

1 “Human *METTL7B* Encodes an Alkyl Thiol Methyltransferase that Methylates Hydrogen Sulfide”

2 Benjamin J. Maldonato and Dr. Rheem A. Totah

3 University of Washington

4 Department of Medicinal Chemistry

5 1959 NE Pacific Ave,

6 Box 357610

7 Seattle, WA 98195

8 Corresponding Author: Dr. Rheem A. Totah

9 Email: rtotah@uw.edu

10 Phone: 206-543-9481

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 **Summary Paragraph/Abstract:**

28 Methyltransferase-like protein 7B (METTL7B) is implicated in tumor growth and
29 progression while gene expression is upregulated in several different disease states such as
30 rheumatoid arthritis and breast cancer. Yet, the catalytic function of METTL7B has not been
31 characterized. Here we demonstrate that *METTL7B* encodes a protein that catalyzes the transfer
32 of a methyl group from S-adenosyl-L-methionine (SAM) to hydrogen sulfide (H₂S) to form
33 methanethiol (CH₃SH). Several exogenous aliphatic thiols were also identified as substrates.
34 Modulation of *METTL7B* gene expression in HepG2 and HeLa cell culture directly alters the
35 methylation of captopril, a marker reaction of alkyl thiol methyltransferase (TMT) activity(1, 2).
36 Furthermore, cloned and recombinantly expressed and purified METTL7B full length protein
37 methylates several thiol compounds, including hydrogen sulfide, 7 α -thiospirolactone,
38 captopril, and L-penicillamine in a concentration dependent manner. Endogenous thiols such as
39 glutathione and cysteine or classic probe substrates of other known small molecule S-, N-, and O-
40 methyltransferases were not substrates for METTL7B. Our results unequivocally demonstrate,
41 and for the first time, that METTL7B, a protein implicated in several disease states, is an alkyl
42 thiol methyltransferase(3-5). Identifying the catalytic function of METTL7B will enable future
43 pharmacological research in disease pathophysiology where *METTL7B* expression and H₂S
44 levels can potentially alter the redox state and growth cycle of cells.

45 **Introduction:**

46 Hydrogen sulfide (H₂S) is a gasotransmitter that regulates inflammatory and cell cycle
47 processes(6). It is biosynthesized by three different enzymes, cystathionine γ -lyase (CSE),
48 cystathionine β -synthase (CBS), and 3-mercaptoproprate sulfurtransferase (3-MST)(7). CBS

49 activity is inhibited by carbon monoxide and nitric oxide but is activated by S-adenosyl-L-
50 methionine (SAM)(8, 9). Therefore, production of hydrogen sulfide is sensitive to intracellular
51 redox state. Once formed, hydrogen sulfide causes physiological effects by formation of
52 persulfide bonds to protein cysteine residues(10). Catabolism of hydrogen sulfide is believed to
53 be primarily driven by oxidation(11). This route of metabolism may be less prominent in organs
54 outside of the gut and under hypoxic conditions, such as in the interior of solid tumors(12, 13).
55 In these instances, methylation can play a key role in hydrogen sulfide catabolism yet little is
56 known about this process or the enzyme that catalyzes this reaction. In this report, we identify
57 METTL7B as an alkyl thiol methyltransferase that catalyzes the transfer of a methyl group from
58 S-adenosyl-L-methionine (SAM) to hydrogen sulfide and several aliphatic thiol-containing
59 compounds.

60 To date, the catalytic function of methyltransferase-like protein 7B (METTL7B) was
61 unknown despite being implicated in several disease states. Specifically, *METTL7B* gene
62 expression is significantly altered in kidney disease, acute respiratory distress syndrome, and
63 numerous cancers, including breast, non-small cell lung, thyroid, and ovarian(3–5, 14–17).
64 METTL7B expression appears to be responsive to inflammation signaling pathways via
65 JAK1(18, 19). Gene expression also changes with respect to cellular redox state and is
66 associated with individual response to certain chemotherapeutics(20, 21). In non-small cell lung
67 cancer, *METTL7B* contributes to tumorigenesis and progression by regulating cell cycle
68 progression. Gene silencing reduced tumor growth and progression both *in vitro* and *in vivo*
69 suggesting METTL7B as a potential therapeutic target(17).

70 Interest in METTL7B originated as we were attempting to identify the elusive alkyl thiol
71 methyltransferase (TMT) responsible for the methylation of the active metabolite of clopidogrel

72 *in vivo*(22). This microsomal enzyme catalyzes the methylation of aliphatic thiols in humans,
73 including hydrogen sulfide, captopril, 7 α -thiospirostanolactone, D- and L-penicillamine, and the
74 active metabolites of prasugrel, and ziprasidone(1, 2, 23–27). However, despite numerous
75 attempts, researchers have not successfully identified the TMT gene or protein (28–31).

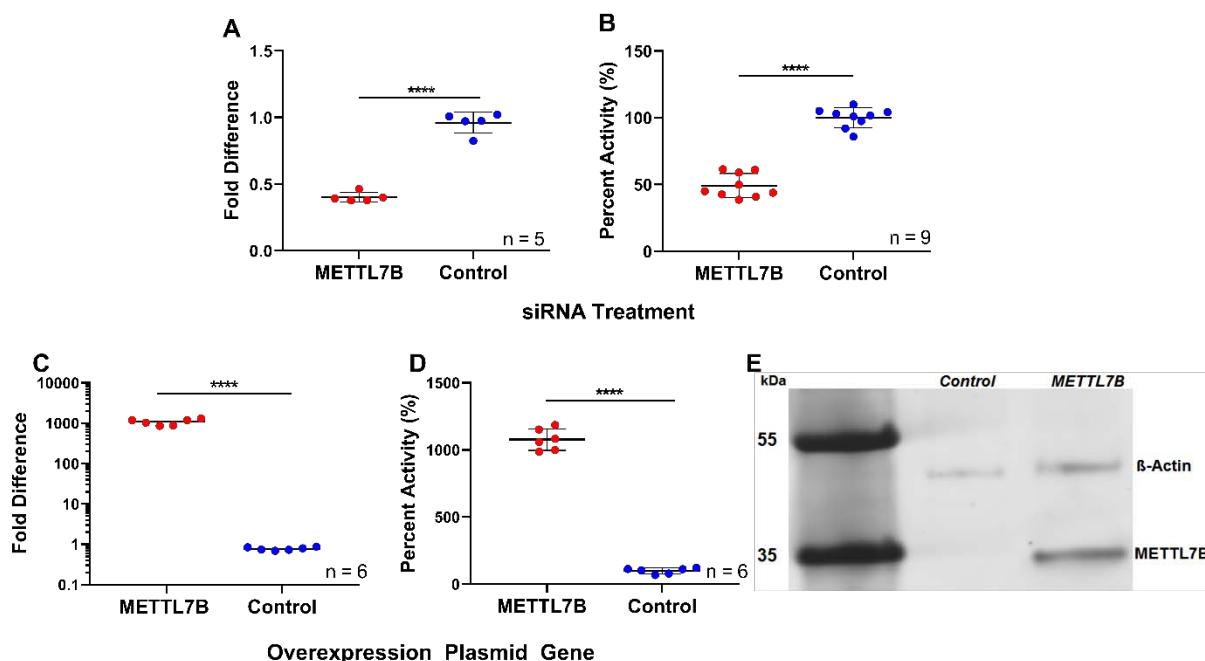
76 Our preliminary approach to identify TMT expanded on earlier research which attempted
77 to purify TMT from rat liver microsomes using a number of chromatographic steps(28, 31).

78 After significant increases in TMT specific activity, preliminary non-targeted proteomic
79 experiments were conducted to identify potential methyltransferase proteins in the TMT-active
80 fractions. The major candidate protein in active fractions was identified as rat METTL7B which
81 was also localized to the endoplasmic reticulum (Extended Data Table 1). Rat and human
82 METTL7B share 83% sequence homology, which suggests a conserved function. Subsequent
83 experiments modulating the expression of human METTL7B in two cell lines also altered
84 captopril methylation, a known TMT substrate. Once identified, we cloned, recombinantly
85 expressed, and purified human full length METTL7B in *E. coli* and conducted small molecule
86 substrate screening with the purified protein. The activity screens confirmed that METTL7B
87 specifically catalyzes SAM-dependent methylation of aliphatic thiol compounds, including
88 hydrogen sulfide, in a time and protein concentration dependent manner. No methylation was
89 observed with classic probe substrates of other known small molecule *S*-, *N*-, and *O*-
90 methyltransferases(32–36) or endogenous thiols such as cysteine or glutathione.

91

92

93

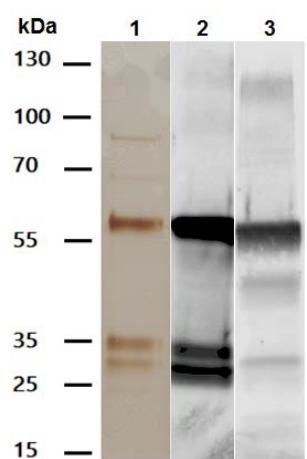

94 **Results:**

95 *METTL7B Gene Expression Modulation in Mammalian Cell Culture:*

96 Treating HepG2 cells with *METTL7B* specific small interfering RNA (siRNA) caused an
97 average of 60% decrease in *METTL7B* mRNA expression compared to cells treated with a
98 scrambled negative siRNA control (Figure 1A). Incubation with captopril following siRNA
99 treatment, a previously reported TMT- probe substrate, showed an average 51% decrease in
100 captopril methylation in HepG2 cells with reduced *METTL7B* gene expression (Figure 1B).

101 *METTL7B* gene expression increased over 1,000-fold in HeLa cells treated with a
102 constitutive overexpression plasmid containing the *METTL7B* gene sequence compared to cells
103 treated with an empty control plasmid as measured by RT-PCR (Figure 1C). Captopril
104 methylation subsequently increased 10-fold in cells overexpressing *METTL7B* compared to
105 control cells (Figure 1D). Cells transfected with the *METTL7B* overexpression plasmid show

106 formation of FLAG-tagged METTL7B (Lane 2, Figure 1E) compared to cells treated with an
107 empty overexpression plasmid (Lane 1, Figure 1F).


108 **Figure 1. Alteration of *METTL7B* gene expression in human cell culture:** **A)** *METTL7B* gene expression
109 significantly decreased in HepG2 cells compared to controls when treated with anti-*METTL7B* siRNA for 72 hours.
110 **B)** Methylation of captopril activity significantly decreased in HepG2 cells treated with *METTL7B* siRNA compared
111 to control cells. **C)** HeLa cells treated with a *METTL7B* overexpression plasmid showed ~ 1,000-fold increase in
112 *METT7B* gene expression compared to control cells transfected with an empty expression vector. **D)** HeLa cells
113 transfected with the *METTL7B* expression vector showed a 10-fold increase in captopril methylation activity
114 compared to negative control cells. **E)** FLAG-tagged METTL7B expression is only observed in cells treated with
115 the *METTL7B* overexpression plasmid compared to controls (Lanes 2 and 1 respectively). β -actin was used as a
116 loading control. All data is presented as the mean \pm standard deviation. Individual data points from two (A, C, and
117 D) or three (B) experiments are plotted. Significance was determined using unpaired two-tailed *t* test.
118 ***P<0.0001.

119

120

121 *Expression and Purification of METTL7B Fusion Protein:*

122 The full-length *METTL7B* gene sequence was inserted into a pET21 expression plasmid
123 to express a unique fusion protein in *E. coli*. The fusion protein, henceforth referred to as pET21
124 METTL7B, is 57.5 kDa and contains a dual His-GST affinity/solubilization tag coupled to the N-
125 terminus of the native METTL7B protein. We developed a dual-stage affinity purification
126 protocol as detailed in the Methods section. The resulting purified protein fraction
127 predominantly contains the pET21 METTL7B fusion protein construct. The fusion protein band
128 is indicated in Figure 2 by the letter “A”. pET21 METTL7B was also identified by proteomics
129 in both the purified protein fraction, and in the 55 kDa band in lane 1 of Figure 2 (Extended Data
130 Tables 2 and 3). The lower bands around 30-35 kDa were determined by western blot to be co-
131 purified affinity tag GST protein without METTL7B, as indicated by “B” and “C” in Figure
132 2. Tryptic digest showed that the remaining background bands are co-purified *E. coli* proteins
133 (Extended Data Table 4).

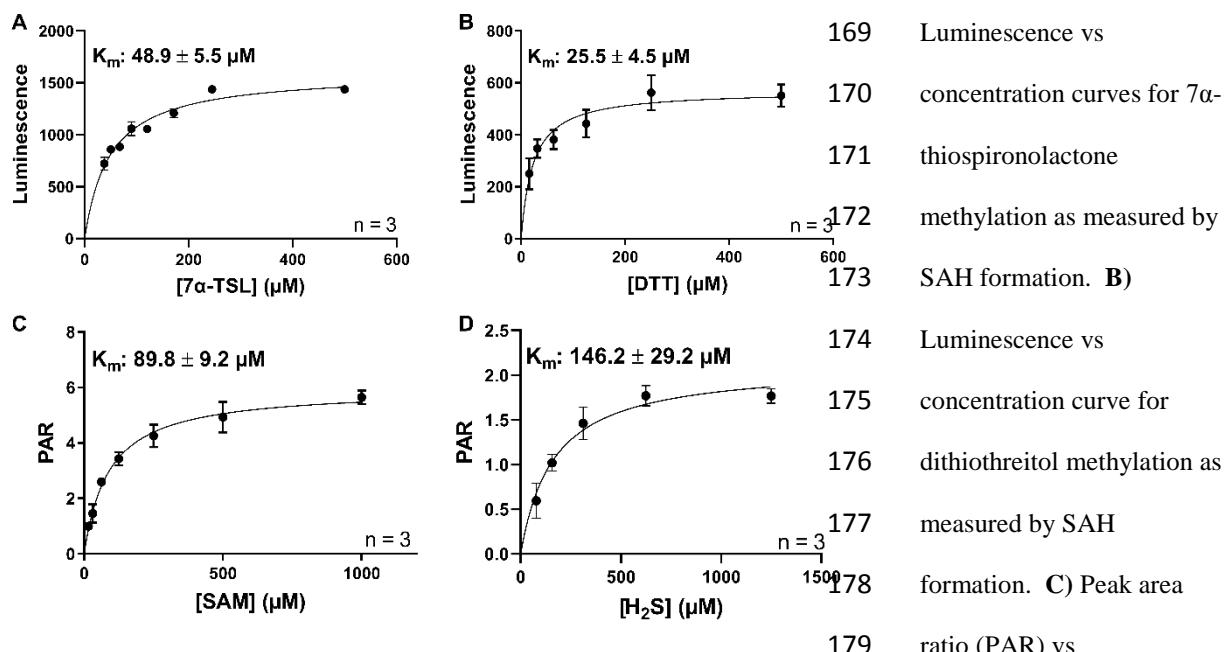
Figure 2. Analysis of purified pET21 METTL7B: Lane 1) SDS-PAGE silver stain of a representative gel showing purified pET21 METTL7B. The gel was loaded with a total of 1 μ g total protein as determined by A_{280} . **Lane 2)** anti-GST western blot of purified pET21 METTL7B. The gel was loaded with a total of 0.1 μ g total protein. **Lane 3)** anti-METTL7B western blot of purified pET21 METTL7B. The gel was loaded with 0.1 μ g total protein. Molecular weight markers from the PageRuler Plus Prestained Protein Ladder are shown on the left. The pET21 METTL7B band is marked by the letter A. The lower molecular bands, marked by letters B and C, are fusion protein fragments containing the dual His-GST affinity tag.

143

144 *Substrate Specificity Testing and Kinetic Analysis of pET21 METTL7B:*

145 A number of known methyltransferase substrates as well as endogenous thiol compounds
146 were screened for methylation using recombinant pET21 METTL7B. Substrates were screened
147 at concentrations at least three times higher than previously reported K_m values to ensure
148 detection of methylation activity. We accounted for non-enzymatic methylation, which has
149 been reported for some potential substrates, by including boiled enzyme and buffer-only controls
150 and subtracting that turnover from the experimental samples. Qualitative screening results are
151 presented below in Table 1. A subset of the semi-quantitative screening results is shown in
152 Extended Data Figure 1. Only aliphatic thiol compounds show significant methylation signal
153 above baseline.

154 **Table 1: Relative Turnover of Probe Substrates with METTL7B**


Substrate	Activity	Non-Substrate	Activity
7 α -thiospirostanolactone	+++	Dopamine	-
Dithiothreitol	+++	Phenylethanolamine	-
Thioglucose	++	Histamine	-
L-penicillamine	++	6-mercaptopurine	-
D-penicillamine	++	N-acetylcysteine	-
Hydrogen Sulfide	++	Arsenic Trioxide	-
Captopril	+	Cantharidin	-
Prasugrel Active Metabolite	+	Coenzyme M	-
		Cysteine	-
		Glutathione	-

155 We determined kinetic parameters for a subset of the identified substrates and they are
156 presented below in Figure 3. All substrates were only methylated in the presence of SAM and
157 catalytic activity was saturable and can be destroyed upon pre-boiling the enzyme. Additionally,
158 kinetic experiments were conducted under conditions where methylation was linear with respect
159 to incubation time and protein concentration (Extended Data Figures 2 and 3).

160 Hydrogen sulfide and SAM kinetic curves were obtained using mass spectrometric
161 methods measuring formation of methanethiol and S-methyl captopril respectively. 7 α -
162 thiospironolactone and dithiothreitol kinetic curves were obtained using the MTaseGlo kit
163 (Promega) which measures the formation of S-adenosyl-L-homocysteine (SAH), the byproduct
164 of all SAM-dependent methylation reactions.

165 Most substrates exhibit mid- to low-micromolar affinities to pET21 METTL7B. All
166 substrates display classic Michaelis-Menten kinetics as evidenced by highly linear Eadie-Hofstee
167 transformations of the data (Extended Data Figure 4).

168 **Figure 3. Rate of thiol methyl formation for pET21 METTL7B with multiple probe substrates: A)**

180 concentration curve for S-adenosyl-L-methionine use as measured by captopril methylation. **D)** PAR vs
181 concentration curve for hydrogen sulfide methylation as measured by formation of methanethiol. All data is
182 presented as the mean \pm standard deviation of biological replicates.

183

184 **Discussion:**

185 The key finding in this paper is the METTL7B encodes for an alkyl thiol
186 methyltransferase. We originally identified METTL7B as a candidate alkyl thiol
187 methyltransferase by proteomic analysis of partially purified rat liver microsomes. Subsequent
188 bioinformatics analysis determined that the human METTL7B had high sequence identity with
189 the rat enzyme and has a putative SAM binding domain. We first manipulated *METTL7B* gene
190 expression in human cell culture models to test that the gene product was associated with TMT
191 activity using captopril as a probe substrate. We chose HepG2 and HeLa cells for gene
192 knockdown and overexpression experiments because of their respectively high and low basal
193 levels of *METTL7B* mRNA. Reduction of *METTL7B* gene, and protein, expression resulted in a
194 decrease in captopril methylation. The opposite trend was observed upon gene overexpression,
195 where increasing *METTL7B* gene and protein expression vastly increased captopril methylation.

196 We then designed a plasmid to express and purify recombinant full-length METTL7B to
197 confirm that it was catalyzing the methylation event unequivocally. In our study, we discovered
198 that glycerol greatly stabilized recombinant METTL7B in solution and that methylation activity
199 was enhanced by adding dimyristoyl-*sn*-glycero-3-PG (DMPG) liposomes to reconstitute the
200 protein. This was critical to maintain activity of an enzyme that is highly unstable which may
201 have contributed to lack of characterization to date.

202 The METTL7B fusion protein catalyzes the *S*-methylation of multiple previously
203 identified TMT-specific substrates in a SAM-dependent manner. We observed no methylation
204 with a variety of probe substrates for other small molecule methyltransferases, as shown in
205 Figure 3. The substrates that undergo methylation conform to the substrate specificity

206 parameters previously determined using liver microsomes(1, 2, 24, 26). In general, METTL7B
207 methylates compounds that contain an easily accessible aliphatic thiol functional group. It is
208 important to note that METTL7B does not methylate 6-mercaptopurine, a classic thiopurine
209 methyltransferase (TPMT) probe substrate(37). This further confirms that METTL7B catalyzes
210 TMT-specific reactions rather than TPMT reactions. Additionally, consistent with prior reports,
211 neither cysteine nor glutathione are substrates, but hydrogen sulfide is enzymatically
212 methylated(23).

213 A potential key endogenous function of METTL7B is that it catalyzes the methylation of
214 hydrogen sulfide to methanethiol which has been detected *in vivo* but the exact function and
215 activity is still unknown. Maintenance of hydrogen sulfide homeostasis is crucial as it is known
216 to play a large role in inflammatory processes, cell cycle, and cancer progression(38). In
217 general, hydrogen sulfide exerts protective effects such as angiogenesis and cell growth at low
218 concentrations. As hydrogen sulfide concentrations increase, its beneficial effects give way to
219 toxicity, resulting in increased apoptosis(39, 40). Therefore, cancer cells with impaired
220 hydrogen sulfide oxidation pathways, due to the hypoxic nature of tumors, likely rely heavily on
221 methylation as a route of catabolism to prevent intracellular H₂S levels from reaching toxic
222 concentrations. Consequently, *METTL7B* is upregulated to potentially increase the rate of
223 clearance of hydrogen sulfide or perhaps to increase formation of methanethiol. It is clear,
224 however, that further research is required to fully characterize the role of METTL7B in the
225 metabolism and homeostasis of hydrogen sulfide, especially in disease states that exhibit altered
226 cellular redox states, such as the hypoxic interior of solid tumors. Additionally, it is important to
227 investigate the role of methanethiol in cancer progression and its potential as a signaling
228 molecule.

229 Overall, METTL7B possesses all of the known characteristics of the elusive human alkyl
230 thiol methyltransferase (TMT) and should be renamed as alkyl thiol methyltransferase. Human
231 METTL7B clearly catalyzes the SAM-dependent methyl transfer to exogenous and select
232 endogenous thiol compounds, distinct from TPMT and other small molecule methyltransferases.
233 METTL7B is involved in the metabolism of hydrogen sulfide, which may be important in cancer
234 and inflammation where gene expression is highly upregulated and hydrogen sulfide levels are
235 altered. Future work will focus on elucidating the *in vivo* role METTL7B plays in healthy and
236 diseased tissue.

237 **Bibliography:**

- 238 1. O. H. Drummer, P. Miach, B. Jarrott, S-methylation of captopril. Demonstration of
239 captopril thiol methyltransferase activity in human erythrocytes and enzyme distribution
240 in rat tissues. *Biochem. Pharmacol.* **32**, 1557–62 (1983).
- 241 2. R. A. Keith, I. Jardine, A. Kerremans, R. M. Weinshilboum, Human erythrocyte
242 membrane thiol methyltransferase. S-methylation of captopril, N-acetylcysteine, and 7
243 alpha-thio-spirolactone. *Drug Metab. Dispos.* **12**, 717–24 (1984).
- 244 3. H. Liu, Y. Liu, J. Qu, Construction of an eight-gene signature for survival evaluation of
245 papillary thyroid cancer patients. *Int J Clin Exp Med* **12**, 7241–7248 (2019).
- 246 4. Z. Dong, *et al.*, Identification of potential key genes in esophagael adenocarcinoma using
247 bioinformatics. *Exp. Ther. Med.* **18**, 3291–3298 (2019).
- 248 5. D. Ye, *et al.*, METTL7B promotes migration and invasion in thyroid cancer through
249 epithelial-mesenchymal transition. *J. Mol. Endocrinol.* **63**, 51–61 (2019).

250 6. F.-F. Guo, T.-C. Yu, J. Hong, J.-Y. Fang, Emerging Roles of Hydrogen Sulfide in
251 Inflammatory and Neoplastic Colonic Diseases . *Front. Physiol.* **7**, 156 (2016).

252 7. X. Cao, *et al.*, A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement:
253 Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? *Antioxid. Redox
254 Signal.* **31**, 1–38 (2019).

255 8. K. Módis, *et al.*, Effect of S-adenosyl-l-methionine (SAM), an allosteric activator of
256 cystathionine- β -synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in
257 vitro. *Nitric Oxide* **41**, 146–156 (2014).

258 9. J. B. Vicente, *et al.*, NO* binds human cystathionine β -synthase quickly and tightly. *J.
259 Biol. Chem.* **289**, 8579–8587 (2014).

260 10. M. R. Filipovic, J. Zivanovic, B. Alvarez, R. Banerjee, Chemical Biology of H2S
261 Signaling through Persulfidation. *Chem. Rev.* **118**, 1253–1337 (2018).

262 11. M. D. Levitt, J. Furne, J. Springfield, F. Suarez, E. DeMaster, Detoxification of hydrogen
263 sulfide and methanethiol in the cecal mucosa. *J. Clin. Invest.* **104**, 1107–14 (1999).

264 12. J. Furne, J. Springfield, T. Koenig, E. DeMaster, M. D. Levitt, Oxidation of hydrogen
265 sulfide and methanethiol to thiosulfate by rat tissues: A specialized function of the colonic
266 mucosa. *Biochem. Pharmacol.* **62**, 255–259 (2001).

267 13. F. Malagrinò, *et al.*, Hydrogen Sulfide Oxidation: Adaptive Changes in Mitochondria of
268 SW480 Colorectal Cancer Cells upon Exposure to Hypoxia. *Oxid. Med. Cell. Longev.*
269 **2019**, 8102936 (2019).

270 14. M. A. Kovach, *et al.*, Microarray analysis identifies IL-1 receptor type 2 as a novel
271 candidate biomarker in patients with acute respiratory distress syndrome. *Respir. Res.* **16**
272 (2015).

273 15. C. M. Mckinnon, H. Mellor, The tumor suppressor RhoBTB1 controls Golgi integrity and
274 breast cancer cell invasion through METTL7B. *BMC Cancer* **17** (2017).

275 16. R. D. Thiagarajan, *et al.*, Identification of Anchor Genes during Kidney Development
276 Defines Ontological Relationships, Molecular Subcompartments and Regulatory
277 Pathways. *PLoS One* **6**, e17286 (2011).

278 17. D. Liu, *et al.*, METTL7B Is Required for Cancer Cell Proliferation and Tumorigenesis in
279 Non-Small Cell Lung Cancer . *Front. Pharmacol.* **11**, 178 (2020).

280 18. P. C. Taylor, *et al.*, “Selective Inhibition of Janus Kinase 1 (JAK1) by Filgotinib
281 Modulates the Disease-Associated Whole Blood Transcriptional Profile of Patients With
282 Active Rheumatoid Arthritis.”

283 19. A. Farnsworth, *et al.*, Acetaminophen Modulates the Transcriptional Response to
284 Recombinant Interferon- β . *PLoS One* **5**, e11031 (2010).

285 20. K. N. Kashkin, *et al.*, Genes potentially associated with Cisplatin resistance of lung cancer
286 cells. *Dokl. Biochem. Biophys.* **438**, 147–150 (2011).

287 21. N. Ahmed, *et al.*, Unique proteome signature of post-chemotherapy ovarian cancer
288 ascites-derived tumor cells. *Sci. Rep.* **6**, 30061 (2016).

289 22. M. Karaźniewicz-Łada, *et al.*, Clinical pharmacokinetics of clopidogrel and its metabolites

290 in patients with cardiovascular diseases. *Clin. Pharmacokinet.* **53**, 155–164 (2014).

291 23. J. Bremer, D. M. Greenberg, Enzymic methylation of foreign sulphydryl compounds.
292 *Biochim. Biophys. Acta* **46**, 217–224 (1961).

293 24. R. A. Keith, D. M. Otterness, A. L. Kerremans, R. M. Weinshilboum, S-Methylation of D-
294 and L-penicillamine by human erythrocyte membrane thiol methyltransferase. *Drug*
295 *Metab. Dispos.* **13**, 669–76 (1985).

296 25. C. Liu, *et al.*, Human liver cytochrome P450 enzymes and microsomal thiol
297 methyltransferase are involved in the stereoselective formation and methylation of the
298 pharmacologically active metabolite of clopidogrel. *Drug Metab. Dispos.* **43**, 1632–41
299 (2015).

300 26. M. Kazui, K. Hagiwara, T. Izumi, T. Ikeda, A. Kurihara, Hepatic microsomal thiol
301 methyltransferase is involved in stereoselective methylation of pharmacologically active
302 metabolite of prasugrel. *Drug Metab. Dispos.* **42**, 1138–45 (2014).

303 27. R. S. Obach, C. Prakash, A. M. Kamel, Reduction and methylation of ziprasidone by
304 glutathione, aldehyde oxidase, and thiol s-methyltransferase in humans: An in vitro study.
305 *Xenobiotica* **42**, 1049–57 (2012).

306 28. R. A. Weisiger, W. B. Jakoby, Thiol S-methyltransferase from rat liver. *Arch. Biochem.*
307 *Biophys.* **196**, 631–7 (1979).

308 29. T. A. Glauser, A. L. Kerremans, R. M. Weinshilboum, Human hepatic microsomal thiol
309 methyltransferase. Assay conditions, biochemical properties, and correlation studies. *Drug*

310 *Metab. Dispos.* **20**, 247–55 (1992).

311 30. T. A. Glauser, E. Saks, V. M. Vasova, R. M. Weinshilboum, Human liver microsomal
312 thiol methyltransferase: inhibition by arylalkylamines. *Xenobiotica* **23**, 657–69 (1993).

313 31. R. Borchardt, C. Cheng, Purification and Characterization of Rat Liver Microsomal Thiol
314 Methyltransferase. *Biochim. Biophys. Acta* **522**, 340–353 (1978).

315 32. M. Käenmäki, *et al.*, Quantitative role of COMT in dopamine clearance in the prefrontal
316 cortex of freely moving mice. *J. Neurochem.* **114**, 1745–1755 (2010).

317 33. J. Axelrod, Purification and Properties of Phenylethanolamine-N-methyl Transferase. *J.*
318 *Biol. Chem.* **237**, 1657–1660 (1962).

319 34. D. D. Brown, J. Axelrod, R. Tomchick, Enzymatic N-Methylation of Histamine. *Nature*
320 **183**, 680 (1959).

321 35. D. J. Thomas, S. B. Waters, M. Styblo, Elucidating the pathway for arsenic methylation.
322 *Toxicol. Appl. Pharmacol.* **198**, 319–326 (2004).

323 36. P. K. Sahu, S. Chauhan, R. S. Tomar, The Crg1 N-Terminus Is Essential for
324 Methyltransferase Activity and Cantharidin Resistance in *Saccharomyces cerevisiae*.
325 *Biochemistry* **58**, 1799–1809 (2019).

326 37. R. M. Weinshilboum, S. L. Sladek, Mercaptopurine pharmacogenetics: Monogenic
327 inheritance of erythrocyte thiopurine methyltransferase activity. *Am. J. Hum. Genet.* **32**,
328 651–662 (1980).

329 38. J. L. Wallace, J. G. P. Ferraz, M. N. Muscara, Hydrogen Sulfide: An Endogenous

330 Mediator of Resolution of Inflammation and Injury. *Antioxid. Redox Signal.* **17**, 58–67
331 (2011).

332 39. D. Wu, *et al.*, Hydrogen sulfide in cancer: Friend or foe? *Nitric Oxide* **50**, 38–45 (2015).

333 40. D. Wu, *et al.*, Hydrogen sulfide acts as a double-edged sword in human hepatocellular
334 carcinoma cells through EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. *Sci.
335 Rep.* **7** (2017).

336 41. K. J. Livak, T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-
337 Time Quantitative PCR and the $2^{-\Delta\Delta CT}$ Method. *Methods* **25**, 402–408 (2001).

338 42. X. Shen, *et al.*, Measurement of plasma hydrogen sulfide in vivo and in vitro. *Free Radic.
339 Biol. Med.* **50**, 1021–31 (2011).

340 43. X. Shen, G. K. Kolluru, S. Yuan, C. G. Kevil, Measurement of H₂S in vivo and in vitro by
341 the monobromobimane method. *Methods Enzymol.* **554**, 31–45 (2015).

342 44. X. Shen, E. A. Peter, S. Bir, R. Wang, C. G. Kevil, Analytical measurement of discrete
343 hydrogen sulfide pools in biological specimens. *Free Radic. Biol. Med.* **52**, 2276–2283
344 (2012).

345 45. A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Mass Spectrometric Sequencing of
346 Proteins from Silver-Stained Polyacrylamide Gels. *Anal. Chem.* **68**, 850–858 (1996).

347

348

349 **Methods:**

350 *Materials:* Mammalian overexpression plasmids and siRNA were purchased from Origene
351 (Rockville, MD). HepG2 and HeLa cells were obtained from ATCC (Manassas, VA). Cell
352 culture materials and lipofection reagents were purchased from ThermoFisher (Waltham,
353 MA). Buffer salts were acquired from Sigma-Aldrich (St. Louis, MO) as well as
354 methyltransferase probe substrates unless otherwise indicated. S-adenosyl-L-methionine and
355 molecular biology kits were obtained from New England Biolabs (Ipswich, MA). Stellar
356 Competent cells were purchased from Takara (Mountain View, CA). LOBSTR-BL21(DE3)
357 competent cells were bought from Kerafast (Boston, MA). CHAPS detergent and UPLC-grade
358 solvents were obtained from Fisher Scientific (Hampton, NH). Sequencing grade porcine trypsin
359 and MTase-Glo Methyltransferase Assays were purchased from Promega (Madison, WI). 1,2-
360 Dimyristoyl-*sn*-glycero-3-PG (DMPG) and mertansine were obtained from Cayman Chemical
361 (Ann Arbor, MI). The active metabolite of prasugrel was a gift from Dr. Allan Rettie.

362 *HepG2 and HeLa Cell Culture:* Cells were maintained and expanded using Dubelco's Modified
363 Eagle Medium supplemented with 10% fetal bovine serum and 0.1% penicillin/streptomycin.
364 All cellular captopril methylation assays were conducted in serum-free media under optimized
365 incubation conditions. Cells used for RNA isolation were washed with 1x phosphate buffered
366 saline (PBS) prior to aspiration and storage at -80 °C until future use.

367 *Gene Expression Modulation:* HepG2 cells were treated with Lipofectamine RNAiMax (Thermo
368 Fisher Scientific, Waltham, MA) according to the manufacturer protocol, optimized for
369 transfection duration. *GAPDH* gene knockdown using the Trilencer small interfering RNA

370 (Origene, Rockville, MD) acted as the positive control for all gene expression knockdown
371 experiments.

372 Cells were transfected in 12-well plates using a reverse transfection protocol. Briefly,
373 *METTL7B* or scrambled siRNA was mixed with Lipofectamine RNAiMax in OptiMEM at room
374 temperature for a final siRNA concentration of 50 nM. HepG2 cells were harvested using
375 trypsin, pelleted, and resuspended to a final concentration of 200,000 cell/mL.
376 Lipofectamine/siRNA stocks were added to culture plate wells, followed by 1 mL of cells, for a
377 final concentration of 10 nM siRNA. Cells were allowed to incubate in the transfection media
378 for 72 hours followed by RNA isolation or captopril methylation assays.

379 HeLa cells were treated with Lipofectamine 3000 (Thermo Fisher Scientific) according to
380 the manufacturer protocol, optimized for transfection duration. Cells were transfected in 12-well
381 plates via reverse transfection where purified empty or FLAG-tagged *METTL7B* overexpression
382 plasmids (Origene) were mixed with P3000 reagent in OptiMEM at room temperature followed
383 by Lipofectamine 3000. HeLa cells were harvested via trypsinization, pelleted, and resuspended
384 to a final concentration of 200,000 cell/mL. Lipofectamine/plasmid stocks were added to culture
385 plate wells, followed by 1 mL of cells, for a final plasmid concentration of 833 ng/mL. Cells
386 were allowed to incubate in transfection media for 48 hours prior to RNA isolation or captopril
387 methylation assays.

388 *Measurement of Gene Expression Changes:* Cellular RNA was extracted using the MagMAX 96
389 Total RNA Isolation kit (Thermo Fisher Scientific) according to the manufacturer
390 protocol. RNA quality (A_{260}/A_{280}) and concentration was assayed using a NanoDrop
391 spectrophotometer. Isolated RNA was used to create cDNA using the High Capacity RNA-to-

392 cDNA kit (Thermo Fisher Scientific) according to the manufacturer protocol. Subsequently,
393 reverse-transcription polymerase chain reaction (RT-PCR) was conducted using an Applied
394 Biosystems StepOnePlus Real-Time PCR System with TaqMan FAM reporter primers for
395 *METTL7B*, *GAPDH*, and the housekeeping gene, *GusB*.

396 Expression level changes upon siRNA or plasmid treatment were determined using the
397 $\Delta\Delta C_T$ method(41). In this method, *METTL7B* cycle threshold (C_t) values are normalized to
398 *GusB* C_t values in all samples, yielding a ΔC_T value. Relative gene expression changes are then
399 calculated between treated and control cells using $2^{-\Delta\Delta C_T}$.

400 *Cellular Captopril Methylation Assay*: Cells with altered *METTL7B* gene expression were
401 created as described above. After the appropriate transfection period, cells were washed with 1x
402 PBS and treated with serum-free media containing 500 μ M captopril. Cell media aliquots were
403 sampled after 24 hours and the S-methyl captopril metabolite was measured via liquid
404 chromatography-tandem mass spectrometry (LC/MS-MS) and multiple reaction monitoring
405 (MRM).

406 The LC-MS/MS system used for captopril methylation analysis was a Waters Xevo TQS
407 mass spectrometer paired with a Waters Acquity LC. Compound separation was achieved using
408 a 2.1x100 mm Ascentis Express RP Amide column and 0.1% formic acid in water and 0.1%
409 formic acid in methanol as solvents A and B respectively. Column temperature was maintained
410 at 50 °C at all times. Chromatographic separation was obtained using the following gradient:
411 solvent B was held at 30% from 0 to 3 min, then held at 90% from 3 to 7 min, followed by re-
412 equilibration to the starting conditions for another 3 min for a total run time of 10 min. Flow rate

413 was held constant at 0.2 mL/min and flow was only diverted to the mass spectrometer between 2
414 to 7.5 min.

415 *S*-methyl captopril and the internal standard, d₃-*S*-methyl captopril, were monitored in
416 positive mode. The monitored mass transitions m/z+ were 232.1 > 89 and 232.1 > 116 (*S*-
417 methyl captopril) as well as 235.1 > 91.9 and 235.1 > 115.9 (internal standard). The MS
418 conditions were as follows: collision energy 15 V, cone voltage 30 V, capillary voltage 3.2 kV,
419 desolvation temperature 450 °C, desolvation gas flow 1,000 L/hr and cone gas 150 L/hr.

420 *METTL7B Expression and Purification:* Recombinant *METTL7B* was cloned in *E. coli* using a
421 unique expression plasmid created in our lab. The expression plasmid backbone was obtained
422 from pET21-10XHis-GST-HRV-dL5 which was a gift from Marcel Bruchez (Addgene plasmid
423 # 73214; <http://n2t.net/addgene:73214>; RRID:Addgene_73214). The human *METTL7B* gene
424 sequence was inserted into the plasmid using BamHI and EcoRI restriction sites and general
425 molecular biology techniques. All plasmid inserts were sequenced by Eurofins Genomics and
426 sequencing histograms were analyzed using FinchTV software.

427 Expression plasmids were propagated using heat-shocked Stellar cells. Individual
428 colonies were used to create glycerol stocks and purify expression plasmids which were then
429 sequenced for potential mutations. Validated plasmids were used to transform competent
430 LOBSTR-BL21(DE3) *E. coli* via heat shock. Unless otherwise noted, all *E. coli* growth
431 occurred on an orbital shaker at 250 rpm, 37 °C, and in the presence of 100 µg/mL ampicillin.

432 To express recombinant protein, LOBSTR-BL21(DE3) overnight cultures were added to
433 ampicillin-containing TB expression media at a ratio of 1:100. Briefly, cells were grown for 3
434 hours under normal growth conditions. Then, METTL7B production was induced via addition

435 of isopropyl β -D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM. The
436 temperature was reduced to 15 °C and the cells were grown for an additional 24 hours. Cells
437 were harvested via gentle centrifugation and the collected pellets were stored at -80 °C until
438 future processing.

439 Frozen cell pellets were thawed on ice in a 4 °C cold cabinet overnight prior to
440 lysis. Lysis was conducted by resuspending the cell pellet in cell lysis buffer (50 mM KPi pH
441 7.0, 20% glycerol, 150 mM NaCl, 10 mM CHAPS, EDTA-free Halt Protease Inhibitor Cocktail)
442 supplemented with 100 μ g/mL lysozyme (Sigma Aldrich). The cell solution was rotated end-
443 over-end at 4 °C until the solution had become extremely viscous. Then, the cell lysate was
444 treated with 100 μ g/mL DNA Nuclease I (Sigma Aldrich) and rotated at 4 °C or until no longer
445 viscous. The lysate was then centrifuged at 48,000 g for 30 minutes at 4 °C and the resulting
446 supernatant was retained for subsequent purification steps.

447 Purification was conducted using the ÄKTA start chromatography system (GE
448 Healthcare). Cell lysate supernatant was applied to a pre-packed and conditioned HisPur Ni-
449 NTA column (ThermoFisher) overnight at a low flow rate (0.5 mL/min). The column was
450 subsequently washed with Ni-NTA purification buffer (50 mM KPi pH 7.0, 20% glycerol, 10
451 mM CHAPS, 300 mM NaCl) containing 50 mM imidazole until A_{280} readings stabilize. Protein
452 was eluted from the column with purification buffer containing 300 mM imidazole until A_{280}
453 readings stabilized.

454 The HisPur Ni-NTA column eluent was directly applied to a pre-conditioned GSTrapFF
455 column at a flow rate of 1 mL/min for 4 hours. The column was then washed with GSTrapFF
456 purification buffer (50 mM KPi pH 7.0, 20% glycerol, 10 mM CHAPS, 150 mM NaCl) until

457 A₂₈₀ had decreased to baseline. Recombinant protein was eluted from the column using
458 purification buffer containing 10 mM reduced glutathione and adjusted to pH 8.0. Pooled eluent
459 was concentrated to appropriate working concentrations using Amicon Centriprep 10K
460 molecular weight cutoff centrifugal filter units. Final protein concentration was determined by
461 A₂₈₀ measurement and stocks were aliquoted and stored at -80 °C until future use.

462 *In vitro Captopril Methylation Using Recombinant METTL7B: In vitro* captopril methylation
463 was conducted using purified METTL7B fusion protein. The reaction buffer (50 mM KPi pH
464 7.0, 10 mM CHAPS, 20% glycerol, 150 mM NaCl, and 9 mg/mL DMPG) was placed in a
465 sonication water bath until the solution was clear to help form DMPG liposomes. Recombinant
466 enzyme was added at a ratio of 85:1 DMPG:METTL7B and allowed to incubate on ice for 30
467 minutes. Following the addition of captopril, the enzyme was pre-equilibrated at 37 °C for 2
468 minutes before initiation by addition of SAM to a reaction volume of 150 µL. The final
469 concentration of captopril was varied to collect the kinetic information and the final
470 concentration of SAM was held at 750 µM. The reaction was incubated for 25 minutes and then
471 quenched via addition of 15% (w/v) zinc sulfate in a 1:5 dilution to total reaction volume. The
472 quenched solution was incubated on ice for 10 minutes followed by a 1:6 addition of a saturated
473 barium hydroxide solution containing the d₃-S-methyl captopril internal standard. Following a
474 second 10-minute incubation on ice, the solution was centrifuged at 5,000 xg for 15 minutes to
475 pellet all precipitated proteins and salts.

476 Following centrifugation, 75 µL of supernatant was transferred to an opaque
477 polypropylene strip-well tube containing 5 µL of 2 M sodium hydroxide. Unreacted captopril
478 was derivatized at room temperature for 1 hour in the dark via addition of 20 µL of 2.5 M

479 maleimide to reduce ion suppression from non-methylated captopril. Derivatized samples were
480 centrifuged and the supernatant was analyzed by LC-MS/MS as previously described.

481 *In vitro Hydrogen Sulfide Methylation Using Recombinant METTL7B:* Protein concentration
482 and incubation with DMPG liposomes was conducted the same as described above. All steps
483 were conducted in a glove box under nitrogen unless otherwise indicated. Recombinant enzyme
484 was aliquoted into a polypropylene deep-well plate on ice along with SAM and NaSH for a final
485 volume of 150 μ L and 0.09 mg/mL and 83.3 μ M for protein and SAM concentrations
486 respectively. The plate was capped with a silicon mat and placed in a 37 °C water bath for 45
487 min under normal atmosphere. After incubation, the plate was placed back on ice under nitrogen
488 and quenched via a 1:15 addition of 0.3 M sodium hydroxide. 110 μ L of the quenched reaction
489 solution was added to 50 μ L of 20 mM monobromobimane (MBB), based off of published H₂S
490 derivatization method(42–44). Once capped under nitrogen, the reaction plate was incubated at
491 room temperature on an orbital shaker at 450 rpm for 30 min.

492 The MBB derivatization was quenched by addition of 50 μ L of 200 mM 5-sulfosalicylic
493 acid and 10 μ L of the ethyl 2-aminothiazole carboxylate (EATC) internal standard. Protein was
494 precipitated by addition of 15% (w/v) zinc sulfate and barium hydroxide as previously detailed.
495 Samples were centrifuged at 4,000 xg for 15 min and the supernatant was analyzed by LC-
496 MS/MS.

497 The LC-MS/MS system used for hydrogen sulfide methylation analysis was a Waters
498 Xevo TQS mass spectrometer paired with a Waters Acquity LC. Compound separation was
499 achieved using a 2.1x150 mm Acquity UPLC BEH Shield RP column and 0.2% acetic acid in
500 water and 0.2% acetic acid in acetonitrile as solvents A and B respectively. Column temperature

501 was maintained at 25 °C at all times. Chromatographic separation was obtained using the
502 following gradient: solvent B was held at 40% from 0 to 1 minutes, ramped to 90% from 1 to 3.5
503 minutes, held at 90% from 4.5 to 5 minutes followed by re-equilibration to the starting
504 conditions for another minute. Flow rate was held constant at 0.3 mL/min and flow was only
505 diverted to the mass spectrometer from 1 to 4.5 minutes.

506 Derivatized methanethiol and the internal standard, EATC, were monitored in positive
507 mode. The monitored mass transitions m/z+ were 239.22 > 175.24 and 239.22 > 192.2
508 (derivatized methanethiol) as well as 173.17 > 72.11 and 173.17 > 127.06 (internal
509 standard). The MS conditions were as follows: collision energy 24, 10, 24, 16 V for each
510 transition respectively, cone voltage 56 V, capillary voltage 2.9 kV, desolvation temperature 450
511 °C, desolvation gas flow 1,000 L/hr and cone gas 150 L/hr.

512 *Protein Purity Analysis:* All SDS-PAGE silver stain analysis was conducted using NuPAGE 4-
513 12% Bis-Tris gels in the XCell SureLock Mini-Cell Electrophoresis system using PageRuler Plus
514 Prestained Protein Ladder as a molecular weight marker. Samples were prepared using
515 NuPAGE LDS Sample Buffer sample buffer and 1.4 M β -mercaptoethanol before boiling for 5
516 minutes. Gels were run at room temperature, at a constant 200 volts, and developed using
517 previously published silver staining protocols(45).

518 All western blot analyses were conducted using the XCell SureLock Mini-Cell
519 Electrophoresis system, PageRuler Plus Prestained Protein Ladder, and NuPAGE 10-20%
520 Tricine gels. Samples were prepared using 4X Protein Loading Buffer (LiCor) and 0.7 M β -
521 mercaptoethanol before boiling for 5 minutes. After initial SDS-PAGE separation, the gel was
522 removed from the cassette and placed with PVDF blotting membrane into the XCell II Blot

523 Module according to the manufacturer protocol. Blot transfer was conducted over 1 hour at a
524 constant 30 volts on ice. The blot was blocked using Odyssey Blocking Buffer (LiCor) for 1
525 hour at room temperature. A primary antibody incubation was conducted overnight using the
526 suggested dilution factor for the rabbit anti-METTL7B (Sigma Aldrich), anti-FLAG (Cell
527 Signaling), anti-GST (Cell Signaling), or anti- β actin (Cell Signaling) antibodies. The secondary
528 antibody incubation was conducted for 1 hour at room temperature using IRDye 680RD goat
529 anti-rabbit antibody (LiCor). Western blots were scanned using an Odyssey gel scanner. Blot
530 images were visualized using Image Studio Version 4.0 software.

531 *Tryptic Digest:* In-gel tryptic digests of silver stained SDS-PAGE gels were conducted
532 following the method published by Shevchenko(45). Briefly, the protein band was excised from
533 the gel and dehydrated with neat acetonitrile. Protein bands were then treated with 10 mM
534 dithiothreitol (DTT) solution and incubated at 56 °C to reduce all proteins. The reduced bands
535 were treated with 55 mM iodoacetamide at room temperature in the dark to alkylate all exposed
536 cysteine side chains. Finally, the bands were incubated overnight at 37 °C with 13 ng/ μ L
537 trypsin-containing solution. Tryptic digestion peptides were extracted from the gel bands the
538 following day and concentrated in a centrifugal evaporator. Concentrated peptides were
539 analyzed using a high-resolution mass spectrometer, a Finnigan LTQ Orbitrap in our case, and
540 then used to identify the protein of interest via ProteinProspector.

541 The LC-MS system used for proteomic analysis was a Finnigan LTQ Orbitrap coupled to
542 a Waters Acquity LC. Peptides were separated using a 1x150 mm Acquity UPLC CSH C18
543 column and 0.1% formic acid in water and 0.1% formic acid in acetonitrile as solvents A and B.
544 Separation was achieved using the following gradient: solvent B was held at 5% for the first two
545 minutes, increased to 40% over the next 90 min, increased to 90% over the next five minutes and

546 held for an additional 8 minutes, then re-equilibrated over five minutes. The flow rate was held
547 at 0.06 mL/min and flow was diverted to the mass spectrometer from 2 to 95 minutes.

548 Peptides were analyzed using a data dependent scan method in positive mode. The initial
549 high resolution scan from 300-2,000 m/z was conducted in the FTMS with 60,000 resolution.
550 Four dependent scans were completed in the ion trap to obtain fragmentation. Dynamic
551 exclusion was enabled which excluded the top 25 most intense ions after they had been selected
552 twice over a four second window. The following mass spectrometer settings were used: sheath
553 gas flow rate was 12 arb, spray voltage was 3.5 kV, capillary temperature was 350 °C, capillary
554 voltage was 22 V, and tube lens voltage was 100 V.

555 *Substrate Screening:* Substrate screening was primarily conducted using the MTase-Glo Assay
556 (Promega). Briefly, recombinant METTL7B was prepared the same way as for use in the
557 captopril methylation assay. SAM was added to the METTL7B protein stock for a final
558 concentration of 50 µM and was aliquoted into a 384-well plate. Substrate was added to each
559 well and the plate was covered using Parafilm before incubating at 37 °C for 1 hour. The
560 incubation was quenched by a 1:5 addition of 0.5% trifluoro acetic acid. The samples were
561 processed according to the manufacturer protocol and luminescence was recorded for each well
562 using a Synergy HTX Multi-Mode Reader (BioTek).

563 *Data Analysis:* All experiments were conducted with biological triplicates, and repeated at least
564 two times on two different days. All data is reported as the mean \pm standard deviation, however
565 individual data points from multiple experiments are presented when possible. Statistical
566 significance was determined by a two-tailed unpaired *t* test with a threshold *P* value of 0.05.

567 Kinetic parameter Km values were obtained through non-linear regression analysis using
568 GraphPad Prism, version 8.3.1 for Windows (GraphPad Software, La Jolla, CA).

569 **Data Availability Statement:** The proteomic data that support the findings of this study are
570 available from PeptideAtlas, tagged as “pET21METTL7B”. All other data are available from
571 the corresponding author upon reasonable request.

572 **Materials Availability Statement:** Unique materials used when conducting the experiments
573 detailed in this study are available from the corresponding author upon reasonable request.

574 **Competing Interest Declaration:** All authors declare no competing interests.

575 **Funding Statement:** This work was partially funded by the National Institute of Health Heart
576 Lung and Blood institute grant number R01HL146603. BM was supported in part by the
577 National Institute of General Medical Sciences of the National Institutes of Health under Award
578 Number T32GM 007750 and the National Center For Advancing Translational Sciences of the
579 National Institutes of Health under Award Number TL1 TR002318. The content is solely the
580 responsibility of the authors and does not necessarily represent the official views of the National
581 Institutes of Health

582

583

584

585

586