SAMHD1
O-GlcNAcylation site. Tandem MS spectrum of the +2 ion at m/z 508.97 corresponding to
O-GlcNAcylated SAMHD1 peptide FENLGVSSLGERKK is shown.

(K) Multiple sequence alignment of SAMHDL1 in different species.

(L-M) SAMHD1-KO HepAD38 cells were transfected with empty vector, Flag-tagged
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SAMHD1 WT, or S93A mutant (I). HEK293T cells were transfected with the above plasmids
described in (L) and treated with 100 uMPUGNACc for 12 h (M). Cell lysates were purified
using SWGA-conjugated agarose beads and probed with an anti-Flag or anti-O-GIcNAc

antibody.
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Figure 5
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Fig. 5. OGT-mediated O-GIcNAcylation on Ser93 enhances SAMHDI stability.

(A-B) Representative images of Flag-tagged SAMHD1 protein in non-infected or HBV
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infected SAMHD1 KO HepAD38 cells. Cells were transfected with Flag-tagged SAMHD1
and treated with 100 uM CHX for the indicated time.SAMHD1 band intensity was quantified
using ImageJ,n=3. CHX, Cycloheximide. KO, knockout.

(C-D) Immunoblots of SAMHD1. SAMHD1-KO HepAD38 cells treated with (Off) or without
(On) tetracycline were transfected with Flag-tagged SAMHD1 WT or S93A mutant and
treated with 100 yM CHX,;n=3.

(E) SAMHDL1 ubiquitination in OGT-knockout HBV-infected HepG2 cells in the presence of
HA-tagged ubiquitin. After cell lysis, SAMHD1 was immunoprecipitated using anti-FLAG M2
antibody. Immunoprecipitated and input proteins were probed with the indicated antibodies.
(F-G) HEK293T cells were co-transfected with HA-Ub and Flag-SAMHD1 (F), Flag-tagged
SAMHD1 WT or S93A mutant (G) and treated with 100 uMPUGNAC for 12 h. After cell lysis,
SAMHD1 was immunoprecipitated using anti-FLAG M2 antibody. Immunoprecipitated and

input proteins were probed with the indicated antibodies.
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Figure 6
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679 Fig. 6. O-GIcNAcylation of SAMHD1 on Ser93 is important for its antiviral activity
680  (A) Changes in the oligomeric state of SAMHD1 upon HBV infection. SAMHD1-KO
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HepAD38 cells with tetracycline inducible (Tet-off) HBV expression were transfected with the
Flag-tagged SAMHD1 WT or S93A mutant construct. Cells were treated with glutaraldehyde
(GA) and whole-cell lysates were probed with an anti-Flag antibody.

(B-C) HepAD38 cells with stable HBV-expressing (B) and HBV-infected SAMHD1-KO
HepG2 cells (C) were transfected with Flag-tagged SAMHD1 WT, S93A mutant, or T592E
mutant. HBV DNA levels were determined by southern blot analysis.

(D-F) SAMHD1-KO HepAD38 cells with stable HBV-expressing (D), HBV-infected
SAMHD1-KO HepG2 (E) and SAMHD1-KO HepG2-NTCP cells (F) were transfected with the
above plasmids described in (B). HBV core DNA levels were determined by gPCR. n=9.

(G) SAMHD1 KO-THP-1 cells were differentiated overnight with PMA (100 pM) before
infecting with HIV-LUC-G (MOI=0, 1, or 10) for 48 h. Thereafter, the cells were lysed and
total O-GIcNACc levels were determined by western blotting. B-actin was used as a loading
control.

(H) SAMHD1 KO-THP-1 cells were differentiated overnight and infected with HIV-LUC-G
(MOI=1) for 24 h. Thereatfter, they were transfected with Flag-tagged SAMHD1 WT, S93A
mutant, or TS92E mutant for 48 h. Luciferase activity was measured and normalized for
protein concentration. n=3.

() SAMHD1 KO-THP-1 cells were differentiated overnight and infected with HIV-LUC-G
(MOI=1) for 24 h. Cells were then treated with Don (30 pM, 24 h), ST04 (100 uM, 24 h), or
PUGNACc (100 pM, 48 h), and luciferase activity was measured. n=3.

Data are expressed as the mean + SD. P values were derived from one-way ANOVA in D-F,

H-1. (* P<0.05, ** P<0.01, ***P<0.001).
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(A) Six- to eight-week-old HBV transgenic mice were intraperitonally injected with Don (1
mg/kg body weight) and TMG (20 mg/kg body weight) or PBS (control) every other day for
10 times. The mice were sacrificed on day 20 post-treatment.

(B) Immunoblotting of total O-GIcNAc in HBV transgenic mice.

(C) Fold change in the expression of UDP-GIcNAcin mouse liver tissues was determined by
UHPLC-QTOF-MS. n=6 per group.

(D-E) Serum HBeAg and HBV DNA levels in mice. n=6 per group.

(F) O-GIcNAc and HBcAg detection in mouse liver tissues, Scale bar, 50 pm.

(G) Quantification of HBV core DNA levels in mouse liver tissues using gPCR. n=6.

(H) Immunoblot of total O-GIcNAc in HBV transgenic mice treated as in (A).

(I) Fold change in the expression of UDP-GIcNAcin the liver tissues of patients with CHB
was determined by UHPLC-QTOF-MS. (Normal=50, CHB=46).

(J) GLUT1, O-GIcNAc, and HBcAg detection in liver tissue specimens from patients with
CHB. Scale bar, 50 pm.

(K) Liver tissue lysates from patients with CHB were purified using sWGA-conjugated
agarose beads and probed with an anti-SAMHD1 or anti-O-GIcNAc antibody.

(L) Proposed working model of this study.

Data are expressed as the mean + SD. P values were derived from one-way ANOVA in C-E,

G, and from unpaired, two-tailed Student’s t-test in I. (* P<0.05, ** P< 0.01).
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