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Summary: Measuring gene-gene dependence in single cell RNA sequencing (scRNA-seq) count data is often of

interest and remains challenging, because an unidentified portion of the zero counts represent non-detected RNA due

to technical reasons. Conventional statistical methods that fail to account for technical zeros incorrectly measure the

dependence among genes. To address this problem, we propose a bivariate zero-inflated negative binomial (BZINB)

model constructed using a bivariate Poisson-gamma mixture with dropout indicators for the technical (excess)

zeros. Parameters are estimated based on the EM algorithm and are used to measure the underlying dependence

by decomposing the two sources of zeros. Compared to existing models, the proposed BZINB model is specifically

designed for estimating dependence and is more flexible, while preserving the marginal zero-inflated negative binomial

distributions. Additionally, it has a simple latent variable framework, allowing parameters to have clear and intuitive

interpretations, and its computation is feasible with large scale data. Using a recent scRNA-seq dataset, we illustrate

model fitting and how the model-based measures can be different from naive measures. The inferential ability of the

proposed model is evaluated in a simulation study. An R package ‘bzinb’ is available on CRAN.

Key words: Bivariate count model; Correlation; dropout; EM algorithm; Negative binomial; Single cell RNA

sequencing; Zero-inflation.
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1. Introduction

Single cell RNA sequencing (scRNA-seq) is a high throughput sequencing technology that

profiles gene expression at a cell’s resolution (Kolodziejczyk et al., 2015). This is in contrast

to bulk RNA sequencing (RNA-seq), where a group of cells are sequenced altogether and

consequently no cell-level information is available in data. As a price for cell-level resolution,

scRNA-seq loses some information by the so-called “dropout” phenomenon; during sequenc-

ing steps (and capturing steps, e.g., in 10X sequencing platform) of scRNA-seq, a large

amount of RNAs are undetected. Consequently, the observed count data include a greater

number of zeros than reality (Risso et al., 2018, Hicks et al., 2017, Huang et al., 2018).

That is, an expressed gene in a cell might be recorded as zero due to low transcriptome

capture and sequencing efficiency (Huang et al., 2018). The artificially generated zeros due

to dropouts are “technical zeros,” and they are distinct from “biological” (or “real”) zeros

that are observed when genes were not actually expressed at the time of sample collection.

In contrast, in a bulk RNA-seq, zeros mostly represent real zeros (Hicks et al., 2017).

Statistical inferences at both individual gene level (Iacono et al. (2019) and Yu (2018))

and gene set level, e.g., pathways, can be misleading without considering technical zeros.

Inference of gene-gene dependence, e.g., the correlation-based method, has been widely used

in pathway analysis of bulk RNA-seq data (Zhang and Horvath, 2005), and recently also

used in scRNAseq data analysis (Iacono et al., 2019; Yu, 2018; Pont et al., 2019; Van Dijk

et al., 2018; Eraslan et al., 2019). However, correlation between two genes with technical

zeros in the scRNAseq will not reflect the true gene-gene dependence.

For example, a pair of genes, of which true expressions are highly correlated, would

have less correlation, based on the observed data, when only one of them have a large

amount of dropouts. On the other hand, a pair of uncorrelated genes would have higher

correlation, when both genes have dropouts in a substantial portion of the sample. The
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systematic bias will not vanish without adjusting for the technical zeros, regardless of what

dependence measure is used. This includes mutual information, MI(X, Y ) :=
∫ ∫
X×Y f(x, y)

log f(x,y)
f(x)f(y)

dxdy (Mc Mahon et al., 2014, Chan et al., 2017).

Two strategies have been considered to address bias generally in scRNA-seq data. Impu-

tation methods (Li and Li, 2018 and Peng et al., 2019) aim to provide expression levels free

of technical zeros by imputing some of the zeros. While imputation methods are versatile

in that they provide ready-to-use data, they are not deterministic, having different results

for every implementation. The second strategy is estimation of the count distribution. Once

having obtained information about the distribution of true expressions and technical zeros,

one can do downstream analyses such as measuring the dependence of the true expressions.

Models such as SAVER (Huang et al., 2018) and DESCEND (Wang et al., 2018) have been

proposed to estimate the count distribution of scRNA-seq data. For example, correlations can

be calculated from SAVER-recovered genes in unique molecule index (UMI)-based DropSeq

scRNA-seq data where its result is close to that measured from the “gold standard” RNA

fluorescence in situ hybridization (FISH) (Huang et al., 2018). However, many of the methods

taking this approach focus on modeling marginal distributions and they do not explicitly

posit dependence structure between two genes.

Our proposed method takes the distribution estimation approach where a bivariate distri-

bution explicitly addresses the dependence structure. Specifically, our method is built on a

bivariate generalization of the zero-inflated negative binomial (ZINB) model. For univariate

count data, zero-inflated negative binomial (ZINB) models have been well accepted and

have greater capability than Poisson, zero-inflated Poisson, and negative binomial models

in terms of handling augmented zeros and overdispersion. While negative binomial models

have been extensively used for bulk RNA-seq data without much zero-inflation (Love et al.,

2014, Robinson et al., 2010), ZINB models are typically used for scRNA-seq data (van den
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Berge et al., 2018, Risso et al., 2018). Therefore, we have a particular interest in a bivariate

generalization of ZINB models to model dependence of two genes in scRNA-seq data.

In consideration of underlying dependence in scRNA-seq data, it is noteworthy that there

have been proposed a variety of bivariate models that fit overdispersed count data: bi-

variate Poisson mixture models (Gurmu and Elder, 1999, Famoye, 2010, and Jørgensen,

1987), bivariate generalized Poisson models (Famoye and Consul, 1995) and copula models

(Cameron et al., 2004). These models can be further extended to flexibly accommodate

excess zeros by introducing zero-inflation parameters or composing hurdle models. For a

comprehensive survey of bivariate count models, refer to Cameron and Trivedi (2013) and

Chou and Steenhard (2011).

Of a plethora of the proposed models in the literature, many of the bivariate Poisson

mixture models and bivariate generalized Poisson models take overly complicated forms,

they do not have simple marginal distributions (e.g., GBIVARNB model in Gurmu and

Elder, 1999), and their parameters are hard to interpret and/or computationally expensive

to estimate. Copula-based bivariate models can be alternatives to the mixture models, but

they depend on the underlying copula models and can be difficult to interpret.

Many existing bivariate negative binomial models are primarily designed for modeling

marginal means rather than pairwise dependence. For example, Gurmu and Elder (1999)

discussed a bivariate negative binomial distribution (BIVARNB), but their model is specified

by only four parameters, which may not provide sufficient flexibility to delineate diverse

distributional structure. For such a bivariate joint distribution, four parameters are needed

to specify the first two marginal moments of each of the two independent variables, while

another parameter is needed solely for modeling the dependence. Subsequently Wang (2003)

extended BIVARNB to a zero-inflated BIVARNB regression setting. In this model, zero-

inflation is dictated by a single parameter, implying that when one variable either drops out
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or not, the other variable behaves exactly the same, which may not be the case for scRNA-

seq data; one gene can drop out, while the other does not. Instead, it is possible to have

three free parameters for the full joint zero-inflation probability structure (Li et al., 1999).

We propose a bivariate zero-inflated negative binomial model with eight parameters: five

parameters for the negative binomial part and another three free parameters for the zero-

inflation part. This model allows analyzing the dependence of two zero-inflated count vari-

ables parametrically but with more flexibility than existing models. That is, the five param-

eters of our proposed model can characterize all the five moments of the first two orders,

and the three zero-inflation parameters can model the dropouts with full flexibility.

The rest of the paper is organized as follows. In Section 2, we describe how the model

is constructed in the order of a Bivariate Negative Binomial model and a Bivariate Zero-

inflated Negative Binomial model. We present the maximum likelihood estimator using the

expectation-maximization (EM) algorithm in Section 3. In Section 4, we illustrate how well

the models fit data and how model-based dependence measures behave in contrast to naive

measures using real scRNA-seq data. Then in Section 5, we show how point and interval

estimators perform based on simulations. In Section 6, we address limitations of the models

and discuss potential extensions. Section 7 provides software information.

2. The model

2.1 A Bivariate Negative Binomial Model

In constructing the BZINB model, to induce dependence and zero-inflation, layers of latent

variables were used as in Kocherlakota and Kocherlakota (1992) and Li et al. (1999). We

first introduce a simpler model, the Bivariate Negative Binomial (BNB) model in this

subsection, and then generalize it to Bivariate Zero-Inflated Negative Binomial (BZINB)

model in Subsection 2.2.
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One of the key assumptions about the dependence structure of BNB (and BZINB) is that

the mean parameters of two Poisson random variables are gamma random variables that

share a common gamma random variable. Let Rj ∼ Gamma(αj, β) for j = 0, 1, 2, where αj

and β are the shape and scale parameters, respectively. Then (R0 +R1, R0 +R2) is bivariate

gamma distributed, denoted as BGamma(α0, α1, α2, β). To account for heterogeneous scales

of the two Poisson mean variables, we introduce an additional parameter δ ∈ R+. Then,

a pair (X1, X2) of Poisson variables with means (R0 + R1, δ(R0 + R2)) follow a bivariate

negative binomial distribution, denoted as

(X1, X2) ∼ BNB(α0, α1, α2, β1, β2), (1)

where we reparametrize (β, δ) as (β1, β2) = (β, δβ) and the observed density is given as,

fBNB(x1, x2)

=

∫∫∫
R3

+

(R0 +R1)
x1(R0 +R2)

x2e
− 1+β1+β2

β1
R0− 1+β1

β1
R1− 1+β2

β1
R2Rα0−1

0 Rα1−1
1 Rα2−1

2 βx22
x1!x2!Γ(α0)Γ(α1)Γ(α2)β

α0+α1+α2+x2
1

2∏
j=0

dRj

× 1(x1,x2)∈N2
0

=

x1∑
k=0

x2∑
m=0

(
α0 + x1 + x2 − k −m− 1

α0 + x2 −m− 1

)(
α0 + x2 −m− 1

α0 − 1

)(
α1 + k − 1

α1 − 1

)(
α2 +m− 1

α2 − 1

)
× βx11 β

x2
2 (β1 + β2 + 1)k+m−x1−x2−α0

(β1 + 1)k+α1(β2 + 1)m+α2
1(x1,x2)∈N2

0
,

where N0 denotes the nonnegative integer space, and superscripts represent the dimension

of the product space. The support indicators will be omitted throughout this paper when

the context is clear.

This bivariate negative binomial model (BNB) is marginally negative binomial, as we know

from the construction procedure that both X1 and X2 are Poisson random variables with

means marginally Gamma distributed, respectively:

Xj ∼ NB(α0 + αj,
1

βj + 1
) for j = 1, 2,

where the random variable X ∼ NB(ν, φ) can be interpreted as the minimum number of
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failures to have ν successes with probability of φ for each trial; i.e., its density is expressed

as fNB(x; ν, φ) =
(
x+ν−1
x

)
φν(1− φ)x.

Interpretation of the BNB parameters is straightforward: α0, α1, and α2 are the shape

parameters of latent variables, where the larger α0 implies a larger amount of shared compo-

nents in X1 and X2 and thus larger correlation; β1 and β2 controls the scale of X1 and X2,

respectively. Note in scRNA-seq data context, X1 and X2 may represent the true expression

level of each of two genes in a cell in the absence of dropout events, which we rarely observe

in practice.

The first two moments and the correlation of a BNB random pair are given as,

E(Xj) = (α0 + αj)βj j = 1, 2

V ar(Xj) = (α0 + αj)βj(βj + 1) j = 1, 2

Cov(X1, X2) = α0β1β2

Cor(X1, X2) =
α0√

(α0 + α1)(α0 + α2)

√
β1β2

(β1 + 1)(β2 + 1)
(2)

Note that this distribution only allows positive correlation. See Section 6 for more discussion.

Maher (1990) developed another bivariate negative binomial distribution that is a con-

strained case of BNB in a sense that the marginal means and variances are the same for

both variables.

One can further generalize this BNB model into a m-variate negative binomial model by

adding common latent gamma parameter(s) to the m gamma variables.

2.2 A Bivariate Zero-inflated Negative Binomial Model

In this subsection, we generalize BNB model to BZINB model by including zero-inflation

components. Since BZINB is also a generalization of univariate zero-inflated negative bino-
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mial model (ZINB), we illustrate the construction of univariate ZINB model first and move

to the bivariate version.

A univariate negative binomial model, NB(ν, φ), can be generalized to allow zero-inflation

by having an additional parameter, π: ZINB(ν, φ, π). The zero-inflated negative binomial

(ZINB) model has a latent variable interpretation. Let X follow NB(ν, φ) and E denote

the zero-inflation indicator having 1 with probability of π and 0 otherwise, independently

of X. Then Y ≡ (1 − E)X follows ZINB(ν, φ, π) with the density of fZINB(y; ν, φ, π) =

(1− π)fNB(y; ν, φ) + πζ(y), where ζ(a) ≡ 1(a=0).

Similarly, a multivariate zero-inflated random variable can be constructed using a latent

variable that follows the multivariate Bernoulli distribution as in the Poisson case (Li et al.,

1999). For a bivariate distribution, suppose we have a random vectorE ≡ (E1, E2, E3, E4)
> ∼

MN(1,π), where MN(1,π) denotes the multinomial distribution with a single trial and

an associated probability of π ≡ (π1, π2, π3, π4)
>. Now the bivariate zero-inflated negative

binomial distribution (BZINB) can be formulated as:

(Y1, Y2) := ((E1 + E2)X1, (E1 + E3)X2), (3)

where (X1, X2) ∼ BNB(α0, α1, α2, β1, β2) and E1, E2, E3 and E4 are the indicators of

observing both X1 and X2, only X1, only X2, and none of them, respectively. We say

(Y1, Y2) ∼ BZINB(α0, α1, α2, β1, β2, π1, π2, π3, π4). A simpler model with a restriction of

π2 = π3 = 0 can also be considered as in Wang (2003).

The density of a BZINB variable is

fBZINB(y1, y2;α,β,π)

= π1fBNB(y1, y2;α0, α1, α2, β1, β2) + π2fNB(y1;α0 + α1,
1

β1 + 1
)ζ(y2)

+ π3fNB(y2;α0 + α2,
1

β2 + 1
)ζ(y1) + π4ζ(y1 + y2),

where α = (α0, α1, α2)
>,β = (β1, β2)

>, and π = (π1, π2, π3, π4)
> with 1>π = 1.

Here, the parametersα and β have the same interpretation as in BNB but in the presence of
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dropouts, and π indicates the dropout probability, where π1, π2, π3, and π4 are the probability

that none, Y2 only, Y1 only, and both were dropped out, respectively.

In scRNA-seq data, Y1 and Y2 are the recorded number of expressions for each of two genes

in a cell. The term recorded was used in contrast to true in a sense that an unobserved subset

of the zeros are technical zeros due to dropouts.

This BZINB distribution is marginally ZINB, since the latent random variables, X1 and X2,

are marginally negative binomial random variables (from Subsection 2.1) with probabilities

of being observed, π1 + π2 and π1 + π3, respectively:

Yj ∼ ZINB(α0 + αj,
1

βj + 1
, π4−j + π4) for j = 1, 2. (4)

The first two moments of a BZINB pair are given as,

E(Yj) = (π1 + πj+1)(α0 + αj)βj j = 1, 2

V ar(Yj) = (α0 + αj)
2β2

j (π1 + πj+1)(1− π1 − πj+1)

+ (α0 + αj)βj(βj + 1)(π1 + πj+1) j = 1, 2

Cov(Y1, Y2) = {α0 + (α0 + α1)(α0 + α2)}β1β2π1

− (α0 + α1)(α0 + α2)β1β2(π1 + π2)(π1 + π3),

and the correlation ρ(Y1, Y2) is not further simplified than Cov(Y1, Y2)/
√
V ar(Y1)V ar(Y2).

When dropouts are not real zeros but instead represent non-zero counts caused by technical

reasons, then the true underlying correlation ρ∗ of Y1 and Y2 under BZINB model is simply

the correlation of X1 and X2 (Equation (2)), which is

ρ∗(Y1, Y2) =
α0√

(α0 + α1)(α0 + α2)

√
β1β2

(β1 + 1)(β2 + 1)
. (5)
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3. Estimation

With the natural interpretation of BZINB model as layers of latent variables, one can

estimate the parameters by the expectation-maximization (EM) algorithm.

The complete density is given as,

f(Y1, Y2, X1, X2, R0, R1, R2, E1, E2, E3, E4)

= f(X1, X2, R0, R1, R2, E1, E2, E3, E4)× 1(Y1=X1(E1+E2),Y2=X2(E1+E3))

with

f(X1, X2, R0, R1, R2, E1, E2, E3, E4)

=
(R0 +R1)

X1(R0 +R2)
X2Rα0−1

0 Rα1−1
1 Rα2−1

2 βX2
2

∏4
k=1 π

Ek
k

X1!X2!Γ(α0)Γ(α1)Γ(α2) exp{R0
1+β1+β2

β1
+R1

1+β1
β1

+R2
1+β2
β1
}βX2+α0+α1+α2

1

× 1∑4
k=1 Ek=1.

Thus, the full individual log-likelihood for the ith entry, or the ith cell, is

lFulli

= X1,i log(R0,i +R1,i) +X2,i log(R0,i +R2,i)

+ (α0 − 1) logR0,i + (α1 − 1) logR1,i + (α2 − 1) logR2,i

+X2,i log β2 − (X2,i + α0 + α1 + α2) log β1 +
4∑

k=1

Ek,i log πk − logX1,i!− logX2,i!

− log Γ(α0)− log Γ(α1)− log Γ(α2)−R0,i
1 + β1 + β2

β1
−R1,i

1 + β1
β1

−R2,i
1 + β2
β1

+ log 1(Y1,i=X1,i(E1,i+E2,i)) + log 1(Y2,i=X2,i(E1,i+E3,i)) + log 1∑4
k=1 Ek=1.

The expected full log-likelihood conditional on the observed data is linear in E[Rj,i|Y1,i, Y2,i;θ],

E[log(Rj,i|Y1,i, Y2,i;θ)], E[Ek,i|Y1,i, Y2,i;θ], and E[X2,i|Y1,i, Y2,i;θ], where θ ≡ (α>,β>,π>)>,

j = 0, 1, 2 and k = 1, 2, 3, 4. The formulae of the components are given in Web Appendix A.

As the likelihood is the product of functions convex with respect to each of the parameters,

the maximization can be achieved by solving a system of score equations. The individual

scores are given as:
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∂αjE[lFulli |·] = E[logRj,i|·]− log β1 − ψ(αj) j = 0, 1, 2

∂β1E[lFulli |·] = E[R0,i +R2,i|·]
1 + β2
β2
1

+
E[R1,i|·]
β2
1

− α0 + α1 + α2 + E[X2,i|·]
β1

∂β2E[lFulli |·] = −E[R0,i +R2,i|·]
β1

+
E[X2,i|·]

β2

∂πjE[lFulli |·] =
E[Ej,i|·]
πj

− 1− E[Ej,i|·]
1− πj

j = 1, 2, 3,

where the conditioning arguments (Y 1,Y 2;θ) are suppressed as (·) and can be replaced with

(Y1,i, Y2,i;θ) where we assume a sample of independent entries, Y l denotes (Yl,1, ..., Yl,n)> for

l = 1, 2, n is the sample size, and ∂ab denotes the partial derivative of b with respect to a.

At the k + 1st iteration of the EM algorithm, we get θ(k+1) by solving the score equations

∂θ
∑n

i E[lFulli |Y 1,Y 2,θ
(k)] = 0:

β
(k+1)
2

β
(k+1)
1

=
Ē[X2,i|·]

Ē[R0,i +R2,i|·]

β
(k+1)
1 =

Ē[R0,i +R1,i +R2,i|·]
α
(k+1)
0 + α

(k+1)
1 + α

(k+1)
2

π
(k+1)
j = Ē[Ej,i|·] j = 1, 2, 3, 4

α
(k+1)
j = ψ−1{− log β

(k+1)
1 + Ē[logRj,i|·]} j = 0, 1, 2,

where Ē[A|·] denotes the empirical average of the conditional expectations, i.e., 1
n

∑n
i E[Ai|·],

ψ(·) is the digamma function, and the conditioning arguments (Y 1,Y 2,θ
(k)) are again

suppressed. The equations can be solved by solving the following through Newton-Raphson

algorithm:

Solve for β1 =
Ē[R0 +R1 +R2|·]∑2

k=0 ψ
−1(− log β1 + Ē[logRk|·])

.

Then get αj = ψ−1(− log β1 + Ē[logRj|·]).

After iterations enough to observe convergence, the final updated parameter values serve

as the maximum likelihood estimate.
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The standard error of the maximum likelihood parameter estimates can be calculated using

observed information. In Web Appendix B, detailed formulae are given, and simulations

illustrating the accuracy of standard error estimation are included in Section 5.

4. Model and measure comparisons based on real data

4.1 Model comparison using real data

In this section, we show how the BZINB model fits real scRNA-seq data compared to its

nested models (in Subsection 4.1) and present how model-based dependence measures can be

different from naive measures (in Subsection 4.2). The data were collected from paneth cells

of C57Bl6 mouse with a Sox9 gene knockout. The Fluidigm C1 system was used to capture

single cells and generate Illumina libraries using manufacutrers’ protocols. Illumina NextSeq

sequencing platform was used for paired end sequencing. Reads per cell were demultiplexed

using mRNASeqHT demultiplex.pl, a script provided by Fluidigm. Low quality base calls and

primers were removed using Trimmomatic (Bolger et al., 2014) and poly-A tails were removed

using a custom perl script. Reads were aligned to the mouse genome (mm9) using STAR

(https://academic.oup.com/bioinformatics/article/29/1/15/272537) and read per gene were

counted using htseq-count (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287950/). The

data are composed of 23,425 genes for 800 cells, where all the cells came from a single mouse

and have the same cell type. Over 90% of genes have more than 90% zero counts and the

average proportion of zero counts for a gene is 97.3% in these zero-inflated data.

We compare four nested models: BZINB, BNB, bivariate zero-inflated Poisson (BZIP),

and bivariate Poisson (BP). BZIP has fixed mean values instead of latent gamma variables

of BZINB, and BP further lacks zero-inflation components. The estimated densities of these

models are compared with the empirical density for 50 gene pairs.

To systematically study the model performances, we performed stratified sampling of genes
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according to their proportion of zeros; strata H, M, L, and V include genes with > 90%, 80%

to 90%, 60% to 80%, and < 60% zeros, respectively. Genes with > 98% of zeros and genes

with extremely large expression (> 10, 000 counts for at least one cell) were screened out.

After screening out those irregular genes, each group has 81.4%, 13.5%, 4.2%, and 0.9% of

genes in the order.

We randomly selected 5 pairs from each possible combination of two strata (HH, MM,

LL, VV, HM, HL, HV, ML, MV, and LV) without replacement. For each of the 50 pairs (5

pairs × 10 combinations), we estimated the parameters of the four nested models. Based on

the parameter estimates, the distributions of the four models were compared. As it is not

straightforward to compare the estimated model-based densities with the empirical density,

we drew a random sample of size n = 800 from each estimated model and the resulting

empirical densities were then compared (Figure 1 for several pairs and Web Figure 1 for

all the 50 pairs). As we cannot preclude the chance of getting unlikely instances by doing

Monte Carlo sampling, we added results of two more replicates in Web Figures 2 and 3. We

furthermore illustrate the exact values of the estimated density in Figure 2 for a couple of

pairs and in Web Figure 4 for all the pairs.

Figure 1 illustrates the real and the model-based empirical distributions for the first pairs

of 10 combinations. The results including all 50 pairs and their replicates can be found in Web

Figures 1 to 3. For any pair, the BP model obviously fails to address the overdispersion and

zero-inflation, while the BZIP model could not properly mimic the overdispersion. BNB and

BZINB seem to fairly mimic the real distribution in most of the pairs. The poor performances

of Poisson-based models and decently good performances of BNB and BZINB models can

also be seen on Figure 2.

However, when genes have some large-valued counts and many zeros at the same time

either marginally or jointly, BZINB has an apparent advantage over BNB model. Often, in
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Bivariate zero-inflated negative binomial model for dependence 13

BNB model, nonzero count pairs are highly concentrated on the diagonal line, while nonzero

counts in BZINB model are more dispersed away from the diagonal line (LL1 in Figure 1 and

more examples in Web Figures 1 to 3). This can be explained by the lack of flexibility of BNB

model. When data are highly zero-inflated but overdispersed at the same time, BNB is forced

to have small shape parameters (αj, j = 0, 1, 2) and large scale parameters (βj, j = 1, 2)

while keeping the mean of the latent Gamma variables, E[Rj] = αjβ1, close to zero. These

latent Gamma variables, serving as mean parameters of Poisson variables, take on very small

values most of the times and very large values with small chance. It is unlikely that both

R1 and R2 have large numbers at the same time (CASE 1), but it is more frequent that R0

alone has a large number (CASE 2). Thus, the latent Poisson variables, X1 and X2, are more

likely to have similarly large numbers (resulting from CASE 2) than to have significantly

different nonzero numbers (resulting from CASE 1).

[Figure 1 about here.]

[Figure 2 about here.]

4.2 Real data example of dependence measures

When the excess zeros are believed to come from dropouts, BZINB model may uncover the

true underlying dependence using measures such as ρ∗ and MI∗. Note that MI∗ is defined

similarly to that of ρ∗ and can be estimated by first estimating the BZINB model parameters

and by measuring the mutual information of the estimated distribution after replacing π with

(1, 0, 0, 0)>.

For the same 50 pairs in the previous subsection, we estimated the dependence using naive

measures – Pearson correlation (PC) and empirical mutual information (EMI) – and zero-

inflation adjusted measures – underlying correlation (ρ∗) and underlying MI (MI∗) based on

BZINB model. Figure 3 summarizes the estimates for all the pairs. The plots of empirical
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distribution with estimated dependence measures for each pair are also available on Web

Figure 5.

In Figrue 3 LEFT, we see that PC and ρ∗ mostly behave in the same direction, but also

that they can have values in the opposite directions (e.g., HL5 and HL4). If we judge whether

two genes are correlated based on (naive) Pearson correlation (PC) with a certain threshold,

say PC > 0.2, many genes might be missed (e.g., HL5) or falsely included (e.g., HL4).

Similar analyses can be done for MI-based measures. Both EMI and MI∗ estimates are

correlated, however, there are pairs that are located away from the tendency. For example

the pair MV1 has highest MI∗, while its EMI is not one of the highest. Also note that the

values of MI∗ are in general less than those of EMI for scRNA-seq data. Heavy proportion

of zero-zero pairs boosts naive EMI, while MI∗ removes the effects of the co-zero-inflation.

These results suggest that measures that fail to distinguish between technical and real

zeros may be highly misleading.

[Figure 3 about here.]

5. Evaluation of estimators based on simulation

We ran simulations to study the performance of estimators of underlying correlation and the

associated standard error under finite sample size. We considered 40 distinct sets of BZINB

parameter values (Table 1). Note that for each of ρ∗s there are two distinct sets of parameters

(α,β), the first (a) of which have lower α values and the second (b) of which have higher α

values. For each parameter set (α,β,π) and for n = 250, 500, 800, 1500, 2500, we generated

random BZINB samples of size n, nsim = 1, 000 times.

[Table 1 about here.]

For each k of nsim simulation replicates, we got an estimate ρ̂∗k of the parameter ρ∗,

the standard error estimate se(ρ̂∗k), and the logit-transformed 95% confidence interval (i.e.,
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Bivariate zero-inflated negative binomial model for dependence 15

logit−1(logit(ρ̂k)± 1.96 se(ρ̂k)
ρ̂i(1−ρ̂k)

)). Then for each set of parameters, the following three quan-

tities were calculated:

• the average standard error (SE, s̄e(ρ̂∗))

• the standard deviation of the parameter estimates (SD, sd(ρ̂∗))

• the empirical coverage probability (CP, 1
nsim

∑nsim

k=1 1ρ∗∈CIk , where CIk is the logit-transformed

95% confidence interval for the kth replicate).

[Figure 4 about here.]

[Figure 5 about here.]

The simulation results are provided in Figures 4 and 5. First, the mean parameter estimates

are close, or getting closer as sample size grows, to their true parameter values for each of

the 40 scenarios. For most of the 40 parameter sets, CP was close to 0.95, and for those not

close, CP gets closer to 0.95 with increasing sample size. In the same context, the average

standard error (SE) was close to the standard deviation of the parameter estimates (SD)

especially when the sample size was large. However, when the true underlying correlation

was close to zero (i.e., 0.01 in our example), standard error estimation did not perform as

well in terms of both CP and closeness of SE to SD. The parameter value being near the

boundary may be responsible for the poorer performance.

6. Discussion

In this paper, we proposed the BZINB model that enables accurate estimation of pairwise

dependence between two genes in scRNA-seq data. It models bivariate count data with high

flexibility by having eight free parameters and at the same time with simple latent variable

interpretations. By decomposing two sources of zeros, the distribution of counts without

zero-inflation is recovered and the dependence is measured accordingly.

In our BZINB model, we assume an independent and identically distributed random
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bivarate sample of zero-inflated counts. One can generalize this homogeneous mean model to

allow for subgroup analysis or joint conditional mean analysis by introducing the generalized

linear model framework. As in the univariate ZINB regression, the latent count variables

(i.e., X1 and X2) can be modeled using linear predictors with some link function.

Our model can be applied to other settings where there is a belief in two sources of zeros

such as frailty, e.g., the first source corresponds to a cohort of people who are not susceptible

to disease and will always have a zero count; the other source are random zeros among

susceptible individuals. In this case, the dependence measure proposed in this article applies

to the bivariate outcome among the latent class of individuals that are susceptible to disease.

When the mRNAs are perfectly captured and sequenced in all cells, zeros always indicate

that genes are not expressed, i.e., they are real zeros. In these settings where the excess

zeros are not caused by dropout, the overall mean count and the proportion of subjects with

positive counts have meaningful interpretations that may be directly modeled by marginal-

ized ZINB (Preisser et al., 2016) and hurdle models (Mullahy, 1986), respectively. Directly

modeling the observed counts (i.e., (Y1, Y2)) using such models extended to bivariate counts

could be beneficial. These scenarios underscore that any model, including BZINB, may not

be ideal for all purposes, and that the statistical model for zero-inflated counts should be

chosen to match the research question (Preisser et al., 2017).

In the BZINB model, allowing only positive ρ∗ can be regarded as a limitation. One

justification for the BZINB model is that the negative correlation of count data are not

so prevalent in reality. For example, in genomics data, there are some genes that suppress

other genes from being expressed, however, such genes either are relatively rare or have weak

negative correlation with other genes. On the other hand, when we believe that the zeros are

mostly true zeros, we can consider using the original correlation (ρ(Y1, Y2)) which allows for

negative correlation, instead of ρ∗(Y1, Y2).
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An alternative to this fully parametric approach is to use the weighted Pearson correlation

based on the parameter estimates. One way is to use the estimated conditional probability

of no dropout as a weight for each entry. Since the estimated dropout probability is used in

a form of weight, this correlation measure is more robust to model misspecification. It also

allows negative correlation values.

As discussed before, the BZINB model can also be generalized to a multivariate zero-

inflated negative binomial model. This model may have an exponentially increasing number

of latent variables or parameters as the dimension gets large. Though the lack of parsimony

may make the multivariate model look less attractive, the idea can be very practically used in

simulating multivariate zero-inflated count data and potentially in statistical analysis based

on Bayesian models. For instance, a genomic count data with large amount of zeros can be

mimicked by a set of latent random layers along with the generalized linear model framework.

7. Software

An R package bzinb estimating BZINB parameters using EM algorithm was written in R

version 3.5.1 (R Core Team, 2019), and is available on CRAN. The R codes for the real data

example analysis and simulation study are included in Web Appendix C.

Acknowledgements

The authors thank Drs. Scott Magness and Joshua Starmer for providing the mouse paneth

scRNA seq data and Dr. Terence P. Speed for helpful discussion.

References

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for

illumina sequence data. Bioinformatics 30, 2114–2120.

Cameron, A. C., Li, T., Trivedi, P. K., and Zimmer, D. M. (2004). Modelling the differences

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.03.06.977728doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977728
http://creativecommons.org/licenses/by-nd/4.0/


18 Biorxiv, 000 0000

in counted outcomes using bivariate copula models with application to mismeasured

counts. The Econometrics Journal 7(2), 566–584.

Cameron, A. C. and Trivedi, P. K. (2013). Regression analysis of count data. Cambridge

university press.

Chan, T. E., Stumpf, M. P., and Babtie, A. C. (2017). Gene regulatory network inference

from single-cell data using multivariate information measures. Cell systems 5(3), 251–

267.

Chou, N. T. and Steenhard, D. (2011). Bivariate count data regression models - a SAS R©

macro program. Sas global forum - statistics and data analysis, SAS Institute.

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S., and Theis, F. J. (2019). Single-cell

rna-seq denoising using a deep count autoencoder. Nature communications 10, 390.

Famoye, F. (2010). On the bivariate negative binomial regression model. Journal of Applied

Statistics 37(6), 969–981.

Famoye, F. and Consul, P. C. (1995). Bivariate generalized poisson distribution with some

applications. Metrika 42(1), 127–138.

Gurmu, S. and Elder, J. (1999). Generalized bivariate count data regression models.

Economics Letters 68(1), 31–36.

Hicks, S. C., Townes, F. W., Teng, M., and Irizarry, R. A. (2017). Missing data and technical

variability in single-cell rna-sequencing experiments. Biostatistics 19(4), 562–578.

Huang, M., Wang, J., nd H. Dueck, E. T., Shaffer, S., Bonasio, R., ..., and Zhang, N. R.

(2018). Saver: gene expression recovery for single-cell rna sequencing. Nature methods

15(7), 539–542.

Iacono, G., Massoni-Badosa, R., and Heyn, H. (2019). Single-cell transcriptomics unveils

gene regulatory network plasticity. Genome biology 20, 110.

Jørgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society:

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.03.06.977728doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977728
http://creativecommons.org/licenses/by-nd/4.0/


Bivariate zero-inflated negative binomial model for dependence 19

Series B (Methodological) 49(2), 127–145.

Kocherlakota, S. and Kocherlakota, K. (1992). Bivariate Discrete Distributions. Marcel

Dekker: New York.

Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C., and Teichmann, S. A. (2015).

The technology and biology of single-cell rna sequencing. Molecular cell 58(4), 610–620.

Li, C., Lu, J., Park, J., Kim, K., Brinkley, P. A., and Peterson, J. P. (1999). Multivariate

zero-inflated poisson models and their applications. Technometrics 41(1), 29–38.

Li, W. V. and Li, J. J. (2018). An accurate and robust imputation method scimpute for

single-cell rna-seq data. Nature communications 9, 997.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and

dispersion for rna-seq data with deseq2. Genome biology 15(12), 550.

Maher, M. J. (1990). A bivariate negative binomial model to explain traffic accident

migration. Accident Analysis & Prevention 22(5), 487–498.

Mc Mahon, S. S., Sim, A., Filippi, S., Johnson, R., Liepe, J., Smith, D., and Stumpf, M. P.

(2014). Information theory and signal transduction systems: from molecular information

processing to network inference. volume 35 of Seminars in cell & developmental biology,

pages 98–108. Academic Press.

Mullahy, J. (1986). Specification and testing of some modified count data models. Journal

of Econometrics 33(3), 341–365.

Peng, T., Zhu, Q., Yin, P., and Tan, K. (2019). Scrabble: single-cell rna-seq imputation

constrained by bulk rna-seq data. Genome biology 20, 88.

Pont, F., Tosolini, M., and J, F. J. (2019). Single-cell signature explorer for comprehensive

visualization of single cell signatures across scrna-seq data sets. Nucleic Acids Research

47, e133.

Preisser, J. S., Das, K., Long, D. L., and Divaris, K. (2016). Marginalized zeroinflated

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.03.06.977728doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977728
http://creativecommons.org/licenses/by-nd/4.0/


20 Biorxiv, 000 0000

negative binomial regression with application to dental caries. Statistics in M edicine

35(10), 1722–1735.

Preisser, J. S., Long, D. L., and Stamm, J. W. (2017). Matching the statistical model to the

research question for dental caries indices with many zero counts. Caries research 51,

198–208.

R Core Team (2019). R: A language and environment for statistical computing.

Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S., and Vert, J. P. (2018). A general and flex-

ible method for signal extraction from single-cell rna-seq data. Nature communications

9(1), 284.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edger: a bioconductor package

for differential expression analysis of digital gene expression data. Bioinformatics 26(1),

139–140.

van den Berge, K., Perraudeau, F., Soneson, C., Love, M. I., Risso, D., Vert, J. P., ..., and

Clement, L. (2018). Observation weights unlock bulk rna-seq tools for zero inflation and

single-cell applications. Genome biology 19(1), 24.

Van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., Burdziak, C., Moon,

K. R., Chaffer, C. L., Pattabiraman, D., et al. (2018). Recovering gene interactions from

single-cell data using data diffusion. Cell 174, 716–729.

Wang, J., Huang, M., Torre, E., Dueck, H., Shaffer, S., Murray, J., Raj, A., Li, M., and Zhang,

N. R. (2018). Gene expression distribution deconvolution in single-cell rna sequencing.

Proceedings of the National Academy of Sciences 115, E6437–E6446.

Wang, P. (2003). A bivariate zero-inflated negative binomial regression model for count data

with excess zeros. Economics Letters 78(3), 373–378.

Yu, T. (2018). A new dynamic correlation algorithm reveals novel functional aspects in single

cell and bulk rna-seq data. PLoS computational biology 14, e1006391.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.03.06.977728doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977728
http://creativecommons.org/licenses/by-nd/4.0/


Bivariate zero-inflated negative binomial model for dependence 21

Zhang, B. and Horvath, S. (2005). A general framework for weighted gene co-expression

network analysis. Statistical applications in genetics and molecular biology 4(1),.

Supplementary Materials

Web Appendices A and B, referenced in Section 3, Web Appendix C, referenced in Section 7,

Web Figures 1 to 5, referenced in Section 4 are available in the Supplementary Materials.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.03.06.977728doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977728
http://creativecommons.org/licenses/by-nd/4.0/


22 Biorxiv, 000 0000

Figure 1. The bivariate distribution of real and simulated mouse paneth RNA count
data. Each box corresponds to the first pair of each of the combination, HH1, MM1, LL1,
VV1, HM1, HL1, HV1, ML1, MV1, and LV1, where letters represent stratum with varying
proportions of zeros and the numbers represent the number of the pair in each combination.
Each box has the real empirical distribution (LEFT), and the four model-based simulated
empirical distributions (RIGHT).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2020. ; https://doi.org/10.1101/2020.03.06.977728doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977728
http://creativecommons.org/licenses/by-nd/4.0/


Bivariate zero-inflated negative binomial model for dependence 23

Figure 2. The model estimates of bivariate densities (lines) and the empirical densities
(dots) of two gene pairs.
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Figure 3. Estimated dependence measures of 50 pairs. Pearson correlation and underlying
correlation estimates (LEFT). Empirical and underlying mutual information estimates
(RIGHT).
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Figure 4. Mean parameter estimates (ρ̂∗) and CP (each color represents distinct simulation
scenarios.)
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Figure 5. SE and SD (each color represents distinct simulation scenarios.)
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Table 1
The set of parameters for simulation. Combination of (α0, α1, α2, β1, β2) and (π1, π2, π3, π4) below makes

40(= 8 × 5) sets in total.

underlying correlation # (α0, α1, α2, β1, β2)

1. high (ρ∗ = 0.6) 1-a (0.2, 0.05, 0.05, 3.0, 3.0)
1-b (2.0, 0.7, 0.1, 2.5, 2.5)

2. moderate (ρ∗ = 0.3) 2-a (1.0, 1.0, 1.0, 1.5, 1.5)
2-b (3.0, 2.0, 1.0, 1.5, 0.5)

3. low (ρ∗ = 0.1) 3-a (0.2, 0.3, 3.0, 2.0, 1.5)
3-b (0.5, 2.0, 2.0, 0.5, 3.0)

4. very low (ρ∗ = 0.01) 4-a (0.01, 0.1, 1.0, 0.5, 0.5)
4-b (0.05, 2.0, 3.0, 3.0, 0.5)

zero-inflation (π1, π2, π3, π4)

i. low (0.7, 0.1, 0.1, 0.1)
ii. moderate-balanced (0.5, 0.15, 0.15, 0.2)
III. moderate-unbalanced (0.5, 0.1, 0.3, 0.1)
iv. high-balanced (0.2, 0.2, 0.2, 0.4)
v. high-unbalanced (0.2, 0.1, 0.4, 0.3)
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