bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976159; this version posted March 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Public broadly neutralizing antibodies against
hepatitis B virus in individuals with elite serologic activity

Qiao Wang,1810" Eleftherios Michailidis,?8 Yingpu Yu,? Zijun Wang,? Arlene M.
Hurley,? Deena A. Oren,* Christian T. Mayer,? Anna Gazumyan,? Zhenmi Liu,> Yunjiao
Zhou,! Till Schoofs,3 Kai-hui Yao,? Jan P. Nieke,3 Jianbo Wu,! Qingling Jiang,> Chenhui
Zou,>” Mohanmmad Kabbani,? Corrine Quirk,? Thiago Oliveira,® Kalsang Chhosphel,?
Qiangian Zhang,! William M. Schneider,? Cyprien Jahan,? Tianlei Ying,! Jill Horowitz,3
Marina Caskey,® Mila Jankovic,? Davide F. Robbiani,? Yumei Wen,! Ype P. de Jong,27"*
Charles M. Rice,?? Michel C. Nussenzweig3%°

1Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic
Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032,
China

2Laboratory of Virology and Infectious Disease, The Rockefeller University, New
York, NY 10065, USA

3Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
10065, USA

4Structural Biology Resource Center, The Rockefeller University, New York, NY
10065, USA

West China School of Public Health, West China Hospital, Sichuan University,
Chengdu 610041, China

6Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065,
USA

"Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY
10065

8These authors contributed equally

9These authors contributed equally

10L,ead Contact

*Corresponding authors: wanggiao@fudan.edu.cn (Q.W.), ydj2001@med.cornell.edu
(Y.P])


https://doi.org/10.1101/2020.03.04.976159
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976159; this version posted March 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SUMMARY

Although there is no effective cure for chronic hepatitis B virus (HBV)
infection, antibodies are protective and constitute clinical correlates of
recovery from infection. To examine the human neutralizing antibody
response to HBV in elite neutralizers we screened 144 individuals. The top
individuals produced shared clones of broadly neutralizing antibodies
(bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen
(HBsAg). Single bNAbs protected humanized mice against infection, but
selected for resistance mutations in mice with established infection. In
contrast, infection was controlled by a combination of bNAbs targeting non-
overlapping epitopes with complementary sensitivity to mutations that
commonly emerge during human infection. The co-crystal structure of one of
the bNAbs with a peptide epitope containing residues frequently mutated in
human immune escape variants revealed a loop anchored by oppositely
charged residues. The structure provides a molecular explanation for why
immunotherapy for HBV infection may require combinations of

complementary bNAbs.
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INTRODUCTION

Despite the existence of effective vaccines, hepatitis B virus (HBV) infection remains
a major global health problem with an estimated 257 million people living with the
infection. Whereas 95% of adults and 50-75% of children between the ages of 1 and
5 years spontaneiously control HBV, only 10% of infants recover naturally. The
remainder develop a chronic infection that can lead to liver cirrhosis and
hepatocellular carcinoma. Although chronic infection can be suppressed with
antiviral medications, there is no effective curative therapy (Dienstag, 2008; Revill

etal,, 2016; Thomas, 2019).

HBYV is an enveloped double stranded DNA virus of the Hepadnaviridae family. Its
genome is the smallest genome among pathogenic human DNA viruses, with only
four open reading frames. Infected liver cells produce both infectious HBV virions
(Dane particles) and non-infectious subviral particles (Australia antigen) (Dane et
al, 1970; Hu and Liu, 2017). The virion is a 42 nm-diameter particle containing the
viral genome and HBV core antigen (HBcAg) encapsidated by a lipid membrane
containing the hepatitis B surface antigen (HBsAg) (Blumberg, 1964;

Venkatakrishnan and Zlotnick, 2016). Subviral particles lack the viral genome.

Antibodies to HBsAg (anti-HBs) are associated with successful vaccination and
recovery from acute infection, while antibodies to HBcAg (anti-HBc) are indicative
of past or current HBV infection (Ganem, 1982). Indeed, the most significant

difference between chronically infected and naturally recovered individuals is a
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robust antibody response to HBsAg (Ganem, 1982) (Figure S1A). Conversely, the
inability to produce these antibodies during acute infection is associated with
chronicity (Trepo et al,, 2014). Whether these associations reflect an etiologic role
for anti-HBs antibodies in protecting from or clearing established infection is not
known. However, depletion of antibody-producing B lymphocytes in exposed
humans by anti-CD20 therapies (e.g. rituximab) is associated with HBV reactivation,
indicating that B cells and/or their antibody products play a significant role in

controlling the infection (Loomba and Liang, 2017).

Several human antibodies against HBsAg have been obtained using a variety of
methods including: phage display (Kim and Park, 2002; Li et al., 2017; Sankhyan et
al, 2016; Wang et al., 2016); humanized mice (Eren et al., 1998); Epstein-Barr virus-
induced B cell transformation (Heijtink et al., 2002; Heijtink et al., 1995; Sa'adu et al,,
1992); hybridoma technology (Colucci et al., 1986); human B cell cultures (Cerino et
al, 2015); and microwell array chips (Jin et al.,, 2009; Tajiri et al,, 2010). However,

the donors in these studies were not selected for serum neutralizing activity.

Here, we report on the human humoral immune response to HBsAg in immunized
and spontaneously recovered individuals that have been selected for high levels of
serum neutralizing activity. We find that these individuals develop closely related
bNAbs that target shared non-overlapping epitopes in HBsAg. The crystal structure
of one of the antibodies with its peptide target reveals a loop that helps to explain

why certain amino acid residues are frequently mutated in naturally arising escape
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viruses and why combinations of bNAbs may be needed to control infection. In vivo
experiments in humanized mice demonstrate that the bNAbs are protective and can

be therapeutic when used in combination.

RESULTS

Serologic Responses Against HBV

To select individuals with outstanding antibody responses to HBsAg we performed
ELISA assays on serum obtained from 159 volunteers. These included 15 uninfected
and unvaccinated controls (HBsAg-, anti-HBs-, anti-HBc-), 20 infected and
spontaneously recovered (HBsAg-, anti-HBs*/-, anti-HBc*), and 124 vaccinated
(HBsAg-, anti-HBs*/-, anti-HBc~) volunteers. These individuals displayed a broad
spectrum of anti-HBs titers (x-axis in Figure 1A and Figure S1B; Table S1). To
determine their neutralizing activity, we tested their ability to block HBV infection
in sodium taurocholate co-transporting polypeptide (NTCP)-overexpressing HepG2
cells (Michailidis et al., 2017; Yan et al,, 2012) (y-axis in Figure 1A and Figure S1B
and S1C; Table S1). Sera or antibodies purified from individuals with high
neutralizing titers (elite neutralizers) were then compared across a wide range of
dilutions (Figure 1B and 1C). Although anti-HBs ELISA titers positively correlated
with neutralizing activity (rs=0.492, p<0.001, Spearman’s rank correlation), there
were notable exceptions as exemplified by volunteers #99 and #49, whose sera
failed to neutralize HBV despite high anti-HBs ELISA titers (Figure 1A). Thus, ELISA

titers against HBsAg are not entirely predictive of neutralizing activity in vitro.
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The HBV surface protein, HBsAg, is a four-transmembrane protein that can be
subdivided into PreS1-, PreS2- and S-regions (Figure 1D). To determine which of
these regions is the dominant target of the neutralizing response in elite individuals
we used S-protein to block neutralizing activity in vitro. As expected, the
neutralizing activity in volunteers that received the HBV vaccine, which is composed
of S-protein, was completely blocked by S-protein (black lines in Figure 1E). The
same was true for the spontaneously recovered individuals in our cohort despite a
reported ability of this population to produce anti-PreS1 or anti-PreS2 antibodies
(Coursaget et al.,, 1988; Li et al.,, 2017; Sankhyan et al., 2016) (red lines in Figure 1E).
These results suggest that the neutralizing antibody response in elite individuals is

directed primarily against the S-protein irrespective of immunization or infection.

Human Monoclonal Antibodies to HBV

To characterize the antibodies responsible for elite neutralizing activity we purified
S-protein binding class-switched memory B cells (Escolano et al., 2019; Scheid et al,,
2009a). Unexposed naive controls and vaccinated individuals with low anti-HBs
ELISA titers showed background levels of S-protein specific memory B cells (Figure
2A and S2A). In contrast, elite neutralizers displayed a distinct population of S-
antigen binding B cells constituting 0.03-0.07% of the IgG* memory compartment
(CD19-MicroBeads* CD20-PECy7+ IgG-Bv421* S-protein-PE* S-protein-APC*
ovalbumin-Alexa Fluor 488-) (Figure 2A and S2A). Consistent with the findings in

elite HIV-1 neutralizers (Rouers et al,, 2017), the fraction of S-protein specific cells
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was directly correlated to the neutralization titer of the individual (rs=0.699,

p=0.0145, Spearman's rank correlation) (Figure 2B).

Immunoglobulin heavy (IGH) and light (IGL or IGK) chain genes were amplified from
single memory B cells by PCR (Robbiani et al., 2017; Scheid et al,, 2009b; von
Boehmer et al., 2016). Overall, we obtained 244 memory B cell antibodies from eight
volunteers with high anti-HBs ELISA titers (Figure S2B and S2C; Table S2).
Expanded clones composed of cells producing antibodies encoded by the same Ig
variable gene segments with closely related CDR3s were found in elite neutralizers
#146, #60 and #13 (Figure 2C). For example, IGHV3-30/IGLV3-21 was present in
#146 and #60; IGHV3-33/IGLV3-21 in #146 and #13; and IGHV3-23/IGLV3-21 in
#146, #60 and #13. These antibodies were approximately 80% identical at the
amino acid level (Figure 2D). Antibodies with closely related Ig heavy and light
chains were also identified between volunteer #55 (HBV infected but recovered)
and vaccinated individuals (Figure 2C and S2B). We conclude that elite HBV
neutralizers produce clones of antigen-binding B cells that express closely related Ig

heavy and light chains.

Breadth of Reactivity

Twenty representative antibodies from 5 individuals, designated as H001 to H020,
were selected for expression and further testing (Figure S2B). All 20 antibodies
showed reactivity to the S-protein antigen used for B cell selection (HBsAg adr CHO)

by ELISA with 50% effective concentration (ECso) values ranging from 18-350
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ng/ml (Figure 3A). These antibodies carried somatic hypermutations that enhanced
antigen binding as determined by reversion to the inferred germline (Figure 3B).

Thus, affinity maturation was essential for their high binding activity.

Four major serotypes of HBV exist as defined by a constant “a” determinant and two
variable and mutually exclusive determinants "d/y" and "w/r" (Bancroft et al., 1972;
Le Bouvier, 1971) with a highly statistically significant association between
serotypes and genotypes (Kramvis et al.,, 2008; Norder et al., 2004). To determine
whether our antibodies cross-react to different HBsAg serotypes, we performed
ELISAs with 5 additional HBsAg antigens: yeast-expressed serotype “adr”, “adw”,
and “ayw”, as well as “ad” and “ay” antigen purified from human blood (Figure 3C).
Many of the antibodies tested displayed broad cross-reactivity and ECso values
lower than libivirumab, a human anti-HBs monoclonal antibody that was isolated
from HBV-immunized humanized mice and then tested clinically (Eren et al., 2000;
Eren et al, 1998; Galun et al, 2002). These antibodies were not polyreactive or

autoreactive (Figure S3A and S3B). We conclude that the antibodies obtained from

elite neutralizers are broadly cross-reactive with different HBV serotypes.

Antigenic Epitopes on S-protein

To determine whether the 20 selected antibodies bind to overlapping or non-
overlapping epitopes we performed competition ELISA assays, in which the S-
protein was pre-incubated with a selected antibody followed by a second

biotinylated antibody. As expected, all antibodies blocked the binding of the
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autologous biotinylated monoclonal (yellow boxes in Figure 4A), while control
human anti-HIV antibody 10-1074 failed to block any of the anti-HBs antibodies.
The competition ELISA identified three mutually exclusive groups of monoclonal
antibodies, suggesting that there are at least three dominant non-overlapping
antigenic sites on HBsAg (red box for Group-l, blue box for Group-II, and H017 in
Group-III, Figure 4A). The top 4 elite individuals that had 2 or more antibodies
tested in the competition ELISA expressed monoclonal antibodies that targeted 2 of

the 3 non-overlapping epitopes (Figure 4A and S2B).

To define these epitopes more precisely, we produced a series of alanine mutants
spanning most of the predicted extracellular domain of the S-protein with the
exception of cysteines, alanines, and amino acid residues critical for S-protein
production (Salisse and Sureau, 2009) (Figure 1D and S4A). ELISA assays with the
mutant proteins revealed a series of binding patterns corresponding to the three
groups defined in the competition assays (Figure 4B and S4B). For example,
mutations [110A and T148A interfered with binding by Group-I antibodies
exemplified by HO04, H0O06, H019, and H020, but had little measurable effect on
Group-II antibodies exemplified by H007, HO15, and HO16 or Group-III antibody
HO017 (Figure 4B and S4B). In addition, alanine scanning suggested that residues

D144 and G145 are critical antigenic determinants for many of the monoclonals.

In addition to alanine scanning we also produced 44 common naturally occurring

escape variants found in chronically infected individuals (Hsu et al., 2015; ljaz et al,,
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2012; Ma and Wang, 2012; Salpini et al., 2015). Whereas alanine scanning showed
that some of the antibodies in Group-I and -II were resistant to G145A, the
corresponding naturally occurring mutations at the same position, G145E and
G145R, revealed decreased binding by most antibodies (Figure 4C). Among the
antibodies tested, HO17 and HO019, in Groups-IIl and -I respectively, showed the
greatest resistance to G145 mutations and the greatest breadth and
complementarity (Figure 4C). We conclude that human anti-HBs monoclonals
obtained from elite individuals recognize distinct epitopes on HBsAg, most of which
appear to be non-linear conformational epitopes spanning different regions of the

protein.

In Vitro Neutralizing Activity

To determine whether the new monoclonals neutralize HBV in vitro, we performed
neutralization assays using HepG2-NTCP cells (Figure 5A and 5B). The 50%
inhibitory concentration (ICso) values were calculated based on HBsAg/HBeAg
ELISA or immunofluorescence staining for HBcAg expression (Michailidis et al,
2017) (Figure 5C). Neutralizing activity was further verified by in vitro
neutralization assays using primary human hepatocytes (Michailidis et al., 2020)
(Figure 5C and 5D). Fourteen of the 20 antibodies tested showed neutralizing
activity with ICso values as low as 5 ng/ml (Figure 5C). By comparison, libivirumab
had an ICsoof 35 and 128 ng/ml in the neutralization assays based on ELISA and
immunofluorescence assays respectively (Figure 5C). Somatic hypermutations were

essential for potent neutralizing activity as illustrated by the reduced activity of
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inferred germline antibodies (Figure S5A and S5B). In addition, neutralizing activity
was dependent on bivalent binding since the 1Cso values for Fab fragments were 2
orders of magnitude higher than intact antibodies (Figure 5E). Finally, there was no
synergy when Group-l, -II, and -III antibodies were combined (Figure S5C). We
conclude that half of the new monoclonals were significantly more potent than
libivirumab including Group-I HO04, HO05, H0O06, H008, H009, HO019, and HO20 and

Group-II HO07, HO15, and HO16 (Figure 5C).

Structure of the H015 Antibody/Peptide Complex

HO15 differed from other antibodies in that its binding was inhibited by 5
consecutive alanine mutations spanning positions K141-G145 indicating the
existence of a linear epitope. This idea was verified by ELISA against a series of
overlapping peptides comprising the predicted extracellular domain of S-protein
(Figure 6A and S6A). The data showed that HO15 binds to KPSDGN, which is near
the center of the putative extracellular domain and contains some of the most

frequently mutated amino acids during natural infection.

To examine the molecular basis for HO15 binding, its Fab fragment was co-
crystallized with the target peptide epitope PSSSSTKPSDGNSTS, where all cysteine
residues that flank the recognition sequence were substituted with serine to avoid
non-physiological cross-linking. The 1.78 A structure (Figure 6B and S6B) revealed
that the peptide is primarily bound to the immunoglobulin heavy chain (Figure 6B

and 6C), interacting with residues from CDR1 (R31), CDR2 (W52, F53) and CDR3
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(E99, P101, L103, L104) of IgH with only one contact with CDR3 (P95) of IgL. The
peptide adopts a sharp hairpin conformation facilitated by P142 and G145 residues
that is stabilized by a salt bridge formed between K141 and D144 (Figure 6D).
Interestingly, the distance between the Cos of the two residues flanking the
recognition residues is 6.4 A, which is the distance expected if C139 and C147 form a

disulfide bond in the native HBsAg structure (Ito etal,, 2010).

The residues that form the hairpin are important for anti-HBs antibody recognition
as determined by alanine scanning (Figure 4B and S4). Moreover, each of these
residues has been identified as important for immune recognition during natural
infection (Ma and Wang, 2012). G145R, the most common naturally occurring S-
protein escape mutation substitutes a large positively charged residue for a small
neutral residue (circled residue in Figure 6E) potentially altering the antigenic
binding surface and the overall hairpin fold due to interference with the internal salt

bridge between K141 and D144 and/or the propensity of glycine to loop formation.

Protection and Therapy in Humanized Mice

HBYV infection is limited to humans, chimpanzees, tree shrews, and human liver
chimeric mice (Sun and Li, 2017). To determine whether our anti-HBs bNAbs
prevent infection in vivo we produced human liver chimeric Fah”/-NODRag1-/-
[L2rg™!" (huFNRG) mice (de Jong et al, 2014) and injected them with control or
HO007 (Group-II) or H020 (Group-I) antibodies before infection with HBV (Figure

7A-7D). Whereas all six control animals in two independent experiments were
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infected, pre-exposure prophylaxis with either HO07 or HO20 was fully protective
(Figure 7B-7D). We conclude that single anti-HBs bNAbs targeting different epitopes

on the major virus surface antigen can prevent infection in vivo.

To determine whether bNAbs can also control established infections, we infused
control antibody or bNAb HO020 or HO07 shortly after HBV-infected huFNRG mice
reached ~107 copies of virus per ml of serum (Figure 7E-7H and Figure S7A).
Animals that received the control antibodies further increased viremia to as high as
~1011 DNA copies/ml (Figure 7F). In contrast, the 5 mice that received H020
maintained stable levels of viremia for around 30 days (Figure 7G), after which time
2 mice showed increased viremia (arrow-1/3 in Figure 7G). A similar result was
observed in the 5 mice that received HO07 (Figure 7H), where only one showed a

slight increase viremia at around day 50 (arrow-5 in Figure 7H).

To determine whether the animals that showed increased HBV DNA levels during
antibody monotherapy developed escape mutations, we sequenced the viral DNA
recovered from mouse blood. All three mice that escaped H020 or HO007
monotherapy developed viruses that carried a G145R mutation in the S-protein
(arrow-1/3 in Figure 7G, arrow-5 in Figure 7H, Figure 71, and Figure S7). This
mutation represents a major immune escape mutation in humans (Zanetti et al,,
1988). Furthermore, mutations at the same position in the S-protein were also
identified in mice that maintained low level viremia (arrow-2/4 in Figure 7G, arrow-

6/7 in Figure 7H, Figure 71, and Figure S7), but not in control animals (Figure S7).
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These results show that anti-HBs bNAb monotherapy leads to the emergence of
escape mutations that are consistent with bNAb binding properties in vitro (Figure

4Q).

To determine whether a combination of bNAbs targeting 2 separate epitopes would
interfere with the emergence of resistant strains, we co-administered HO06 + HO07
(Group-I and -II, respectively) to 8 HBV-infected huFNRG mice (Figure 7]). Similar to
HO007 monotherapy, there was only a slight increase in viremia in animals treated
with the HO06 + HO07 anti-HBs bNAb combination during the 60-day observation
period (Figure 7] and S7A). However, sequence analysis revealed that 3 of the mice
developed resistance mutations including K122R/G145R, C137Y, and C137Y/D144V
(arrow-8/9/10 in Figure 7], Figure 71, and Figure S7). These mutations confer loss
of binding to both H006 and HOO07 (Figure 4C). Thus, the combination of 2 anti-HBs
bNAbs targeting separate epitopes but susceptible to the same clinical escape

variants is not sufficient to inhibit emergence of escape mutations.

In contrast, none of 7 mice treated with the combination of HO17 + H019 (Group-III
and -I, respectively) bNAbs that displayed complementary sensitivity to commonly
occuring natural mutations (Figure 4C), showed increased viremia or escape
mutations (Figure 7K and S7A). Similar effects were also observed in the 9 animals
treated with the H016, HO17 and HO19 triple antibody combination (Figure 7L and

S7A). Altogether, these findings suggest that control of HBV infection by bNAbs
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requires a combination of antibodies targeting non-overlapping groups of common

escape mutations.

DISCUSSION

Previous studies have identified several anti-HBs neutralizing antibodies from a
small number of otherwise unselected spontaneously recovered or vaccinated
individuals (Cerino et al., 2015; Colucci et al., 1986; Eren et al., 1998; Heijtink et al.,
2002; Heijtink et al., 1995; Jin et al., 2009; Kim and Park, 2002; Li et al., 2017; Sa'adu
et al,, 1992; Sankhyan et al., 2016; Tajiri et al., 2007; Tokimitsu et al., 2007; Wang et
al, 2016). In contrast, we screened sera from 144 exposed volunteers to identify
elite neutralizers. Serologic activity varied greatly among the donors with a small
number of individuals demonstrating high levels of neutralizing activity. To
understand this activity, we isolated 244 anti-HBs antibodies from single B cells
obtained from the top donors. Each of the elite donors tested showed expanded
clones of memory B cells expressing bNAbs that targeted 3 non-overlapping sites on
the S-protein. Moreover, the amino acid sequence of several of the bNAbs was highly
similar in different individuals, and as might be expected these closely related

antibodies target the same epitope.

The near identity of clones of HBV bNAbs in unrelated elite individuals is akin to
reports for elite responders to HIV-1 (Scheid et al, 2011; West et al, 2012),

influenza (Laursen and Wilson, 2013; Pappas et al., 2014; Wrammert et al., 2011),
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Zika (Robbiani et al,, 2017), and malaria (Tan et al,, 2018). However, none of the
elite anti-HBs bNAbs shares both IgH and IgL with previously reported HBV
neutralizing antibodies, the best of which have been tested in the clinic but are less
potent than some of the bNAbs reported here (libivirumab ICso: 35 ng/ml,
tuvirumab ICsp: ~100 ng/ml) (Galun et al., 2002; Heijtink et al., 2001; van Nunen et

al, 2001).

Our alanine scanning and competition binding analyses are consistent with the
existence of at least 3 domains that can be recognized concomitantly by bNAbs (Gao
et al,, 2017; Tajiri et al,, 2010; Zhang et al.,, 2016). However, the domains do not
appear to be limited to either of two previously defined circular peptide epitopes,
123-137 and 139-148 (Tajiri et al., 2010; Zhang et al.,, 2016). Instead, residues
spanning most of the external domain can contribute to binding by both Group-I and
-II antibodies. For example, alanine scanning indicates that Group-I1 HO20 binding is
dependent on 1110, K141, D144, G145 and T148, while Group-II H016 binding
depends on T123, D144, and G145. Thus, despite having non-overlapping binding
sites some of the essential residues are shared by Group-I and II suggesting that the
epitopes are conformational. Moreover, the antibody epitopes on S-protein
identified using mouse and human antibodies may be distinct (Chen et al., 1996; ljaz
et al,, 2003; Paulij et al., 1999; Zhang et al,, 2019; Zhang et al., 2016). Finally, G145, a
residue that is frequently mutated in infected humans (Ma and Wang, 2012; Tong et
al, 2013), is essential for binding by all the Group-II but not all Group-I or -III

antibodies tested.
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Although there is no high-resolution structural information available for HBsAg,
crystallization of the Group-II bNAb HO15 and its linear epitope revealed a loop that
includes P142, S/T143, D144, and G145, all of which are frequently mutated during
natural infection to produce well-documented immune escape variants (Hsu et al,,
2015; ljaz et al., 2012; Ma and Wang, 2012; Salpini et al., 2015). In addition to
immune escape, the residues that form this structure are also essential for
infectivity, possibly by facilitating virus interactions with cell surface
glycosaminoglycans (Sureau and Salisse, 2013). Mutations in K141, P142 as well as
C139 and C147, all of which contribute to the stability of the structure, decrease
viral infectivity (Salisse and Sureau, 2009). We speculate that drugs that destabilize

the newly elucidated H015-peptide loop structure may also interfere with infectivity.

The G145R mutation, which is among the most frequent immune escape variants,
replaces a small neutral residue with a bulky charged residue that would likely
interfere with antigenicity by destroying the salt bridge between K141 and D144
that anchors the peptide loop. However, this drastic structural change does not alter
infectivity (Salisse and Sureau, 2009), possibly because the additional charge
compensates for otherwise altered interactions between HBV and cell surface
glycosaminoglycans (Sureau and Salisse, 2013). Thus, the additional charge may
allow G145R to function as a dominant immune escape variant while preserving

infectivity.
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Our analysis is limited to antibodies directed at S-protein antigen in part because
this is the antigen used in the currently FDA-approved vaccines, and because
purified S-protein blocked nearly all of the neutralizing activity in the serum of the
elite neutralizers irrespective of whether they were vaccinated or spontaneously
recovered. Nevertheless, individuals who recover from infection naturally also
produce antibodies to the PreS1 domain of HBsAg (Li et al., 2017; Sankhyan et al,,
2016). The PreS1 domain is essential for the virus to interact with the entry factor
NCTP on hepatocytes and potent neutralizing antibodies to PreS1 have been
described (Li et al., 2017). However, these are not naturally occurring antibodies but
rather randomly paired IgH and IgL chains derived from phage libraries obtained
from unexposed or vaccinated healthy donors (Li et al.,, 2017). Moreover, the phage
antibodies required further engineering to enhance their neutralizing activity (Li et
al, 2017). Thus, whether the human immune system also produces potent anti-

PreS1 bNAbs has yet to be determined.

Chronic HBV infection remains a major global public health problem in need of an
effective curative strategy (Graber-Stiehl, 2018; Lazarus et al., 2018; Revill et al,,
2016). Chronically infected individuals produce an overwhelming amount of HBsAg
that is postulated to incapacitate the immune system. Consequently, immune cells,
which might normally clear the virus, are unable to react to antigen, a phenomenon
referred to as exhaustion or anergy (Ye et al.,, 2015). The appearance of anti-HBs
antibodies is associated with spontaneous recovery from the disease, perhaps

because they can clear the antigen and facilitate the emergence of a productive


https://doi.org/10.1101/2020.03.04.976159
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976159; this version posted March 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

immune response (Celis and Chang, 1984; Zhang et al,, 2016; Zhu et al., 2016). These
findings led to the hypothesis that passively administered antibodies might be used
in conjunction with antiviral drugs to further decrease the antigenic burden while
enhancing immune responses that maintain long-term control of the disease. Our
observations in huFNRG mice infected with HBV indicate that antibody
monotherapy with a potent bNAb can lead to the emergence of the very same escape
mutations commonly found in chronically infected individuals. Moreover, not all
bNAb combinations are effective in preventing escape by mutation. Combinations
that target separate epitopes but have overlapping sensitivity to commonly
occurring escape mutations such as H006 and HO07 are ineffective. In contrast,
combinations with complementary sensitivity to common escape mutations prevent
the emergence of escape mutations in huFNRG mice infected with HBV. Thus,
immunotherapy for HBV infection may require combinations of antibodies with

complementary activity to avert this potential problem.
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Figure 1. Antibody responses in HBV vaccinated and recovered individuals. (A)
Donor screen. Sera from 159 volunteers were evaluated for anti-HBs binding by
ELISA (x-axis) and HBV serum neutralization capacity using HepG2-NTCP cells (y-
axis). Neutralization tests were performed at 1:5 serum dilution in the final assay
volume. Each dot represents an individual donor. Green indicates unvaccinated and
unexposed, black indicates vaccinated, and red indicates spontaneously recovered.
The dashed line indicates the no serum control. Elite neutralizers are indicated (top
right). Boxed are representative samples shown in Figure 2A. Spearman’s rank
correlation coefficient (rs) and significance value (p). (B and C) Dose-dependent
HBV neutralization by serum (B) or by purified IgG (C). Two assays were used to
measure infection rates: ELISA to measure HBsAg protein in the medium (upper
panels) and immunofluorescent staining for HBcAg in HepG2-NTCP cells (lower
panels). Dashed line indicates saturation. (D) Schematic representation illustrating
the three forms of the HBV surface protein: L-, M- and S-protein. These three forms
of envelope protein all share the same S-region, with PreS1/PreS2 and PreS2 alone
as the N-terminal extensions for L- and M-protein, respectively. (E) S-protein
produced in Chinese hamster ovary (CHO) cells blocks serum neutralizing activity.
Graphs show infection rate as a function of the amount of S-protein added. The
concentration of polyclonal IgG antibodies (pAb) is indicated. Upper and lower
panels are as in (B) and (C). A representative of at least two experiments is shown.
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Figure 2. S-protein-specific antibodies. (A) Frequency of S-protein-specific
memory B cells. Representative flow cytometry plots displaying the percentage of
all IgG* memory B cells that bind to both allophycocyanin- and phycoerythrin-
tagged S-protein (S-protein-APC and S-protein-PE). Flow cytometry plots from other
individuals are shown in Figure S2A. Experiments were repeated two times. (B) Dot
plot showing the correlation between the frequency of S-protein-binding IgG*
memory B cells and the serum neutralizing activity. Spearman’s rank correlation
coefficient (rs) and significance value (p). (C) Each pie chart represents the
antibodies from an individual donor, and the total number of sequenced antibodies
with paired heavy and light chains is indicated in the center. Antibodies with the
same combination of IGH and IGL variable gene sequences and closely related
CDR3s are shown as one slice with colors indicating shared sequences between
individuals. Grey slices indicate antibodies with closely related sequences that are
unique to a single donor. In white are singlets. (D) V(D)] alignments for
representative IGHV3-30/1GLV3-21, IGHV3-33/IGLV3-21 and IGHV3-23/IGLV3-21
antibodies from donors #60/#146, #146/#13, and #13/#60/#146 respectively.
Boxed grey residues are shared between antibodies.
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Figure 3. Broad cross-reactivity. (A) Binding to S-protein (adr serotype). 50%
effective concentration (ECsp in ng/ml) required for binding of the indicated human
monoclonal antibodies to the S-protein. Libivirumab (Eren et al.,, 2000; Eren et al,,
1998) and anti-HIV antibody 10-1074 (Mouquet et al., 2012) were used as positive
and negative controls, respectively. (B) Comparative binding of the mature and
inferred germlines (GL) of antibodies H006, H019, and H020 to S-protein by ELISA.
(C) Anti-HBs antibody binding to 5 different serotypes of HBsAg. Similar to panel
(A), ECsp values are color-coded: red, <50 ng/ml; orange, 50 to 100 ng/ml; yellow,
100 to 200 ng/ml; and white, > 200 ng/ml. All experiments were performed at least
two times.
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Figure 4. HBsAg epitopes. (A) Competition ELISA defines 3 groups of antibodies.
Results of competition ELISA shown as percent of binding by 2nd biotinylated
antibodies and illustrated by colors: black, 0-25%; dark grey, 26-50%; light grey, 51-
75%; white, >76%. Representative of two experiments. (B) Results of ELISA on
alanine scanning mutants of S-protein. Only the amino acids vital for antibody
binding are shown. Binding to mutants relative to wild-type S-protein: black, 0-25%;
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dark grey, 26-50%; light grey, 51-75%; white, >75%. Details are in Figure S4. (C)
Results of ELISA on various escape mutations of S-protein. Wild-type S-protein and
empty vector serve as a positive and negative controls, respectively. Binding to
mutants relative to wild-type S-protein: black, 0-25%; dark grey, 26-50%; light grey,
51-75%; white, >75%. Amino acid mutations in bold represent frequently observed

mutations in humans (Ma and Wang, 2012). All experiments were performed at
least two times.


https://doi.org/10.1101/2020.03.04.976159
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976159; this version posted March 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A c
IG50 (ng/mi)
o HBsAg | HBcAg | HBeAg
N HOO01 n.d. n.d.
'E Hoo2 nd nd.
o VAN 133.3
E -
@
5 - 6.176
o
e - 6001
o
-
-
E N
1
B HO10 B1.16 | 2889
1.5 nd. n.d.
2
o
1=
£ 14
o -
@
E a
@
2
® 059
@
® ¥ 14.99
- 17.01
o : . , S +* lipirivumab | -
10 10 0 10 10 10 = 10-1074 not neutralizing
Antibody concentration (ng/mi)
D E
15 15
- HODG-Fab
-« HOO7-Fab
& 2 20-Fab
H i
g 5
g g
£ £
5 £
£ -

Antibody concentration (ng/ml) Antibody concentration (ng/mi)

Figure 5. In vitro neutralization by the monoclonal antibodies. (A and B) In vitro
neutralization assays using HepG2-NTCP cells. Percent infection in the presence of
the indicated concentrations of bNAbs measured by ELISA of HBsAg in medium (A)
and anti-HBcAg immunofluorescence (B). Anti-HIV antibody 10-1074 (Mouquet et
al,, 2012) and libivirumab (Eren et al., 2000; Eren et al., 1998) were used as negative
and positive controls respectively. All experiments were repeated a minimum of two
times. (C) bNAb 50% maximal inhibitory concentration (ICs0) calculated based on
HBsAg ELISA (left) or HBcAg immunofluorescence (middle) or HBeAg ELISA (right).
(D) In vitro neutralization using primary human hepatocytes. The levels of HBeAg in
medium were measured by ELISA. The calculated ICso values are shown in the right
column of panel (C). Experiments were repeated three times. (E) In vitro
neutralization assay using HepG2-NTCP cells. IgG antibodies were compared to their
corresponding Fab fragments. Concentrations of Fab fragments were adjusted to
correspond to IgG. Experiment was performed two times.
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Figure 6. Crystal structure of HO15 bound to its recognition motif. A single
crystal was used to obtain a high resolution (1.78 A) structure. (A) Synthetic
peptides spanning the antigenic loop region were subjected to ELISA for antibody
binding. Among the tested antibodies, only HO15 binds peptides-11 and -12.
Experiments were performed three times and details are in Figure S6A. (B and C)
The peptide binds to CDR1 (R31), CDR2 (W52 and F53) and CDR3 (E99, P101, L103,
and L104) of HO15 heavy chain (green) and CDR3 (P95) of the light chain (cyan) (B).
The interacting residues (C) on the heavy chain (green) are R31 (main chain), W52,
F53 (main chain), E99, P101 (main chain), L103 (main chain), L104 (hydrophobic).
One contact with the light chain (cyan) is with P95. (D) Electron density map of the
bound peptide as seen in the 2Fo-Fc map contoured at 1 RMSD indicating high
occupancy (92%). (E) The recognition motif, KPSDGN, adopts a sharp hairpin
conformation due to the salt-bridge between lysine141 and aspartic acid 144 and is
facilitated by kinks at P142 and G145. Glycine 145 (G145, circled) is the residue that
escapes the immune system when mutated to an arginine.
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Figure 7. Anti-HBs bNAbs are protective and therapeutic in vivo. (A and E)
Diagram of the prophylaxis and treatment protocols, respectively. (B) Prophylaxis
with isotype control antibody 10-1074 (Mouquet et al., 2012). (C and D) Prophylaxis
with H020 and HO07 respectively. The dashed line in (B-D) indicates the detection
limit. (F) Treatment of viremic huFNRG mice with control antibody 10-1074. (G and
H) Treatment of viremic huFNRG mice with HO20 alone or HO07 alone, respectively.
HBV DNA levels in serum were monitored on a weekly basis. Two independent
experiments comprising a total of 5 to 8 mice were combined and displayed. (I)
Mutations in the S-protein sequence from the indicated mice (red arrows) in (G), (H)
and (J). S-protein sequence chromotograms are shown in Figure S7. (J-L) Treatment
of viremic huFNRG mice with combination of anti-HBs bNAb H006 + HO07 (]), or
HO017 + HO19 (K), or HO16 + HO17 + HO19 (L), respectively. The mice without red
arrows bear no escape mutations at the last time point.
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