

1 Rcirc: an R package for circRNA analyses and visualization

2 Peisen Sun^{1,2}, Haoming Wang³, Guanglin Li^{1,2*}

3 1. Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural
4 Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.

5 2. College of Life Sciences, Shaanxi Normal University, Xi'an, China.

6 3. College of Plant Protection, Northwest A&F University, Yangling, China.

7 * Correspondence:

8 *Guanglin Li (Corresponding Author),

9 1. Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural
10 Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.

11 2. College of Life Sciences, Shaanxi Normal University, Xi'an, China.

12 Tel: +86 13992856645

13 E-Mail: glli@snnu.edu.cn

16 **Abstract**

17 Circular RNA (circRNA), which has a closed-loop structure, is a kind of special
18 endogenous RNA and plays important roles in many biological processes. With the
19 improvement of next-generation sequencing technology and bioinformatics methods,
20 some tools have been published for circRNA detection based on RNA-seq. However,
21 only a few tools focus on downstream analyses, and they have poor visualization
22 ability. Here, we developed the R package 'Rcirc' for further analyses of circRNA
23 after its detection. Rcirc identifies the coding ability of circRNA and visualize various
24 aspects of this feature. It also provides general visualization for both single circRNAs
25 and meta-features of thousands of circRNAs. Rcirc was designed as a user-friendly
26 tool that covers many highly automatic functions without running many complicated
27 processes by users. It is available on GitHub (<https://github.com/PSSUN/Rcirc>) under
28 the license GPL 3.0.

29
30 **Keywords:** Bioinformatics; circular RNAs; visualization; R package; coding
31 potential; Ribosome profiling;

33 **Introduction**

34 Circular RNA (circRNA) is an abundant functional RNA molecule with a highly
35 conserved closed-loop structure that is generated by back-splicing without 5' cap and
36 3' poly (A) tails(Vicens and Westhof, 2014). Single-stranded circRNAs appear to
37 play a role in endogenous cells, such as immune regulation and cancer and
38 RNA-binding protein regulation(Li et al., 2018). In the medical field, circRNAs are
39 often used as biomarkers to identify the occurrence of cancer because of their ring
40 structure, which is difficult for RNase R to degrade in the liquid phase(Bonizzato et
41 al., 2016)(Kulcheski et al., 2016).

42 In addition, circRNA has translation capabilities and important biological
43 significance(Pamudurti et al., 2017). Organisms contain a large number of short
44 peptides (<100 aa) that play an important role in many regulatory pathways(Delcourt
45 et al., 2018)(Slavoff et al., 2013). Recently, many studies have shown multiple pieces
46 of evidence that strongly support circRNA translation, such as the specific association
47 of circRNAs with translating ribosomes(Pamudurti et al., 2017). This means that a
48 large number of circRNAs also have a small open reading frame (ORF) that can be
49 translated and produce functional peptides. However, it is difficult for the traditional
50 RNA-seq technique to accurately identify these short peptides from transcripts. In
51 recent years, the increasing maturity of ribosome profiling technology, which
52 provides strong evidence for translation events, has enabled accurate identification of
53 short peptides. In contrast to the traditional RNA-seq technique, ribosome profiling
54 can confirm the specific translation region of mRNAs(Brar and Weissman, 2015).

55 Feature analysis is also a very important area in the field of circRNA, and most
56 published circRNAs have been analyzed. Especially in the field of machine learning,
57 the existence of numerous machine learning studies for identifying new circRNAs has
58 left no doubt that a large number of possible features are needed, including the types
59 of shear signal, the length of circRNAs, the frequency of triplet codons, and the
60 location of different back-splice junctions on the genome, but there is currently no
61 tool for characterizing circRNAs and subsequent visualization.

62 Based on high-throughput sequencing data, various tools have been developed for
63 circRNA detection, including circRNA finder(Westholm et al., 2015),
64 find_circ(Memczak et al., 2013), CIRCExplorer(Zhang et al., 2014), and CIRI(Gao et
65 al., 2015). Additionally, numerous databases for circRNA that are based on those
66 detection tools have also been published(Hansen et al., 2016).

67 However, most published software programs are designed to predict circRNAs, and
68 only two software programs can identify their coding capability(Meng et al.,
69 2017)(Sun and Li, 2019). There is no tool that focuses on downstream analyses and
70 visualization of features or mapping for circRNAs after the prediction process.
71 CircTools can help design primers but cannot perform large-scale analysis and
72 visualize the read mapping(Jakobi et al., 2018). Here, we developed Rcirc, an R
73 package. It can not only identify candidate circRNAs but also recognize the
74 translation ability of circRNAs. Rcirc also performs many feature analyses and data
75 visualization. Through a display of diversity, users can easily see the various
76 sequence features of a certain data set and determine whether a feature is
77 representative.

78

79 **Implementation**

80 Currently, Rcirc contains 10 functions for the analysis of circRNAs. Rcirc covers
81 three main parts for circRNA research (Figure 1): circRNA detection, coding ability
82 identification and feature visualization. The users can run any functions from those
83 parts individually or run all functions of the whole pipeline.

84

85 ***CircRNA detection and coding ability identification***

86 Users can make a de novo prediction for circRNAs based on RNA-seq data by the
87 function *predictCirc*, which aids in fundamental quality control for RNA-seq data and
88 circRNA prediction by calling CIRI2. Finally, a predicted fasta file and prediction
89 report in csv format are outputted to an appointed file.

90 The function *translateCirc* can help to identify the coding capability from the given
91 circRNAs based on Ribo-seq data. Because the ribosome needs to span the
92 back-splice junction composed of the 3' end and the 5' end during translation, if a
93 circRNA has translational behavior, the Ribo-seq reads can be mapped to the
94 back-splice junction, which provides the criterion for the translation of circRNA(Sun
95 and Li, 2019).

96 Since the sequence spanning the back-splice junction in circRNA is spliced from
97 the 3' and 5' ends, it cannot be directly obtained. Therefore, in Rcirc, we completely
98 copy each circRNA sequence and concatenate it in the original sequence. Later, the
99 linear sequence was used to simulate the real situation of the circRNA at the
100 back-splice junction. After that, the reads of the ribosomal maps are aligned to this
101 linear sequence.

102 Compared to traditional RNA-seq data, ribosome profiling data require further
103 processing to remove the rRNA sequence in addition for the routine quality control
104 process (removing the linker, filtering the low-quality fragments) because the
105 fragments of rRNA during sequencing may also be mixed in the final data, causing
106 interference with the results. Since the length of the reads obtained by the ribosome
107 data is relatively short (generally less than 50 bp), even if there is a successful
108 comparison of the reads to the back-splice junction, it is not enough to indicate that
109 the reads are from this position because they may also originate from any similar area
110 on the transcriptome.

111 To avoid this issue, Rcirc first aligns all processed Ribo-seq reads back to the
112 rRNA sequence and reference genome, removing all reads that can be aligned to the
113 rRNA and linear transcripts and leaving only reads that were not successfully aligned.
114 This step ensures that all remaining reads have no similar regions on the rRNA and
115 the linear transcript. After this, Rcirc aligns these reads to the previously simulated
116 back-splice junction to see if it matches and then counts the number of reads that can
117 align to the back-splice junction. The circRNA is finally identified as a translated
118 circRNA if there are no less than 3 Ribo-seq reads on its back-splice junction.
119

120 ***Downstream analysis and visualization***

121 In this section, we introduce 4 commonly used functions.

122 The *mappingPlot* function is one of the important functions in Rcirc. Most
123 next-generation sequencing (NGS) data visualization browser tools, such as IGV, help
124 to view the mapping between reads and sequences. This method of expression is more
125 vivid and intuitive than files in text formats such as the SAM/BAM format and thus

126 helps researchers better study the problem in the interval of interest. However, it is
127 impossible for these tools to view mapping results on circRNA because of its
128 end-to-end ring structure, which is different from linear structures. With the
129 *makeGenome* function, this issue has been solved. It automatically connects the 5'
130 end and 3' end of circRNA as a ring and produces a data frame in R that contains all
131 the mapping information of each circRNA. In this function, the mapping of Ribo-seq
132 data on each junction can be revealed clearly by a ring diagram, which simulates the
133 real circular form of circRNA in cells. This visualization includes reads covered
134 region, reads covered density, highlighted bases, start codons and stop codons.
135 Moreover, users can be free to enlarge the mapping region by an optional parameter.
136 The detailed usage of *mappingPlot* can be found in Rcirc user documents.

137 circRNAs are generally classified by the location of the back-splice junction. Here,
138 we use *classByType* to classify a given circRNA. According to the position of the
139 back-splice junction, we divide the circRNA into 7 categories: *same_exon*,
140 *different_exon*, *intron_exon*, *intron*, *intron_intergenic*, *exon_intergenic* and *intergenic*.
141 After completing the classification, *classByType* can give a classification table and a
142 ring density map of the distribution of different types of circRNAs on different
143 chromosomes. A specific demonstration can be seen in Figure 2 (B). Users need to
144 enter only an annotation file of the genome and a BED format file of circRNAs,
145 which can be easily analyzed.

146 The *stemRing* function can help to determine the possible stem-ring structure for
147 the given circRNAs in BED format. It extracts the sequence upstream and
148 downstream of each circRNA and makes a local alignment between the downstream
149 sequence and the reverse complement of the sequence upstream. Finally, *stemRing*
150 outputs the result in a csv format file that contains the position information of each
151 circRNA and the local upstream and downstream alignment information. Using
152 *stemRing* and looking at the results, it is possible to conduct a large-scale
153 investigation of circRNA stem-ring structures and construct a corresponding
154 expression vector containing reverse complementary paired sequences to help
155 circRNA circularize in cells.

156 The *showOverview* function provides an overview of all circRNAs, including a
157 large amount of information, in one circle. It includes the distribution of circRNAs of
158 different lengths on different chromosomes and the density distribution of circRNAs
159 on different chromosomes. The high-GC and low-GC regions of the genome are
160 labeled with different colors, allowing users to find connections between different
161 features.

162 In addition, Rcirc includes many other functions. For example, it can also perform
163 joint analysis on thousands of circRNAs to analyze and visualize their distribution as
164 a function of lengths, type, and splice signal.

165

166 **Software construction**

167 Rcirc is an R-based toolkit, and all code is written in R language. In the prediction
168 phase, we predict the circRNA by calling the external program CIRI2. The main
169 program of CIRI2 is already included in Rcirc without the user having to download
170 and install it. In the identification phase of translation capabilities, we call STAR,
171 bowtie and trimmomatic to filter and align Ribo-seq data. In the analysis and
172 visualization section, the R packages we use are circlize(Gu et al., 2014),
173 ggplot2(Hadley, 2016), Biostrings(H et al., 2019), IRanges(Lawrence et al., 2013),
174 and others.

175 Most of the features and their introductions included in Rcirc are shown in Table 1.
176 More details are provided in the Rcirc user manual.

177

178 **Result and discussion**

179 To demonstrate the Rcirc analysis process, we predicted circRNAs in *Arabidopsis*
180 *thaliana* using Rcirc, analyzed these circRNAs and visualized the results. The results
181 of the partial analysis are shown in Figure 2.

182 Most of the currently published software is used to predict circRNA(Hansen et al.,
183 2016), and no software for characterization of circRNA is available. Similar software
184 such as circTools provides partial analysis and visualization functions such as primer
185 design, but its visualization of the back-splice junction remains only for the linear
186 structure, which is less intuitive than the circular structure (Table 2). Another
187 important feature of Rcirc is to fill the gap in this field. In the circRNA literature,
188 many articles have analyzed the characteristics of circRNA from multiple angles,
189 generally including its length distribution, chromosome distribution, classification and
190 shearing according to the location of its back-splice junction in linear transcripts, the
191 shear signal distribution of the back-splice junction, etc. We summarize these
192 analyses and add as much of the downstream analysis as possible in Rcirc. Software
193 with complicated use requires that the user spend much time on learning costs. In
194 Rcirc, we simplified all the analysis processes as much as possible. To perform the
195 above analysis, we do not need to write complex code. The design principle of Rcirc
196 is to complete one analysis using only one line of code. Therefore, Rcirc is an
197 easy-to-use R package for circRNA investigation.

198 To simplify Rcirc use for feature investigation and visualization, we eliminated a
199 large number of possible input parameters and made the functions highly modular.
200 The user only needs to enter the necessary file path to obtain the final analysis results.
201 This design reduces the use threshold of Rcirc, allowing the user to execute the
202 desired analysis without requiring much cost for learning. However, due to the lack of
203 customizability of the analysis results, the analysis process cannot be directly defined
204 by modifying the parameters. To improve the customizability while simplifying the
205 use as much as possible, we have added some parameters for modifying the way in
206 which the results are displayed, and they are all set to default values for the user to
207 call when needed.

208

209 **Conclusion**

210 With the deepening of research on circRNA, an increasing number of studies have
211 proven that it plays an important role in the body. However, the corresponding
212 analysis tools for circRNA have not been developed. The main goal of our study was
213 to develop a user-friendly tool that covers the main demands for circRNA research.
214 Rcirc is a capable and user-friendly package based on the R language. The package
215 provides numerous analyses for both upstream and downstream research, including
216 circRNA detection, coding ability identification, single feature analyses and
217 visualization of meta-features. Furthermore, the users can visualize the read mapping
218 for each back-splice junction of circRNA by using Rcirc with sequencing data. With
219 growing attention on circRNA, Rcirc will become an auxiliary tool to encourage
220 researchers to proceed with further analyses on circRNA, and we will add the most
221 common features into Rcirc in future releases. All the details of usage are included in
222 the Rcirc documents in the GitHub online pages.

223

224 **Availability and requirements**

225 Rcirc is available at <https://github.com/PSSUN/Rcirc>; operating system(s): Linux;
226 programming language: R; other requirements: bowtie, STAR, R packages (circlize,
227 ggplot2, Biostrings, GenomicAlignments, GenomicFeatures, GenomicRanges,
228 IRanges). The installation packages for all of the required software are available on
229 the Rcirc homepage. Users do not need to download the required software
230 individually. The Rcirc home page also provides detailed user manuals for reference.
231 The tool is freely available. There are no restrictions to use by nonacademics.

232

233 **Authors' contributions**

234 SP and WH developed the software package under the guidance of LG, and SP
235 performed all analyses in the manuscript. SP and LG drafted and revised the
236 manuscript. All the authors read and approved the final manuscript.

237

238 **Competing interests**

239 The authors have declared no competing interests.

240

241 **FUNDING**

242 This work was supported by grants from the National Natural Science Foundation of
243 China (Grant No.31770333, No.31370329 and No.11631012), the Program for New
244 Century Excellent Talents in University (NCET-12-0896) and the Fundamental
245 Research Funds for the Central Universities (No. GK201403004). The funding
246 agencies had no role in the study, its design, the data collection and analysis, the
247 decision to publish, or the preparation of the manuscript. The funders had no role in
248 study design, data collection and analysis, decision to publish, or preparation of the
249 manuscript.

250

251

252 **Figure 1.** Rcirc workflow. From top to bottom are shown the identification of
253 circRNAs, identification of circRNA translation ability, and downstream
254 analysis/visualization of circRNA. The right column represents the analyses that Rcirc
255 can perform at the corresponding stage.

256 **Figure 2.** Some characterizations of *Arabidopsis thaliana* were performed using
257 Rcirc.

258 **(A)** An overview of the characteristics of all candidate circRNAs in *A. thaliana*. From
259 the outside to the inside is shown a distribution of different types of circRNAs of
260 different lengths in dot plot (the height of the dots represents the length of the
261 circRNA, different colors represent different types of circRNA, orange, green, light
262 blue, cyan, dark blue, purple, light yellow represent: same_exon_circ, diff_exon_circ,
263 exon_intron_circ, intron_circ, interg_circ, interg_exon_circ, interg_intron_circ,
264 respectively); a density distribution of all the circRNAs; a heatmap of GC content for
265 the genome, wherein red reveals the high GC content regions and white reveals the
266 low GC content regions; the RNA-seq read coverage density (blue); and the Ribo-seq
267 read coverage density (red).

268 **(B)** Classification of circRNAs and plot density profiles. Different colors represent
269 different types of circRNAs. **(C)** A visual analysis of the Ribo-seq reads mapping of
270 one of the circRNAs. The black line represents the back-splice junction. The color
271 change in the outermost circle represents the coverage density of the reads at the site.
272 The redder the color is, the greater the coverage density, and the bluer the color is, the
273 smaller the coverage density. Each green line inside represents a Ribo-seq read. The
274 area within the dashed line represents the full length covered by the reads, and the
275 area outside of the dashed line represents the area without read coverage. **(D)** Splice
276 signals of all circRNAs were analyzed by Rcirc, and the resulting histograms are
277 shown.

278

279 **Table 1.** This table shows all the features of Rcirc. The left column is the name of the
280 function, and the right column is a brief introduction to the function.

281

Function	Description
<i>makeGenome</i>	Stitching candidate circRNAs into virtual genomes
<i>PredictCirc</i>	Identify new circRNA
<i>TranslateCirc</i>	Identify the translation capabilities of circRNA
<i>showOverview</i>	Analyze the characteristics of all candidate circRNAs and then render the image
<i>mappingPlot</i>	Draw an image of the reading mapping near the circRNA back-splice junction

<i>mappingTable</i>	Combine the Ribo-seq mapping of all candidate circRNAs into a table
<i>stemRing</i>	circRNA stem-ring structure recognition
<i>classByType</i>	Classify all circRNAs according to the position of the back-splice junction and draw an image
<i>showJunction</i>	Analyze the splice signals of all candidate circRNAs and plot charts
<i>showLength</i>	Show the distribution of the length of circRNAs
<i>showDistribution</i>	Show the distribution of circRNA on different chromosomes
<i>downloadCircRNA</i>	Download circRNA from known databases

282

283 **Table 2** Comparison of Rcirc and circTools

Content	Rcirc	circTools
Frame	R	Python 3 and R
Graphical user interface	No	No
circRNA detection	CIRI2	DCC
Show the mapping quality	No	Yes
Coding ability identify	Yes	No
Visualization of mapping region	Yes	No
Variation in circRNAs	No	Yes
Stem-ring structure recognition	Yes	No
Meta-feature analysis	Yes	No
Identity individual exons	No	Yes
Primer design	No	Yes

284

285

286

287 **References**

288 Bonizzato, A., Gaffo, E., te Kronnie, G., and Bortoluzzi, S. (2016). CircRNAs in
289 hematopoiesis and hematological malignancies. *Blood Cancer Journal* 6,
290 e483–e483. doi:10.1038/bcj.2016.81.

291 Brar, G. A., and Weissman, J. S. (2015). Ribosome profiling reveals the what, when,
292 where and how of protein synthesis. *Nature Reviews Molecular Cell Biology*
293 16, 651–664. doi:10.1038/nrm4069.

294 Delcourt, V., Staskevicius, A., Salzet, M., Fournier, I., and Roucou, X. (2018). Small
295 Proteins Encoded by Unannotated ORFs are Rising Stars of the Proteome,

296 Confirming Shortcomings in Genome Annotations and Current Vision of an
297 mRNA. *PROTEOMICS* 18, 1700058. doi:10.1002/pmic.201700058.

298 Gao, Y., Wang, J., and Zhao, F. (2015). CIRI: an efficient and unbiased algorithm for
299 de novo circular RNA identification. *Genome Biology* 16, 4.
300 doi:10.1186/s13059-014-0571-3.

301 Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize implements and
302 enhances circular visualization in R. *Bioinformatics* 30, 2811–2812.
303 doi:10.1093/bioinformatics/btu393.

304 H, P., P, A., Gentleman, R., and DebRoy, S. (2019). *Biostrings: Efficient
305 manipulation of biological strings*.

306 Hadley, W. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag
307 New York Available at: <https://ggplot2.tidyverse.org>.

308 Hansen, T. B., Venø, M. T., Damgaard, C. K., and Kjems, J. (2016). Comparison of
309 circular RNA prediction tools. *Nucleic Acids Res* 44, e58–e58.
310 doi:10.1093/nar/gkv1458.

311 Jakobi, T., Uvarovskii, A., and Dieterich, C. (2018). circTools—a one-stop software
312 solution for circular RNA research. *Bioinformatics*.
313 doi:10.1093/bioinformatics/bty948.

314 Kulcheski, F. R., Christoff, A. P., and Margis, R. (2016). Circular RNAs are miRNA
315 sponges and can be used as a new class of biomarker. *Journal of
316 Biotechnology* 238, 42–51. doi:10.1016/j.jbiotec.2016.09.011.

317 Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., et al.
318 (2013). Software for Computing and Annotating Genomic Ranges. *PLoS
319 Comput Biol* 9, e1003118. doi:10.1371/journal.pcbi.1003118.

320 Li, X., Yang, L., and Chen, L.-L. (2018). The Biogenesis, Functions, and Challenges
321 of Circular RNAs. *Molecular Cell* 71, 428–442.
322 doi:10.1016/j.molcel.2018.06.034.

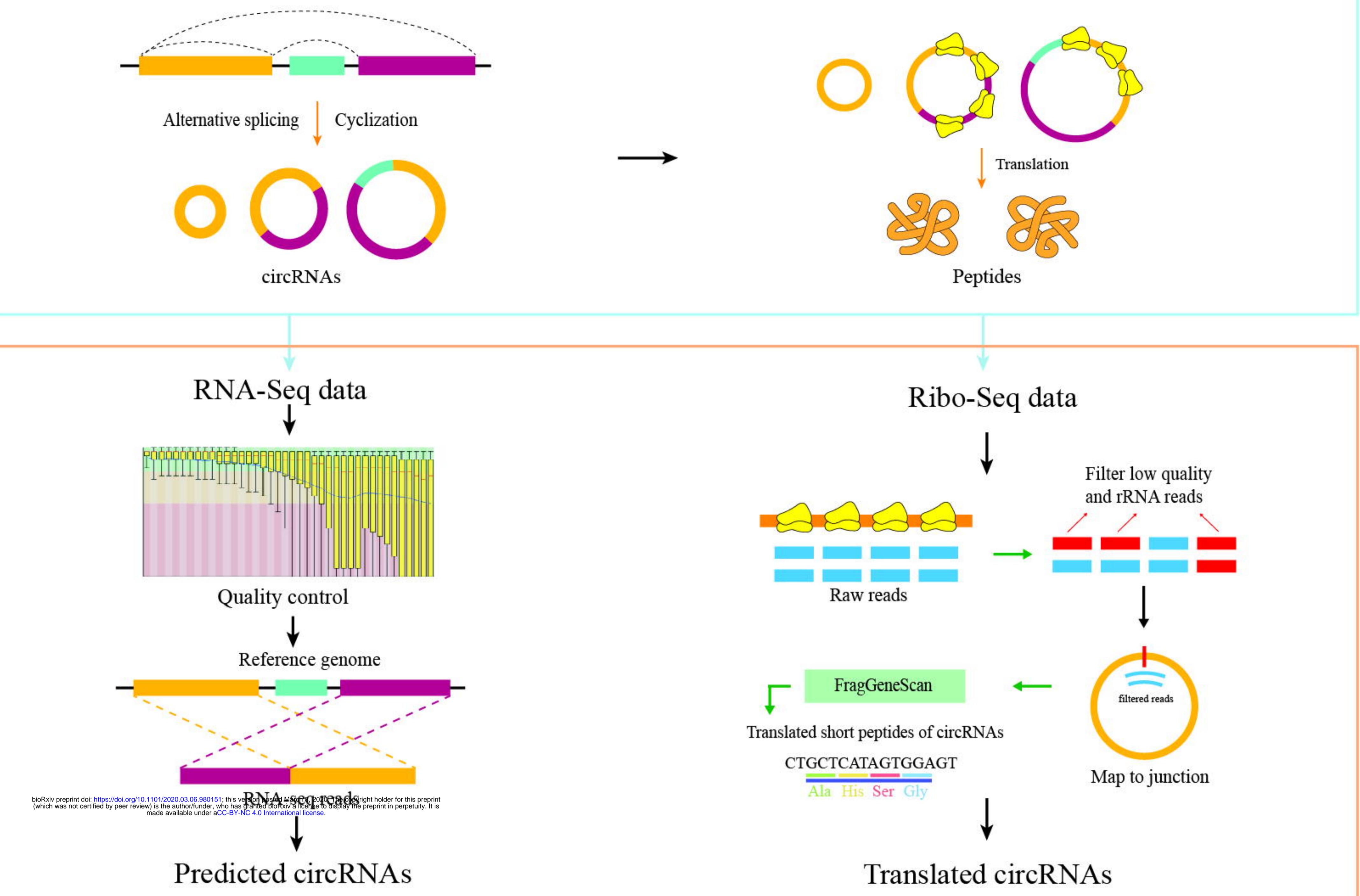
323 Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013).
324 Circular RNAs are a large class of animal RNAs with regulatory potency.
325 *Nature* 495, 333–338. doi:10.1038/nature11928.

326 Meng, X., Chen, Q., Zhang, P., and Chen, M. (2017). CircPro: an integrated tool for
327 the identification of circRNAs with protein-coding potential. *Bioinformatics*
328 33, 3314–3316. doi:10.1093/bioinformatics/btx446.

329 Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L.,
330 et al. (2017). Translation of CircRNAs. *Molecular Cell* 66, 9-21.e7.
331 doi:10.1016/j.molcel.2017.02.021.

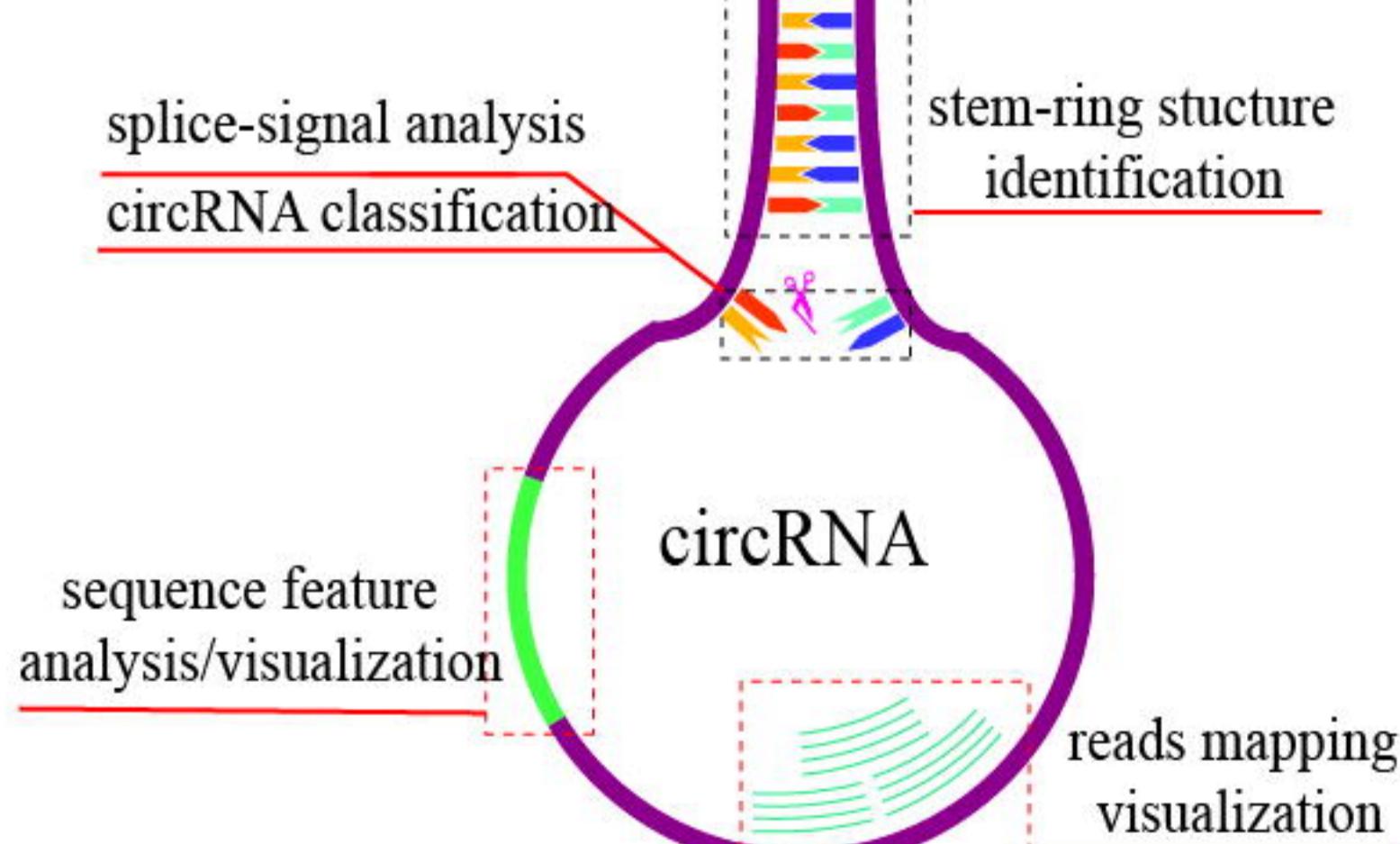
332 Slavoff, S. A., Mitchell, A. J., Schwaid, A. G., Cabili, M. N., Ma, J., Levin, J. Z., et al.
333 (2013). Peptidomic discovery of short open reading frame-encoded peptides
334 in human cells. *Nat Chem Biol* 9, 59–64. doi:10.1038/nchembio.1120.

335 Sun, P., and Li, G. (2019). CircCode: A Powerful Tool for Identifying circRNA
336 Coding Ability. *Front. Genet.* 10, 981. doi:10.3389/fgene.2019.00981.

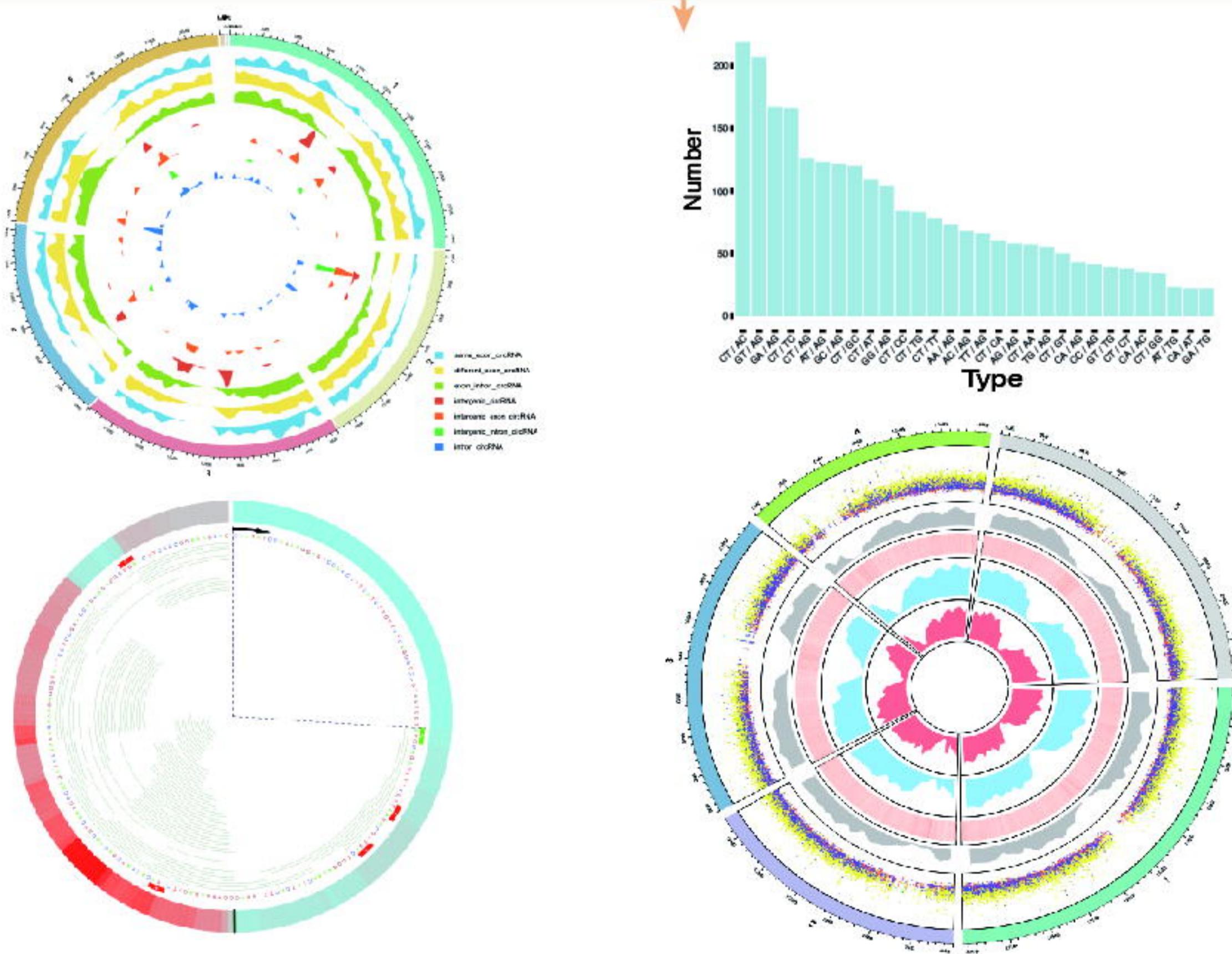

337 Vicens, Q., and Westhof, E. (2014). Biogenesis of Circular RNAs. *Cell* 159, 13–14.
338 doi:10.1016/j.cell.2014.09.005.

339 Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Celniker, S. E., et al.
340 (2015). Genomewide analysis of Drosophila circular RNAs reveals their
341 structural and sequence properties and age-dependent neural accumulation. 28.

342 Zhang, X.-O., Wang, H.-B., Zhang, Y., Lu, X., Chen, L.-L., and Yang, L. (2014).
343 Complementary Sequence-Mediated Exon Circularization. *Cell* 159, 134–147.
344 doi:10.1016/j.cell.2014.09.001.

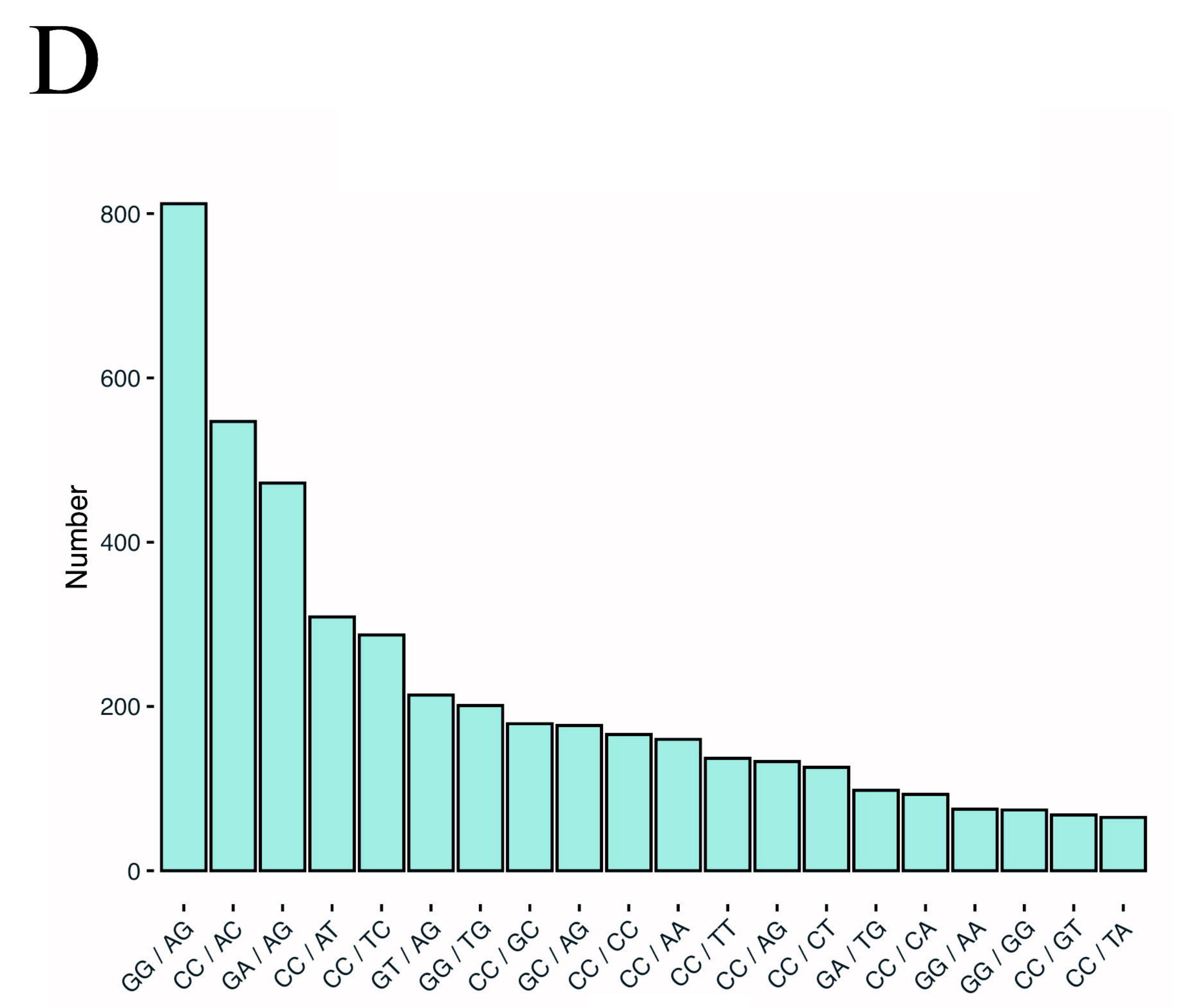
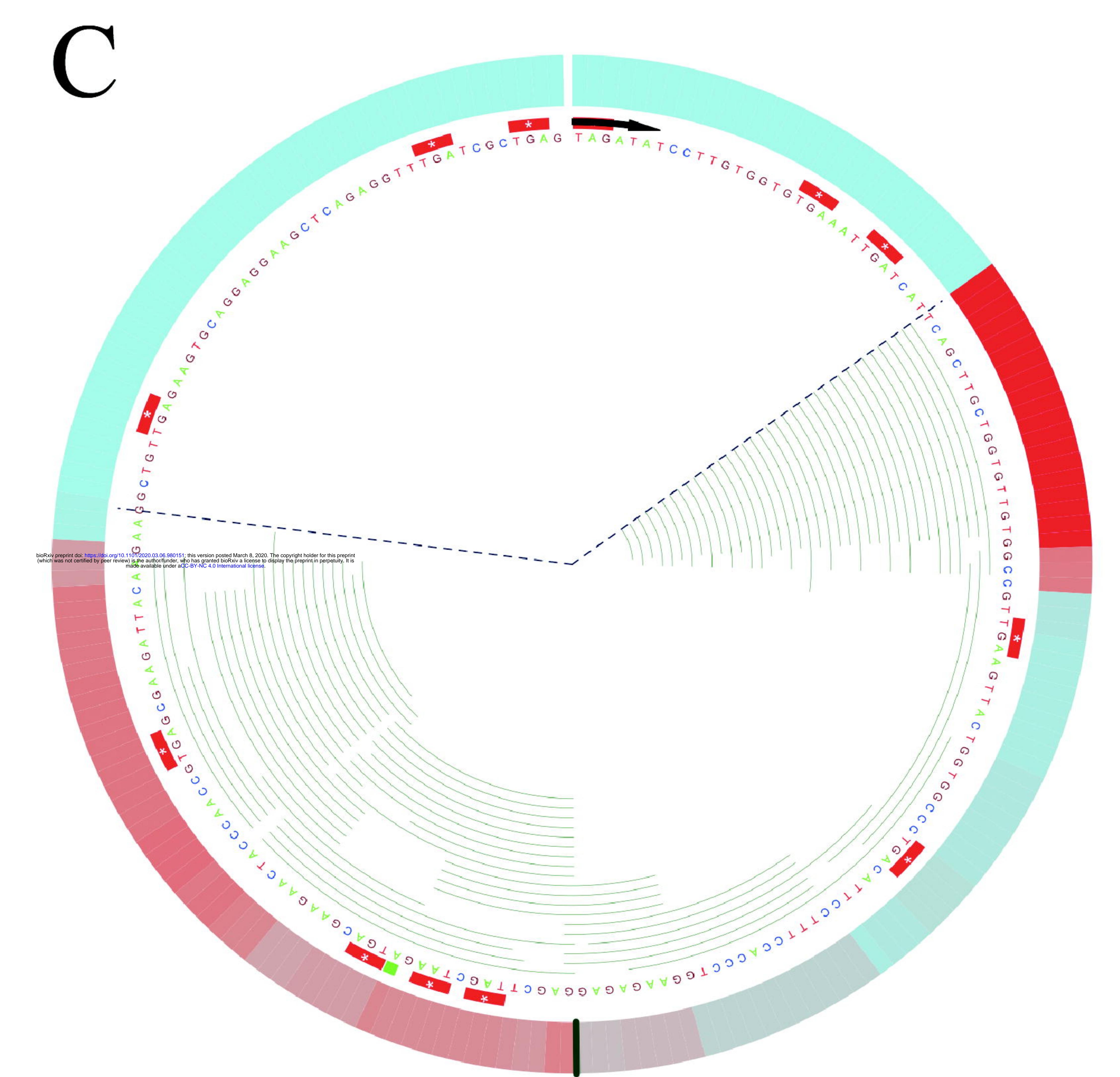
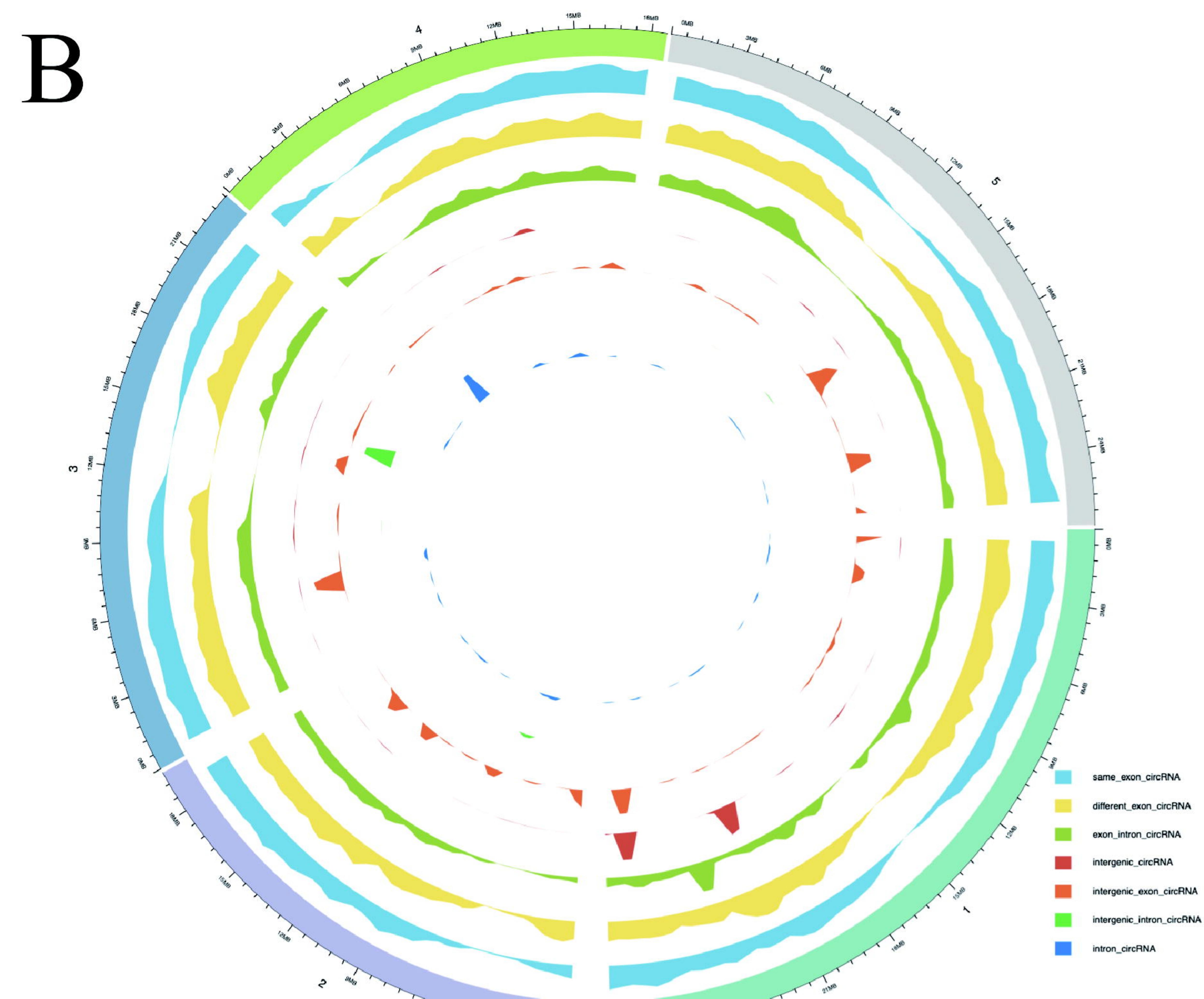
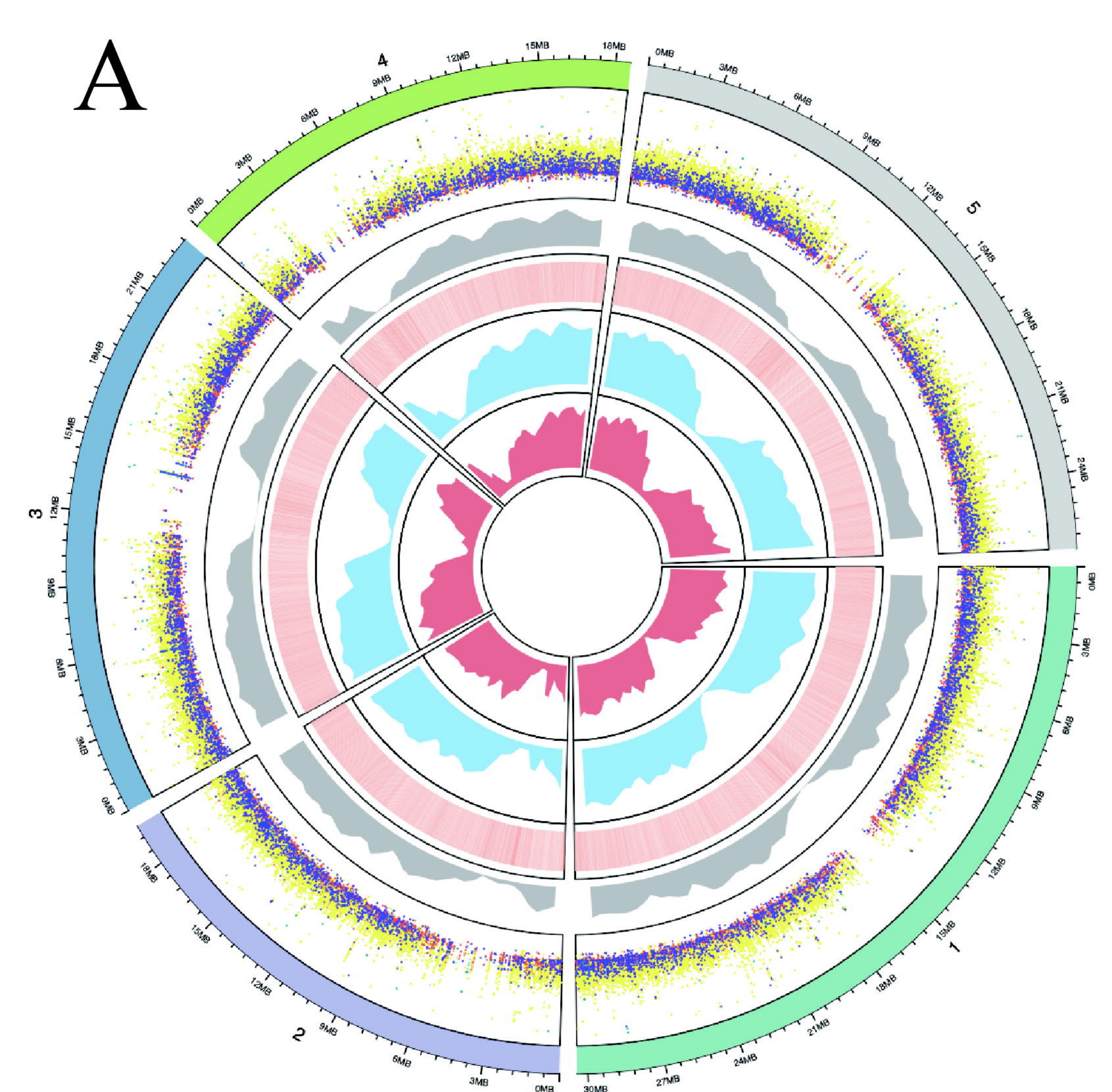

345

Biogenesis



bioRxiv preprint doi: <https://doi.org/10.1101/2020.03.06.980151>; this version posted March 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Predicted circRNAs

Downstream analysis

Identification

Downstream analysis

