

1 **Germplasm of Brazilian winter squash (*Cucurbita moschata* D.) displays vast**
2 **genetic variability, allowing identification of promising genotypes for agro-**
3 **morphological traits**

4 Ronaldo Silva Gomes^{1*}, Ronaldo Machado Júnior¹, Cleverson Freitas de Almeida¹, Rafael
5 Ravaneli Chagas¹, Rebeca Lourenço de Oliveira¹, Fabio Teixeira Delazari², Derly José
6 Henriques da Silva¹

7 ¹Agronomy Department, Graduation Program on Genetics and Breeding, Federal University of
8 Viçosa- UFV, Viçosa, MG, Brazil; ²National Service of Rural Learning- SENAR, Campo
9 Grande, MS, Brazil

10 ***Corresponding author:** ronaldo.s.gomes@ufv.br

11

12 **ABSTRACT**

13 Winter squash fruits (*Cucurbita moschata* D.) are among the best sources of vitamin A
14 precursors and constitute sources of bioactive components such as phenolic compounds and
15 flavonoids. Approximately 70% of *C. moschata* seed oil is made up of unsaturated fatty acids,
16 with high levels of monounsaturated fatty acids and components such as vitamin E and
17 carotenoids, which represent a promising nutritional aspect in the production of this vegetable.
18 *C. moschata* germplasm expresses high genetic variability, especially in Brazil. We assessed 91
19 *C. moschata* accessions, from different regions of Brazil, and maintained at the UFV Vegetable
20 Germplasm Bank, to identify early-flowering accessions with high levels of carotenoids in the
21 fruit pulp and high yields of seed and seed oil. Results showed that the accessions have high
22 variability in the number and mass of seeds per fruit, number of accumulated degree-days for
23 flowering, total carotenoid content, and fruit productivity, which allowed selection for
24 considerable gains in these characteristics. Analysis of the correlation between these
25 characteristics provided information that will assist in selection to improve this crop. Cluster
26 analysis resulted in the formation of 16 groups, confirming the variability of the accessions. *Per*
27 *se* analysis identified accessions BGH-6749, BGH-5639, and BGH-219 as those with the earliest
28 flowering. Accessions BGH-5455A and BGH-5598A had the highest carotenoid content, with
29 averages greater than 170.00 $\mu\text{g g}^{-1}$ of fresh mass. With a productivity of 0.13 t ha^{-1} , accessions
30 BGH-5485A, BGH-4610A, and BGH-5472A were the most promising for seed oil production.
31 These last two accessions corresponded to those with higher seed productivity, averaging 0.58

32 and 0.54 t ha⁻¹, respectively. This study confirms the high potential of this germplasm for use in
33 breeding for promotion of earlier flowering and increase in total carotenoid content of the fruit
34 pulp and in seed and seed oil productivity.

35

36 **Key words:** agro-morphological, bioactive compounds, carotenoids, correlation, clustering,
37 *Cucurbita moschata*, genotypic variance, seed oil.

38

39 **Introduction**

40 Winter squash (*Cucurbita moschata* D.) is one of the vegetables of greater socio-economic
41 importance in the *Cucurbita* genus, largely due to the high nutritional value of its fruits and
42 seeds. The pulp of its fruits comprises an important source of carotenoids such as β -carotene, the
43 precursor of greater pro-vitamin A activity [1, 2, 3], in addition to vitamins such as B2, C, and E
44 [4, 5]. The pulp is also an excellent source of minerals such as K, Ca, P, Mg, and Cu [6, 7]. The
45 socio-economic importance of *C. moschata* is also linked to the high volume and value of its
46 production. It is estimated that, together with other cucurbits such as *C. pepo* and *C. maxima*, the
47 cultivated area and the world production of this vegetable in 2017 were approximately 2 million
48 hectares and 25 million tons, respectively [8], most of it concentrated in China and India. In
49 Brazil this crop is of high socio-economic importance, with a cultivated area of approximately 90
50 thousand hectares, an estimated production of more than 40 thousand tons / year and an annual
51 production value of around R\$ 1.5 million [9].

52 *C. moschata* brings together characteristics that are fundamental in biofortification programmes,
53 such as high productivity and profitability potentials, high efficiency in reducing micronutrient
54 deficiencies in humans, and good acceptability with producers and consumers in its growing
55 regions [10]. This has caused the vegetable to be chosen as a strategic crop for breeding
56 programmes promoting biofortification, such as the Brazilian biofortification programme
57 (BioFORT), led by Embrapa, which aims for biofortification in vitamin A precursors [11].

58 The potential of *C. moschata* for the production of edible seed oil is also a promising aspect of
59 this crop. Constituted of about 70% unsaturated fatty acids with a high content of
60 monounsaturated fatty acid [12, 13], *C. moschata* seed oil is a good substitute for other lipid
61 sources with higher saturated fatty acid contents. The oil is also rich in bioactive components
62 such as vitamin E and carotenoids [4], which are important antioxidants in the human diet, in
63 addition to providing protection to the oil against oxidative processes. In addition, the cultivation
64 of this species is commonly based on a production system of low-technological level [14],

65 making this crop fundamental for ensuring healthier diets and promoting food security in the
66 regions where it is grown, particularly in less developed regions and in the context of family-
67 based farming.

68 Associated with its socio-economic importance, *C. moschata* germplasm commonly expresses
69 high genetic variability in all regions where it occurs [15, 16, 17], especially in Brazil [18, 19,
70 20]. Archaeological evidence indicates that this species was present in Latin America prior to
71 colonisation, and appears to have already been an important component in the diet of the native
72 peoples living there [21, 22, 23]. Currently, the variability of this vegetable in Brazil is closely
73 tied to the human populations involved in its cultivation, who are predominantly family-based
74 farmers. The selection practised over time by these populations, associated with the exchange of
75 seeds between them, and the natural occurrence of hybridization in the germplasm of this species
76 has contributed to the increase in its variability. The high variability displayed by *C. moschata*
77 for agronomic, nutritional and bioactive characteristics and the intercrossability of the *Cucurbita*
78 species has enabled the transfer of these characteristics from *C. moschata* to other species of this
79 genus [24, 25, 26, 27]. This is something strategic and may aid the worldwide cultivation of
80 species of the *Cucurbita* genus.

81 The usefulness of plant germplasm conserved in banks depends on the amount and quality of
82 information associated with it, which highlights the importance of its proper evaluation. On the
83 other hand, the high volume of germplasm and limitations in resources and area available for the
84 establishment of field trials commonly make its assessment difficult. In view of this, the FAO's
85 Second Global Action Plan for Plant Genetic Resources for Food and Agriculture sets out
86 guidelines that provide greater efficiency in the conservation and use of plant germplasm [28].
87 This is essential information for the management and use of germplasm [14, 29, 30, 31].

88 Evaluation of the germplasm maintained in banks makes it possible to estimate the magnitude of
89 the genetic and statistical parameters of characteristics of interest, which can provide information
90 on the nature of variability observed for these traits, in addition to elucidating which
91 characteristics or groups of characteristics most contribute to germplasm variability. From this
92 assessment, it is also possible to assess the association between the characteristics evaluated.
93 Together, the information obtained from these assessments is essential for the optimisation of the
94 use and management of plant germplasm.

95 The UFV Vegetable Germplasm Bank (BGH-UFV) maintains more than 350 accessions of *C.*
96 *moschata*, comprising one of the largest collections of this species in the country [32]. This bank
97 continually carries out work on the characterisation and evaluation of this germplasm [33],
98 which has allowed the identification of sources of resistance for important phyto-pathogenic

99 agents of this crop [34], and for its improvement in terms of production [20] and nutritional
100 aspects of fruits and seed oil [12, 35]. The potential of this germplasm as a source of genes for
101 the improvement of this crop, along with the possibility of elucidating the genetic mechanisms
102 linked to important production parameters, justifies the continuation of studies on its assessment
103 and use.

104 This study therefore aimed to: a) agro-morphologically assess some of the *C. moschata*
105 accessions maintained by BGH-UFV, b) analyse the genetic relationships of the agro-
106 morphological characteristics, and c) analyse the agro-morphological variability, with a view to
107 identifying earlier-flowering genotypes, genotypes with high total levels of carotenoids in the
108 fruit pulp, and those with high potential for seed and seed oil productivity.

109

110 MATERIALS AND METHODS

111 Origin of germplasm and preparation of seedlings

112 In this study, we assessed 95 genotypes, which comprised 91 accessions of *C. moschata*
113 maintained in the BGH-UFV, and four control genotypes (Table 1). The accessions came from
114 different regions of Brazil [33], and consisted, for the most part, of samples collected from
115 family-based farmers, who commonly perform the selection of genotypes and the conservation
116 of their seeds.

117 **Table 1.** Origin of the of the *C. moschata* accessions and controls assessed in this study and
118 maintained by BGH-UFV

Origem	Number of accessions
Bahia	6
São Paulo	39
Minas Gerais	15
Distrito Federal	17
Espírito Santo	3
Goiás	4
Paraná	2
Rio de Janeiro	2
Rio Grande do Norte	2
Santa Catarina	1
Controls	
Jabras- Isla Sementes	
Jacarezinho- Embrapa Hortaliças	
Maranhão- Embrapa Hortaliças	
Tetsukabuto- Sakata Sementes	

119 Seedlings were produced in a 72-cell expanded-polystyrene tray containing commercial
120 substrate. Seedling transplantation and cultural treatments were carried out according to local
121 recommendations for the cultivation of pumpkins [36].

122

123 **Experiment location and experimental design**

124 The experiment was carried out from January to July 2016, at "Horta Velha" (200 45'14 " S, 420
125 52'53 " W and 648.74 m), an experimental unit of the Agronomy Department of the Federal
126 University of Viçosa, Viçosa-MG, Brazil.

127 The experiment was arranged in Federer's augmented block design [37], with five repetitions for
128 each control. The four controls, also called common treatments, were randomly distributed in
129 each of the five blocks, and the 91 accessions, called regular treatments, were randomly assigned
130 to all blocks. A spacing of 3x3 m between plants and rows was adopted, which resulted in a
131 stand of 1,111 plants ha⁻¹. Each plot consisted of five plants, of which the three central plants
132 were considered for evaluation.

133

134 **Assessments of agro-morphological aspects, total carotenoid content of fruit pulp, and seed 135 and seed oil yields**

136 For the assessment involving multi-categorical characteristics, we adopted the morphological
137 descriptors suggested by Bioversity and the European Cooperative Program for Plant Genetic
138 Resources (ECPGR), plus some additional descriptors.

139 These descriptors comprised agro-morphological characteristics of plants, fruits and seeds, as
140 well as the phytosanitary aspect of plants (supplementary table 1). Assessment was also
141 performed based on agronomic characteristics, the total carotenoid content of fruit pulp and the
142 yields of seed and seed oil (Table 2).

143

144

145

146

147

148

149 **Table 2.** Descriptors involving agronomic aspects, the total *carotenoid* content of fruit pulp and
150 yields of seed and seed oil used in the assessment of the *C. moschata* germplasm maintained by
151 BGH-UJV

Phase/organ	Descriptors
Reproductive phase	Degree-days accumulated for flowering (DDF).
Fruit	Number of fruits per plant (NFP), average mass of fruits (MF), productivity of fruits (PF), height of fruit (HF), diameter of fruit (DF), thickness of fruit peel (TFP), resistance of fruit peel (RFP), resistance of fruit pulp (RP), thickness of fruit pulp (PT), diameter of internal cavity of fruit (DIC), total content of fruit pulp carotenoids (TC) and the lutein content of fruit pulp (L).
Seed	Number of seeds per plant (NSF), mass of seeds per fruit (MSF), relationship between the masses of seeds and fruit (MS/F), mass of one hundred seeds (MOH), productivity of seeds (PS), seed thickness (ST), seed length (SL), and seed width (SW).
Seed oil	Seed oil content (SOC) and seed oil productivity (SOP).

152
153 The estimates of the total carotenoid and lutein contents of the fruit pulp were obtained based on
154 colorimetric parameters. For this, the fruit pulp colour was characterised with the aid of a manual
155 tri-stimulus colorimeter, Color Reader CR-10 Konica Minolta, based on parameters related to
156 luminosity (L), and contribution of red (a) and yellow (b). The characterisation was carried out
157 from different regions in the fruits (region facing the sun, region facing the soil, region of the
158 peduncle and floral insertion), from one fruit of each plant in the useful area of the plot. These
159 estimates were obtained using the equations proposed by [38], described below:

160

161
$$C = \sqrt{a^2 + b^2}$$

162
$$TC = 6.1226 + 1.7106 a$$

163
$$L = -6.3743 + 0.2818 C$$

164

165 Where:

166 TC corresponds to the total *carotenoid* content of the fruit pulp ($\mu\text{g g}^{-1}$ of fresh pulp mass);

167 a corresponds to the contribution of red to the colour of the fruit pulp;

168 L corresponds to the lutein content of the fruit pulp ($\mu\text{g g}^{-1}$ of fresh pulp mass); and

169 C corresponds to the saturation or chroma of the fruit pulp.
170 The extraction of oil from seeds was carried out by means of cold pressing, with the aid of a 30-
171 ton-capacity press, with the necessary adaptations for pressing. For this, the seeds were
172 previously dried in a forced-air-circulation oven for 72 hours, at 23°C. For standardization of the
173 process, 50 g seed samples were weighed from each access and all samples were equally pressed
174 for approximately 10 minutes.

175
176 **Estimation of genotypic values, components of variance and genetic-statistical parameters**

177 Phenotypic data were analysed using maximum restricted likelihood (REML) procedures and the
178 best unbiased prediction (BLUP). These procedures were carried out with the aid of the R
179 program, using the “lme4” package [39]. The estimates of variance components were obtained
180 from this first procedure, while the genotypic values of accessions (BLUPS) and controls
181 (BLUES), were obtained from the BLUP procedure. All estimates were obtained based on the
182 following model:

$$y = Wb + Xa + Zt + e$$

183 In which:
184 y corresponds to the phenotypic data vector;
185 b corresponds to the vector comprising the effect of block, assumed to be random;
186 a corresponds to the vector comprising the effect of accessions, assumed to be random;
187 t corresponds to the vector comprising the effect of controls, assumed to be fixed: and
188 e corresponds to the error vector.

189 The letters W, X and Z correspond to the incidence matrices of parameters b, a, and t,
190 respectively, with the data vector y.
191 The estimates of the variance components comprised the phenotypic (σ_p^2), genotypic (σ_g^2), and
192 residual (σ^2) variances, and the variance associated with the block effect (σ_b^2). The genetic-
193 statistical parameters comprised the broad sense heritability (h^2), the selection accuracy (A),
194 selection gain (SG), the phenotypic mean of the characteristics (μ), and the genotypic ($CV_g\%$),
195 phenotypic ($CV_p\%$), and residual ($CVr\%$) coefficients of variance. These were obtained from
196 the following estimators: $h^2 = 1 - (Pev/2\sigma_g^2)$, where Pev corresponds to the prediction of errors
197 variance [40]; $A = \sqrt{1 - (pev/\sigma_g^2)}$; $GS = h^2 \cdot DS$, where DS corresponds to the selection
198 differential, estimated based on the average of the top 15% most promising accessions; $CV_g\% =$
199 $(\sigma_g^2/\mu) \times 100$; $CV_p\% = (\sigma_p^2/\mu) \times 100$; $e CVr\% = (\sigma^2/\mu) \times 100$.

200
201

202 **Correlation analysis**

203 This analysis was performed based on the matrix of genetic correlations, obtained based on the
204 following estimator:

205
$$rg = Cov(x, y) / \sqrt{\sigma_g^2(x) \sigma_g^2(y)}$$

206

207 In which;

208 $Cov(x, y)$, corresponds to the genetic covariance between two variables X and Y, and $\sigma_g^2(x)$ and
209 $\sigma_g^2(y)$ correspond to the genetic variances of variables X and Y, respectively.

210 The correlations were analysed using a procedure known as *correlation network*, which allows,
211 based on a specific function, the analysis of all relationships between the variables under study.

212 This procedure also allows the direction and magnitude of the correlations to be distinguished.

213 The direction is denoted by colours; a dark green colour is used for the lines that connect
214 positively-correlated variables, and a red colour for the lines that connect negatively-correlated
215 variables. The magnitude of the correlations is denoted by the thickness of the lines connecting
216 the variables; the thicker the line, the greater the correlation. The significance of the correlations
217 was analysed using Mantel's Z test at 1 and 5% probability. The correlation analysis was
218 performed with the aid of the Genes program [41].

219

220 **Analysis of variability and clustering**

221 The analysis of variability was carried out using both quantitative and qualitative information.

222 For quantitative data, the distance matrix between the genotypes was obtained from the BLUPS
223 estimates in the case of accessions, and BLUES in the case of the controls, and were estimated
224 based on the negative average Euclidean distance, with data standardization.

225 The matrix was obtained from *negDistMat*, a function of the APCluster package [42]
226 implemented in the R program, version 3.5.1 (R Development Core Team, Vienna, AT). The
227 distances $d(x; y)$ between the accession pairs, exemplified here as any two accessions $x(x_1, \dots,$
228 $x_n)$ and $y(y_1, \dots, y_n)$, were estimated based on the following equation:

229
$$d(x, y) = - (1/v) \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

230 In which v corresponds to the number of quantitative descriptors evaluated.

231 The distance matrix for the qualitative data was obtained using the arithmetic complement of the
232 simple coincidence index. The variability analysis was performed from a single distance matrix,
233 obtained from the sum of the distance matrices of the quantitative and qualitative data. For the

234 sum of matrices, they were standardised and each received an equal weight in the sum procedure.
235 The variability analysis was performed using the procedure known as the *Affinity propagation*
236 method [43]. The grouping was carried out from 100 independent rounds, aiming to assess the
237 consistency of grouping.
238 The operation of *Affinity* initially involves the identification, in a set of components, of samples
239 that will function as centres of this set. This method simultaneously considers all the set
240 components as potential centres, i.e. as nodes in an interconnected network. Following the
241 identification of potential centres, messages are transmitted between the set components along
242 the network until a good set of centres and their corresponding groups emerge. The messages
243 exchanged between the components in *Affinity* can be “responsiveness” $r(i, k)$ and “availability”
244 $a(i, k)$. This first case reflects the accumulated evidence of how appropriate point k is to serve as
245 an example for point i , considering all other potential examples for this point. The “availability”,
246 in turn, reflects the accumulated evidence of how appropriate it would be for point i to choose
247 point k as an exemplar, considering the other points for which point k can be an exemplar [43].
248 In the analysis of the present study, the availability was initially established as zero.
249

250 **Identification of promising accession groups and *per se* identification of accessions**

251 In order to facilitate the identification of promising groups of accessions for each characteristic,
252 we carried out a grouping of means of the genotypic values corresponding to the groups obtained
253 from the analysis of variability. This was carried out based on Tocher’s grouping of means
254 method. The identification *per se* of the most promising accessions for each trait was carried out
255 by ranking the respective genotypic effects, genetic gain and the new predicted average of the
256 accessions, and the top 15% were considered the most promising accessions.
257

258 **RESULTS**

259 **Variance components and genetic-statistical parameters**

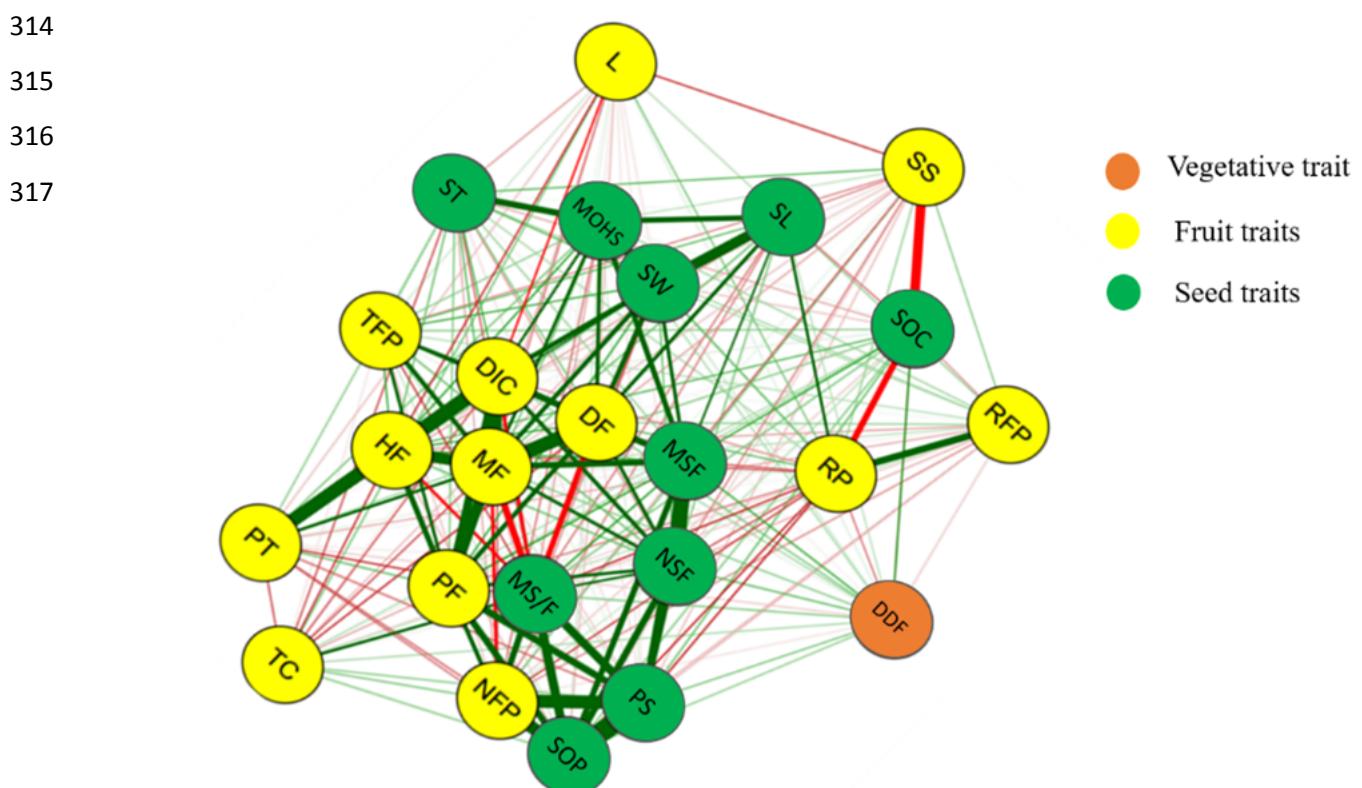
260 Estimates of the variance components and the genetic-statistical parameters are presented in
261 table 3. The highest estimates of genotypic variance corresponded to the number of seeds (NSF)
262 and mass of seeds per fruit (MSF), to the degree-days accumulated for flowering (DDF), and to
263 the total carotenoid content of the fruit pulp (TC). Among these variance estimates, only the
264 genotypic variance of DDF was not significant.

265 **Table 3.** Estimates of variance components and genetic-statistical parameters of agronomic
266 aspects, the total carotenoid content of fruit pulp, and of the yields of seeds and seed oil of the *C.*
267 *moschata* germplasm accessed in this study and maintained by the BGH-UJV

Vegetative trait												
Traits	σ_p	σ_g	σ	σ_b	<i>A</i>	h^2	<i>SG</i>	<i>Range</i>	μ	$CV_g\%$	$CV_p\%$	$CVr\%$
DDF	10781.493	6385.892 ^{ns}	3909.203	486.397800	0.725	0.525	-92.947	120.0- 820.4	606.642	13.172	17.116	10.306
Fruit traits												
Traits	σ_p	σ_g	σ	σ_b	<i>A</i>	h^2	<i>SG</i>	<i>Range</i>	μ	$CV_g\%$	$CV_p\%$	$CVr\%$
NFP	8.724	3.583 ^{ns}	4.614	0.527	0.655	0.429	2.303	1- 15	4.783	39.575	61.752	44.909
MF	2.738	2.373 ^{**}	0.364	0.000	0.841	0.707	2.189	0.45-10.0	2.735	56.323	60.500	22.059
PF	73.954	38.598 [*]	29.279	6.076	0.704	0.495	7.817	0.7- 44.6	12.946	47.989	66.427	41.796
TC	387.206	362.902 ^{**}	24.303	0.000	0.880	0.774	20.426	43.4- 187.2	65.763	28.967	29.921	7.496
Seed and oil traits												
Traits	σ_p	σ_g	σ	σ_b	<i>A</i>	h^2	<i>SG</i>	<i>Range</i>	μ	$CV_g\%$	$CV_p\%$	$CVr\%$
NSF	25274.617	20784.317 ^{**}	2817.703	1672.597	0.844	0.712	167.873	78.6- 805.7	454.188	31.741	35.003	11.685
MSF	490.881	465.357 ^{**}	16.141	9.382	0.899	0.808	27.428	4.4- 119.3	51.929	41.541	42.665	7.736
MS/F	0.000142523	0.000125343 ^{**}	0.000015091	0.000002089	0.854	0.729	0.015	0.00- 0.05	0.023	48.676	51.905	16.890
MOHS	7.395	4.391 [*]	3.003	0.000	0.721	0.519	2.210	6.3- 23.6	11.701	17.908	23.240	14.809
PS	0.042	0.019 ^{ns}	0.016	0.006	0.694	0.481	0.187	0.01- 0.9	0.269	51.241	76.185	47.022
SOC	13.010	0.462 ^{ns}	11.822	0.725	0.512	0.262	1.254	28.50- 54.4	18.516	3.670	19.480	18.569
SOP	0.001743	0.000172 ^{ns}	0.001300	0.000	0.540	0.291	0.072	0.004- 0.40	0.050	26.037	83.498	72.111

268 Degree-days accumulated for flowering (DDF), number of fruits per plant (NFP), average mass of fruits (MF),
269 productivity of fruits (PF), total carotenoid content of fruit pulp (TC), number of seeds per fruit (NSP), mass of
270 seeds per fruit (MSF), relationship between the masses of seeds and fruit (MS/F), mass of one hundred seeds
271 (MOHS), productivity of seeds (PS), seed oil content (SOC), and seed oil productivity (SOP). Components of
272 variance involving phenotypic (σ_p), genotypic (σ_g), residual (σ) and the variance associated to block effect (σ_b).
273 Genetic-statistical parameters involving accuracy (*A*), broad sense heritability (h^2), selection gain (*SG*), average (μ),
274 coefficients of genotypic ($CV_g\%$), phenotypic ($CV_p\%$) and residual variation ($CVr\%$). ns not significant; **, *
275 significant at $p < 0.01$ and 0.05 , respectively by the likelihood ration test.

276 The greatest contributions from the genotypic variance (σ_g^2), to the phenotypic (σ_p^2) also
277 corresponded to the characteristics of seeds, namely MSF (94.80%) and NSF (82.23%). A
278 significant contribution was also observed for TC (93.72%) and DDF (59.23%), as shown in
279 table 3. The residual variance had a reduced contribution to the phenotypic variance for most of
280 the characteristics. As can also be seen in table 3, most of the characteristics displayed high
281 estimates for the selection accuracy (*A*). The heritability estimate of DDF was 0.525; and 0.495
282 and 0.774 for PF and TC, respectively. PS expressed broad sense heritability of 0.481 and SOP
283 0.291. The selection gain estimate for DDF was -92.947, and was $7,817 \text{ t ha}^{-1}$ and $20.426 \mu\text{g g}^{-1}$
284 of fresh pulp mass for PF and TC, respectively. The selection gains for PS and SOP were 0.187
285 and 0.072 t ha^{-1} , respectively (Table 3).


286 Phenotypic amplitude for DDF between accessions was 120.0 to 820.4 and the average was 606.
287 642 (Table 3). The amplitude for PF was 44.6 to 0.7 t ha⁻¹ and the average 12.946 t ha⁻¹. The
288 amplitude for TC was 43.4 to 187.2 µg g⁻¹ of fresh pulp mass and the average was 65.763 µg g⁻¹
289 of fresh pulp mass. The amplitude for PS was 0.01 to 0.9 t ha⁻¹ and the average was 0.269 t ha⁻¹.
290 The phenotypic and average amplitudes of the accessions for SOP were 0.004 to 0.40 t ha⁻¹ and
291 0.050 t ha⁻¹, respectively (Table 3). The greatest amplitude for the coefficient of genotypic
292 variation (CV_g%) was observed between the characteristics SOC and MF, while for the
293 coefficient of phenotypic variation (CV_P%), the greatest amplitude was observed between DDF
294 and SOP. The estimates of residual variation coefficient ranged from 7.502 to 71.582 for TC and
295 SOP, respectively (Table 3).

296

297 **Genotypic correlation**

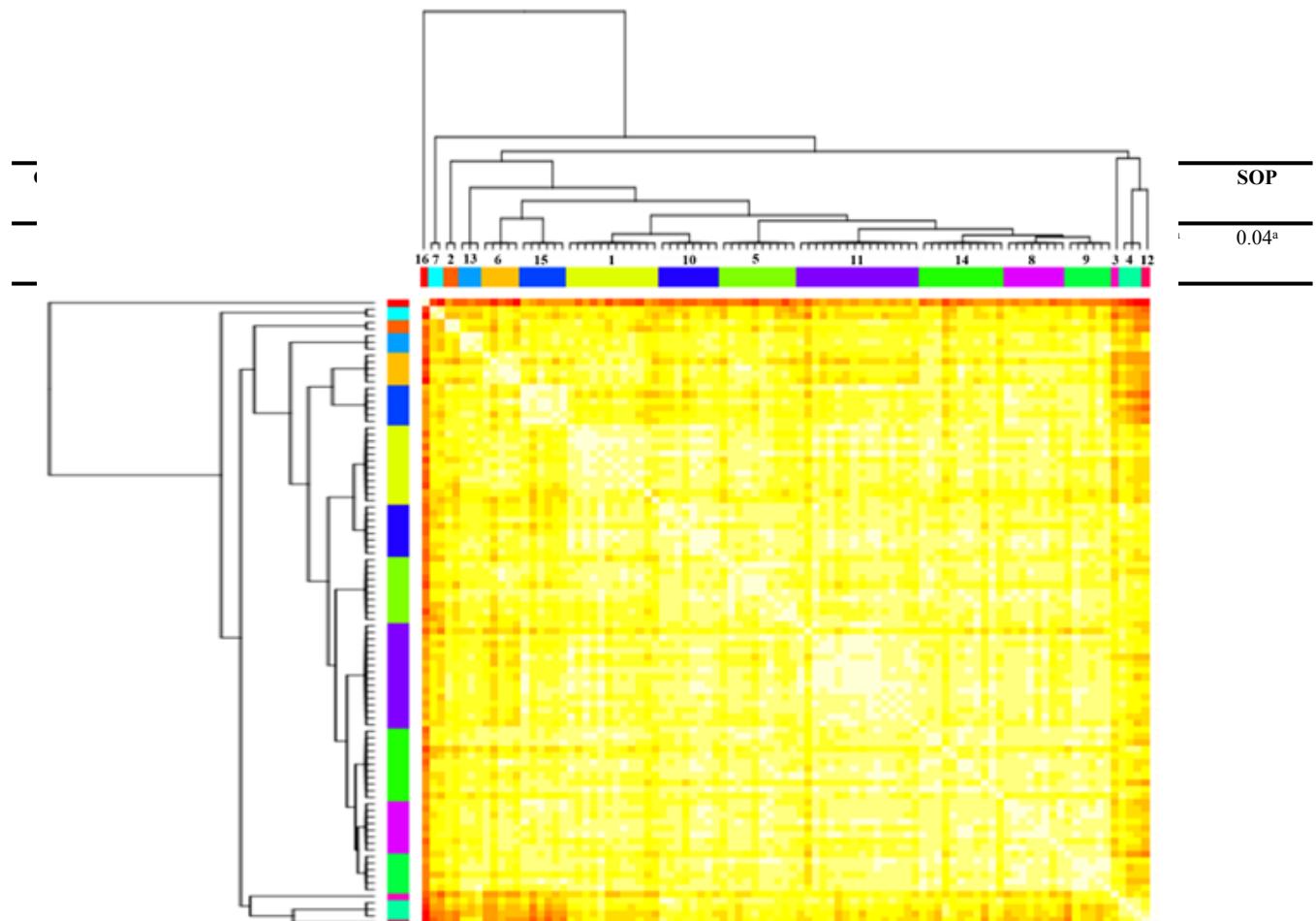
298 The genotypic correlation network of agronomic aspects, the total carotenoid content of the fruit
299 pulp, and the characteristics of seeds and seed oil are shown in figure 1. Visually, it is possible to
300 observe cohesion of groups involving some of the fruit characteristics and groups involving
301 some of the characteristics of seeds. It is possible to observe cohesion between fruit productivity
302 and other characteristics of this group such as MF, DIC, HF, DF and TPF. As can be inferred
303 from the colour and thickness of lines, this set of variables expressed positive correlations of
304 high magnitudes. The highest correlations in this group correspond to the correlations of fruit
305 yield with MF (0.61) and with DIC (0.54), which were also significant ($p<0.01$) (Figure 1).
306 There was cohesion between the group of variables involved in seed productivity and variables
307 such as MS/F, NSF and MSF. This set of variables expressed positive and high-magnitude
308 correlations, and the correlation of seed productivity with MS/F (0.56), which was significant
309 ($p<0.01$), was the highest in this group. The group involving the mass of one hundred seeds and
310 characteristics of seed dimensions such as SW, ST and SL was also a cohesive group. This group
311 expressed positive correlations, and the correlation of the mass of one hundred seeds with SW
312 (0.62), also significant ($p<0.01$), was the highest in this group (Figure 1).

313

318 **Figure 1.** Network of genotypic correlations of agronomic aspects, the total carotenoid content
319 of the fruit pulp, and the characteristics of seeds and seed oil of the *C. moschata* germplasm
320 assessed in this study and maintained by the BGH-UFV. The red and green lines denote positive
321 and negative correlations, respectively. Thicker lines indicate greater magnitudes of correlation
322 while the thinner lines indicate lesser magnitudes. Degree-days accumulated for flowering
323 (DDF), number of fruits per plant (NFP), average mass of fruits (MF), productivity of fruits
324 (PF), height of fruit (HF), diameter of fruit (DF), thickness of fruit peel (TFP), resistance of fruit
325 peel (RFP), resistance of fruit pulp (RP), pulp thickness (PT), diameter of internal cavity of fruit
326 (DIC), soluble solids of fruit pulp (SS), total carotenoids content of fruit pulp (TC), lutein
327 content of fruit pulp (L), mass of seeds per fruit (MSF), productivity of seeds (PS), relationship
328 between the masses of seeds and fruit (MS/F), mass of one hundred seeds (MOHS), seed oil
329 content (SOC), and seed oil productivity (SOP).

330

331 **Genetic variability and clustering**


332 Cluster analysis, based on the agro-morphological aspects, the total carotenoid content of the
333 fruit pulp, and the characteristics related to the yields of seed and seed oil of the germplasm,
334 placed the accessions into 16 groups (Table 4).

335 Based on the clustering pattern, high variability was observed between the accessions. Most of
336 the genotypes were grouped in group 11, which comprised 17.58% of the accessions, and the
337 control Jabras, making it the largest group. Group 1, the second largest, contained 13.18% of the
338 accessions and two controls, Jacarezinho and Maranhão. Group 14 was the third largest, in which
339 12.08% of accessions were grouped. The grouping of genotypes in the other groups did not occur
340 equitably and some of them contained only one genotype (Table 4).

341 **Table 4.** Clustering of the *C. moschata* germplasm assessed in this study and maintained by
342 BGH-UFV, based on agro-morphological aspects, the total carotenoid content of fruit pulp, and
343 the yields of seeds and seed oil

Clusters	Accessions
1	BGH117 BGH4281 BGH4454A BGH5472A BGH5541 BGH5556A BGH5616A BGH5630A BGH6116 BGH6590 Jacarezinho Maranhão
2	BGH4459A BGH5548A
3	BGH4590A
4	BGH1927 BGH4681A BGH5653
5	BGH1749 BGH5051 BGH5453A BGH5473A BGH5544A BGH5591A BGH5593 BGH5596A BGH7219A BGH7668
6	BGH3333A BGH4610A BGH5361A BGH5440A BGH5485A
7	BGH5455A BGH5598A
8	BGH5247A BGH5493A BGH5494A BGH5559A BGH5624A BGH6115 BGH6587A BGH6595
9	BGH1004 BGH315 BGH5499A BGH5530A BGH5606A BGH6593
10	BGH1961 BGH4516 BGH5248 BGH5442 BGH5538 BGH5554A BGH5648 BGH5659A
11	BGH1945A BGH4453 BGH4607A BGH5301 BGH5451 BGH5528 BGH5551 BGH5552 BGH5553 BGH5560A BGH5597 BGH5638 BGH6155 BGH6794 BGH95 Jabras
12	BGH5649A
13	BGH6099 BGH900 GBH5694
14	BGH1461A BGH4287A BGH4598A BGH5224A BGH5240 BGH5466 BGH5497 BGH5603 BGH5639 BGH6117A BGH6749
15	BGH1992 BGH291 BGH305A BGH5456A BGH6096 BGH6594
16	Tetsukabuto

344
345 The visual pattern of the clustering in heatmap format showed low similarity between the groups
346 formed, something denoted by the predominance of yellow and orange colouring (Figure 2).
347 Visual analysis of this clustering also shows homogeneity of the distances between groups,
348 denoted by the uniformity of the figure colouring.

349 **Figure 2.** Heatmap and hierarchical clustering of the genetic distances of the *C. moschata*
350 accessions, based on agro-morphological traits, the total carotenoid content of the fruit pulp, and
351 the yields of seeds and seed oil. The coloured bars on the upper and lower axis correspond to the
352 groups obtained in the clustering. Orange colour indicates higher dissimilarity and white
353 indicates lower dissimilarity.

354
355 **Identification of promising clusters and *per se* identification of promising genotypes**
356 In order to facilitate the visualization of clusters with the most desirable means for each
357 characteristic, a grouping of means of clusters was performed by the Tocher method (Table 5).

358

359

360

2	32.20 ^b	-0.69 ^b	-0.58 ^c	-2.80 ^c	-8.77 ^b	-95.99 ^b	-0.80 ^b	-0.80 ^c	-1.54 ^d	-0.08 ^b	-0.16 ^a	-0.03 ^b
3	-35.38 ^b	0.15 ^b	1.17 ^b	5.61 ^b	-7.46 ^b	-207.22 ^c	-1.22 ^b	-1.22 ^d	3.62 ^a	-0.05 ^b	0.12 ^a	-0.02 ^b
4	-19.47 ^b	-0.67 ^b	4.53 ^a	10.41 ^a	-4.95 ^b	129.02 ^b	-0.53 ^b	-0.53 ^c	1.66 ^b	0.02 ^b	0.07 ^a	0.01 ^b
5	2.76 ^b	0.33 ^b	0.40 ^c	2.89 ^c	-8.54 ^b	44.57 ^b	-0.40 ^b	-0.40 ^c	-0.85 ^c	0.02 ^b	0.01 ^a	0.01 ^b
6	11.73 ^b	2.69 ^a	-1.23 ^g	1.50 ^c	-0.84 ^b	79.53 ^b	1.76 ^b	1.76 ^a	-1.16 ^d	0.21 ^a	-0.01 ^a	0.07 ^a
7	36.35 ^b	1.24 ^a	-1.36 ^g	-2.48 ^c	111.02 ^a	13.62 ^b	1.90 ^b	1.90 ^a	-0.08 ^c	0.06 ^b	0.06 ^a	0.03 ^b
8	-9.88 ^b	0.14 ^b	-0.47 ^d	-0.09 ^c	2.01 ^b	43.54 ^b	0.56 ^b	0.56 ^b	-1.79 ^d	-0.01 ^b	-0.14 ^a	-0.01 ^b
9	-8.08 ^b	-0.66 ^b	-0.93 ^f	-3.83 ^c	-6.11 ^b	-36.84 ^b	0.42 ^b	0.42 ^b	-0.41 ^c	-0.06 ^b	0.02 ^a	-0.02 ^b
10	40.41 ^b	-0.65 ^b	0.84 ^b	-0.10 ^c	-5.74 ^b	151.09 ^b	-0.3 ^b	-0.31 ^c	0.97 ^b	0.00 ^b	-0.03 ^a	0.00 ^b
11	-10.76 ^b	-0.80 ^b	0.29 ^c	-1.32 ^c	-1.03 ^b	-96.72 ^b	-0.79 ^b	-0.79 ^c	0.91 ^b	-0.09 ^b	-0.05 ^a	-0.03 ^b
12	127.82 ^a	-1.17 ^b	4.33 ^a	5.60 ^b	-11.10 ^b	228.21 ^a	-0.65 ^a	-0.65 ^c	2.62 ^a	0.03 ^b	0.20 ^a	0.02 ^b
13	82.43 ^a	-0.30 ^b	-0.24 ^d	-1.24 ^c	-5.32 ^b	-46.40 ^b	-0.02 ^b	-0.02 ^c	-0.19 ^c	-0.03 ^b	0.11 ^a	-0.01 ^b
14	-66.85 ^b	-0.17 ^b	-0.02 ^d	-0.47 ^c	1.13 ^b	22.01 ^b	0.48 ^b	0.48 ^b	-0.08 ^c	0.01 ^b	0.04 ^a	0.00 ^b
15	-43.65 ^b	0.72 ^b	-1.39 ^g	-2.61 ^c	-0.99 ^b	-243.74 ^c	-0.86 ^b	-0.86 ^c	-1.34 ^d	-0.08 ^b	-0.03 ^a	-0.03 ^b
16	-138.72 ^c	-0.06 ^b	-1.32 ^g	-4.92 ^c	-10.69 ^b	-393.92 ^d	-1.82 ^c	-1.82 ^d	0.07 ^c	-0.22 ^c	-5.50 ^b	-0.05 ^c

361 **Table 5.** Grouping of means of the genotypic values of the groups obtained in the analysis of
362 variability for agro-morphological aspects, the total carotenoid content of the fruit pulp and the
363 yields of seed and seed oil

364 Degree-days accumulated for flowering (DDF), number of fruits per plant (NFP), average mass of fruits (MF),
365 productivity of fruits (PF), total carotenoid content of fruit pulp (TC), number of seeds per fruit (NSF), mas of seeds
366 per fruit (MSF), relationship between the masses of seeds and fruit (MS/F), mass of one hundred seeds (MOHS),
367 productivity of seeds (PS), seed oil content (SOC), and seed oil productivity (SOP). The letters a, b, c, d, f, and g
368 refer to the groups formed in the clustering of means obtained by the Tocher method.

369 The lowest mean for DDF corresponded to group 16, which contained only the control
370 Tetsukabuto, although most groups expressed intermediate averages for this characteristic (Table
371 5). The group with the highest mean for PF was group 4, formed by the accessions BGH-1927,
372 BGH-4681A and BGH-5653. This group also expressed one of the highest averages for MF and
373 intermediate averages for NFP. As for the TC, the highest average corresponded to group 7,
374 formed by the accessions BGH-5455A and BGH-5598A. Regarding seed and seed oil
375 productivity, it was observed that groups 1 and 6 expressed the highest averages. This first one
376 contained the largest number of accessions (Table 4).

377 The identification *per se* of the most promising accessions for each trait, based on their
378 respective genotypic effects, is shown in tables 6 and 7. Also in these tables are the estimates, for
379 each accession, of their genetic gains and the new predicted average for each trait.

380 For DDF, the selected accessions expressed averages much lower than the general average of the
381 accessions (606.64) and the average of the controls (526.41). The new predicted averages for this
382 trait among the selected accessions ranged from 474.39 to 251.09, and genetic gains from -
383 132.25 to -355.55. Notably, the accessions BGH-6749, BGH-5639, and BGH-2191 were the
384 most promising for DDF (Table 6).

385 For PF, the selected accessions expressed averages higher than the general average of the
386 accessions (12.95 t ha^{-1}) and the average of the controls (11.85 t ha^{-1}). The new predicted
387 averages for this characteristic among the selected accessions ranged from 15.49 to 29.27 t ha^{-1} .
388 As for TC, the selected accessions also expressed averages much higher than the general average
389 of the accessions ($65.76 \mu\text{g g}^{-1}$ of fresh weight) and that of the controls ($65.58 \mu\text{g g}^{-1}$ of fresh
390 weight). The new averages predicted for this characteristic among those selected ranged from
391 72.34 to $179.46 \mu\text{g g}^{-1}$ of fresh pulp mass, and the most promising accessions for this
392 characteristic were BGH-5455A and BGH-5598A (Table 6).

393

394

395

396

397

398

399

400

401

402

403

404 **Table 6.** Estimates of the genotypic effects, genetic gain and new predicted averages for the
 405 degree-days accumulated for flowering (DDF), fruit productivity (PF) and total carotenoid
 406 content of the fruit pulp (TC), for the top 15% most promising accessions and the controls

Accessions	DDF			Accessions	PF			Accessions	TC		
	g	Gain	New Average		g	Gain	New Average		g	Gain	New Average
BGH-6749	-291.35	-355.55	251.09	BGH-4453	17.32	16.32	29.27	BGH-5455A	113.85	113.70	179.46
BGH-5639	-152.11	-216.29	390.35	BGH-5653	5.60	15.44	28.38	BGH-5598A	108.19	108.03	173.80
BGH-291	-119.80	-183.97	422.67	BGH-5544A	13.82	12.82	25.76	BGH-1461A	14.18	14.03	79.80
BGH-5638	-102.40	-166.57	440.07	BGH-4681A	11.74	10.74	23.69	BGH-5616A	11.50	11.35	77.12
BGH-6587A	-91.41	-155.57	451.07	BGH-5224A	10.21	9.21	22.16	BGH-6794	11.08	10.93	76.70
BGH-5624A	-83.56	-147.73	458.91	BGH-6587A	-4.26	8.35	21.29	BGH-5556A	9.85	9.70	75.47
BGH-1004	-83.32	-147.48	459.16	BGH-4590A	5.61	4.61	17.55	BGH-5606A	8.78	8.63	74.40
BGH-1749	-76.12	-140.28	466.36	BGH-5649	5.60	4.59	17.54	BGH-5497	8.73	8.58	74.34
BGH-5301	-76.12	-140.28	466.36	BGH-5051	5.30	4.30	17.25	BGH-5451	8.68	8.53	74.29
BGH-5456A	-75.88	-140.04	466.60	BGH-5596A	4.52	3.52	16.46	BGH-5493A	8.62	8.47	74.24
BGH-5485A	-75.88	-140.04	466.60	BGH-5248	4.09	3.09	16.03	BGH-5247A	7.34	7.19	72.95
BGH-5530A	-75.88	-140.04	466.60	BGH-5472A	4.06	3.06	16.00	BGH-6749	6.91	6.76	72.53
BGH-6794	-68.94	-133.11	473.53	BGH-5473A	3.62	2.62	15.57	BGH-6587A	13.49	6.71	72.47
BGH-4598A	-68.09	-132.25	474.39	BGH-5556A	3.54	2.54	15.49	BGH-95	6.73	6.58	72.34
Average			606.64	Average			12.95	Average			65.76
Controls				Controls				Controls			
			New				New				New
	BLUES	Gain	Average		BLUES	Gain	Average		BLUES	Gain	Average
Jabras	-192.84	-54.12	413.99	Jabras	8.53	8.87	20.88	Jabras	14.93	16.19	80.68
Tetsukabuto	-138.72	0.00	468.11	Tetsukabuto	-1.03	-0.69	11.31	Tetsukabuto	0.23	1.49	65.98
Maranhão	3.99	142.71	610.82	Maranhão	-4.60	-4.26	7.75	Maranhão	-5.13	-3.88	60.61
Jacarezinho	5.89	144.61	612.72	Jacarezinho	-4.92	-4.57	7.43	Jacarezinho	-10.69	-9.43	55.06
Average			526.41	Average			11.85	Average			65.58

407

408 The identification *per se* of the most promising accessions for seed productivity (PS), seed oil
 409 content (SOC) and seed oil productivity (SOP), together with their respective genetic gains and
 410 new predicted averages for these characteristics is shown in table 7.

411

412

413

414

415

416

417 **Table 7.** Estimates of the genotypic effects, genetic gain and new predicted averages for the
 418 productivity of seeds (PS), seed oil content (SOC), and seed oil productivity (SOP), for the top
 419 15% most promising accessions and the controls

Accessions	PS			SOC			SOP				
	New			New			New				
	g	Gain	Average	G	Gain	Average	g	Gain	Average		
BGH-4610A	0.34	0.31	0.58	BGH-7219A	0.43	-0.98	17.53	BGH-5485A	0.01	-0.07	0.13
BGH-5485A	0.30	0.28	0.54	BGH-5649	0.20	-1.21	17.30	BGH-4610A	0.01	-0.07	0.13
BGH-6590	0.29	0.26	0.53	BGH-5653	0.16	-1.25	17.27	BGH-5472A	0.01	-0.07	0.13
BGH-5556A	0.22	0.19	0.46	BGH-5466	0.16	-1.25	17.27	BGH-5556A	0.01	-0.07	0.12
BGH-5472A	0.22	0.19	0.46	BGH-900	0.16	-1.26	17.26	BGH-6590	0.01	-0.07	0.12
BGH-5544A	0.19	0.17	0.44	BGH-6155	0.16	-1.26	17.26	BGH-5544A	0.01	-0.07	0.12
BGH-5440A	0.18	0.15	0.42	BGH-5544A	0.15	-1.26	17.25	BGH-4281	0.01	-0.08	0.12
BGH-4281	0.16	0.13	0.40	BGH-6794	0.15	-1.26	17.25	BGH-5440A	0.01	-0.08	0.12
BGH-5361A	0.16	0.13	0.40	BGH-5472A	0.15	-1.27	17.25	BGH-5630A	0.01	-0.08	0.12
BGH-5630A	0.15	0.12	0.39	BGH-305A	0.14	-1.27	17.24	BGH-5473A	0.01	-0.08	0.12
BGH-5473A	0.15	0.12	0.39	BGH-5455A	0.13	-1.28	17.23	BGH-5361A	0.01	-0.08	0.12
BGH-5453A	0.13	0.10	0.37	BGH-5240	0.12	-1.29	17.23	BGH-5453A	0.00	-0.08	0.12
BGH-4287A	0.10	0.08	0.34	BGH-4681A	0.12	-1.29	17.22	BGH-5455A	0.00	-0.08	0.12
BGH-4454A	0.09	0.06	0.33	BGH-4590A	0.12	-1.29	17.22	BGH-5466	0.00	-0.08	0.12
Average		0.27	Average			18.52	Average			0.11	
Controls	Controls			Controls			Controls				
	New			New			New				
	BLUES	Gain	Average	BLUES	Gain	Average	BLUES	Gain	Average		
Jacarezinho	0.28	0.30	0.53	Jacarezinho	0.39	2.38	18.98	Jacarezinho	0.05	0.01	0.10
Maranhão	0.03	0.06	0.29	Maranhão	-0.91	1.07	17.67	Maranhão	0.01	-0.03	0.06
Jabras	-0.14	-0.12	0.11	Jabras	-1.40	0.59	17.19	Jabras	-0.03	-0.08	0.01
Tetsukabuto	-0.22	-0.19	0.04	Tetsukabuto	-5.50	-3.52	13.08	Tetsukabuto	-0.05	-0.09	0.00
Average		0.24	Average			16.73	Average			0.04	

420

421 As for PS, the new predicted averages for this trait among the selected accessions ranged from
 422 0.33 to 0.58 t ha⁻¹ and the genetic gains from 0.06 to 0.31 t ha⁻¹. Notably, the accessions BGH-
 423 4610A, BGH-5485A, and BGH-6590 were the most promising for this characteristic (Table 7).
 424 The selected accessions displayed small differences between them for the SOC, however, the
 425 average of these was higher than that of the controls (16.73%). Finally, for the SOP trait, the new
 426 predicted averages for this trait ranged from 0.12 to 0.13 t ha⁻¹ and the genetic gains from -0.07
 427 to -0.08 t ha⁻¹. The accessions BGH-5485A, BGH-4610A, and BGH-5472A were the most
 428 promising for this characteristic (Table 7).

429

430

431 **DISCUSSION**

432 **Genetic-statistical parameters**

433 As with other species, the usefulness of *C. moschata* germplasm conserved in banks depends on
434 the level and quality of information associated with it [44, 14, 29, 30, 31]. The samples of *C.*
435 *moschata* maintained by BGH-UFV constitute one of the largest collections of this species in
436 Brazil [32]. Studies involving the assessment of this germplasm have allowed the identification
437 of accessions with crucial characteristics for this crop, such as phytopathogenic resistance, and
438 for its genetic improvement in terms of the productive and nutritional aspects of its fruits and
439 seed oil [34, 20, 12, 35]. Although BGH-UFV maintains more than 350 accessions of *Cucurbita*
440 ssp. [33], part of this germplasm has not yet been assessed, demonstrating the importance of
441 continuing these studies.

442 Most of the *C. moschata* germplasm shows vigorous growth and indeterminate growth habit
443 [45]. Thus, *C. moschata* plants commonly occupy a large areas of cultivated land, making it
444 difficult to evaluate their germplasm in experimental designs, such as in randomised blocks. The
445 difficulty in ensuring satisfactory homogeneity throughout the experimental area is the main
446 limitation in the evaluation of *C. moschata* germplasm in randomised blocks. In addition, the
447 germplasm seed samples kept in banks are small, making it impossible to repeat accessions
448 throughout the experimental area and assess quantitative characteristics. In view of this, we
449 proposed in this study to evaluate part of the *C. moschata* germplasm maintained at BGH-UFV
450 using the design known as Federer's augmented blocks [37]. The details of all aspects inherent to
451 this design are very well described by Federer and, according to him, the design circumvents the
452 limitations mentioned above and can be adopted even when the propagating material is
453 insufficient for the establishment of more than one plot and where the quantity of samples to be
454 evaluated is too great.

455 The present study describes the evaluation of one of the largest germplasm volumes of *C.*
456 *moschata*. The germplasm expressed markedly high genotypic variances for characteristics
457 related to seed production such as NSF and MSF, for DDF, and for TC and PF (Table 3). Most
458 of the phenotypic variance estimates of these characteristics were due to the contribution of
459 genotypic variance. These results corroborate those reported by [46], who also observed higher
460 estimates of genotypic variances for NSF and flowering characteristics, and also a greater
461 contribution of genotypic variance to the phenotypic variance in these characteristics.
462 Additionally, most of the characteristics expressed high estimates of heritability (>0.50),
463 according to the classification of [47]. These estimates were very high for the characteristics of

464 seeds such as MSF, MS/F, and NSF, and for aspects related to fruits, such as TC and MF. High
465 estimates of heritability point to a greater correlation between the phenotype and the genotype
466 [48], indicating that most of the variability observed for these characteristics resulted from
467 genotypic effects.

468 The high estimates of genotypic variances may be associated with the quantitative nature of
469 these characteristics, which may be the result of the influence of a high number of genes [49].
470 Most of the germplasm evaluated in this study came from the land of family-based farmers, who
471 do not carry out selection for seed characteristics, nor with a view to obtaining earlier-flowering
472 genotypes. As already mentioned, the exchange of seeds between farmers and the natural
473 occurrence of hybridization between populations of *C. moschata*, has increased the variability of
474 this species, even for characteristics for which selection is commonly carried out, such as fruit
475 productivity.

476 The high estimates of genotypic variance and heritability allowed considerable predicted gains
477 through selection for most of the characteristics (Table 3). For the number of degree-days
478 accumulated for flowering, a gain of -92.947 was obtained, a considerable result, taking into
479 account the average of the evaluated accessions (606.642). It was possible to obtain a gain of
480 7.817 t ha⁻¹ for PF and 20. 426 µg g⁻¹ of fresh pulp mass for TC. The gains for PS and SOP were
481 0.187 and 0.072 t ha⁻¹, respectively (Table 3).

482 The average relationship between the coefficient of genetic variation and the residual coefficient
483 was close to one unit for most of the characteristics. Although the estimates of the residual
484 coefficient of variation for most characteristics were high, in general they tended to be lower in
485 relation to their corresponding coefficient of genotypic variability, which demonstrates that most
486 of the variability expressed by germplasm was due to genetic factors (Table 3).

487

488 **Genetic correlation network**

489 Analysis of correlations between characteristics has been widely used in plant breeding, where
490 often a high number of characteristics must be considered simultaneously [50, 51]. As for PF, a
491 positive correlation was observed with MF. Fruit productivity also expressed positive and high
492 correlations with aspects related to fruit dimensions such as DIC, HF and DF (Figure 1). The
493 correlation between NFP and PF was 0.39 and although the estimates of correlations between PF
494 and the other characteristics of this group were low (<0.70), all of them were significant
495 ($p<0.001$).

496 Correlation analysis is often used to assist in indirect selection for certain characteristics [52, 51].
497 However, as highlighted by [53], in cases where there is an intention to practice indirect
498 selection for a primary characteristic by means of a secondary one, it is necessary that the
499 heritability of the latter characteristic be greater than that of the former so that the selection is
500 efficient. In view of this, the selection of genotypes with higher MF seems to be a promising
501 alternative for obtaining higher fruit productivity in *C. moschata*. It should, however, be
502 highlighted that when selecting genotypes with the aim of increasing fruit productivity in *C.*
503 *moschata*, crucial aspects for their acceptability in the consumer market, such as the shape and
504 size of fruits, must be considered. Currently, important pumpkin consumption centres like the
505 state of Minas Gerais and most of the southeast region of Brazil demand smaller fruits, and most
506 of the consumption in these regions is represented by fruits from hybrid cultivars, such as Jabras
507 and Tetsukabuto, which have a globular format and weight ranging from 2 to 3 kg [14]. On the
508 other hand, in the north and northeast regions of Brazil, there is greater acceptability for larger
509 fruits, which are commonly sold in slices. The prevention of waste and the ease of transport are
510 the determining aspects for the acceptability of fruit patterns, and the search for greater
511 productivity in the cultivation of *C. moschata* must therefore also consider these characteristics,
512 equating them with aspects such as the NFP, HF and DF.

513 Another correlation group, the discussion of which is relevant in terms of cohesion, was that
514 formed by PS and characteristics such as MS/F, NSF and MSF. As can be seen in figure 1, the
515 correlations of PS with these characteristics were positive. It should also be noted that the NFP
516 and PF expressed high correlations with PS (0.74 and 0.51, respectively), and all of them were
517 significant ($p<0.001$).

518 Based on these results, the simultaneous consideration of aspects such as higher NFP, higher PF
519 and higher MS/F relationship seems to be a promising alternative for obtaining higher seed
520 productivity in *C. moschata*. The heritability estimates obtained for these characteristics (>0.42),
521 suggest the feasibility of reasonable gains with the selection for each one of them (Table 3).
522 As mentioned previously, PF and NFP displayed a correlation of 0.39. The general average of
523 the accessions for this first trait was 12.94 t ha^{-1} , and some of them expressed new predicted
524 averages of up to 29.27 t ha^{-1} , in the case of BGH-4453 (Table 6). The accessions BGH-5653,
525 BGH-5544A, BGH-4681A, BGH-5224A, and BGH-6587A all displayed productivities greater
526 than 20 t ha^{-1} . With this, besides greater PF and NFP, the selection of genotypes with higher PS
527 should also prioritise greater translocation of photoassimilates for seed production, something
528 indicated by a higher MS/F ratio.

529 Despite its applicability, the analysis of correlation has some limitations, and, as warned by [54]
530 the quantification and interpretation of the correlation coefficients between two or more
531 characteristics can result in errors during the selection process. According to them, this occurs
532 because the high estimates of correlations between these characteristics may be the result of the
533 effect of one or more secondary characteristics. It is therefore recommended that the analysis of
534 the association between a primary and secondary characteristic be accompanied by information
535 on the direct and indirect effects of the secondary variables on the primary [55], an approach
536 currently known as path analysis [54].

537 Despite some limitations, correlation analysis has proven to be quite useful in plant breeding,
538 mainly in the indirect selection for one or more main characteristics with low heritability or of
539 difficult assessment. This indirect selection is carried out based on secondary characteristics,
540 with greater heritability or the assessment of which is easier, providing faster genetic gains
541 compared to direct selection. In fact, correlation analysis has assisted in the indirect selection for
542 characteristics of roots [56], for productivity in different crops [57, 58, 59], and for nutritional
543 aspects and quality of fruits [60, 61]. Correlation analysis can also be very useful in the
544 characterization and management of plant germplasm, as it has the ability to optimise the choice
545 and the number of descriptors to be used in this process.

546

547 **Genetic variability and clustering**

548 The analysis of variability provides important assistance in the initial phase of plant breeding
549 programs and in the management of plant germplasm. In this first case, it provides the allocation
550 of accessions in groups, guiding the conduction of crossings. *C. moschata* is allogamous,
551 therefore analysing the variability of its germplasm can assist in the orientation of crossings
552 between more diverse genotypes, thereby aiding the exploration of hybrid vigour [62, 5].
553 Regarding the assistance in the management of plant germplasm, variability analysis allows the
554 identification of duplicates in the germplasm collections [63, 64, 65], which correspond to pairs
555 or groups of accessions with high similarity. In fact, it is estimated that less than 30% of the
556 accessions maintained in the collections worldwide are distinct, which hinders their maintenance
557 [28]. Therefore, in addition to optimizing the use of germplasm, the variability analysis reduces
558 the cost of its maintenance by reducing its volume [66].

559 The accessions of *C. moschata* assessed in this study displayed high genetic variability in their
560 agro-morphological characteristics, the total carotenoid content of the fruit pulp, and the
561 productivity of seeds and seed oil, resulting in the formation of 16 clusters (Table 4). There was

562 low similarity between the clusters formed, as shown by the predominance of yellow colour in
563 the hierarchical clustering in heatmap format (Figure 2). The visual analysis of this cluster also
564 indicates the homogeneity of the genetic distances between clusters, which verified the clustering
565 efficiency. As can also be seen in figure 2, there was uniformity in the yellow colour for the
566 genetic distances between groups, confirming the homogeneity of distances between them.
567 The variability denoted by the clustering of the accessions corroborates the high estimates of
568 genetic variances and heritabilities displayed by most of the agronomic characteristics, the total
569 carotenoid content of the fruit pulp, and the seed characteristics such as MSF, MS/F and NSF
570 (Table 3). This is also analogous to other studies involving the analysis of variability in this crop
571 in Brazil [18, 20].

572

573 **Identification of promising groups of genotypes**

574 The analysis of averages of the groups using the Tocher method (Table 5) provided information
575 on the similarity or divergence between the groups, allowing the identification of those with
576 more desirable averages for each characteristic. In *C. moschata*, this approach can assist in the
577 orientation of crossings targeting hybrid vigour exploitation and the segregation of populations
578 for their characteristics of interest [67, 68].

579 Group 11 contained the largest number of clustered accessions, 15 in total, together with Jabras,
580 one of the controls. Group 1, the second largest, contained 10 accessions and two controls
581 (Jacarezinho and Maranhão). The clustering of these two cultivars with similar characteristics in
582 the same group reflects the clustering consistency. As shown in table 5, this group expressed a
583 high genotypic average for TC and the highest averages for PS and PCOS, confirming the high
584 number of promising accessions for these characteristics. Groups 5 and 14 contained 10 and 11
585 accessions, respectively, making them the next largest groups formed.

586 Regarding TC, the highest average was in group 7, formed by the accessions BGH-5455A and
587 BGH-5598A (Table 4). These accessions were also identified as the most promising for TC in
588 the identification *per se*, with new predicted averages greater than 170 µg g⁻¹ of fresh pulp mass
589 (Table 6). This result is much higher than those reported by previous studies [69, 35, 6]. Among
590 these, the study of [35], for example, involving the characterization of 55 accessions of *C.*
591 *moschata*, also maintained by the BGH-UFV, reported TC averages not greater than 118,70 µg g⁻¹
592 of fresh pulp mass. On the other hand, [1] and [70] reported TC averages of up to 404.98 µg g⁻¹
593 of fresh mass, when evaluating *C. moschata* germplasm from northeast Brazil. The differences
594 observed for TC between the present study and previous studies might be mainly associated with

595 the genetic makeup of the germplasm evaluated in each study. According to [70], in the northeast
596 region of Brazil there is a preference for winter squash fruits with more orange pulp, a
597 characteristic associated with higher levels of carotenoids, which corroborates the results
598 obtained for this characteristic in studies involving the evaluation of *C. moschata* germplasm
599 from this region.

600 Studies with *C. moschata* commonly involve the analysis of fruit pulp carotenoids and generally
601 report high levels of these components [1, 71, 72, 6]. Among these studies, [1] reported the
602 identification of about 19 different carotenoids in the carotenogenic profile of the fruit pulp, and
603 found that β - and α -carotene constitute the largest proportion of the total carotenoid content in
604 this species. In fact, this vegetable has been considered one of the best sources of carotenoids
605 such as β -carotene, with levels above those found in other important carotenogenic vegetables,
606 such as carrots [73].

607 The main biological functions of components such as α - and β -carotene are their pronounced
608 pro-vitamin A activity [74, 75], and a series of bioactive functions, especially antioxidant
609 activity [76, 77]. Along with its bioactive functions, *C. moschata* brings together fundamental
610 characteristics for biofortification programmes, such as high production potentials and
611 profitability, high efficiency in reducing deficiencies in micronutrients in humans, and good
612 acceptance by producers and consumers in the growing regions [10]. *C. moschata* has therefore
613 been strategically used in programmes targeting biofortification in vitamin A precursors, among
614 them the Brazilian Biofortification Programme (BioFORT), led by Embrapa [11].

615 Regarding PS and SOP, the main interest in the assessment of these traits in *C. moschata*
616 corresponds to the high potential of using oil from its seeds for food purposes. This vegetable
617 has a high oil content, with the lipid fraction of its seeds reaching up to 49% of its composition
618 [78]. The lipid profile of this oil consists of more than 70% unsaturated fatty acids, with a
619 preponderance of fatty acids such as linoleic C18: 2 ($\Delta^{9,12}$) and oleic C18: 1 (Δ^9). In this regard,
620 there is an interest among governments and health experts in encouraging the consumption of
621 unsaturated fatty acids rather than saturated ones, based on the consensus that this reduces the
622 risk of cardiovascular diseases [79, 80, 81].

623 *C. moschata* seed oil is also rich in bioactive components such as vitamin E and carotenoids [4],
624 which have important antioxidant activity, in addition to providing protection to the oil during its
625 conservation. Despite this, most of the seeds from the production of *C. moschata* in Brazil are
626 still discarded during consumption. Their use therefore represents an alternative for
627 supplementing the diet and increasing the income of farmers involved in the production of this
628 vegetable.

629 Group 16, formed solely by the control Tetsukabuto, displayed the lowest average DDF (Table
630 5), indicating that this genotype has the earliest flowering period. As can also be seen in this
631 table, most groups expressed intermediate averages for DDF. Normally, *C. moschata* plants have
632 very long internodes, and this, coupled with the vigorous growth of this species, represents a
633 limitation on its cultivation since plants with a greater internode length require much larger areas
634 for cultivation. The interest in assessing precocity in *C. moschata* is based on the possible
635 relationship of this characteristic with the development of shorter vines or the habit of
636 determined growth. According to [82], the *Bu* gene, identified as being responsible for the
637 formation of shorter internodes in pumpkins, is also linked to earlier flowering in this species. In
638 a study involving the evaluation of hybrids and segregating winter squash populations for oil
639 production and plant size reduction, [43] observed that the cultivars Piramoita and Tronco Verde,
640 which have determined growth habits, displayed the smallest number of days for female
641 flowering. Greater precocity is an important characteristic for most crops, especially in the
642 cultivation of vegetables. This feature optimises the use of cultivation areas, reduces the risks of
643 exposure of the crop to adverse abiotic and biotic factors, and reduces management costs.

644 Group 4, formed by BGH-1927, BGH-4681A and BGH-5653, expressed the highest average PF
645 (Table 5). This group also expressed one of the highest averages for MF and an intermediate
646 average for NFP, corroborating the estimates of the correlations between these characteristics
647 and PF (Figure 1). The accessions BGH-4681A and BGH-5653 were also identified as the most
648 promising for PF in the *per se* identification, with averages above 20 t ha⁻¹ (Table 6). These
649 averages were much higher than the world average, estimated at 13.4 t ha⁻¹ [8].
650 Although the cultivation of *C. moschata* is primarily intended for fruit production, as already
651 mentioned, the selection of genotypes for greater fruit productivity in this crop must also
652 consider crucial aspects for the acceptability of fruits such as shape and size. In general, winter
653 squash production must currently prioritise the adoption of cultivars with smaller fruits. In
654 addition to obtaining fruits of greater mass, greater productivity in *C. moschata* can also be
655 achieved by obtaining cultivars with higher NFP, based on the estimated correlation observed
656 between PF and NFP (Figure 1).

657

658 ***Per se* identification of promising accessions**

659 *Per se* identification of the most promising accessions for the characteristics considered crucial
660 in the production of *C. moschata* is shown in tables 6 and 7. This approach can guide selection

661 for a specific trait, allowing the identification of promising accessions for the development of
662 superior inbred lines and/or open-pollinated cultivars. In fact, from a brief survey of the
663 Brazilian National Cultivar Register (RNC), it appears that of the 182 cultivars of *C. moschata*
664 registered at the moment, most of them consist of open-pollinated cultivars [83]. This survey,
665 also found a considerable number of intra- and interspecific hybrids, confirming the feasibility of
666 applying inbreeding in certain stages of *C. moschata* breeding.

667 For DDF, the selected accessions displayed averages much lower than the general average of the
668 accessions (606.64 degree-days) and the controls (526.21 degree-days). Notably, the accessions
669 BGH-6749, BGH-5639, and BGH-219 expressed the lowest new predicted averages for DDF,
670 making them the earliest-flowering accessions (Table 6). Regarding PF, the notably more
671 promising accessions were BGH-4453, BGH-5653, BGH-5544A, BGH-4681A, BGH-5224A,
672 and BGH-6587A, which expressed gains and new predicted averages for fruit productivity above
673 8 and 20 t ha⁻¹, respectively (Table 6). As can also be seen in this table, these accessions
674 displayed gains and new predicted averages much higher than those of the controls. It should be
675 highlighted that the BGH-5544A accession also expressed high averages for PS and SOP,
676 corroborating the correlations of these characteristics with PF (Figure 1). This indicates the
677 potential for the dual use of this accession to produce fruit and seed oil.

678 Regarding TC, the most promising accessions were BGH-5455A and BGH-5598A (Table 6).
679 These accessions expressed gains and new predicted averages for TC higher than 108.03 and
680 173.80 µg g⁻¹ of fresh pulp mass, respectively, much higher than those of the controls. For the
681 characteristics of seed and seed oil, it was found that the accessions BGH-4610A, BGH-5485A,
682 and BGH-6590 were the most promising for PS (Table 7). These accessions expressed gains and
683 new predicted averages for seed productivity of up to 0.31 and 0.58 t ha⁻¹, respectively. The most
684 promising accessions for SOP were BGH-5485A, BGH-4610A, and BGH-5472A, which
685 expressed new predicted averages for seed productivity of 0.13 t ha⁻¹. It is worth highlighting
686 that these accessions corresponded to those with higher PS, corroborating the strong correlation
687 between PS and SOP (Figure 1).

688

689

690

691

692

693 **CONCLUSIONS**

694 The accessions of *C. moschata* assessed in this study expressed high genetic variability for agro-
695 morphological characteristics and for agronomic aspects related to the production of seeds such
696 as NSF and MSF, for DDF, and for TC and PF, which allowed the obtainment of considerable
697 gains from selection for each of these characteristics.

698 The network of genetic correlations showed that higher fruit productivity in *C. moschata* might
699 be achieved from the selection of aspects considered crucial in the production of this crop such
700 as higher NFP, HF and DF. It also showed that greater seed productivity might be achieved with
701 the selection for higher MS/F, NSF and MSF; information that will assist in selection for higher
702 productivity of fruit, seed and seed oil.

703 The clustering analysis resulted in the formation of 16 groups, with low similarity between the
704 groups, which corroborates the variability of these accessions.

705 The grouping of the averages of the clusters and the identification *per se* allowed the recognition
706 of the most promising groups and accessions for each characteristic, an approach that will guide
707 the use of these accessions in breeding programs.

708 *Per se* analysis identified the accessions BGH-6749, BGH-5639, and BGH-219 as those with the
709 lowest averages for DDF, highlighting them as the earliest flowering accessions. The most
710 promising accessions for PF were BGH-4453, BGH-5653, BGH-5544A, BGH-4681A, BGH-
711 5224A, and BGH-6587A, with new predicted averages greater than 20 t ha⁻¹. The accessions
712 with the highest averages for TC were BGH-5455A and BGH-5598A, with averages greater than
713 170.00 µg g⁻¹ of fresh pulp mass. The accessions BGH-5485A, BGH-4610A, and BGH-5472A
714 were the most promising for SOP, also corresponding, in the case of the former two, to those
715 with the highest averages for PS. The accessions of *C. moschata* assessed in this study are a
716 promising source for the genetic improvement of characteristics such as early flowering, total
717 carotenoid content of the fruit pulp, and productivity of seeds and seed oil.

718

719

720

721

722

723

724

725

726 **ACKNOWLEDGMENTS**

727 We are thankful to the Coordenação de Aperfeiçoamento de Pessoal e Nível Superior - Brasil
728 (CAPES) - Finance Code 001. We are also thankful to the National Council for Scientific and
729 Technological Development-CNPq, for the additional financial support in this study.

730

731 **REFERENCES**

732

733 1. Carvalho LMJ De, Gomes PB, Godoy RL De O, Pacheco S, Do monte PHF, De Carvalho JLV,
734 Nutti MR, Neves ACL, Vieira ACRA, Ramos SRR. Total carotenoid content, α -carotene and
735 β -carotene, of landrace pumpkins (*Cucurbita moschata* Duch): A preliminary study. Food Res
736 Int. 2012; <https://doi.org/10.1016/j.foodres.2011.07.040>.

737 2. Ribeiro EMG, Chitchumroonchokchaib C, De Carvalho LMJ, De Moura FF, De Carvalho JLV,
738 Faillab ML. Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A
739 carotenoids in biofortified pumpkin (*Cucurbita moschata* Duch.). Food Res Int. 2015;
740 <http://dx.doi.org/10.1016/j.foodres.2015.08.038>.

741 3. Bergantin C, Maietti A, Tedeschi P, Font G, Manyes L, Marchetti N. HPLC-UV/Vis-APCI-
742 MS/MS determination of major carotenoids and their bioaccessibility from “Delica” (*Cucurbita*
743 *maxima*) and “Violina” (*Cucurbita moschata*) pumpkin as food traceability markers. Molecules.
744 2018; doi:10.3390/molecules23112791.

745 4. Veronezi C M, Jorge N. Chemical characterization of the lipid fractions of pumpkin seeds. Nutr
746 Food Sci. 2015; doi 10.1108/NFS-01-2014-0003.

747 5. Kumar V, Mishra DP, Yadav GC, Yadav S. Exploitation of heterobeltiosis and economic
748 heterosis for horticultural yield, and its attributes and biochemical traits in pumpkin (*Cucurbita*
749 *moschata* Duch. ex. Poir) under salt affected soil. Curr Sci India. 2018; 115: 1550-156.

750 6. Priori D, Valduga E, Villela JCB, Mistura CC, Vizzotto M, Valgas RA, Barbieri RL. Food Sci
751 Tech-Brazil. 2017; <http://dx.doi.org/10.1590/1678-457x.05016>.

752 7. Nagar A, Sureja A K, Kar A, Bhardwaj R, Krishnan SG, Munshi A Das. Profiling of Mineral
753 Nutrients and Variability Study in Pumpkin (*Cucurbita moschata*) Genotypes. Agr Res. 2018;
754 <https://doi.org/10.1007/s40003-018-0329-3>.

755

756

757 8. Food and Agriculture Organization of the United Nations- FAO STATE. 2019 [cited 15
758 October 2019]. In: FAO STATE [Internet]. Rome: FAO STATE 2019. Available from:
759 <http://www.fao.org/faostat/em/#home> (2019).

760 9. Instituto Brasileiro de Geografia e Estatística- IBGE: Produção Agrícola Municipal. 2017 [cited
761 15 October 2019]. In: IBGE: Produção Agrícola Municipal [Internet]. Rio de Janeiro: IBGE
762 2017. Available from: [https://sidra.ibge.gov.br/pesquisa/censo-](https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-)
763 agropecuario-2017#horticultura.

764 10. Bouis H E, Welch RM. Biofortification- a sustainable agricultural strategy for reducing
765 micronutrient malnutrition in the global south. Crop Sci. 2010; doi:
766 10.2135/cropsci2009.09.0531.

767 11. Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH. Biofortification:
768 Progress toward a more nourishing future. Glob Food Secur. 2013;
769 <https://doi.org/10.1016/j.gfs.2012.12.003>.

770 12. Sobreira FM. Divergência genética entre acessos de abóbora para estabelecimento de coleção
771 nuclear e pré-melhoramento para óleo funcional. D. Sc. Thesis, Universidade Federal de
772 Viçosa. 2013. Available from: <https://www.locus.ufv.br/handle/123456789/1367>.

773 13. Jarret RL, Levy I, Potter TL, Cermak SC, Merrick LC. Seed oil content and fatty acid
774 composition in a genebank collection of *Cucurbita moschata* Duchesne and *C. argyrosperma*
775 C. Huber. Genet Resour Crop Ev. 2013; doi: 10.1017/S1479262112000512

776 14. Gomes RS, Almeida CF, Costa JRS, Machado Junior R, Delazzari F, Silva FCS, Silva DJH.
777 Genetic diversity in sweet cassava from the Brazilian Middle North Region and selection of
778 genotypes based on morpho-agronomical descriptors. Afr J Agr Res. 2016; doi:
779 10.5897/AJAR2016.11267.

780 15. Barboza N, Albertazzi FJ, Sibaja-Cordero JA, Mora-Umana F, Astorga C, Ramírez P. Analysis
781 of genetic diversity of *Cucurbita moschata* (D.) germplasm accessions from Mesoamerica
782 revealed by PCR SSCP and chloroplast sequence data. Sci Hortic-Amsterdam. 2012;
783 <https://doi.org/10.1016/j.scientia.2011.10.028>.

784 16. Ferriol M, Picó B, Córdova PFDE, Nuez F. Molecular Diversity of a Germplasm Collection of
785 Squash (*Cucurbita moschata*) Determined by SRAP and AFLP Markers. Crop Sci. 2004;
786 doi:10.2135/cropsci2004.6530.

787 17. Wu J, Chang Z, Wu Q, Zhan H, Xie S. Molecular diversity of Chinese *Cucurbita moschata*
788 germplasm collections detected by AFLP markers. Sci Hortic-Amsterdam. 2011; doi
789 <https://doi.org/10.1016/j.scientia.2010.12.006>.

790 18. Borges RME, De Resende GM, De Lima MAC. Phenotypic variability among pumpkin
791 accessions in the Brazilian Semiarid. *Hortic Bras.* 2011; <http://dx.doi.org/10.1590/S0102-05362011000400003>.

793 19. De Lima GKL, De Queiroz MA, Silveira L M da. Rescue of *Cucurbita* spp. germplasm in Rio
794 Grande do Norte. *Ver Caatinga.* 2016; <http://dx.doi.org/10.1590/1983-21252016v29n130rc>.

795 20. Ferreira MG, Salvador FV, Lima MNR. Parâmetros genéticos, dissimilaridade e desempenho
796 per se em acessos de abóbora. *Hortic Bras.* 2016; <http://dx.doi.org/10.1590/s0102-053620160413>.

798 21. Dillehay T, Rossen J, Andres TC, Williams DE. Preceramic Adoption of Peanut, Squash, and
799 Cotton in Northern Peru. *Science.* 2007; doi: 10.1126/science.1141395.

800 22. Piperno DR, Stothert K E. Phytolith Evidence for Early Holocene *Cucurbita* Domestication in
801 Southwest Ecuador. *Science.* 2003; doi: 10.1126/science.1080365.

802 23. Whitaker TW, Bemi WP. Cucurbits – cucumis, citrullus, cucurbita, lagenaria (cucurbitaceae).
803 In: Simmonds NW, editors. *Evolution of crop plants.* London: Longman Press; 1976. pp. 64-
804 69.

805 24. Ara N, Nakkanong K, Lv W, Yang J, Hu Z, Zhang M. Antioxidant Enzymatic Activities and
806 gene expression associated with heat tolerance in the stems and roots of two cucurbit species
807 ("Cucurbita maxima" and "Cucurbita moschata") and their interspecific inbred line
808 "maxchata". *Int J Mol Sci.* 2013; doi 10.3390/ijms141224008.

809 25. Krajnc AU, Janzekovic I, Sober A, Ivanic A. The Impact of Interspecific Hybridization on the
810 Chemical Compositions of Oil Pumpkin Seeds. *Phyton-Ann Rei Bot A.* 2016; doi
811 10.12905/0380.phyton56(1)2016-0061.

812 26. Karaagac O, Balkaya A. Interspecific hybridization and hybrid seed yield of winter squash
813 (*Cucurbita maxima* Duch.) and pumpkin (*Cucurbita moschata* Duch.) lines for rootstock
814 breeding. *Sci Hortic- Amsterdam.* 2013; doi <http://dx.doi.org/10.1016/j.scienta.2012.10.021>.

815 27. Uretsky J, Loy JB. Evaluation of morphological traits associated with productivity in F₁
816 Interspecific (*Cucurbita maxima* Duch. x *C. moschata* Duch.) hybrid processing squash.
817 *Hortscience.* 2017; doi 10.21273/HORTSCI12018-17.

818 28. The Second Report on The State of the World's Plant Genetic Resources for Food and
819 Agriculture– FAO. 2010 [cited 21 October 2019]. In: FAO [Internet]. Rome: FAO 2010.
820 Available from: <http://www.fao.org/3/i1500e/i1500e00.htm>.

821

822 29. Oliveira EJ D, Santana FA, de Oliveira LA, Santos V Da S. Genotypic variation of traits related
823 to quality of cassava roots using affinity. *Sci Agr.* 2014; <http://dx.doi.org/10.1590/0103-9016-2014-0043>.

825 30. Rana JC, Sharma TR, Tyagi RK, Chahota RK, Gautam N, Singh M, Sharma PN, Ojha SN. Characterisation of 4274 accessions of common bean (*Phaseolus vulgaris* L.) germplasm
826 conserved in the Indian gene bank for phenological, morphological and agricultural traits.
827 *Euphytica*. 2015; doi 10.1007/s10681-015-1406-3.

829 31. Torres LG, Caixeta DG, Rezende WM, Schuster A, Azevedo CF, Silva FF, De Lima RO. Genotypic variation and relationships among traits for root morphology in a panel of tropical
830 maize inbred lines under contrasting nitrogen levels. *Euphytica*. 2019;
831 <https://doi.org/10.1007/s10681-019-2373-x>.

833 32. Fonseca MA, Queiroz MA de, Lopes JF, Assis JG de A, Romão RL, Ramos SRR, Do Carmo
834 CAS do, Moura M da C, Dias R de C, Da Silveira LM, Barbieri R, Da Silva DJH, Noronha S. Geographical distribution and conservation of *Cucurbita* in Brazil. *Magistra*. 2015; 27: 432-
835 442.

837 33. Silva DJH, Moura MCC, Casali VWD. Recursos genéticos do banco de germoplasma de
838 hortaliças da UFV: histórico e expedições de coleta. *Hortic Bras.* 2010;
839 <http://dx.doi.org/10.1590/S0102-05362001000200002>.

840 34. Moura MCCL, Zerbini FM, Silva DJH da, De Queiroz MA. Reação de acessos de *Cucurbita*
841 sp. ao *Zucchini yellow mosaic virus* (ZYMV). *Hortic Bras.* 2005; 23: 206-210.

842 35. Lima Neto IS. Pré- melhoramento de abobra (*Cucurbita moschata*) visando a biofortificacao
843 em carotenoides. D. Sc. Thesis, Universidade Federal de Viçosa. 2013. Available from:
844 <https://www.locus.ufv.br/handle/123456789/1367>.

845 36. Filgueira FAR. Novo manual de olericultura: agrotecnologia moderna na produção e
846 comercialização de hortaliças. 3rd ed. Viçosa: Universidade Federal de Viçosa Press; 2013.

847 37. Federer WT. Augmented or (hoonuiaku) designs. *Hawaiian Planter's Record*. 1956; 55: 191-
848 208.

849 38. Itle RA, Kabelka EA. Correlation between L* a* b* color space values and carotenoid content
850 in pumpkins and squash (*Cucurbita* spp.). *Hortscience*. 2009; 44: 633-637.

851 39. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. *J.*
852 *Stat. Softw.* 2015; <https://doi.org/10.18637/jss.v067.i01>.

853 40. Cullis BR, Smith AB, Coombes NE. On the design of early generation variety trials with
854 correlated data. *J Agric Biol Envir S.* 2006; doi: 10.1198/108571106X154443.

855 41. Cruz CD. GENES - a software package for analysis in experimental statistics and quantitative
856 genetics. *Acta Sci-Agron.* 2013; doi: 10.4025/actasciagron.v35i3.21251.

857 42. Bodenhofer U, Kothmeier A, Hochreiter S. APCluster: an R package for affinity propagation
858 clustering. *Bioinformatics.* 2011; doi: 10.1093/bioinformatics/btr406.

859 43. Frey BJ, Dueck D. Clustering by passing messages between data points. *Science.* 2007; doi:
860 10.1126/science.1136800.

861 44. Darrudi VN, Soltania F, Shokrpoura M, Ercolanob MR. Genetic diversity of *Cucurbita pepo* L.
862 and *Cucurbita moschata* Duchesne accessions using fruit and seed quantitative traits. *J Appl
863 Res Med Arom Plant.* 2018; doi.org/10.1016/j.jarmap.2017.11.003.

864 45. Laurindo RDF, Laurindo BS, Delazari FT, Carneiro PC De S, Da Silva DJH. Potencial de
865 híbridos e populações segregantes de abóbora para teor de óleo nas sementes e plantas com
866 crescimento do tipo moita. *Ver Ceres.* 2017; [http://dx.doi.org/10.1590/0034-
867 737x201764060004](http://dx.doi.org/10.1590/0034-737x201764060004).

868 46. Mohsin GM, Islam MS, Rahman MS, Ali L, Hasanuzzaman M. Genetic variability, correlation
869 and path coefficients of yield and its components analysis in pumpkin (*Cucurbita moschata*
870 Duch ex Poir). *Int J Agr Res Innov Technol.* 2017; doi:<http://www.ijarit.webs.com>.

871 47. Resende MDV. Delineamento de experimentos de seleção para maximização da acurácia
872 seletiva e do progresso genético. *Rev Arvore.* 1995; 19: 4, 479- 500.

873 48. Schmidt P, Hartung J, Rath J, Piepho HP. Estimating Broad-Sense Heritability with Unbalanced
874 Data from Agricultural Cultivar Trials. *Crop Sci.* 2019; doi: 10.2135/cropsci2018.06.0376.

875 49. Heino M. Quantitative traits. In: Cadrin SX, Kerr RA, Mariani S, editors. *Stock identification
876 methods*, 2nd edition. Cambridge: Academic Press; 2014.

877 50. Hashemi S, Khadivi A. Morphological and pomological characteristics of white mulberry
878 (*Morus alba* L.) accessions. *Sci Hortic-Amsterdam.* 2020;
879 <https://doi.org/10.1016/j.scienta.2019.108827>.

880 51. Dias F dos S, Dos Santos FC, Gomes RS, da Silva DC, Soares D de A, Rosa DP, da Silva AF.
881 Path analysis in fruits of the buriti (*Mauritia flexuosa* L. f) in populations from the Brazilian
882 Middle North Region. *Tree Genet Genomes.* 2017; <https://doi.org/10.1007/s11295-017-1205-1>.

884 52. Maurya KN, Pal PK, Shukla S. Relationship of opium yield with yield contributing traits in
885 segregating populations derived through biparental mating in opium poppy (*Papaver
886 somniferum* L.). *Ind Crop Prod.* 2019; 139, 1-9. <https://doi.org/10.1016/j.indcrop.2019.111557>.

887 53. Hallauer AR, Carena MJ, Miranda Filho JB. *Quantitative Genetics in Maize Breeding.* 1 st
888 edition. New York, Dordrecht, Heidelberg and London: Springer Press; 2010.

889 54. Cruz CD, Regazzi AJ, Carneiro PCS. Modelos biométricos aplicados ao melhoramento
890 genético, volume 1. 4 th edition. Viçosa: Universidade Federal de Viçosa Pres; 2010.

891 55. Wright S. Correlation and causation. J Agric Res. 1921; 20: 557-585.

892 56. Velho LPS, Gemeli MS, Trevisane N, Pereira TCV, Cerutti PH, De Mel RC, Guidolin AF,
893 Coimbra JLM, Corrêa SC. Phenotypic correlation and direct and indirect effects of aerial part
894 components with root distribution of common bean. Pesqui Agropecu Bras. 2017; doi:
895 10.1590/S0100-204X2017000500006.

896 57. Silva TN, Moro GV, Moro FV, dos Santos DMM, Buzinaro R. Correlation and path analysis
897 of agronomic and morphological traits in maize. Ver Cienc Agron. 2016; doi: 10.5935/1806-
898 6690.20160041.

899 58. Nascimento-Júnior I, Môro GV, Môro FV. Indirect selection of maize genotypes based on
900 associations between root agronomic and anatomical characters. Chil J Agr Res. 2018; doi:
901 10.4067/S0718-58392018000100039.

902 59. Gurmu F, Shimelis H, Laing MD. Correlation and path-coefficient analyses of root yield and
903 related traits among selected sweet potato genotypes. S Afr J Plant S. 2017;
904 <http://dx.doi.org/10.1080/02571862.2017.1354405>.

905 60. MratiNić E, PoPoVski B, MilošEVić T, PoPoVSka M. Evaluation of Apricot Fruit Quality and
906 Correlations Between Physical and Chemical Attributes. Czech J Food Sci. 2011; 29: 161-170.

907 61. Do Rêgo ER, Do Rêgo M M, Cruz CD, Finger FL, Casali VW D. Phenotypic diversity,
908 correlation and importance of variables for fruit quality and yield traits in Brazilian peppers
909 (*Capsicum baccatum*). Genet Resour Crop Ev. 2011; doi 10.1007/s10722-010-9628-7.

910 62. Singh N, Sidhu MK, Dhatt A. Heterosis and combining ability for bushy and butternut traits in
911 pumpkin (*Cucurbita moschata*). Indian J Agr Sci. 2018; 88: 877-883.

912 63. Albuquerque HYG, Oliveira EJ, Brito AC, de Andrade LRB, Carmo CD do, Morgante CV,
913 Vieira EA, Moura E, Faleiro FG. Identification of duplicates in cassava germplasm banks based
914 on single-nucleotide polymorphisms (SNPs). Sci Agr. 2019; doi:
915 <http://dx.doi.org/10.1590/1678-992X-2017-0389>.

916 64. Marconi G, Ferradini N, Russi L, Concezzi L, Veronesi F, Albertini W. Genetic
917 characterization of the apple germplasm collection in central Italy: the value of local varieties.
918 Front Plant Sci. 2018; doi: 10.3389/fpls.2018.01460.

919

920

921

922 65. Raatz B, Mukankusi C, Lobaton JD, Male A, Chisale V, Amsalu B, Fourie D, Mukamuhirwa
923 F, Muimu K, Mutari B, Nchimbi-Msolla S, Nkalubo S, Tumsa K, Chirwa R, Maredia MK, He
924 C. Analyses of African common bean (*Phaseolus vulgaris* L.) germplasm using a SNP
925 fingerprinting platform: diversity, quality control and molecular breeding. *Genet Resour Crop*
926 *Ev.* 2019; doi: <https://doi.org/10.1007/s10722-019-00746-0>(0123456789(0),-volV)(01234567.

927 66. Valois ACC, Salomão AN, Aliem AC. Glossário de recursos genéticos vegetais. Brasília:
928 Embrapa Cenargen Press; 1996.

929 67. Restrepo-Salazar JA, Vallejo-Cabrera FA, Restrepo-Salazar EF. Combining ability as a
930 function of inbreeding for fruit traits in *Cucurbita moschata* Duch. ex Poir. *Rev Fac Nac.*
931 *Agron.* 2019; doi: [10.15446/rfnam.v72n3.77320](https://doi.org/10.15446/rfnam.v72n3.77320).

932 68. Singh N, Sidhu MK, Dhatt A. Heterosis and combining ability for bushy and butternut traits in
933 pumpkin (*Cucurbita moschata*). *Indian J Agr Sci.* 2018; 88: 877-883.

934 69. Azevedo-Meleiro CH, Rodriguez-Amaya DB. Qualitative and Quantitative Differences in
935 Carotenoid Composition among *Cucurbita moschata*, *Cucurbita maxima*, and *Cucurbita pepo*.
936 *J Agr Food Chem.* 2007; 55: 4027-4033.

937 70. Moura MCCL. Identificação de fontes de resistência ao potyvirus ZYMV e diversidade
938 genética e ecogeográfica em acessos de abóbora. D. Sc. Thesis. Universidade Federal de
939 Viçosa. 2003. Available from: <https://www.locus.ufv.br/handle/123456789/10265>.

940 71. De Carvalho LMJ, Smiderle L de ASM, De Carvalho JLV, Cardoso F de SN, Koblitz MGB.
941 Assessment of carotenoids in pumpkins after different home cooking conditions. *Food Sci*
942 *Tech-Brazil.* 2014; doi <http://dx.doi.org/10.1590/fst.2014.0058>.

943 72. Nakkanong K, Yang JH, Zhang MF. Carotenoid Accumulation and Carotenogenic Gene
944 Expression during Fruit Development in Novel Interspecific Inbred Squash Lines and Their
945 Parents. *J Agr Food Chem.* 2012; doi: <https://doi.org/10.1021/jf3007135>.

946 73. Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfán J. Updated Brazilian database
947 on food carotenoids: Factors affecting carotenoids composition. *J Food Compos Anal.* 2008;
948 doi: <https://doi.org/10.1016/j.jfca.2008.04.001>.

949 74. Bohn T, Desmarchelier C, El SN, Keijer J, Schothorst EV, Rühl R, Borel P. β -carotene in the
950 human body: metabolic bioactivation pathways – from digestion to tissue distribution and
951 excretion. *P Nutr Soc.* 2019; doi: [10.1017/S0029665118002641](https://doi.org/10.1017/S0029665118002641).

952 75. Green AS, Fascetti AJ. Meeting the Vitamin A Requirement: The Efficacy and Importance of
953 β -Carotene in Animal Species. *The Scientific World J.* 2016; doi:
954 [http://dx.doi.org/10.1155/2016/7393620](https://doi.org/10.1155/2016/7393620).

955 76. Gammone MA, Riccioni G, D’Orazio N. Carotenoids: potential allies of cardiovascular health?
956 Food Nutr Res. 2015; doi:<http://dx.doi.org/10.3402/fnr.v59.26762>.

957 77. Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants,
958 circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause
959 mortality: a systematic review and dose-response meta-analysis of prospective observational
960 studies. Adv Nutr. 2018; doi:<https://doi.org/10.1093/advances/nmy040>.

961 78. Patel S. Pumpkin (*Cucurbita* sp.) seeds as nutraceutical: A review on status quo and scopes.
962 Mediterr J Nutr Metab. 2013; doi: <https://doi.org/10.1007/s12349-013-0131-5>.

963 79. Skeaff CM, Miller J. Dietary fat and coronary heart disease: summary of evidence from
964 prospective cohort and randomised controlled trials. Ann Nutr Metab. 2009; doi:
965 10.1159/000229002.

966 80. Hooper L, Summerbell CD, Thompson R, Sills D, Roberts FG, Moore HJ, Smith GD. Reduced
967 or modified dietary fat for preventing cardiovascular disease. Cochrane Db Syst Rev. 2012; doi:
968 10.1002/14651858.CD002137.pub3.

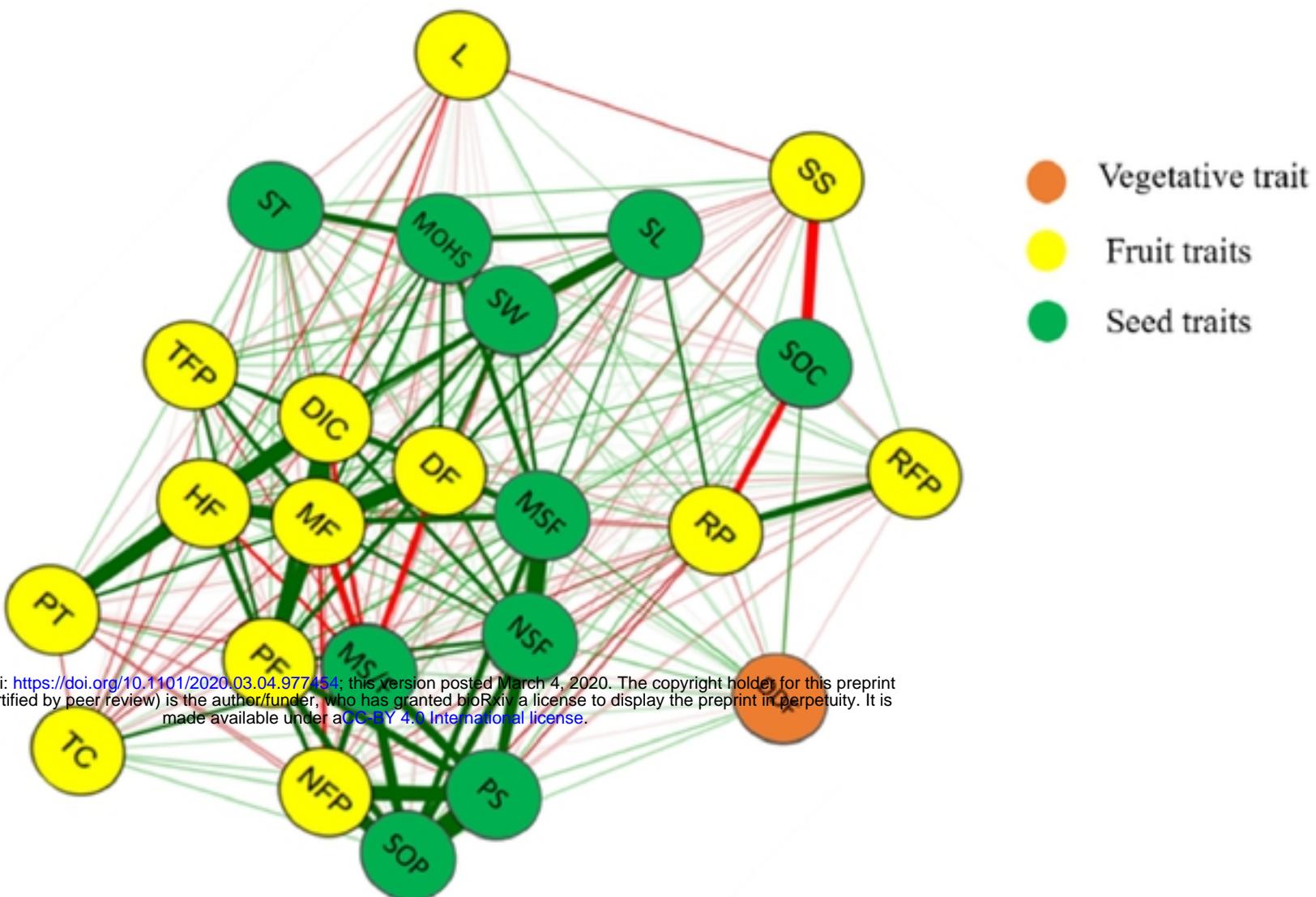
969 81. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing
970 polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of
971 randomized controlled trials. Plos One. 2010; doi:
972 <https://doi.org/10.1371/journal.pmed.1000252>.

973 82. Wu T, Cao J. Differential gene expression of tropical pumpkin (*Cucurbita moschata* Duchesne)
974 bush mutant during internode development. Sci Hortic- Amsterdam. 2008; doi
975 <https://doi.org/10.1016/j.scienta.2008.04.002>.

976 83. Brasil. 2019 [cited 20 October 2019]. In: Registro Nacional de Cultivares– RNC [Internet].
977 Brasília: Registro Nacional de Cultivares– RNC 2019. Available from:
978 http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php.

979

980 AUTHOR CONTRIBUTIONS


981 The authors declare that they contributed according to the specification below.

982 **Ronaldo Silva Gomes:** Investigation, data curation, writing and editing of the original draft.

983 **Ronaldo Machado Junior, Cleverson Freitas de Almeida, Rebeca Lourenço de Oliveira,**
984 **Fabio Teixeira Delazari:** Investigation and data curation.

985 **Rafael Ravaneli Chagas:** Software.

986 **Derly José Henriques da Silva:** Conceptualization, supervision, and Writing – review & editing
987 of the original draft.

Figure 1. Network of genotypic correlations of agronomic aspects, the total carotenoid content of the fruit pulp, and the characteristics of seeds and seed oil of the *C. moschata* germplasm assessed in this study and maintained by the BGH-UFV. The red and green lines denote positive and negative correlations, respectively. Thicker lines indicate greater magnitudes of correlation while the thinner lines indicate lesser magnitudes. Degree-days accumulated for flowering (DDF), number of fruits per plant (NFP), average mass of fruits (MF), productivity of fruits (PF), height of fruit (HF), diameter of fruit (DF), thickness of fruit peel (TFP), resistance of fruit peel (RFP), resistance of fruit pulp (RP), pulp thickness (PT), diameter of internal cavity of fruit (DIC), soluble solids of fruit pulp (SS), total carotenoids content of fruit pulp (TC), lutein content of fruit pulp (L), mass of seeds per fruit (MSF), productivity of seeds (PS), relationship between the masses of seeds and fruit (MS/F), mass of one hundred seeds (MOHS), seed oil content (SOC), and seed oil productivity (SOP).