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Abstract

Gene set enrichment analysis has become one of the most frequently used applications in molecular
biology research. Originally developed for gene sets, the same statistical principles are now available
for all omics types. In 2016, we published the miRNA enrichment analysis and annotation tool
(miEAA) for human precursor and mature miRNAs.

Here, we present miEAA 2.0, supporting miRNA input from Homo sapiens, Mus musculus, and
Rattus norvegicus. To facilitate inclusion of miEAA in workflow systems, we implemented an Ap-
plication Programming Interface (API). Users can perform miRNA set enrichment analysis using
either the web-interface, a dedicated Python package, or custom remote clients. Moreover, the num-
ber of category sets was raised by an order of magnitude. We implemented novel categories like
annotation confidence level or localisation in biological compartments. In combination with the miR-
Base miRNA-version and miRNA-to-precursor converters, miEAA supports research settings where
older releases of miRBase are in use. The web server also offers novel comprehensive visualisations
such as heatmaps and running sum curves with background distributions. Lastly, additional meth-
ods to correct for multiple hypothesis testing were implemented. We demonstrate the new features
using case studies for human kidney cancer and mouse samples. The tool is freely accessible at:
https://www.ccb.uni-saarland.de/mieaa2.
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Introduction

Transcriptomics designates an indispensable set of techniques to study gene expression, often in a genome-wide
manner, as the backbone of modern molecular biology and clinical research. The innumerable amount of clas-
sical bulk-sequencing datasets is further augmented by the recent advancements in high-resolution single-cell
approaches. Since gene expression is constituted by many biological factors, experimental focus has been enlarged
to include the regulatory non-coding transcriptome (ncRNAs), i.e. to RNA classes that regulate messenger RNAs
(mRNAs) either directly or indirectly. Among these, microRNAs (miRNAs) are small non-coding RNAs, typi-
cally 18-25 nucleotides in length, loaded by proteins of the AGO-family to build RNA-induced silencing complexes
(RISC) [1]. Gene regulation through the RISC complex is facilitated by one or two mature (−5p; −3p) miRNA
arms, arising from one or several transcribed precursors [2]. Besides other modes of action, activated complexes
target preferentially 3′-untranslated regions of mRNAs to induce either catalytic cleavage or translation repres-
sion. Hence, profiling miRNA expression contributes to the understanding of gene regulation and potentially
portrays cellular states. To date, numerous studies highlight their informative role in disease detection, sub-type
classification, or progression, such as for cancer [3], neurodegenerative [4], or metabolic disorders [5] with a variety
of bio-specimens [6].
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Considering that several thousands of miRNAs have already been discovered, many novel miRNA candidates
have been additionally proposed [7], while the total number of human miRNAs is estimated to be 2, 300 [8].
Finding differences in expression for miRNAs is similar to mRNAs and therefore non-trivial. Differential gene
expression studies often lead to dozens, hundreds, or even thousands of de-regulated genes. Thus, large scale
studies often make use of the functionality of gene set enrichment analysis (GSEA) [9]. GSEA can further reduce
large amounts of information towards a significant set of molecular functions, biological properties, or pathways
of genes. In principle, a user inputs either a set or ordered list of genes and the tool runs the required statistical
algorithms and provides background datasets to compare against.
Similar functionality was also implemented for other omics types, including proteomics, metagenomics, or epige-
nomics. An in-depth review of gene set analysis methods for data other than mRNAs demonstrates the increasing
interest and demand of the community in respective tools [10]. We previously developed an approach tailored for
both miRNA precursor enrichment and mature miRNA enrichment analyses, the miRNA enrichment analysis and
annotation tool (miEAA) [11]. Here, we present an update of this tool that includes more categories, supports
more organisms, has new statistical functionality and offers a standardised Application Programming Interface
(API) to facilitate the inclusion of miEEA in modern data analysis workflows [12].

Given the growing interest in miRNAs, other tools with similar functionality to miEAA exist. Among the
most functional tools, the recent successor version of TAM [13] introduced 1, 238 human miRNA set categories
obtained from manual literature review of approximately 9, 000 scientific manuscripts, along with new query
and visualisation features. In addition to the over- and under-representation analysis, users can compare the
correlation of two miRNA lists under different disease conditions. All kinds of enrichment tools rely on high
quality sets of miRNA categories that were either obtained by curation of scientific literature or collected from
specific databases. For instance, curated miRNA annotations can be obtained from miRBase or miRCarta [14],
miRNA-target interactions from miRTarBase [15], miRNA-pathway associations from miRPathDB [16], tissue-
specific miRNAs from the human TissueAtlas [17], or miRNA-disease associations from HMDD [18] or MNDR [19],
many of which were updated in the last two years. Further specialised annotations like miRNA and transcription
factor interactions provided by TransmiR [20], miRNA sub-cellular localisations collected in RNALocate [21], or
extra-cellular circulating miRNAs contained in miRandola [22] provide target categories for integrated enrichment
analysis.

MATERIALS AND METHODS

In miEAA 2.0 we provide support for 3 species (2 new), 24 new category sets, and updates to our pre-existing
datasets. To unify data preprocessing, we implemented an automated pipeline using Snakemake [23], Python
3.6, and the pandas [24] Python package facilitating data collection and filtering steps. For each species and
their corresponding data sources our pipeline performs the same basic process, consisting of downloading the
datasets, cleaning and updating the miRNA and precursor identifiers, transforming the results into a Gene
Matrix Transposed (GMT) file, and creating background reference sets. Files were copied to the web server
without further modification.

Data collection

Novel datasets were obtained to build our enrichment categories, consisting of Gene Ontology [25], miRTarBase
8.0 [15], KEGG [26], miRandola 2017 [22], miRPathDB 2.0 [16], TissueAtlas [17], MNDR v2.0 [19], NPInter 4.0
[27], RNALocate v2.0 [21], TAM 2.0 [13], and TransmiR v2.0 [20]. Other pre-existing datasets have been updated,
including HMDD v3.0 [18] and miRBase v22.1 [28]. We retained the rest of our pre-existing datasets, namely
miRWalk2.0 [29], our published age and gender dependent miRNAs and our distribution of miRNAs in immune
cells [11]. All datasets contain miRNAs or precursors for Homo sapiens. When available, we also utilise the
data for Mus musculus and Rattus norvegicus, allowing enrichment analysis on 39, 31, and 26 miRNA/precursor
category sets, respectively. Raw datasets were obtained either through a direct download or via an API. In
particular, the QuickGO and KEGG datasets are compiled by querying their corresponding REST APIs.

Category data preprocessing

First, data from QuickGO was mapped back to miRBase using RNAcentral [30]. NCBI Gene was used in
conjunction with miRTarBase to produce the indirect annotations. With the aid of the miRBaseConverter R
package [31], miRNA and precursor names were translated to the latest version of miRBase. For KEGG Pathways
and GO Annotations (direct and indirect through target genes from miRTarBase) we only keep miRNAs for which
functional MTI support is available. In the MNDR diseases category set, we exclude HMDD data as it is precursor
based, and MNDR is for mature miRNAs.
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Web server, statistics, and API implementation

The miEAA web server was built using a dockerized Django Web Framework v2.1, which exposes a web-API using
the Django REST framework. The celery software was used as the job scheduler. Frontend libraries comprise
Highcharts, dataTables, jquery, and Bootstrap. P-value correction methods were implemented using the R stats
package. For the static GSEA running sum plots, a simulated background distribution is computed by randomly
permuting the test set 100 times and traversing the running sum for each random permutation. Alongside our
new API we provide a lightweight Python package, as well as a command line interface (CLI) tool, supporting
Python 3.5 or higher. These are made freely available through the Python Package Index (pip) and through the
ccb-sb conda channel.

Case studies

Raw and reads per million miRNA mapping (rpmmm) normalized miRBase v21 precursor counts and metadata of
kidney renal clear cell carcinoma case and control samples were obtained from TCGA. Since multiple sequencing
results might be associated with the same sample ID in TCGA, we kept only one result file for each sample by
preferring files from H over R over T analytes and selecting the aliquot with the highest plate number and / or
lexicographical sorting order. Subsequently, miRNAs with fewer than 5 raw reads in less than 50% of either case
or control samples were discarded from the analysis. All remaining miRNA counts were log2-scaled. Effect size
was calculated using the implementation of Cohen’s d from the R package effsize. Lists of precursor names, either
selected by statistical significance or ordered by effect size, were converted from miRBase v21 to v22.1 using the
online miRBase converter feature of miEAA. The list of all precursors from miRBase v21, converted to v22.1,
were used as a reference set. The configured parameters included default precursor category sets without the
PubMed ID and TransMiR Tissues sets, BH-FDR adjustment to a significance level of 0.05 with independently
adjusted p-values per category set, and a minimum of 2 required hits per sub-category.

For the second case study, raw Agilent microarray data along with sample metadata was downloaded from
NCBI’s GEO using accession ID GSE117000. Array parsing and probe signal processing was performed identically
to the description in the first publication of miEAA [11]. Subsequently, all counts were quantile-normalized and
log2-transformed. All further down-stream analyses were performed analogous to the first case-study described
above.

RESULTS

Overview on miEAA 2.0

In the following, changes and novelties introduced by the second major release of miEAA are described. Since all
annotations of miRNAs to categories and databases are with respect to the miRNA reference database, miRBase,
we converted the datasets to match its latest public version 22.1. This also affects the miRBase-version and
miRNA-to-precursor converters, the former of which was designed to be fully backwards compatible. Moreover,
both ORA and GSEA algorithms accept lists of either precursors or miRNAs, from human, mouse, and rat
species. In total, 123, 655 categories from 15 published databases/resources are available to test against. A
detailed breakdown of the counts by source and organism, on database and category set level, are available
from Supplementary Table 1 and 2, respectively. For the precursor annotations, we curated family assignments,
re-computed genomic clusters of miRNA genes, updated the chromosomal locations and source PubMed IDs
for human, and added all similar categories for mouse and rat. All species are annotated with a new category
containing high confidence precursors according to miRBase criteria. For human data, we transferred the disease
annotations from HMDD to the new major release v3. We added associations from MNDR to allow disease
comparisons against HMDD, and incorporated functional RNA interactions from NPInter. Lastly, novel categories
such as the cellular localisation of miRNAs and regulatory interactions between miRNAs and transcription factors
were incorporated from RNALocate and TransmiR, respectively. For the mature miRNAs, comparable changes
apply as for the precursors in the cases of miRBase, MNDR, NPInter, and RNALocate-derived categorie sets. The
gap between annotations of miRNA properties and their function is filled by categories on target genes taken from
miRTarBase. To facilitate target-based enrichment of molecular pathways or biological function, we computed
enrichments on target genes of miRNAs using Gene Ontology and KEGG. As an alternative for end-users, pre-
computed significant enrichments of miRNAs associated with pathways provided by miRPathDB were made
available for analysis. As the data from miRPathDB already involves a statistical pre-filtering, we implemented
a new list of expert categories to highlight the underlying differences. Manually curated classifications from
miRandola about known circular or extracellular miRNAs complete the final category dataset. Supposedly, the
substantially enlarged number of categories might increase the average runtime of our algorithms, especially for
the computationally intensive GSEA. Therefore, we profiled and improved our GeneTrail-based implementation
to be three times faster, on average. [32].

Along with improving the data, we raised the available number of statistical parameter settings as well. First,
users can request unadjusted or adjusted p-values using six published techniques to account for multiple hypothesis
testing on the same dataset. In addition to the classical Bonferroni and Benjamini-Hochberg False discovery rate

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.978890doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117000
https://doi.org/10.1101/2020.03.05.978890
http://creativecommons.org/licenses/by-nc-nd/4.0/


a)

b)

GSEA

ORA

Figure 1: miEAA workflow and exemplary results. (a) Each miRNA / precursor enrichment analysis
consists of at most five steps. First, users should select whether they want to perform enrichment on
precursors or miRNAs. Second, the enrichment algorithm, i.e. either ORA or GSEA must be selected.
Next, the desired test set can be defined either through a textbox or a file upload. The fourth step
only appears for ORAs where custom background reference sets can be inserted or uploaded. This is
optional since miEAA provides pre-computed reference sets for all categories. Lastly, the set of categories
and databases as well as statistical parameters should be selected. (b) Typical result view for an ORA.
Users can sort, select, filter, and export the obtained enrichment results interactively. Moreover, several
visualisations of the results are provided for each run, such as the precursor / miRNA to category heatmap
and the category wordcloud.

(BH-FDR) procedures, the adjustments proposed by Benjamini-Yekuteli, Hochberg, Holm, and Hommel can be
selected. Moreover, the default behaviour of miEAA to correct p-values database / category set-wise was extended
by a p-value pooling approach. In summary, the well-established alternatives for p-value correction can support
highly customised research setups where alternate levels of stringency are required [33].

We also evaluated new visualisation features for the output of enrichment analyses to provide a simple overview
and to improve comprehension. As a result, we made existing graphs interactive and implemented enrichment
graphs with simulated background distributions for GSEA as well as automatic word cloud and heatmap plots
for all enrichment algorithms. Word clouds display the names of obtained categories while scaling the size of the
terms relatively to the number of hits that occurred and allow us to qualitatively compare the categories. On top
of that, category to miRNA heatmaps depict log-transformed p-values at the combinations where hits occurred.
This feature permits a simple way to compare the similarity of enriched / depleted categories with respect to
associated miRNAs or precursors. The workflow of miEAA and example visualisations are displayed in Figure
1. Finally, we enhanced the general accessibility of miEAA through the implementation of a public API and a
Python package, for which more details are provided below.

Case study 1: Human kidney renal clear cell carcinoma

As the first case-study of miEAA 2.0, we acquired 591 human miRNA-seq samples from the kidney renal clear
cell carcinoma (KIRC) project of TCGA, which can be divided into 520 Primary tumor (PT) and 71 Solid tissue
normal (STN) samples. Sample information can be found in Supplementary Table 3. Of the 1, 881 precursors
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Figure 2: Web server visualisation of case study results. (a) Category to miRNA heatmap with −log10-
scaled enrichment p-values from the first case study. (b) GSEA plot with simulated background distri-
butions (green to orange lines) and actual depletion observed for breast cancer (dark blue line) during
evaluation of the second case study.

from miRBase v21, 321 are consistently detected in at least 50% of the samples for each biogroup. Among these,
282 were differentially expressed between PT and STN according to the FDR-adjusted wilcoxon test p-values
(p < 0.01). Over-representation analysis of the precursors resulted in 541 significantly enriched and 7 significantly
depleted (FDR-adjusted; p < 0.05) categories. As shown in Figure 2(b), a subset of miRNAs is ubiquitously
present in significant categories, while others seem to be more specific. The top 10 categories sorted by increasing p-
value are associated with cancer, including renal cell carcinoma. Also, the observed over expected ratio (123/48.6)
indicates a strong enrichment (p = 2.80 × 10−38) of the de-regulated precursors with kidney and other types of
cancer. A miRNA set enrichment analysis, using the list of detected precursors and sorted by effect size, revealed
253 enriched and 40 depleted categories. Here, the miRNA-precursor cluster 147, 189, 704 : 147, 284, 728 on the X
chromosome is the most depleted category (p = 8.64× 10−10), an observation that is in line with the depletion of
precursor family hsa-mir-506. Interestingly, the list of highly enriched terms contains many transcription factors,
the top 5 being HEY1, WDR5, ELF1, BRD4, and FLI1.

Case study 2: Mouse model for breast cancer progression

To showcase the novel support for model organisms in miEAA, we selected a dataset from GEO where circulating
miRNAs from a breast-cancer mouse model were measured with microarrays [34]. The dataset comprises in total
36 samples from mutation-carrier (NeuT+) and age-matched wildtype (NeuT-) mice that were collected at the
premalignant, preinvasive, and invasive stages of the disease. In this particular study, agilent microarrays probed
with miRNAs from miRBase v19 were used on mice’s plasma extracted RNA samples. Sample information can
be found in Supplementary Table 4. Following a detection threshold procedure similar to our first case study,
212 miRNAs remained for differential expression analysis. Of these, mmu-miR-6243 had to be discarded as a
result of mapping the identifiers from miRBase v19 to v22.1, which we performed with the miEAA miRBase
version converter. Subsequently, we applied GSEA on the list of miRNAs sorted by decreasing effect size between
the premalignant and the invasive stage, for NeuT+ and NeuT- samples separately. Strikingly, the former run
returned 311 significant categories, while the latter returned none. Overall, many more categories seemed to be
depleted (N = 301) than enriched (N = 9), suggesting a wide-spread up-regulation of molecular pathways by
miRNAs being down-regulated in NeuT+. For example, we found Macrophage differentiation (p = 2.54× 10−5),
Vasculature development (p = 1.60 × 10−4), and VEGF signaling pathway (p = 0.0016) to be depleted, which
might be a signal for the increased tumor burden of NeuT+ mice at the invasive breast cancer stage. Moreover,
we evaluated GSEAs for the comparison of NeuT+ and NeuT- at all three stages. While the first two setups
returned a rather unspecific set of categories with all p-values located close to the significance boundary, the last
comparison yielded many interesting results. First, observations were in line with the group-wise comparison
along the age dimension, because all categories are depleted, i.e. no enrichments. Further, the results show that
several dozen conserved miRNAs (p = 4.53×10−5) are down-regulated in the NeuT+ model at the invasive stage.
More significant categories we found like exosome (p = 2.31× 10−5) and circulating (p = 0.0086) miRNAs, breast
cancer (p = 0.0094, Figure 2(b)), microRNAs in cancer (p = 0.028), and PI3K-Akt signaling pathway (p = 0.028)
can be associated with this exemplifying study.

New data export and browsable API

All data, results, and interactive plots shown on the web server are exportable to common data formats. Also, we
were seeking to support the trend towards the development of reproducible and automated data analysis pipelines
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[12]. To this end, miEAA hosts a public, browsable API offering the same functionality as the web site, allowing
one to access the miRNA converters and statistical algorithms remotely. This functionality is further augmented
by a full-feature Python package with API library code and a command-line interface (CLI). For example, a
regular workflow as performed on the website can be accomplished with three sequential calls to the web API or
one call to the CLI. We provide code examples in the common data science programming languages Python and
R to demonstrate this use-case. We also implemented the interface to solve two recurring problems in biological
data analysis. First, reproducibility of statistical experiments can be improved, because usage of the versioned
API in the context of a workflow manager such as Snakemake [23] or Nextflow fosters self-documenting research
setups [35]. Second, oftentimes the analysis of miRNA high-throughput data involves the comparison of multiple
biogroups, timepoints or other annotation variables. With the aid of our API and the package, multiple runs of
miEAA can be performed at ease while minimising the time spent for set up and results aggregation.

DISCUSSION

Statistical tools for biological enrichment analysis are a key to understanding data from high-throughput omics
assays. However, the performance primarily depends on the quality of the underlying annotations and the sta-
tistical soundness. We show that new developments in the miRNA research field yielded an unprecedented set
of biological categories, covering most aspects of miRNA properties and function, with cross-species analysis
becoming increasingly important. On the other side, as with every statistical framework applied on biological
data, assumptions are not always met and findings should be assessed critically in the light of further validation
experiments. The novel release of miEAA attempts to cover these aspects by enhancing the set of available cat-
egories both quantitatively and qualitatively as well as through offering more (stringent) approaches for p-value
correction. Also, a major limitation of some datasets concerns the availability of mature miRNA identifiers, as
only precursor names were available from source databases. However, especially in the context of diseases, mature
miRNA resolution is preferable to match the biological selectivity for one major miRNA arm being expressed.
Datasets incorporated in miEAA were compiled either automatically or manually. TAM, another miRNA en-
richment tool with functionality similar to miEAA, uses a fewer number of high-quality annotations, which come
exclusively from manual curation [13]. A detailed comparison with respect to 22 criteria between our tool and
TAM is shown in Supplementary Table 5.

We have demonstrated the capability of miEAA to yield novel biological results in cancer research. For the
kidney renal clear cell carcinoma case study, we found a depletion of the mir-506 precursor family, which has
been observed before in other types of cancers [36, 37]. Many interactions to transcription factors were also found
for the up-regulated miRNAs, suggesting an increased regulatory burden due to the exceedingly transcriptional
up-regulation observed in cancer. For example, HEY1, which is a transcriptional repressor has been characterised
to be up-regulated in renal cell carcinomas [38]. For the mouse breast cancer progression study, we illustrated
the backwards compatibility of miEAA with respect to miRBase. The overall observed depletion of pathways
in mice agrees with our first case study. Moreover, the significant categories like vasculature development that
are associated with morphogenesis, resemble an increased tumor burden of NeuT+ mice, which was previously
confirmed with a large human RNA-seq dataset on breast cancer [39]. In both case studies we observed many
associations with other types of cancers or diseases. While this may speak for a molecular and biological similarity,
a certain publication bias, e.g. for cancer, is a confounding factor that skews the statistics [13].

Finally, we sought to improve accessibility of miEAA and develop a web-API in combination with a Python
package and code examples. These features can also enhance its usability in other applications for miRNA research,
for example to annotate functional sub-graphs in regulatory network analysis [40]. In conclusion, miEAA 2.0 is
a flexible, comprehensive, and highly accessible tool for high-throughput miRNA annotation and enrichment
analysis.

DATA AVAILABILITY

miEAA 2.0 is freely available at https://www.ccb.uni-saarland.de/mieaa2. No login is required. Example code for
API-usage and a pre-compiled Python package are freely available from https://github.com/Xethic/miEAA-API.
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