

1 Title: *Arhgap25* deficiency leads to decreased numbers of peripheral blood B cells and defective
2 germinal center reactions
3 Running title: *Arhgap25* deficiency impairs B cell development
4

5 Authors:
6 Silke E. Lindner^{*}, Colt A. Egelston^{*}, Stephanie M. Huard^{*}, Peter P. Lee^{*}, and Leo D. Wang^{*,†,‡}
7

8 ^{*}Department of Immuno-oncology, Beckman Research Institute, City of Hope, Duarte, CA
9 91010, USA;

10 [†]Department of Pediatrics, City of Hope Medical Center, Duarte, CA 91010, USA;

11 [‡]Correspondence should be addressed to:

12 Leo D. Wang

13 Departments of Pediatrics and Immuno-oncology

14 Beckman Research Institute

15 City of Hope

16 Duarte CA 91010

17 ph:626.218.8173

18 fax:626.301.8817

19 email: leo.wang@coh.org

20

21

22

23 This work was supported by grants to LDW from the National Cancer Institute (K08CA201591),
24 the Andrew McDonough B+ Foundation, and the Hyundai Hope on Wheels Foundation.

25 Research reported includes work performed in the Analytical Cytometry, Light Microscopy,
26 Pathology, and Analytical Pharmacology Core Facilities, supported by the National Cancer
27 Institute of the National Institutes of Health under grant number P30CA033572. The content is
28 solely the responsibility of the authors and does not represent the official views of the National
29 Institutes of Health.

30 ABSTRACT

31 Rho family GTPases are critical for normal B cell development and function and their activity is
32 regulated by a large and complex network of guanine nucleotide exchange factors (GEFs) and
33 GTPase activating proteins (GAPs). However, the role of GAPs in B cell development is poorly
34 understood. Here we show that the novel Rac-GAP ARHGAP25 is important for B cell
35 development in mice in a CXCR4-dependent manner. We show that *Arhgap25* deficiency leads
36 to a significant decrease in peripheral blood B cell numbers, as well as defects in mature B cell
37 differentiation. *Arhgap25*^{-/-} B cells respond to antigen stimulation *in vitro* and *in vivo* but have
38 impaired germinal center formation and decreased IgG1 class switching. Additionally,
39 *Arhgap25*^{-/-} B cells exhibit increased chemotaxis to CXCL12. Taken together, these studies
40 demonstrate an important role for *Arhgap25* in peripheral B cell development and antigen
41 response.

42 INTRODUCTION

43 B cells are a critical part of the adaptive immune system, generating antibodies capable of
44 recognizing a diverse array of extracellular pathogens. B cell development begins in the bone
45 marrow, where highly regulated recombination events in B cell receptor (BCR) genes lead to the
46 expression of an immature BCR on the cell surface (1). Immature B cells exit the bone marrow
47 and migrate to the spleen and other secondary lymphoid organs, where they further mature as
48 transitional B cells to become mature marginal zone (MZ), follicular (FO), or B1 B cells.
49 Follicular B cells are the most abundant of these, located in the lymphoid follicles of the spleen
50 and lymph nodes. It is here that the antigen- and T cell-dependent germinal center (GC) reaction
51 occurs, which ultimately leads to the production of high-affinity antibody-secreting plasma cells
52 and memory B cells (2-5).

53

54 Rho family GTPases are critical for B cell development and activation (6-9). Indeed, deletion of
55 *Rac1*, *Rac2*, *RhoA*, or *Cdc42* all result in significant B cell developmental defects (6, 10-16). *In*
56 *vivo*, the activity of these GTPases is moderated by a multitude of GTPase activating proteins
57 (GAPs) and guanine nucleotide exchange factors (GEFs). GEFs like VAV and DOCK8 (17-20)
58 have been shown to affect humoral immune responses profoundly, but the role of GAPs in B cell
59 development and function is less-well studied. We previously showed that the Rac GAP
60 ARHGAP25 plays an important role in hematopoietic stem and progenitor cell (HSPC)
61 mobilization, in part by strengthening signaling through the CXCL12-CXCR4 axis to promote
62 HSPC retention in the bone marrow niche (21). Whereas it has previously been shown that Rho
63 family GTPases act on B cell development through actin-mediated pathways (22), here we

64 demonstrate that *Arhgap25* plays an important role in terminal B cell differentiation and B cell
65 activation by influencing CXCL12-CXCR4 signaling.
66 In particular, *Arhgap25*-deficient mice have significantly fewer peripheral blood mature B cells
67 than wild-type controls. Additionally, *Arhgap25*-deficient B cells have defects in germinal center
68 formation in response to *in vivo* immunization, with fewer and smaller splenic germinal centers
69 in *Arhgap25*^{-/-} mice than wild-type mice after NP-CGG injection. These defects may be
70 attributable to increased responsiveness of *Arhgap25*^{-/-} B cells to CXCL12, which may keep
71 germinal center B cells sequestered in the dark zone (DZ)(23). We observed increased numbers
72 of DZ B cells in *Arhgap25*^{-/-} mice, as well as decreased numbers of plasma cells and diminished
73 IgG1 secretion. Taken together, these findings indicate that *Arhgap25* plays an important role in
74 regulating B cell chemotaxis and the germinal center reaction via the CXCL12-CXCR4 pathway.

75 MATERIALS AND METHODS

76 **Mice**

77 *Arhgap25*^{-/-} mice (CSD28473) were obtained as cryopreserved embryos from the NIH Knockout
78 Mouse Project (KOMP) repository, recovered using standard techniques, and housed in specific-
79 pathogen-free barrier facilities at City of Hope. C57Bl/6N mice were purchased from Taconic
80 Biosciences and bred under specific-pathogen-free conditions at City of Hope. Unless otherwise
81 stated, 7–12 week old gender-matched mice were used for all experiments. Every animal was
82 maintained and handled in accordance with City of Hope Institutional Animal Care and Use
83 Committee (IACUC) guidelines and protocols.

84 **Flow Cytometry Analysis**

85 Single cell suspensions were prepared by mechanical dissociation and then strained through a
86 70µm mesh. Red blood cells were lysed in RBC lysis buffer (00-4300-54, eBioscience, San
87 Diego CA) per manufacturer's directions. Cells were then strained through a 40µm cell strainer
88 and then stained in phosphate-buffered saline (PBS) with 5% fetal bovine serum (FBS) in 5 ml
89 polystyrene round-bottom tubes. Prior to antibody staining, cells were blocked with 5ng rat IgG
90 (14131, Sigma-Aldrich, St. Louis MO). Cell surface antigens were stained with combinations of
91 the following antibodies: CD93-FITC (AA4.1, Biolegend, San Diego CA), CD23-PE (B3B4,
92 eBioscience, San Diego CA), IgM-PerCP-Cy5.5 (R6-60.2, BD, Franklin Lakes NJ), CD19-APC
93 (1D3, eBioscience, San Diego CA), CD1d-Superbright 645 (1B1, eBioscience, San Diego CA),
94 CD3e-APC (145-2C11, eBioscience, San Diego CA), CD19-BV605 (6D5, Biolegend, San Diego
95 CA), IgD-FITC (11-26c (11-26), eBioscience, San Diego CA), CD45R/B220-BV787 (RA3-6B2,
96 BD, Franklin Lakes NJ), CD38-FITC (90, Biolegend, San Diego CA), CD95-APC-R700 (Jo2,
97 BD, Franklin Lakes NJ), IgG1-PE-Cy7 (RMG1-1, Biolegend, San Diego CA), IgM-BUV395

98 (II/41, BD, Franklin Lakes NJ), CD267-PE (eBio8F10-3, eBioscience, San Diego CA), NP-PE
99 (N-5070-1, Biosearch Technologies, Novato CA), CD138-BV650 (281-2, BD, Franklin Lakes
100 NJ), CD86-PE (GL-1, Biolegend, San Diego CA), CXCR4-APC (L276F12, Biolegend, San
101 Diego CA). Cells were stained with the following viability dyes: SYTOXTM Blue Dead Cell
102 Stain (S34857, Invitrogen, Carlsbad CA); Zombie Red (423102, Biolegend, San Diego CA);
103 Zombie Aqua (423109, Biolegend, San Diego CA). Doublets were excluded using FSC-H/FSC-
104 A gating. Flow cytometry analysis was performed on a BD LSRFortessa (BD, Franklin Lakes NJ)
105 at the City of Hope Analytical Cytometry Core, and data were analyzed using FlowJo_V10
106 software. To determine absolute numbers of cells by flow cytometry, Precision Count BeadsTM
107 (424902, Biolegend, San Diego CA) were used. Cell count was calculated per manufacturer's
108 instructions.

109 **NP-CGG Immunization**

110 T-cell dependent immune responses were induced by intraperitoneally injecting mice with NP-
111 CGG (N-5055B-5, Biosearch Technologies, Novato CA), as follows: 1mg/ml NP-CGG was
112 mixed 1:1 with freshly prepared 10% Alum (31242, Sigma-Aldrich, St. Louis MO), pH adjusted
113 to 6.5–7.0, and washed. The precipitate was resuspended in PBS, and mice were injected with
114 100 µg NP-CGG. Peripheral blood was collected one week prior to NP-CGG injection and 14
115 days after injection. Spleens were collected for flow cytometry and histology on day 14.

116 **Immunofluorescence**

117 Spleens from immunized mice were frozen in optimal cutting temperature (OCT) compound
118 (Tissue-Tek cryomold and OCT gel compound, Sakura Finetek USA, Torrance CA) and
119 cryosectioned in 5µm slices. Cryosections were fixed in cold acetone for 10 min at -20°C,
120 washed with PBS, and then solubilized in 0.5% Tween-20 in PBS. After further washing in PBS,

121 endogenous biotin and streptavidin binding sites were blocked according to manufacturer's
122 instructions (SP-2002, Vector Laboratories, Burlingame CA). For germinal center detection,
123 sections were sequentially incubated with the following primary antibodies for 30 min at RT:
124 CD3-FITC (17A2, eBioscience, San Diego CA, 1:100); CD45R/B220 (RA3-6B2, BD, Franklin
125 Lakes NJ, 1:200); peanut agglutinin-biotin (B-1075, Vector Laboratories, Burlingame CA,
126 1:100). Slides were washed with 0.1% Tween-20 in PBS, and then incubated with secondary
127 antibodies for 30 min at room temperature (AF555-goat anti-rat IgG (Invitrogen, Carlsbad CA,
128 1:500); AF647-sAv (Invitrogen, Carlsbad CA, 1:200)). After washing, slides were mounted with
129 Vectashield Mounting Medium (H-1000, Vector Laboratories, Burlingame CA). Images were
130 acquired on a Zeiss LSM 700 Confocal Microscope (magnification 200x) and pictures processed
131 using Zen (Zeiss, Oberkochen Germany) and QuPath software.

132 **Luminex Assays**

133 To assess immunoglobulin titers of NP-CGG immunized mice, serum was collected one week
134 prior to injection and 14 days after NP-CGG treatment. Luminex multiplex assays were
135 performed using the mouse Ig isotyping kit (MGAMMAG-300K, Millipore, Burlington MA) and
136 conducted according to the manufacturer's instructions by the Analytical Pharmacology Core at
137 City of Hope.

138 **Chemotaxis assay**

139 B cell migration was assessed using a 24-well, 5 μ m pore size transwell chamber (Corning Costar,
140 Corning NY). Briefly, B cells were purified with CD43 micro beads (130-049-801, Miltenyi
141 Biotec, Bergisch Gladbach Germany), and 1x10⁶ cells were placed in the top chamber of a
142 transwell plate in 100 μ L of volume. 600 μ L of media with or without CXCL12 (100ng/ml, #250-
143 20A, PeproTech, Rocky Hill NJ) was added to the bottom chamber. After 3h at 37°C, cells were

144 recovered from the lower chamber, stained for cell surface makers, and analyzed by flow
145 cytometry. As a control, 1x10⁶ cells were plated directly into the bottom chamber. The number
146 of migrated cells was evaluated using Precision Count Beads (424902, Biolegend, San Diego CA)
147 by flow cytometry.

148 ***In vitro* B cell activation**

149 Splenic B cells of both genotypes were CD43-depleted using magnetic beads (130-049-801,
150 Miltenyi Biotec, Bergisch Gladbach Germany) and taken in culture in the presence of 1µg/ml
151 anti-CD40 antibody (102901, Biolegend, San Diego CA), 25ng/ml IL-4 (404-ML-025, R&D
152 Systems, Minneapolis MN) and 25ng/ml IL-21(210-21, PeproTech, Rocky Hill NJ) for 4 days.
153 Before culture, cells were labelled with 10µM Cell Proliferation Dye eFluor450 (65-0842-85,
154 eBioscience, San Diego CA) according to manufacturer's protocol. Cell division was monitored
155 by flow cytometry and the fraction of dividing plasmablasts stained with CD138.

156 **Quantification and statistical analysis**

157 All experiments described in this study were performed at least two independent times. Data
158 were plotted and statistically analyzed using GraphPad Prism (GraphPad Software, San Diego
159 CA). For comparisons between groups, p values were generated using a two-tailed Student t-test.
160 Error bars represent standard deviation (SD).

161 RESULTS

162 ***Arhgap25* deficiency results in decreased numbers of peripheral blood B cells.**

163 We previously identified *Arhgap25* as an important mediator of hematopoietic stem and
164 progenitor cell mobilization and trafficking (21). Given the role of *Arhgap25* in Rac activation
165 and cytoskeletal rearrangement (24, 25), and the importance of Rac activation and cytoskeletal
166 rearrangement in B cell development and function, we reasoned that *Arhgap25* may play a role
167 in B cell biology. We therefore investigated B cell development in 6-10 week old *Arhgap25*^{-/-}
168 mice. Interestingly, we found that *Arhgap25*-deficient animals possess significantly fewer
169 peripheral blood leukocytes than wild-type (WT) animals (Figure 1A), and that this is accounted
170 for by specific deficits in lymphocyte numbers (Figure 1B, C) without defects in the granulocyte
171 or monocyte populations (data not shown). Within the lymphocyte compartment, the deficits are
172 most pronounced in the B lymphocyte compartment (Figure 1C), and in particular among mature
173 B cells (B220⁺IgM⁺IgD⁺, Figure 1D), indicating that there are fewer immature and mature B
174 cells in these animals as a result of *Arhgap25* deficiency. Platelet and red blood cell numbers
175 were unaffected by *Arhgap25* deficiency (Supplemental Fig. 1A, B).

176 ***Arhgap25* deficiency affects splenic B cell development.**

177 We next investigated whether the diminution in peripheral blood B cell numbers resulted from
178 defects in B lymphopoiesis. In the bone marrow, we found no differences in B cell
179 developmental Hardy fractions (1) in *Arhgap25*^{-/-} as compared to WT animals including the
180 immature IgM⁺ stage (Fraction E), which is the stage at which immature B cells leave the bone
181 marrow (Supplemental Fig. 1C, D). Thus, differences in peripheral blood B cell numbers do not
182 appear to result from defects in bone marrow B lymphopoiesis. Immature B cells leave the bone
183 marrow, transit through the blood, and enter the spleen as transitional (T1) B cells, where they

184 undergo further development through the transitional T2 and T3 stages before becoming
185 recirculating follicular (FO) or non-recirculating marginal zone (MZ) B cells (26). Consistent
186 with our observation that *Arhgap25*^{-/-} mice have fewer mature B cells in the peripheral blood, we
187 observed decreases in the absolute numbers of transitional (T1, T2, and T3)(Figure 1E), mature
188 follicular, and marginal zone B cells (Figure 1F) in the spleens of *Arhgap25*^{-/-} mice. Taken
189 together, these data indicate that *Arhgap25* deficiency impairs splenic B cell maturation.

190 ***Arhgap25*-deficient mice have impaired germinal center reactions and defective class
191 switching.**

192 Given the defects in splenic B cell maturation in *Arhgap25*^{-/-} mice, we next asked whether
193 splenic immune responses were impaired in the absence of *Arhgap25*. 6-8 week old mice were
194 immunized with the T-cell dependent antigen NP-CGG and their immune responses
195 characterized 14 days later (Figure 2). Immunized *Arhgap25*^{-/-} mice were observed to have fewer
196 and smaller germinal centers (GCs) than controls (Figure 2A), as well as significant reductions in
197 the total numbers of GC B cells (Figure 2B, C). Within the GCs of *Arhgap25*^{-/-} mice,
198 significantly more B cells were located in the dark zone (DZ) than in the light zone (LZ)(DZ:LZ
199 ratio 4.52±1.45 in *Arhgap25*^{-/-} mice vs. 2.89±0.46 in control mice, Figure 2E). Because splenic
200 germinal centers are the major site of immunoglobulin isotype switching, we evaluated the
201 ability of *Arhgap25*^{-/-} mice to class switch. *Arhgap25*^{-/-} mice had fewer IgG1⁺ NP binding GC B
202 cells than controls (Figure 2C), as well impaired class switching to IgG1 despite equivalent
203 serum levels of non-class-switched IgM after immunization (Figure 2C), indicating that the
204 germinal center reaction is impaired in the absence of *Arhgap25*. Serum levels of IgM two weeks
205 after immunization were comparable between genotypes (Figure 2D, left panel), while *Arhgap25*

206 deficient mice revealed significantly reduced levels of IgG1 compared to control mice (Figure
207 2D, right panel).

208 ***Arhgap25* deficiency impairs plasma cell differentiation.**

209 Antibody production requires an efficient germinal center response and successful isotype
210 switching, but is ultimately driven by plasma cell (PC) differentiation. We therefore evaluated
211 the effect of *Arhgap25* deletion on PC production, and found that *Arhgap25*^{-/-} mice had modestly
212 but significantly reduced plasma cell numbers after immunization (Figure 2D). Of note, when we
213 stimulated naive B cells *in vitro* with CD40, IL-4, and IL-21 to stimulate PC differentiation, we
214 observed severe impairment in PC differentiation in the absence of *Arhgap25* (Supplemental Fig.
215 2A), indicating that the defect in PC numbers was not simply due to decreased numbers of FO B
216 cell PC precursors. Thus, *Arhgap25* deficiency appears to impact many stages of splenic B cell
217 development.

218 ***Arhgap25*-deficient B cells demonstrate increased chemotaxis to CXCL12.**

219 The CXCR4-CXCL12 interaction is of central importance in the GC reaction (23, 27, 28), and
220 we have previously shown that ARHGAP25 regulates the strength of response to CXCR4
221 signaling in hematopoietic stem and progenitor cells (21). Furthermore, CXCL12 is highly
222 expressed in the GC DZ, where we found more B cells in *Arhgap25*^{-/-} mice. We therefore
223 hypothesized that the B cell GC phenotype observed in *Arhgap25*^{-/-} mice might be partly due to
224 increased CXCR4 signaling in *Arhgap25*^{-/-} B cells. To test this, we evaluated the ability of
225 *Arhgap25*^{-/-} B cells to migrate across a CXCL12 gradient; indeed, *Arhgap25*^{-/-} B cells migrated at
226 higher percentages than wild type B cells in the absence of alterations in CXCR4 expression,
227 indicating increased responsiveness to CXCL12 (Figure 3).

228 DISCUSSION

229 B cells are an essential part of the adaptive immune system, responsible for producing antibodies
230 and providing T cell help to facilitate optimal T cell responses, and proper development and
231 differentiation of B lymphocytes is critical for immune homeostasis and host defense. While the
232 role of small molecule GTPases such as Rac and Rho in B cell development and activation is
233 well known, the role of Rac-GAPs is less well understood. We define the function of the novel
234 Rac-GAP ARHGAP25 in B cell development in mice, demonstrating that mice lacking
235 *Arhgap25* have significant defects in post-bone marrow development. Specifically, *Arhgap25*^{-/-}
236 mice have fewer splenic transitional, follicular, and marginal zone B cells as well as fewer
237 peripheral blood B cells. They have impaired germinal center formation, isotype switching, and
238 plasmablast differentiation. They also have increased responsiveness to CXCL12, which may
239 cause them to accumulate in the germinal center dark zone, impairing class switch and further
240 development. These findings are reminiscent of the human WHIM (warts,
241 hypogammaglobulinemia, infections, and myelokathexis) syndrome, an autosomal dominant
242 condition caused by an activating CXCR4 mutation that impairs receptor downregulation and
243 increases CXCL12-CXCR4 signaling. The WHIM mutation results in much greater
244 hyperresponsiveness to CXCL12 than *Arhgap25* deletion, so it is not surprising that the WHIM
245 phenotype is much more extreme than the phenotype we report. In humans, WHIM is
246 characterized by sequestration of neutrophils in the bone marrow (myelokathexis), as well as
247 lymphopenia, variable hypogammaglobulinemia, and an inability to mount appropriate antibody
248 responses (29). Mice bearing the WHIM mutation also have profound lymphopenia, impaired B
249 and T cell development, disorganized secondary lymphoid architecture, and defects in plasma
250 cell differentiation. However, WHIM mice do not completely phenocopy humans with the

251 syndrome; in particular, they have normal levels of IgG (30-32). This is somewhat surprising,
252 given that the mutation in WHIM mice impairs CXCR4 desensitization and downregulation,
253 resulting in subsequent failure to maintain antigen responses including at the plasma cell level
254 (30). Nonetheless, these findings support the conclusion that the B lymphopoietic defects seen in
255 *Arhgap25*^{-/-} mice are predominantly due to the effects of ARHGAP25 on CXCR4 signaling.

256 DISCLOSURES

257 The authors have no financial conflicts of interest to disclose concerning the work presented in
258 this manuscript.

259 ACKNOWLEDGMENTS

260 The authors wish to thank Maria Montoya-Arteaga and Robin Rodriguez for animal care; Verena
261 Labi, Teresa Sadras, Martha Salas and Florian Bock for helpful discussion and suggestions; the
262 City of Hope Analytical Cytometry Core, Analytical Pharmacology Core, Light Microscopy
263 Core, and Pathology Core; Martha Gomez-Knight for administrative assistance; and present and
264 former lab members.

265 REFERENCES

- 266 1. Hardy, R. R., C. E. Carmack, S. A. Shinton, J. D. Kemp, and K. Hayakawa. 1991. Resolution and
267 Characterization of Pro-B and Pre-Pro-B Cell Stages in Normal Mouse Bone-Marrow. *Journal of
268 Experimental Medicine* 173: 1213-1225.
- 269 2. Rajewsky, K. 1996. Clonal selection and learning in the antibody system. *Nature* 381: 751-758.
- 270 3. Batista, F. D., and N. E. Harwood. 2009. The who, how and where of antigen presentation to B
271 cells. *Nat Rev Immunol* 9: 15-27.
- 272 4. Nutt, S. L., P. D. Hodgkin, D. M. Tarlinton, and L. M. Corcoran. 2015. The generation of
273 antibody-secreting plasma cells. *Nat Rev Immunol* 15: 160-171.
- 274 5. De Silva, N. S., and U. Klein. 2015. Dynamics of B cells in germinal centres. *Nat Rev Immunol*
275 15: 137-148.
- 276 6. Saci, A., and C. L. Carpenter. 2005. RhoA GTPase regulates B cell receptor signaling. *Mol Cell*
277 17: 205-214.
- 278 7. Walmsley, M. J., S. K. Ooi, L. F. Reynolds, S. H. Smith, S. Ruf, A. Mathiot, L. Vanes, D. A.
279 Williams, M. P. Cancro, and V. L. Tybulewicz. 2003. Critical roles for Rac1 and Rac2 GTPases
280 in B cell development and signaling. *Science* 302: 459-462.
- 281 8. Brezski, R. J., and J. G. Monroe. 2007. B cell antigen receptor-induced Rac1 activation and Rac1-
282 dependent spreading are impaired in transitional immature B cells due to levels of membrane
283 cholesterol. *J Immunol* 179: 4464-4472.
- 284 9. Tybulewicz, V. L., and R. B. Henderson. 2009. Rho family GTPases and their regulators in
285 lymphocytes. *Nat Rev Immunol* 9: 630-644.
- 286 10. Guo, F., C. S. Velu, H. L. Grimes, and Y. Zheng. 2009. Rho GTPase Cdc42 is essential for B-
287 lymphocyte development and activation. *Blood* 114: 2909-2916.
- 288 11. Burbage, M., S. J. Keppler, F. Gasparrini, N. Martinez-Martin, M. Gaya, C. Feest, M. C. Domart,
289 C. Brakebusch, L. Collinson, A. Bruckbauer, and F. D. Batista. 2015. Cdc42 is a key regulator of
290 B cell differentiation and is required for antiviral humoral immunity. *J Exp Med* 212: 53-72.
- 291 12. Gerasimcik, N., C. I. Dahlberg, M. A. Baptista, M. J. Massaad, R. S. Geha, L. S. Westerberg, and
292 E. Severinson. 2015. The Rho GTPase Cdc42 Is Essential for the Activation and Function of
293 Mature B Cells. *J Immunol* 194: 4750-4758.

294 13. Henderson, R. B., K. Grys, A. Vehlow, C. de Bettignies, A. Zachacz, T. Henley, M. Turner, F.
295 Batista, and V. L. Tybulewicz. 2010. A novel Rac-dependent checkpoint in B cell development
296 controls entry into the splenic white pulp and cell survival. *J Exp Med* 207: 837-853.

297 14. Zhang, S., X. Zhou, R. A. Lang, and F. Guo. 2012. RhoA of the Rho family small GTPases is
298 essential for B lymphocyte development. *PLoS One* 7: e33773.

299 15. Gerasimcik, N., M. He, C. I. M. Dahlberg, N. V. Kuznetsov, E. Severinson, and L. S. Westerberg.
300 2017. The Small Rho GTPases Rac1 and Rac2 Are Important for T-Cell Independent Antigen
301 Responses and for Suppressing Switching to IgG2b in Mice. *Front Immunol* 8: 1264.

302 16. Burbage, M., S. J. Keppler, B. Montaner, P. K. Mattila, and F. D. Batista. 2017. The Small Rho
303 GTPase TC10 Modulates B Cell Immune Responses. *J Immunol* 199: 1682-1695.

304 17. Doody, G. M., S. E. Bell, E. Vigorito, E. Clayton, S. McAdam, R. Tooze, C. Fernandes, I. J. Lee,
305 and M. Turner. 2001. Signal transduction through Vav-2 participates in humoral immune
306 responses and B cell maturation. *Nature Immunology* 2: 542-547.

307 18. Fujikawa, K., A. V. Miletic, F. W. Alt, R. Faccio, T. Brown, J. Hoog, J. Fredericks, S. Nishi, S.
308 Mildiner, S. L. Moores, J. Brugge, F. S. Rosen, and W. Swat. 2003. Vav1/2/3-null mice define an
309 essential role for Vav family proteins in lymphocyte development and activation but a differential
310 requirement in MAPK signaling in T and B cells. *J Exp Med* 198: 1595-1608.

311 19. Randall, K. L., T. Lambe, A. L. Johnson, B. Treanor, E. Kucharska, H. Domaschenz, B. Whittle,
312 L. E. Tze, A. Enders, T. L. Crockford, T. Bouriez-Jones, D. Alston, J. G. Cyster, M. J. Lenardo,
313 F. Mackay, E. K. Deenick, S. G. Tangye, T. D. Chan, T. Camidge, R. Brink, C. G. Vinuesa, F. D.
314 Batista, R. J. Cornall, and C. C. Goodnow. 2009. Dock8 mutations cripple B cell immunological
315 synapses, germinal centers and long-lived antibody production. *Nat Immunol* 10: 1283-1291.

316 20. Zhang, Q., J. C. Davis, I. T. Lamborn, A. F. Freeman, H. Jing, A. J. Favreau, H. F. Matthews, J.
317 Davis, M. L. Turner, G. Uzel, S. M. Holland, and H. C. Su. 2009. Combined Immunodeficiency
318 Associated with DOCK8 Mutations. *New Engl J Med* 361: 2046-2055.

319 21. Wang, L. D., S. B. Ficarro, J. N. Hutchinson, R. Csepanyi-Komi, P. T. Nguyen, E. Wisniewski, J.
320 Sullivan, O. Hofmann, E. Ligeti, J. A. Marto, and A. J. Wagers. 2016. Phosphoproteomic
321 profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. *Blood* 128:
322 1465-1474.

323 22. He, M., and L. S. Westerberg. 2019. Congenital Defects in Actin Dynamics of Germinal Center B
324 Cells. *Front Immunol* 10: 296.

325 23. Allen, C. D., K. M. Ansel, C. Low, R. Lesley, H. Tamamura, N. Fujii, and J. G. Cyster. 2004.
326 Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. *Nat
327 Immunol* 5: 943-952.

328 24. Csepanyi-Komi, R., G. Sirokmany, M. Geiszt, and E. Ligeti. 2012. ARHGAP25, a novel Rac
329 GTPase-activating protein, regulates phagocytosis in human neutrophilic granulocytes. *Blood*
330 119: 573-582.

331 25. Schlam, D., R. D. Bagshaw, S. A. Freeman, R. F. Collins, T. Pawson, G. D. Fairn, and S.
332 Grinstein. 2015. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating
333 actin assembly through Rac/Cdc42 GTPase-activating proteins. *Nat Commun* 6: 8623.

334 26. Cariappa, A., C. Boboila, S. T. Moran, H. Liu, H. N. Shi, and S. Pillai. 2007. The recirculating B
335 cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell
336 populations. *J Immunol* 179: 2270-2281.

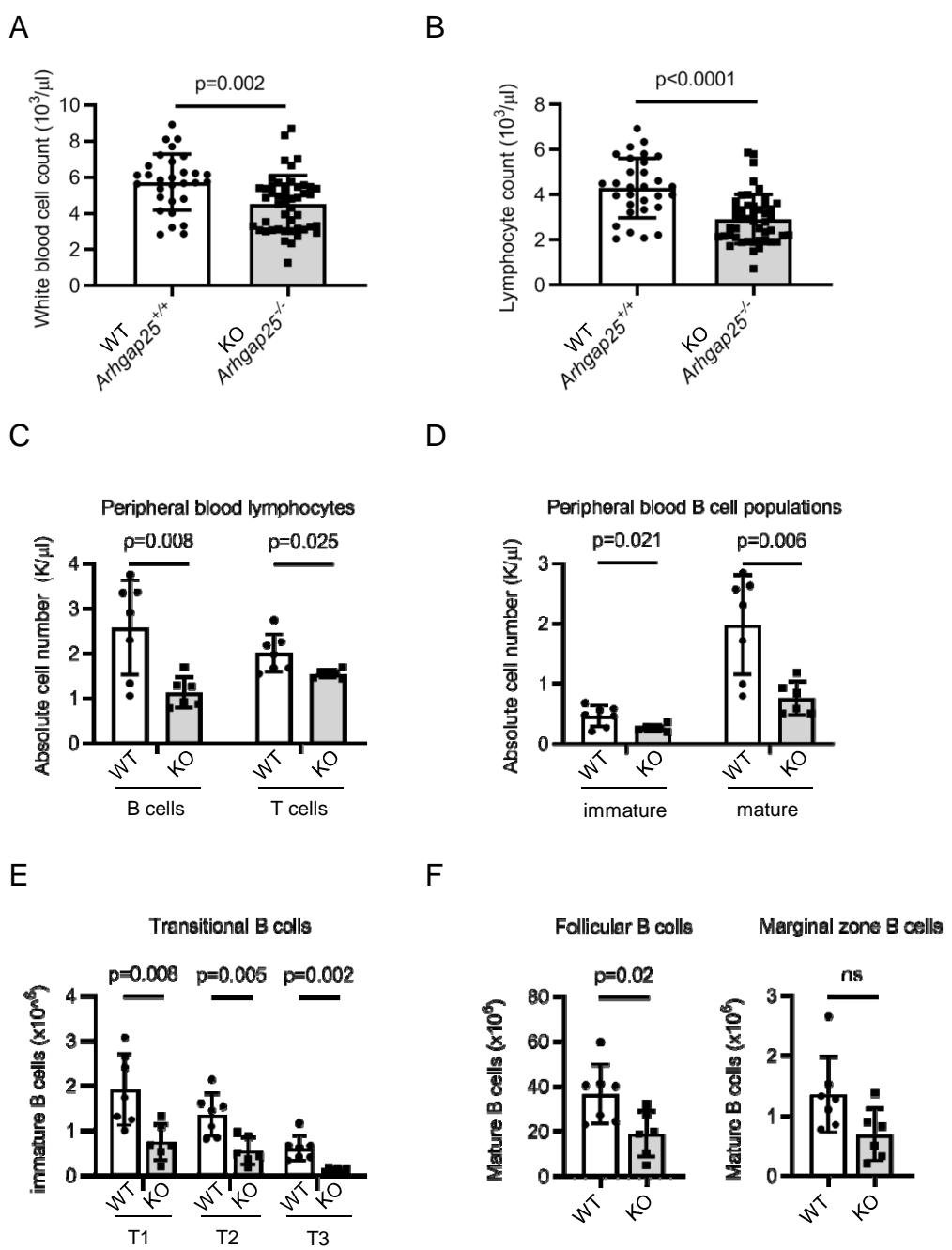
337 27. Weber, T. S. 2018. Cell Cycle-Associated CXCR4 Expression in Germinal Center B Cells and Its
338 Implications on Affinity Maturation. *Front Immunol* 9: 1313.

339 28. Stebegg, M., S. D. Kumar, A. Silva-Cayetano, V. R. Fonseca, M. A. Linterman, and L. Graca.
340 2018. Regulation of the Germinal Center Response. *Front Immunol* 9: 2469.

341 29. Majumdar, S., and P. M. Murphy. 2018. Adaptive Immunodeficiency in WHIM Syndrome. *Int J
342 Mol Sci* 20.

343 30. Bajajoux, V., J. Natt, C. Freitas, N. Alouche, A. Sacquin, P. Hemon, F. Gaudin, N. Fazilleau, M.
344 Espeli, and K. Balabanian. 2016. Efficient Plasma Cell Differentiation and Trafficking Require
345 Cxcr4 Desensitization. *Cell Rep* 17: 193-205.
346 31. Balabanian, K., E. Brotin, V. Bajajoux, L. Bouchet-Delbos, E. Lainey, O. Fenneteau, D. Bonnet,
347 L. Fiette, D. Emilie, and F. Bachelerie. 2012. Proper desensitization of CXCR4 is required for
348 lymphocyte development and peripheral compartmentalization in mice. *Blood* 119: 5722-5730.
349 32. Freitas, C., M. Wittner, J. Nguyen, V. Rondeau, V. Bajajoux, M. L. Aknin, F. Gaudin, S.
350 Beaussant-Cohen, Y. Bertrand, C. Bellanne-Chantelot, J. Donadieu, F. Bachelerie, M. Espeli, A.
351 Dalloul, F. Louache, and K. Balabanian. 2017. Lymphoid differentiation of hematopoietic stem
352 cells requires efficient Cxcr4 desensitization. *J Exp Med* 214: 2023-2040.
353

354 FIGURE LEGENDS


355 **Figure 1. *Arhgap25* deletion leads to lower B cell numbers in peripheral blood and spleen.**
356 *Arhgap25*^{-/-} (KO) mice have significantly fewer peripheral blood white blood cells (**A**)
357 ($4.54 \pm 1.56 \times 10^3/\mu\text{l}$ vs. $5.74 \pm 1.55 \times 10^3/\mu\text{l}$, $p=0.002$) and fewer lymphocytes (**B**) ($2.93 \pm 1.1 \times 10^3/\mu\text{l}$
358 vs. $4.3 \pm 1.32 \times 10^3/\mu\text{l}$, $p<0.0001$) than wild-type (WT, *Arhgap25*^{+/+}) mice at 6–8 weeks of age
359 ($n=47$ KO vs. $n=30$ WT). *Arhgap25*^{-/-} mice also have fewer B ($p=0.08$) and T ($p=0.025$)
360 lymphocytes (**C**) than WT mice, as well as fewer immature ($\text{IgM}^+ \text{IgD}^-$, $p=0.021$) and mature
361 ($\text{IgM}^+ \text{IgD}^+$, $p=0.006$) B cells (**D**) ($n=7$ KO and $n=6$ WT). In the spleen, *Arhgap25*^{-/-} mice have
362 fewer transitional B cells (**E**) (T1, $\text{IgM}^+ \text{CD23}^-$; T2, $\text{IgM}^+ \text{CD23}^+$; T3 $\text{IgM}^- \text{CD23}^+$) and mature MZ
363 ($\text{CD1d}^{\text{hi}} \text{IgM}^{\text{hi}}$) and FO ($\text{CD1d}^+ \text{IgM}^+$) B cells (**F**) than WT mice ($n=7$ KO and $n=6$ WT). Each
364 symbol represents one mouse; data shown as mean \pm SD. p values calculated using two-tailed *t*
365 test.

366 **Figure 2. Impaired maintenance of germinal center B cells and blunted B cell response to**
367 **immunization in *Arhgap25*^{-/-} mice.** Mice were immunized with 4-hydroxy-3-nitrophenylacetyl
368 chicken gamma globulin (NP-CGG) and analyzed 14 days later. (**A**) *Arhgap25*^{-/-} (KO) animals
369 have decreased germinal center (GC) formation as evidenced by a lower percentage of cells that
370 bind peanut agglutinin (PNA). Spleen sections were stained with fluorescently labeled anti-CD3
371 (pseudocolored green), anti-B220 (pseudocolored red), and PNA (pseudocolored fuchsia). PNA⁺
372 GC area was imaged and quantified using image analysis software ($n=3$ mice of each genotype,
373 scale bar=100 μm). (**B**) Gating strategy for NP specific IgG1⁺ ($\text{NP}^+ \text{IgG1}^+$) and total IgG1⁺ GC B
374 cell splenocytes in (**C**). (**C**) *Arhgap25*^{-/-} animals have fewer GC B cells (top right), IgG1⁺ GC B
375 cells (bottom left), and NP⁺IgG1⁺ GC B cells (bottom right) than WT (*Arhgap25*^{+/+}) animals
376 ($n=5$ animals of each genotype). (**D**) Serum from unchallenged mice and mice 14 days post

377 immunization was evaluated for IgG1 and IgM concentration by Luminex assay. *Arhgap25*^{-/-}
378 mice have a blunted IgG1 class switch response as compared to WT mice (bottom), whereas IgM
379 production was equivalent before and after immunization (top). $n=9$ WT and $n=10$ KO mice,
380 representing 3 independent experiments with 3-4 mice per genotype per experiment. (E)
381 Representative contour plots (left) show gating for CXCR4^{high}CD86^{low} dark zone (DZ) and
382 CXCR4^{low}CD86^{high} light zone (LZ) fractions of total GC B cells (left panel). *Arhgap25*^{-/-} animals
383 have higher DZ:LZ ratios than WT animals (right, $p=0.043$, $n=5$ mice per genotype,
384 representative of 2 independent experiments). (F) Representative contour plots of TACI⁺CD138⁺
385 plasmablasts/plasma cells within splenic B cells 14 days after NP-CGG immunization (left
386 panel). *Arhgap25*^{-/-} animals have fewer plasmablasts than WT animals (right, $p=0.028$, $n=5$ mice
387 per genotype, representative of 4 independent experiments).

388 **Figure 3. *Arhgap25*-deficient B cells accumulate in the DZ due to increased chemotaxis**
389 **towards CXCL12.** (A) *Arhgap25*^{-/-} (KO) B cells migrate more effectively towards CXCL12
390 than do *Arhgap25*^{+/+} (WT) B cells (left), and show increased motility even in the absence of a
391 gradient (right). Data are representative of 3 independent experiments. (B) WT (solid grey line,
392 MFI 508.4 ± 7.4) and KO (dashed black line, MFI 505 ± 22.8) B cells express equivalent levels of
393 CXCR4 ($n=4$ mice of each genotype).

Fig.1

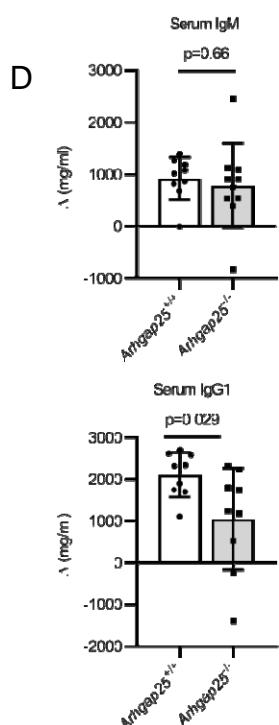
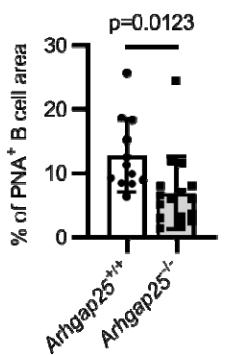
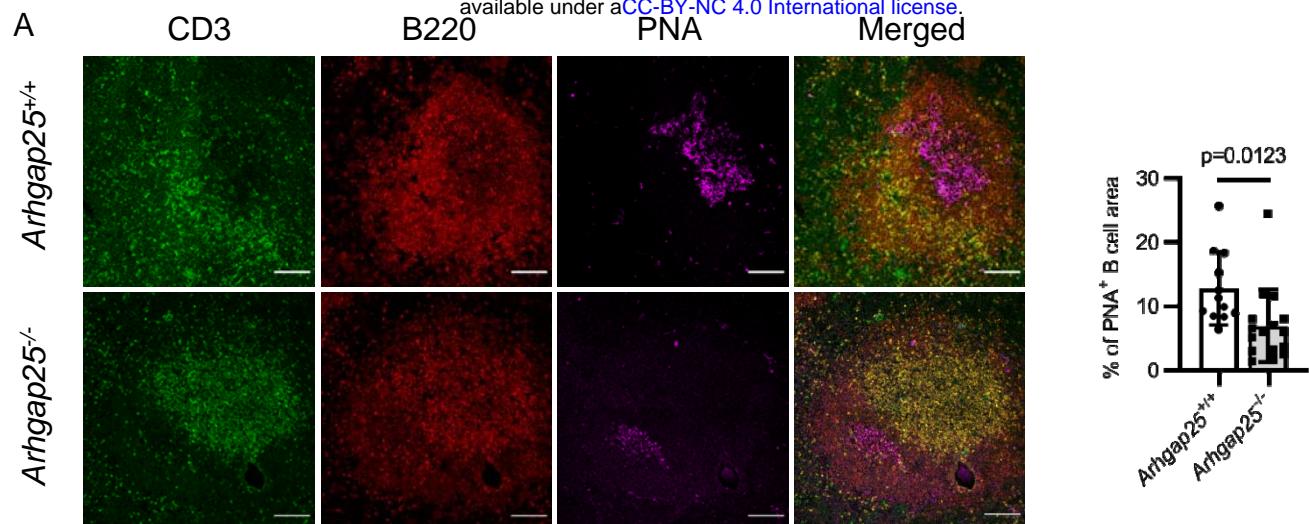
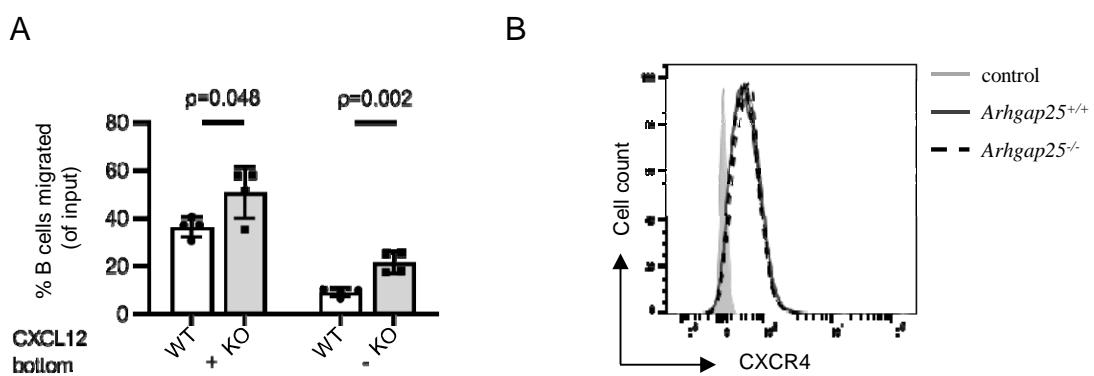





Fig.3

