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Abstract

Functional connectivity analysis of resting state fMRI data has recently become one of the most common
approaches to characterizing individual brain function. It has been widely suggested that the functional
connectivity matrix, calculated by correlating signals from regions of interest, is a useful approximate rep-
resentation of the brain’s connectivity, potentially providing behaviorally or clinically relevant markers.
However, functional connectivity estimates are known to be detrimentally affected by various artifacts, in-
cluding those due to in-scanner head motion. Treatment of such artifacts poses a standing challenge because
of their high variability. Moreover, as individual functional connections generally covary only very weakly
with head motion estimates, motion influence is difficult to quantify robustly, and prone to be neglected in
practice. Although the use of individual estimates of head motion, or group-level correlation of motion and
functional connectivity has been suggested, a sufficiently sensitive measure of individual functional connec-
tivity quality has not yet been established. We propose a new intuitive summary index, the Typicality of
Functional Connectivity, to capture deviations from normal brain functional connectivity pattern. Based on
results of resting state fMRI for 245 healthy subjects we show that this measure is significantly correlated
with individual head motion metrics. The results were further robustly reproduced across atlas granularity
and preprocessing options, as well as other datasets including 1081 subjects from the Human Connectome
Project. The Typicality of Functional Connectivity provides individual proxy measure of motion effect on
functional connectivity and is more sensitive to inter-individual variation of motion than individual func-
tional connections. In principle it should be sensitive also to other types of artifacts, processing errors and
possibly also brain pathology, allowing wide use in data quality screening and quantification in functional
connectivity studies as well as methodological investigations.
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1. Introduction

Imaging techniques play a pivotal role in medical
research nowadays. Functional magnetic resonance
imaging (fMRI) is one of the most common meth-
ods for research into brain function. Resting-state
fMRI (rs-fMRI) is a very prolific and popular sub-
category of fMRI measurements. In 1995, Biswal
and colleagues found that the correlation of low fre-
quency fluctuations (<≈ 0.1 Hz) in blood oxygen
level dependent (BOLD) signal is a manifestation of
functional connectivity of the brain. Later studies

confirmed that fMRI fluctuations are tightly cou-
pled with the underlying neural activity (Nir et al.,
2006; Scholvinck et al., 2010). These spontaneous
low-frequency fluctuations in the BOLD signal are
therefore used to investigate the functional archi-
tecture of the brain (Lee et al., 2013).

A common approach to the analysis of rs-fMRI
data is to assess functional connectivity (FC), de-
fined as temporal dependence of neuronal activity
patterns (Friston et al., 1993), and thus determine
which regions are functionally connected. Regions
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are defined by some reasonable parcellation. Al-
though there is no consensus on optimal brain par-
cellation (Arslan et al., 2018; Eickhoff et al., 2018),
it has been suggested that the matrix of FC among
all brain regions may be a suitable representation
of the brain connectivity, potentially providing be-
haviorally or clinically relevant markers (Van Dijk
et al., 2009; Biswal et al., 2010; Buckner et al.,
2013).

Like any other imaging technique, fMRI is also
affected by unwanted artefacts. There are many
non-neuronal sources of signal variability such as
thermal noise, physiological sources (created by the
cardiac and respiratory cycles), scanner and head
coil heterogeneities, spiking, chemical shifts, radio-
frequency interferences or subject movement (Bian-
ciardi et al., 2009; Chang and Glover, 2009; Pol-
drack et al., 2011; Murphy et al., 2013). Scanner
head motion has long been recognized as a source
of artefacts in rs-fMRI (Friston et al., 1996; Hajnal
et al., 1994). These artefacts originate in changes
in head position that can yield many forms from
small involuntary drifts to brief impulsive move-
ments (Patel et al., 2014). They induce undesirable,
artificial effects that manifest in complex temporal
and spatial patterns (Biswal et al., 1995; Friston
et al., 1996; Hajnal et al., 1994; Hlinka et al., 2010;
Patel et al., 2014; Spisak et al., 2014). Recent stud-
ies showed that even small head movements, in the
range of 0.5 to 1 mm, can induce systematic biases
in correlation strength and thus they can highly
influence the final estimates of functional connec-
tivity (Hlinka et al., 2010; Van Dijk et al., 2012;
Power et al., 2012; Satterthwaite et al., 2012; Bright
and Murphy, 2013; Mowinckel et al., 2012; Satterth-
waite et al., 2013; Tyszka et al., 2014; Yan et al.,
2013a). Typical motion artefact manifests as in-
creased short-range connectivity and reduced long-
range connectivity, although large head motion can
also increase long-range connectivity (Power et al.,
2012, 2014, 2015; Satterthwaite et al., 2012, 2019).
These effects influence the correlation values as well
as the derived connectivity measures characteriz-
ing the network topology (Yan et al., 2013b; Ciric
et al., 2017). Therefore, they have been both a
point of concern and controversy for rs-FC investi-
gations (Bright and Murphy, 2013; Carbonell et al.,
2011; Shmueli et al., 2007; Muschelli et al., 2014;
Fair et al., 2013; Maclaren et al., 2013).

In common practice, fMRI data preprocessing is
used to reduce noise. Preprocessing usually in-
cludes image re-alignment, spatial smoothing, fil-

tering, and confound regression (Van Dijk et al.,
2009). There is no consensus on optimal prepro-
cessing strategy that should be applied to rs-fMRI
data (Aurich et al., 2015). Since no preprocess-
ing is completely successful in removing the motion
artefact (Ciric et al., 2017; Siegel et al., 2017) it is
vital for connectivity studies to be able to quantify
the amount of motion artefacts present in FC ma-
trices. However, a reliable measure of FC quality
has not yet been established. Absence of robust
FC quality measure renders the estimation of the
amount of motion artefact in a FC matrix impos-
sible. We propose a new measure - Typicality of
Functional Connectivity, that is based on a corre-
lation of an individual FC matrix with a typical
FC matrix. Such measure can be helpful in in-
vestigations of individuals and populations whose
in-scanner movement profiles may differ subtly, for
instance when comparing controls to subjects of dif-
ferent ages (e.g. during development or aging) or to
individuals experiencing involuntary or repetitive
movements (e.g. tics or tremors) (Muschelli et al.,
2014; Bright and Murphy, 2013). By construction,
it should be sensitive also to other types of artifacts,
processing errors and possibly also brain pathol-
ogy, allowing wide use in data quality screening and
quantification in functional connectivity studies as
well as methodological investigations, such as the
evaluation of preprocessing pipeline performances
and the decision on suitable brain parcellation.

2. Material and Methods

2.1. Data acquisition

245 healthy subjects (148 right-handed, 132 fe-
males, mean age 29.22 / standard deviation 6.99)
participated in the study. Participants were in-
formed about the experimental procedures and pro-
vided written informed consent. The study design
was approved by the local Ethics Committee of
the Institute of Clinical and Experimental Medicine
and the Psychiatric Center Prague. Each volun-
teer underwent MRI scanning that included 10 min-
utes of resting-state functional magnetic resonance
imaging acquisitions with eyes closed and an acqui-
sition of a T1-weighted and T2-weighted anatomi-
cal scan.

Scanning was performed with a 3T MR scan-
ner (Siemens; Magnetom Trio) located at the
Institute of Clinical and Experimental Medicine
in Prague, Czech Republic. Functional images

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.06.980193doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.980193
http://creativecommons.org/licenses/by/4.0/


were obtained using T2-weighted echo-planar imag-
ing (EPI) with blood oxygenation level-dependent
(BOLD) contrast. GE-EPIs (TR/TE=2000/30
ms) comprised axial slices acquired continuously
in descending order covering the entire cerebrum
(voxel size=3×3×3mm3). A three-dimensional
high-resolution T1-weighted image (TR/TE/TI =
2300/4.6/900 ms, voxel =1×1×1mm3) covering the
entire brain was used for anatomical reference. T2-
weighted images were also acquired, but not used
in the current study.

2.2. Preprocessing

Initial data preprocessing was performed using
a combination of SPM12 software package (Well-
come Department of Cognitive Neurology, London,
UK), CONN toolbox (McGovern Institute for Brain
Research, MIT, USA) running under MATLAB
(The Mathworks) and FSL routines (FMRIB Soft-
ware Library v5.0, Analysis Group, FMRIB, Ox-
ford, UK). CONNs default preprocessing pipeline
(defaultMNI) comprises of the following steps: (1)
functional realignment and unwarping, (2) slice-
timing correction, (3) structural segmentation into
white matter and cerebrospinal fluid & structural
normalization to the MNI space, (4) functional nor-
malization to the MNI space, (5) outlier detection,
and (6) smoothing with 8mm kernel size.

The denoising steps included regression of six
head-motion parameters (acquired while perform-
ing the correction of head-motion) with their first-
order temporal derivatives and five principal com-
ponents of white-matter and cerebrospinal fluid.
The CONN toolbox has implemented a component-
based noise correction method (CompCor) that
typically performs PCA dimensionality reduction of
white-matter a cerebrospinal fluid time-series de-
rived from specific regions (Behzadi et al., 2007).
The CompCor method uses noise regions of inter-
est acquired while segmenting each subjects high-
resolution anatomical images (Chai et al., 2012).
Time series from defined regions of interest were
additionally linearly detrended to remove possible
signal drift and finally filtered by a band-pass filter
with cutoff frequencies 0.009 - 0.08 Hz. This pre-
processing pipeline is labeled as stringent further in
the manuscript.

To form functional connectivity matrices, we
cross-correlated the ROI-based average BOLD time
series. In line with the most common practice, we
use Pearson correlation coefficient to quantify func-
tional connectivity and form FC matrices. Note

that although other nonlinear approaches for func-
tional connectivity assessment have been proposed,
linear Pearson correlation coefficient was shown
to be sufficient under standard conditions (Hlinka
et al., 2011; Hartman et al., 2011). Fisher’s r-to-
z transformation (Zar, 1999) was applied to each
correlation coefficient to increase normality of the
distribution of correlation values.

2.2.1. Atlas choice

A common approach to extract BOLD time se-
ries is to use brain parcellations. Brain parcella-
tions divide the brains spatial domain into a set of
non-overlapping regions of interest or modules that
show some homogeneity with respect to informa-
tion provided by one or several image modalities,
such as cytoarchitecture, task-based fMRI activa-
tions, or anatomic delineations (Thirion et al., 2014;
Shen et al., 2013).

In our analysis we chose a parcellation based on
Craddock atlas because it offers an option to select
a number of ROIs that represent spatially coherent
regions with homogeneous connectivity. We calcu-
lated 23 FC matrices for each subject that were
based on atlases of various number of ROIs; rang-
ing from 10 to 840 ROIs. With increasing num-
ber of ROIs, the size of each ROI decreases (Fig.1).
The regions in Craddock atlas are created using a
spectral clustering algorithm with various similar-
ity metrics and group-level clustering schemes (for
details see Craddock et al., 2012).
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Figure 1: ROI sizes for 23 atlases based on Craddock spectral
clustering method. Mean size (number of voxels) with ±
standard deviation is plotted. The ROI size decreases with
increasing number of ROIs.
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2.3. Quantifying motion

Reporting motion statistics should be fundamen-
tal for any fMRI study but Waheed et al. (2016)
analyzed 100 most recent fMRI studies and only 10
% provided a table of motion metrics. Two of the
most used motion metrics are framewise displace-
ment (FD) and derivative of root mean square vari-
ance over voxels (DVARS). We used mean FD and
mean DVARS to quantify the amount of motion
during a given scanning session. Distribution of
each metric is available in the appendix (Appendix
C).

2.3.1. Framewise displacement (FD)

The fMRI data allow estimation of six head re-
alignment parameters for each volume. Thus, head
position is described at each time point by six pa-
rameters (translational displacements along X, Y,
and Z axes and rotational displacements of pitch,
yaw, and roll). Framewise displacement represents
a summarizing parameter of head motion from one
volume to the next. It is an average of the rota-
tion and translation parameters differences (Eq.1).
Since it is based on realignment parameters, it is
therefore unaffected by subsequent preprocessing
steps (Power et al., 2012).

FDi = |∆dix|+ |∆diy|+ |∆diz|+ |∆αi|+ |∆βi|+ |∆γi| (1)

where displacement of i-th brain volume in x-
direction is ∆dix = d(i−1)x − dix and similarly for
the other rigid body parameters.

Rotational displacements were converted from
degrees to millimeters by calculating displacement
on the surface of a sphere of radius 50 mm.

FD is the most popular metric among motion
statistics. It was reported in 24 % of recent
fMRI studies compared to similar root mean square
(RMS) metric which was reported only in 10 % of
recent fMRI studies (Waheed et al., 2016).

2.3.2. Derivative of root mean square variance over
voxels (DVARS)

Derivative of root mean square variance over vox-
els is based on the fact that abrupt head displace-
ment typically manifests as signal loss in echo-
planar imaging. It quantifies changes of intensities
between two images and it is calculated as the root
mean square value of the differentiated BOLD time
series within a spatial mask at every time-point

(Eq.2; Smyser et al. (2010)). DVARS is not de-
rived from realignment parameters and thus it can
reflect any kind of bias. Nevertheless, head motion
has been proven to be a major contributor to fluctu-
ations in DVARS (Fair et al., 2013). The quantity
is defined as:

DV ARS(∆I)i =
√
〈[∆Ii(−→x )]2〉 =

√
〈[Ii(−→x )− Ii−1(−→x )]2〉 (2)

where Ii(
−→x ) is image intensity at locus −→x on frame

i and angle brackets denote the spatial average over
the whole brain.

Since it is based on BOLD signal intensity,
DVARS differs greatly across datasets and process-
ing strategies (Power et al., 2014). It can be influ-
enced by blurring kernel size, frequency filter char-
acteristics, sequence characteristics, etc. DVARS
was reported only in 8 % of the recent fMRI stud-
ies (Waheed et al., 2016).

2.4. Measuring FC quality

Estimating connectivity quality and assessing its
relationship with motion is important for all con-
nectivity studies. Currently there is no measure
used in literature that allows quantifying it per sub-
ject.

2.4.1. Quality control-functional connectivity (QC-
FC)

In literature the most used way to evaluate
presence of a motion artefact are quality control-
functional connectivity (QC-FC) values (Power
et al., 2014; Satterthwaite et al., 2012; Ciric et al.,
2017; Parkes et al., 2018). This group measure fo-
cuses on influence of motion on connectivity values
across subjects. It describes how motion affects FC
values. Each correlation coefficient in a FC ma-
trix is directly correlated with a summary motion
statistic across subjects. The median of these val-
ues shows if motion tends to increase or decrease
connectivity and a correlation of QC-FC with dis-
tance reveals presence of spurious distance depen-
dence.

2.4.2. Typicality of Functional Connectivity (TFC)

We propose Typicality of Functional Connectiv-
ity as a new measure for how to estimate FC quality.
It is based on a correlation between an individual
subjects FC matrix and a typical FC matrix of a
given cohort (Eq.3). To exclude influence of the di-
agonal, we vectorized upper triangular form of all
FC matrices (ignoring the diagonal elements).
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TFCi = (1+rP (FCi,FC))
2 (3)

where i is the subject’s index, rP is a Pearson corre-
lation coefficient and FC is the typical FC matrix.
Throughout the manuscript Spearman correlation
is denoted as rS and Pearson correlation as rP .

TFC ranges between 0 and 1, where 0 is a com-
plete anti-correlation, 0.5 is correlation of 0 and 1
is maximal correlation with the typical FC matrix.

As the template, we use the mean FC matrix
of 20 % subjects with lowest motion (49 subjects
with lowest mean FD) as the typical matrix - a
golden standard, to which other subjects are com-
pared; although taking mean FC across the whole
dataset or from a different dataset gives similar re-
sults. We assume that by averaging FC matrices
of low-movement subjects we obtain a FC matrix
representing typical awake human brain functional
connectivity free of motion artefact (as well as other
biases). While minor or moderate deviations may
in principle represent effects of interest correspond-
ing to inter-individual variation in brain function,
larger anomalies are likely to be due to artifactual
sources of signal variation and should be subject to
screening.

3. Results

We used TFC to estimate per subject quality
and we analyzed it with respect to motion, at-
las size and preprocessing. Using Spearman cor-
relation we found that it is significantly correlated
with motion metrics (rDVARS

S = −0.38, p < 10−9,
rFD
S = −0.23, p < 10−3), meaning that a FC ma-

trix of a subject with high mean head movement is
less similar to the typical FC matrix compared to
low-movement subjects (Fig.2a). Such correlation
coefficient between a motion metric and TFC met-
ric demonstrates a dependence between FC qual-
ity and gross head motion. Both FD and DVARS
are significantly related to FC quality but mean
DVARS shows generally higher absolute correlation
than mean FD. This is most likely due to the fact
that DVARS captures other artefacts and impuri-
ties as well.

Instead of TFC, we also tried a method based on
Euclidean L2 distance (Ponsoda et al., 2017) from
the typical FC matrix and mean geodesic distance
from the cohort (Venkatesh et al., 2020). Unlike
TFC measure, which shows significant both Spear-
man and Pearson quality-motion correlations, the

correlations of L2 distance with motion were sig-
nificant only for Pearson correlation (rFD

P = 0.22,
p = 0.003) because this relationship was driven
mainly by outliers. Correlations with geodesic dis-
tance did also yield only one outlier-driven signifi-
cant result (rDVARS

P = −0.30, p < 10−5) (Tab.1).
Since Spearman correlation is less sensitive to

outliers compared to Pearson correlation, we prefer
to use it throughout the manuscript when assessing
the relationship with motion.

DVARS FD

Spearman Pearson Spearman Pearson

TFC -0.38** -0.39** -0.23** -0.26**
L2-distance 0.05 -0.02 0.03 0.22**

Geodesic distance 0.00 -0.30** 0.05 0.03

Table 1: Correlation of different measures of FC quality with
motion metrics. Only TFC shows significant correlations for
both motion metrics and for both Pearson and Spearman
correlations. Relationships with only Pearson correlations
significant were driven mainly by outliers. * signifies p <
0.05 and ** signifies p < 0.01.

We further analyzed only TFC as a quality mea-
sure. We evaluated it for every subject across Crad-
dock atlases with varying number and size of ROIs.
From Fig.2b it is evident that FC quality decreases
as the atlas size decreases. Therefore, more detailed
FC matrices are of worst quality. Furthermore, we
investigated whether this gradual decrease is driven
by increased effect of motion on signal in small re-
gions. We calculated correlations between motion
and TFC across variously detailed atlases and found
that, except for atlases with less than 100 regions,
the relationship is stable (rDVARS

S ≈ −0.38 and
rFD
S ≈ −0.23) (Fig.2c).
The relationship is the strongest if the typical FC

matrix is based on 20 % of subjects with the low-
est mean FD of the same dataset and only slightly
weaker if different dataset with identical preprocess-
ing pipeline is used (more information about alter-
native datasets in Appendix A). If all subjects are
used for the calculation of the typical FC matrix the
observed relationships are weaker (Fig.2d), possibly
due to presence of various types of noises. Never-
theless, even using different dataset with different
preprocessing, such as Human Connectome Project
(HCP, see Appendix F), still gives significant (only
for DVARS) results.

To further investigate the effects of head move-
ments we split the dataset into two parts - 30 % of
subjects with the highest motion (mean FD > 0.2)
and 70 % subjects with the lowest motion (mean
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FD < 0.2). Low-movement subjects show only
weak and statistically insignificant quality-head
movement correlations (rFD

S ≈ −0.05, rDVARS
S ≈

0.1) proving that the effect is more pronounced in
subjects with higher motion (same effect observed
in HCP dataset). These subjects exhibit gradual
increase of the dependence for the smallest atlases
(10, 30, 50, 70 ROIs), from rDVARS

S = 0.04 for 10
ROI atlas up to rDVARS

S = −0.42 for 100 ROI atlas
(Fig.2e). For more detailed atlases (more than 100
ROIs) the relationship is constant. We obtained
similar results if the subsets were created based on
thresholding DVARS.

Besides the influence of ROI size on FC qual-
ity, we also analyzed the influence of data prepro-
cessing on FC quality. We compared FC quality
for three different preprocessing pipelines based on
their strictness - stringent, moderate and raw (more
about pipeline differences in Appendix B). In
Fig.2f we see that for the two strict preprocessing
pipelines individual FC matrices more resemble the
typical FC matrix: mean(TFCstringent) = 0.82,
mean(TFCmoderate) = 0.83, mean(TFCraw) =
0.78. Standard deviation of quality measure is in-
creasing with decreasing strictness of preprocessing:
std(TFCstringent) = 0.02, std(TFCmoderate) =
0.03, std(TFCraw) = 0.04. For all these cases we
used the typical FC matrix of a dataset with strin-
gent preprocessing, but results were similar if each
preprocessing stream used its own FC matrix as a
golden standard.

In the literature the most used metric to assess
presence of motion artefacts are QC-FC values. In-
stead of examining how motion affects each sub-
ject’s FC matrix, it examines how motion affects
FC values for each pair of regions. We obtained
positive median of QC-FC and significant negative
correlation between QC-FC and distance for both
quality metrics (rFD

S = −0.16, rDVARS
S = −0.03)

(Fig.3a,b). As reported previously (Power et al.,
2012, 2015; Satterthwaite et al., 2019) we con-
firm that motion affects distance-dependence and
on average causes spurious increase in connectivity.
Moreover, this effect is constant across atlases of
various size (Fig.3d). Nevertheless, only 15 % (resp.
4 %) of QC-FC values were significant (Fig.3c). The
main disadvantage of QC-FC values is that it can
be used only on a group level and it does not allow
single subject description.

So far, we focused only on quality of connectivity
matrices, but noisiness of underlying BOLD time
series can be estimated as well. BOLD signal qual-

ity is usually expressed in the form of temporal sig-
nal to noise ratio (tSNR). tSNR compares the level
of a desired signal to the level of a background noise
(for details on calculation see Appendix E). Noise
is generally more present in more lenient prepro-
cessing pipelines (Fig.4d). Moreover, we can ob-
serve a gradual decrease of tSNR with decreasing
ROI size (Fig.4a). To test whether such degra-
dation is related to motion, we correlated FD and
DVARS with tSNR across atlases (Fig.4c). DVARS
displays progressive increase of an absolute correla-
tion with tSNR unlike FD (change of correlation be-
tween smallest and highest atlas: ∆rDVARS

S = 0.13,
∆rFD

S = 0). It is apparent that tSNR measures dif-
ferent data aspects compared to TFC as they corre-
late only weakly (Fig.4b). In conclusion, there is an
effect of ROI size on data quality, but it might be
more specifically related to other types of noise than
a head movement, because only the tSNR-DVARS
dependence varied and DVARS captures other im-
purities as well.

Several times we observed the effect of atlas size
for atlas sizes up to 100 ROIs. This effect might
be driven by two factors: by the number of re-
gions or by the size of regions. To test the first
hypothesis, we randomly selected 50,100,150,...,700
ROIs out of an atlas with 950 ROIs and we cal-
culated both TFC and tSNR and analyzed their
relationship with head movement. Such procedure
was repeated 1000 times. In such scenario num-
ber of voxels in a region is fixed - 21.9 ± 0.3 and
only number of regions varies. Neither tSNR nor
TFC depends on the number of regions. We only
observed small gradual increase in the TFC-motion
relationship when only few regions were selected.
To test the second hypothesis, we took atlas with
100 ROIs (183.8 ± 35.8 voxels per region) and we
created different regions around the central voxel
that varied in the number of voxels (Fig.5c). Both
tSNR and TFC increase with increasing number of
voxels. On the contrary, the TFC-motion depen-
dence is weaker for low number of voxels (Fig.5b).
These results suggest that regions with less voxels
produced noisier data. Additionally, when choosing
only few regions (< 100) it is more difficult to reli-
ably estimate significant relationship between qual-
ity and movement.
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4. Discussion

4.1. Estimation of FC quality

The lack of gold standard for FC quality estima-
tion has hampered direct comparison among differ-
ent groups (neurodevelopmental, aging, neuropsy-
chiatric), preprocessing pipelines and brain parcel-
lations. We introduced a new measure (TFC) to de-
scribe the quality of a functional connectivity per
subject. This measure is based on a correlation
of an individual FC matrix with the low-motion
group-average connectivity matrix. As we showed,
it provides a reliable estimate of FC quality with
respect to motion and atlas size and possibly other
types of noise. Low-movement subject’s FC matri-
ces are strongly correlated with the typical FC ma-
trix compared to high-movement subjects, despite
the fact that even our high-movement subjects were
healthy controls and would meet inclusion criteria
for analysis in most MRI laboratories (C.6). More-
over, even by visual inspection it is apparent that
subjects with low TFC have lost modular structure
of the typical FC matrix or they show general arti-
factual increase in connectivity (D.7).

An alternative measure to TFC could be L2

distance from the typical FC matrix or mean of
geodesic distance from the cohort but our results
suggest that these measures are less specifically re-
lated to motion. One of the reasons could be that
they are more sensitive to other global artefacts.

Currently many studies propose QC-FC values
as a measure of motion impact (Power et al., 2015;
Ciric et al., 2017; Power et al., 2017). QC-FC values
are correlations between vectors of summary qual-
ity (motion) control values (e.g., mean FD, mean
DVARS, etc.) with vectors of outcome measures
(FC values) across subjects. A limitation of this
measure is the lack of single subject quality esti-
mate. At a group level they describe motion arte-
fact manifestations. We confirmed that head move-
ments generally increase connectivity (median QC-
FC similar to the one reported in Ciric et al. (2017)
and Parkes et al. (2018) for corresponding prepro-
cessing pipeline) and that it affects distance depen-
dency - increased short-range connectivity and de-
creased long-range connectivity. This spatial pat-
tern is specifically related to motion as we found
stronger dependence for FD. As reported in Ciric
et al. (2017) number of links related to motion
varies significantly (in our results more than 80%
QC-FC values insignificant). In addition, it could

be difficult to reliably establish a QC-FC correla-
tion if there is little variability in the QC mea-
sure (Power et al., 2015). Moreover, such mea-
sures are sensitive to outlying values and a few
scans with marked abnormalities can obscure rela-
tionships present across most other datasets Power
et al. (2017). That is why QC-FC should be com-
plemented with other assessments.

Several other metrics have also been used as well
in prior reports, including FD-DVARS correlations.
DVARS was used as a predictor of data quality
rather than an estimate of amount of motion. Be-
fore the preprocessing, DVARS strongly resembles
FD, but this similarity diminishes with processing
(Power et al., 2014) and that is why DVARS could
serve as a marker of nuisances in a FC matrix (Hal-
lquist et al., 2013; Power et al., 2012, 2014). Nev-
ertheless, DVARS changes during processing steps
even when the motion artefact is not filtered out
(Spisak et al., 2014), therefore the FD-DVARS rela-
tionship is not recommended to estimate FC quality
but rather it is advised to use DVARS as a motion
metric. Another metric sometimes used to assess
the presence of motion artefact and the success of
denoising strategies are FD-BOLD signal correla-
tions. It has been suggested that the FD-BOLD
correlations reveal motion-related neural activity
(Yan et al., 2013a,b). However, according to Power
et al. (2015) these correlations are probably not re-
lated to neural activity. Finally, Saad et al. (2013)
proposed global correlation (i.e. mean across all FC
values) as quality estimator but the reported corre-
lation with motion was not statistically significant.

Other methods entail identification and exclusion
of time points for which head movement exceeds a
certain threshold (Power et al., 2014; Patel et al.,
2014). Such threshold becomes increasingly strin-
gent as the effects of motion have received greater
recognition (Engelhardt et al., 2017). We did not
investigate such measures (e.g. ∆r reported in sev-
eral articles (Power et al., 2012, 2013, 2014, 2019))
because it requires data scrubbing and our goal was
to avoid discarding any frames/time points.

Corrections of group-level statistics have been al-
ready implemented by regressing a summary mo-
tion metric for each subject (Satterthwaite et al.,
2012; Van Dijk et al., 2012; Yan et al., 2013a; Power
et al., 2014) but we propose that adding TFC mea-
sure could bring further advantages.
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4.2. Effect of ROI size

The impossibility of optimal brain MRI parcella-
tion makes the definition of regions of interest arbi-
trary. The number of ROIs ranges from 10 to 104

in voxel-based studies (for review see Zalesky et al.,
2010; Shen et al., 2013). However, how ROI size
affects functional connectivity is unclear, therefore
we examined the quality of FC matrices of varying
sizes with respect to motion; size of FC matrices
varied from 10 to 840 ROIs according to Craddock
atlas.

We found an effect of ROI size on the FC qual-
ity, i.e. finer parcellation yielded noisier FC ma-
trices. According to QC-FC values this effect is
not related to head movements as median QC-FC
and QC-FC correlation with distance were constant
across atlases. Using TFC confirmed that the de-
crease in quality is specifically related to other types
of noise, only very large ROIs (atlas with < 100
ROIs) showed increasing absolute correlation be-
tween TFC and DVARS/FD with decreasing ROI
size. However, very a large ROI carry the risk that
the mean time course of the ROI may not represent
any of the constituent time courses if different func-
tional areas are included within a single ROI (Shen
et al., 2013). Moreover, as we show if analyzing too
few regions it is more difficult to establish a reliable
relationship with gross head motion.

Using tSNR we analyzed if ROI size also affects
BOLD signals quality. tSNR is a well-established
estimator of data quality, considering all types of
noise. Unfortunately, the tSNR value is highly de-
pendent on recording parameters and thus it is diffi-
cult to compare it across studies. Nevertheless, sim-
ilarly to Van Dijk et al. (2012), who reported strong
Pearson correlation between voxel-based tSNR and
RMS (rP = 0.57, p < 0.001), we also obtained sig-
nificant Spearman correlations between tSNR and
both mean FD (rS = −0.35, p < 10−7) and mean
DVARS (rS = −0.68, p < 10−16) for the most de-
tailed Craddock atlas that corresponds the most to
the voxel-based tSNR. According to Fig.4 BOLD
signal of more detailed atlases is noisier compared
to less detailed atlases. This effect was specifically
related only to DVARS. Such results suggest that
there is an increasing effect of noise on the BOLD
signal.

In conclusion both time-series and FC matrices
based on smaller ROIs are noisier and it is the size
of regions (number of voxels) and not the number
of regions that plays the key role here. Moreover,

we argue that motion is not the main driving effect
behind this quality decrease. In all fMRI studies
it is advised that applied atlas parcellation should
be chosen carefully with respect to the application
and expected outcomes. Our finding that the less
detailed FC matrices are of better quality is useful
for all functional connectivity studies when detailed
FC matrix is not necessary, so finer brain parcella-
tion can be sacrificed for more robust estimates of
connectivity. Our recommendation here is in line
with the one of Zalesky et al. (2010) that if possi-
ble, less detailed atlases will produce more robust
results because they are less susceptible to noise.
Nevertheless, large ROIs must be created carefully,
and we do not recommend using Craddock atlas
with less than 100 ROIs.

4.3. Limitations and future directions

To ensure robustness of our findings, we have
replicated the analysis on the HCP dataset. We
analyzed preprocessed rs-fMRI of 1081 subjects
(Van Essen et al., 2013; Smith et al., 2013). HCP
dataset benefits from very low temporal resolution
(Ugurbil et al., 2013) with TR=0.72 s per volume.
HCP data have undergone several denoising tech-
niques designed to remove artefacts (HCP FIX-ICA
denoising, motion regression and censoring high-
motion time points) with the intention of provid-
ing clean data (Marcus et al., 2013; Burgess et al.,
2016). We replicated all our obtained results and
proved TFC to be the most reliable FC quality es-
timator (Fig.F.9). The obtained correlations were
generally lower, but this might be explained by
more strict preprocessing (including censoring time
points). That is the reason why the QC-FC cor-
relation diminished as also reported in Ciric et al.
(2017) where ICA-AROMA was the only method
to show virtually no QC-FC distance-dependence.
Again, we did not find a significant change in the
TFC-motion relationship except for the very small
atlases. However, we observed a progression of the
tSNR-motion relationship for both DVARS and FD
(Fig.F.8).

The question arises as to which motion metric
is optimal. Currently, the most used motion pa-
rameters across studies are DVARS and FD (Wa-
heed et al., 2016). As Power et al. (2012) pointed
out it is difficult to quantify the effect of motion
with only one parameter. Nevertheless, according
to our results mean DVARS is strongly correlated
with FC quality (rS up to 0.5). Other summa-
rizing parameters such as maximum of DVARS or
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variance of DVARS could be used as well because
they capture other features of motion (big spike-
like movements, constant small drift) but Van Dijk
et al. (2012) showed that they are all highly cor-
related (i.e. mean motion was strongly correlated
with both max motion and a number of movements)
therefore we only reported mean FD and mean
DVARS. Naturally, the accuracy of techniques that
use FD and DVARS are limited by the accuracy of
the measures themselves (Power et al., 2015). Since
motion takes the form of regionally heterogeneous
effects on functional connectivity estimates, better
measurements of motion can yield better predic-
tions for FC quality. For example, a shorter TR
has the effect of dividing large movements into sev-
eral smaller movements. That is why rapid sub-
TR displacements were thought to play a significant
role in regional motion artefact interactions (Spisak
et al., 2014). Nevertheless, previous studies found
that sub-TR FD traces are noisier and less use-
ful in identifying outlying time points, but DVARS
traces exhibit signal-to-noise ratios that are useful
for identifying outlying data points (Power et al.,
2014). Therefore, sub-TR DVARS metric could
be more accurate estimate of subject’s movement.
Nonetheless, we did not observe any improvement
in the HCP dataset with lower temporal resolution
(TR=0.72 s). Another possible improvement could
be to use slice-derived motion metrics rather than
volume-derived estimates because they are only a
simplification of movement over the acquisition of
all slices (Beall and Lowe, 2014). Anyway, Satterth-
waite et al. (2013) and Yan et al. (2013a) found that
motion correction with voxel-wise motion metrics
offered insufficient advantage over the more easily
computed general models.

Unfortunately, we are not able to provide a single
value that would separate bad and good FC matrix
due to the complexity of all contributing factors,
such as the lack of a ground truth of FC. Therefore,
the decision on which scanning session should be
discarded is still based only on a summary motion
statistic reaching some threshold (i.e. RMS move-
ment over half a voxels width (Power et al., 2013) or
more than 20 volumes with RMS greater than 0.25
mm (Ciric et al., 2017)). We only propose to add
TFC measure for group-level corrections. Other di-
rections of mitigating the motion artefact include
using multi-echo imaging (Power et al., 2018) or
using head molds (Power et al., 2019).

A possible objection is that the typical connec-
tivity matrix is not an appropriate golden standard.

Nonetheless, we assume that by averaging FC ma-
trices of low-movement subjects we obtain a typical
awake human brain functional connectivity free of
motion artefact (as well as other biases). We also
found that the group-average FC matrices from dif-
ferent groups were very similar (correlation of the
typical matrix with similarly preprocessed typical
FC of the different dataset is rP = 0.91, reps.
rP = 0.68 with HCP dataset), therefore we ob-
tained similar results regardless of what typical FC
matrix was used. Moreover, using the typical FC
matrix from a different dataset has the advantage
that no degrees of freedom are lost, i.e. subjects
used for the computation of the typical FC matrix
do not have to be discarded from subsequent anal-
yses.

5. Conclusion

In this paper we present a new method of func-
tional connectivity quality evaluation for rs-fMRI
data. Typicality of Functional Connectivity met-
ric is based on a correlation of subjects FC ma-
trix with the low-motion group-average FC matrix.
This metric is strongly correlated with motion met-
rics and it allows for the assessment of the effect of
head movement on individual connectivity matri-
ces. Therefore, TFC provides an individual proxy
measure of motion effect on functional connectivity
and is more sensitive to inter-individual variation
of motion than individual functional connections.
We used it to show that there is a gradual de-
crease of the connectivity quality and the data qual-
ity in more detailed atlases with ROIs composed of
fewer voxels. Nevertheless, the motion connectivity
quality relationship remained stable across atlases
because the effect of motion does not depend on
the atlas size unlike other possible types of noise.
Such knowledge is useful in several scenarios such
as group comparison, preprocessing pipeline perfor-
mance estimation and choosing brain parcellation.
Moreover, outcomes of different analyses can vary
significantly according to the brain parcellation em-
ployed. These findings should be considered when
a robust estimate of connectivity is more important
than fine brain parcellation or while comparing de-
noising strategies.
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Appendix A. Alternative dataset

84 healthy controls (80 right-handed, 48 males,
mean age 30.83 / standard deviation 8.48) par-
ticipated in the control study. Participants were
informed about the experimental procedures and
provided written informed consent. The study de-
sign was approved by the local Ethics Committee of
the Institute of Clinical and Experimental Medicine
and the Psychiatric Center Prague. Each volun-
teer underwent MRI scanning that included 10 min-
utes of resting-state functional magnetic resonance
imaging acquisitions with eyes closed and an acqui-
sition of a T1-weighted and T2-weighted anatomi-
cal scan.

Scanning was performed with a 3T MR scan-
ner (Siemens; Magnetom Trio) located at the
Institute of Clinical and Experimental Medicine
in Prague, Czech Republic. Functional images
were obtained using T2-weighted echo-planar imag-
ing (EPI) with blood oxygenation level-dependent
(BOLD) contrast. GE-EPIs (TR/TE=2500/30
ms) comprised axial slices acquired continuously
in descending order covering the entire cerebrum
(voxel size=2×2×2mm3). A three-dimensional
high-resolution T1-weighted image (TR/TE/TI =
2300/4.6/900 ms, voxel =1×1×1mm3) covering the
entire brain was used for anatomical reference. T2-
weighted images were also acquired, but not used
in the current study.

Appendix B. Preprocessing

Appendix B.1. Moderate

In comparison with stringent pipeline the mod-
erate denoising steps only included regression of six
head-motion parameters (acquired while perform-
ing the correction of head-motion) and one princi-
pal components of white-matter and cerebrospinal
fluid. A band-pass filter with broader cutoff fre-
quencies, i.e. 0.004 - 0.1 Hz, was applied.

Appendix B.2. Raw

Raw preprocessing consists of only CONNs de-
fault preprocessing pipeline (defaultMNI): (1) func-
tional realignment and unwarping, (2) slice-timing
correction, (3) structural segmentation into white

matter and cerebrospinal fluid & structural normal-
ization to the MNI space, (4) functional normaliza-
tion to the MNI space, (5) outlier detection, and
(6) smoothing with 8mm kernel size. No further
filtering or regression was done.

Appendix C. Dataset motion parameters

Mean of DVARS and FD are metrics are com-
monly used to described gross head movement of
a given subject. In Fig.C.6. we provide a distri-
bution of such metrics for the 245 subjects used in
this study.
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Figure C.6: Distribution of mean FD and mean DVARS in
the dataset. All subjects would meet inclusion criteria for
analysis in most MRI laboratories.

Appendix D. Examples of FC matrices

Subjects with low FCT have FC matrices less re-
sembling typical FC matrix. According to Fig.D.7
this degradation is apparent during a visual inspec-
tion.

Appendix E. tSNR

Temporal signal to noise ratio is a useful measure
of data quality (Bodurka et al., 2007). Van Dijk
et al. (2012) have found that low values of tSNR
identify subjects with high head motion or other
causes of data instability. For each ROI the mean
signal is divided by the standard deviation over the
BOLD run. Then, tSNR is the mean tSNR value
across all ROIs in the brain (Eq.E.1).

tSNRr =

∑T
t=1 S(r,t)

T√∑T
t=1(S(r,t)−S(r))2

T

tSNR =
1

R

R∑
r=1

tSNRr

(E.1)
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where S(r, t) is the signal magnitude at the ROI
r in the time t. S(r) is a temporal mean. T is
number of all brain volumes and R is number of all
ROIs.

Appendix F. Human Connectome Project

We analyzed preprocessed rs-fMRI of 1081 sub-
jects (Van Essen et al., 2013; Smith et al., 2013)
and performed the same analyzes as described in
the Methods and Results section.
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Figure 2: Analysis of new FC quality metric - TFC. a) Relationship between mean DVARS and TFC. Subjects with worse
FC quality (lower correlation coefficient between an individual FC matrix and the typical FC matrix) show higher amount of
motion during the scanning session. Calculated for Craddock atlas with 200 ROIs. b) Mean ± standard deviation of TFC
across atlases. The quality of functional connectivity is decreasing as the number of ROIs increases. c) Spearman correlations
between TFC and two summarizing motion metrics for atlases with different number of ROIs. Except for the very small atlases
the relationship between FC quality and motion is constant. c) The highest absolute correlation of the TFC-motion dependence
is obtained if low-movement subjects of the same dataset are used for the calculation of the typical FC matrix compared to
using all subjects or low-motion subjects of different datasets. Such typical matrix is comparable to a typical matrix of a
different dataset (rP = 0.92, p < 10−16) and similar to a typical matrix of HCP dataset (rP = 0.68, p < 10−16). d) Subjects
were divided into two subsets - 30 % of subjects with the highest motion and 70 % with the lowest motion. High-movement
cohort has a stronger relationship between FC quality and motion compared to low-movement cohort for both DVARS and
FD. Low-movement cohort did not display any kind of influence of motion on quality as all the correlation were statistically
insignificant. e) Comparison of quality of FC matrices of all subjects for three different preprocessing pipelines with different
level of strictness; stringent being the most strict and raw the most lenient. FC matrices with more strict preprocessing are
more similar to the typical FC matrix. Moreover, the standard deviation is reduced in more strict preprocessing pipeline.
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Figure 3: The QCFC correlations quantify the association between inter-individual variance in functional connectivity and
gross head motion. a) Positive median of QC-FC values signifies that head motion increases connectivity. b) This effect is more
prominent for short-links and it is more specifically related to motion as FD correlations are stronger than DVARS correlations.
* signifies p < 0.05 c) The amount of edges that is significantly affected by movements. The effect is more easily detectable
with DVARS metric. Results are plotted for Craddock atlas with 200 ROIs. d) Above mentioned effects are stable across
atlases with different number of ROIs. Magnitudes of TFC correlations are higher than median of QC-FC, proving its viability
as an estimator. Plotted only for mean FD.
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Figure 4: Analysis of tSNR with respect to atlas size, motion and FC quality. a) Mean tSNR ± standard deviation across
different atlases. tSNR is gradually decreasing for more detailed atlases, therefore smaller ROIs are more affected by noise. b)
tSNR measures different data aspects than TFC as the correlation is weak, but significant and positive. c) With decreasing
size of ROIs, the relationship between tSNR and mean DVARS get stronger. This trend is not present for FD meaning that the
phenomenon is predominantly caused by other types of noise than a head movement. d) As well as TFC, tSNR also depends
on preprocessing, where the more stringent pipeline produces less noisy time-series.
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Figure 5: Are atlas size effects driven by number of regions of number of voxels? a) In an atlas with 950 ROIs we randomly
selected 50,100,150,...,700 ROIs to get quality estimates depending only on a number of regions but independent of a number of
voxels. Only relationship of TFC and motion is slightly weaker for smaller numbers of regions. b) Within an atlas of 100 ROIs
we varied the number of voxels that forms a region. Both tSNR and TFC depend on number of voxels. Moreover, while the
tSNR-DVARS relationship is stronger for smaller number of voxels, opposite effect is present for the TFC-motion relationships.
c) Different geometrical shapes build around a central voxel of a region. Thus, we could vary number of voxels forming a region.
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Figure D.7: Examples of FC matrices with moderate preprocessing for different subjects based on their TFC. a) Typical FC
matrix for Craddock atlas with 100 ROIs. b) Examples of subjects with lowest TFC. Based on visual inspection, their FC
matrices do not correspond to the typical matrix, even though their head movement might not be prominent. c) Examples of
subjects with highest TFC. Their FC matrix nicely preserved the modular structure similar to the typical matrix.
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Figure F.8: HCP dataset quality assessment. a) Dependence of data quality on atlas size. TFC magnitudes are comparable
to those obtained in our datasets. Similarly, TFC is decreasing with decreasing atlas size. b) We confirm that the TFC-
motion relationship is stable across various atlases (except for the smallest ones) and that DVARS shows stronger absolute
correlation with TFC. c) Decreasing atlas size mean also decreasing tSNR in HCP dataset. d) The gradually increasing
absolute correlation between tSNR and DVARS is still present and, unlike in our dataset, there is also a graduate increase in
the tSNR-FD correlation. Therefore, there is an effect of atlas size in HCP dataset as well.
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Figure F.9: Estimation of the effect of head motion present in HCP dataset using QC-FC values. a) Only the median FD-
FC values shows a spurious increase of connectivity b) Moreover, we did not obtain a significant correlation between QC-FC
values and distance proving a successful mitigation of distance dependence and other motion-related impurities for the HCP
preprocessing pipeline. c) Nevertheless, QC-FC relatively high amount of FC values is correlated with head movements (> 50 %
for FD). d) Still, TFC was able to relate the motion (mean FD) to FC quality proving its usefulness as an estimator of studied
relationships. Based both on QC-FC and TFC the head motion effect on connectivity seems to be constant and independent
of ROI size.
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