

1 **The visual ecology of a color polymorphic reef fish: the role of aggressive mimicry**

2

3 Michele ER Pierotti^{1*}, Anna Wandycz², Paweł Wandycz³, Anja Rebelein⁴, Vitor H Corredor⁵,

4 Juliana H Tashiro⁵, Armando Castillo¹, William T Wcislo¹, W Owen McMillan¹, Ellis R Loew⁶

5

6 1. Smithsonian Tropical Research Institute, Balboa, Panama

7 2. Department of Anatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland

8 3. Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and
9 Technology, Krakow, Poland

10 4. Thunen Institute, Braunschweig, Germany

11 5. Department of Experimental Psychology, Psychology Institute, University of São Paulo,
12 Brazil

13 6. Department of Biomedical Sciences, Cornell University, USA

14

15 *Corresponding author (lipotes@yahoo.it)

16

17 Keywords: mimicry, communication, visual signals, sensory biology, coral reef fish,

18 predation

19

20 Manuscript type: Article

21

22 Word count: 8520

23

24 **ABSTRACT**

25 Since all forms of mimicry are based on perceptual deception, the sensory ecology of the
26 intended receiver is of paramount importance to test the necessary precondition for mimicry
27 to occur, i.e. model-mimic misidentification, and to gain insight in the origin and evolutionary
28 trajectory of the signals. Here we test the potential for aggressive mimicry by a group of coral
29 reef fishes, the color polymorphic *Hypoplectrus* hamlets, from the point of view of their most
30 common prey, small epibenthic gobies and mysid shrimp. We build visual models based on
31 the visual pigments and spatial resolution of the prey, the underwater light spectrum and
32 color reflectances of putative models and their hamlet mimics. Our results are consistent with
33 one mimic-model relationship between the butter hamlet *H. unicolor* and its model the
34 butterflyfish *Chaetodon capistratus* but do not support a second proposed mimic-model pair
35 between the black hamlet *H. nigricans* and the dusky damselfish *Stegastes adustus*. We discuss
36 our results in the context of color morphs divergence in the *Hypoplectrus* species radiation
37 and suggest that aggressive mimicry in *H. unicolor* might have originated in the context of
38 protective (Batesian) mimicry by the hamlet from its fish predators.

39

40

41

42

43

44

45

46

47 **INTRODUCTION**

48 Despite 150 years of research since Bates' (1862) and Wallace (1869)'s original insights, the
49 unequivocal identification of new cases of mimicry, their evolutionary dynamics and the very
50 definition and boundaries of the concept of mimicry are still challenging and hotly debated
51 issues among evolutionary biologists (e.g. Vane-Wright 1980; Moynihan 1981; Ruxton et al.
52 2004; Rainey and Grether 2007; Wickler 2013; Dalziell and Welbergen 2016). A key
53 realization that has emerged from the ongoing debate was that the perceptual system of the
54 signal receiver must be put at the center of any analysis on the origins and maintenance of a
55 mimicry system (Cuthill and Bennett 1993; Dittrich et al. 1993). Indeed, testing hypotheses
56 of mimic-model relationships can be misleading without an appropriate eye-of-the-beholder
57 approach (Dittrich et al. 1993). This is because the evolution of a mimic signal is shaped not
58 by similarity with the model but by the receiver's percepts of both the signals from model
59 and mimic. Reducing the difference between those percepts below the receiver's threshold
60 for detecting a just noticeable difference (*sensu* Fechner 1860) will ensure perfect mimicry.

61 It follows that high fidelity might not be the most important requirement for efficient
62 mimicry. Cognitive processes such as generalization (Darst and Cummings 2006; Ham et al.
63 2006), categorization (Chittka and Osorio 2007) and overshadowing (Mackintosh 1976), by
64 which a conflict in the perception of multiple cues leads to only a subset of characteristics of
65 the signal being considered at the expense of others, are likely to affect mimetic accuracy. By
66 acting on the receiver percept of the mimic phenotype and not on the phenotype itself,
67 selection will frequently affect only a limited subset of traits in the mimic, those most salient
68 for the sensory system of the intended receiver. Indeed, selection might even drive the
69 evolution of 'imperfect' mimics with higher mimicry performance than high fidelity mimics,

70 for example by enhancing salient signals beyond the value characteristic of the model in a
71 Mullerian complex, to increase effectiveness of recognition, memorization or more effective
72 receiver manipulation (Kilner et al. 1999). In addition, a receiver percept results from
73 alterations of the signal as it travels through the medium (e.g. air, water) from the model or
74 mimic to the receiver's sensory system. Characteristics of the medium (e.g. its general
75 physical properties or those of the background against which the model/mimic are seen or
76 heard) might enhance or attenuate certain components of the signal making perfect imitation
77 of the model unnecessary. In conclusion, evidence in support of a particular putative mimic-
78 model relationship needs to be grounded in an understanding of the receiver's perceptual
79 system and its sensory environment.

80 An intriguing putative case of mimicry is represented by the *Hypoplectrus* hamlet
81 complex, a group of coral reef fish with strikingly distinct color patterns. Despite assortative
82 mating by color morph, which led various authors to recognize them as separate species,
83 hamlets exhibit otherwise little morphological and genetic differentiation between morphs
84 at any one locality (Graves and Rosenblatt 1980; McCartney et al. 2003; Whiteman and Gage
85 2007; Puebla et al. 2008, 2014; Aguilar-Perera and González-Salas 2010). Indeed, in a recent
86 genome-wide analysis, hamlet species only consistently differed from each other at genomic
87 regions that contained loci implicated in the production or perception of color pattern (Hench
88 et al. 2019). Various authors have suggested that the hamlets' exceptional color diversity
89 might be the result of aggressive mimicry of a number of non-predator model species by
90 different hamlet morphs (Randall and Randall 1960; Thresher 1978; Fischer 1980; Domeier
91 1994; Whiteman et al. 2007; Holt et al. 2008; Puebla et al. 2018). Here, the mimic species
92 takes the appearance of a non-predatory species in order to get close to a potential prey, small

93 fish and epibenthic invertebrates, without eliciting an escape reaction. According to some
94 definitions of aggressive mimicry, hamlets in fact might rather be a case of camouflage, since
95 the mimic is signaling neither a fitness cost (as in Batesian/Mullerian mimicry) nor a benefit
96 (as in aggressive mimicry, e.g. lures) to the receiver.

97 For those hamlet morphs considered mimics, one or more candidate models have
98 been proposed, typically co-occurring herbivore, corallivore or spongivore fish species,
99 harmless to a local prey and exhibiting various degrees of resemblance, as judged by a human
100 viewer, to the corresponding hamlet morph (Randall and Randall 1960; Thresher 1978;
101 Fischer 1980; Domeier 1994; Puebla et al. 2007). However, the plausibility of aggressive
102 mimicry in hamlets rests only on these apparent color pattern similarities. A notable
103 exception is the work of Puebla and coworkers on a butter hamlet *H. unicolor* population in
104 Panama (Puebla et al. 2007; Puebla et al. 2018). The authors showed that the proportion of
105 butter hamlet strikes towards their prey was significantly higher when associating with their
106 putative model, the four-eye butterflyfish *Chaetodon capistratus*, than when striking alone,
107 suggesting a possible fitness advantage consistent with aggressive mimicry in the butter
108 hamlet.

109 Despite frequent reference to aggressive mimicry as an evolutionary engine of hamlet
110 diversification (Thresher 1978; Fischer 1980; Domeier 1994; Puebla et al. 2007), we still lack
111 a basic understanding of hamlet preys' visual abilities and their potential for effective
112 discrimination of predatory hamlet color morphs from harmless (putative) models. Here we
113 consider three widely distributed hamlet species, the butter hamlet (*H. unicolor*), the black
114 hamlet (*H. nigricans*) and the non-mimic barred hamlet (*H. puella*). We examine the visual
115 system of two of their most common prey, namely an epibenthic coral reef fish and an open-

116 water mysid shrimp, both in terms of color vision and visual acuity. Using spectral reflectance
117 measurements of equivalent patches on each hamlet morph and their putative models and
118 modeling of preys' visual sensitivity and acuity, we gain insight into the potential for
119 deception of each mimic hamlet morph through the eyes of their prey.

120

121 **MATERIALS AND METHODS**

122 **Study site and species**

123 Field work was conducted in the Bocas del Toro Archipelago, Panama, on the same reef
124 complex (Punta Caracol; GPS 9° 21' 38.449" N, 82° 16' 40.803" W), where the association
125 between *H. unicolor* hamlets and the butterflyfish *C. capistratus* had been previously
126 observed by Puebla et al. (2007). Fish were collected while SCUBA diving by hook-and-line
127 or with hand nets at depths of between 3 -8m and then kept briefly in 80cm x 80cm x 50cm
128 outdoor aquaria with running seawater, before data collection.

129 We considered a non-mimic hamlet, the barred *H. puella*, and two model-mimic
130 putative pairs: i. the butter hamlet (*H. unicolor*) and its model, the foureye butterflyfish
131 (*Chaetodon capistratus*); ii. the black hamlet (*H. nigricans*) and its model the dusky damselfish
132 (*Stegastes adustus*). In addition, we collected the two most common hamlet prey encountered
133 in hamlet stomach contents, in the Bocas del Toro populations (Puebla et al. 2007), the
134 masked goby (*Coryphopterus personatus*) and a mysid shrimp (*Mysidium columbiae*). *C.*
135 *personatus* is an epibenthic small goby occurring in large schools hovering above coral heads
136 and feeding on plankton (Bohlke and Robins 1962). *Mysidium columbiae* are among the most
137 abundant swarming planktonic crustaceans on shallow coral reefs in the Gulf of Mexico and

138 the Caribbean, generally found in patchy aggregations over corals or among mangrove roots
139 (Wittmann and Wirtz 2019).

140

141 **Spectral measurements**

142 i. *Underwater spectral irradiances*

143 We characterized the underwater photic environment on the Punta Caracol shallow coral
144 reefs (Bocas del Toro, Panama) where the hamlet morphs, their models and their prey were
145 collected. We used an Ocean Optics USB2000 spectrometer connected to an Ocean Optics
146 ZPK600 UV/VIS optical fiber and fitted at one end with a CC-3-UV cosine corrector. The probe
147 was secured at the tip of the longer arm of a white 1m long L-shaped pole and directed by a
148 scuba diver vertically upwards and downwards, and horizontally perpendicularly to the
149 shoreline, towards and away from shore, and the two directions parallel to the shoreline. This
150 was repeated at different depths (just below surface, 2.5 m, 5.0 m, 7.5 m) just above hamlet
151 territories. All measurements were taken between 11.00 and 13.00 on a sunny clear day.

152 The spectral distribution of irradiance was characterized by calculating λP_{50} , the
153 wavelength that halves the total number of photons (Munz and McFarland 1973), and the
154 breadth of the light spectrum by calculating the difference $\Delta\lambda$ between λP_{25} and λP_{75}
155 cumulative photon frequency, in the range 350-650nm, most relevant for visual functions.
156 The depth and wavelength dependence of the downwelling irradiance can be expressed in
157 terms of the diffuse attenuation coefficient, $K_d(\lambda)$ (Mobley, 1994):

$$158 \frac{E_d(z,\lambda)}{E_d(0,\lambda)} = \exp \left[- \int_0^z K_d(z',\lambda) dz' \right]$$

159

160 where $E_d(z, \lambda)$ is the downwelling irradiance at depth z and $E_d(0, \lambda)$ is the downwelling
161 irradiance just below the water surface. If we consider the average $\bar{K}_d(z, \lambda)$ over the depth
162 interval from below the surface to the maximum depth recorded, this is

163

$$\bar{K}_d(z, \lambda) = -\frac{1}{z} \ln \frac{E_d(z, \lambda)}{E_d(0, \lambda)}$$

164 We calculated the average diffuse attenuation coefficient using the below-surface and 7.5 m
165 depth downwelling spectral irradiance measurements.

166 ii. *Fish body reflectance*

167 A number of equivalent areas on the fish body showing clear differences in coloration
168 between two or more species were identified and used to build a set of 7 'homologous'
169 landmarks, shared by all hamlets and their putative models. Reflectance measurements were
170 taken from these landmarks across species, with a 200 μm UV/vis bifurcated fiber optic cable
171 connected to an Ocean Optics USB2000 spectrometer and an Ocean Optics PX-2 pulsed xenon
172 light source. Individuals were placed over a damp cloth and their skin maintained wet,
173 following the guidelines of Marshall (2000). Reflectance records, obtained keeping both ends
174 of the bifurcated fiber at approximately 45 degrees above the color patches, were calibrated
175 against a Spectralon (Labsphere, North Sutton, NH) white standard.

176

177 **Receivers visual system**

178 i. *Masked goby visual sensitivity*

179 We characterized the spectral sensitivity of the masked goby visual pigments by
180 microspectrophotometry (MSP). Fish were maintained under dark conditions for a minimum

181 of four hours prior to MSP and then euthanized with an overdose of MS-222 followed by
182 cervical dislocation. The eyes were rapidly enucleated under dim red light, and the retinas
183 removed and maintained in PBS (pH 7.2) with 6% sucrose. Small pieces of the retina were
184 placed on a cover slide, fragmented to isolate individual photoreceptors, and sealed with a
185 second cover slide and Corning High Vacuum grease. We used a single-beam, computer-
186 controlled MSP, with a 100 W quartz iodine lamp that allowed for accurate absorption
187 measurements down to 340 nm (Loew 1982; Losey et al. 2003). The peak of maximum
188 absorption (λ_{max}) of photoreceptors was obtained by fitting A1 or A2 templates to the
189 smoothed, normalized absorbance spectra (Lipetz and Cronin 1988; Govardovskii et al.
190 2000). We used the criteria for data inclusion into the analysis of λ_{max} described in Loew
191 (1994) and Losey et al. (2003).

192

193 *ii. Masked goby lens transmittance*

194 Lens transmission was measured directing light from the pulsed xenon light source through
195 the lens mounted on a pinhole into a UV/vis fiber optic cable connected to the Ocean Optics
196 USB2000 spectrometer. Lens transmission was expressed in terms of the 50% cutoff
197 wavelength (T_{50}) calculated from transmission spectra normalized to their maximum
198 transmission between 300-700nm.

199

200 *iii. Mysid shrimp visual sensitivity*

201 Opossum shrimp (Crustacea: Mysida) have superposition eyes (Hallberg 1977). Visual
202 sensitivity has been studied in depth in the genus *Mysis*, with evidence for a single visual
203 pigment, with peak sensitivity positioned in the waveband 520-525nm in marine populations

204 (Jokela-Määttä et al. 2005; Audzijonyte et al. 2012). In the absence of available data on visual
205 sensitivities in *Mysidium*, we chose a value of 520nm, consistent with values in the related
206 *Mysis*.

207

208 **Color and luminance discrimination**

209 Vorobyev and Osorio's (1998) color discrimination model was used to derive chromatic
210 distances between corresponding color patches in hamlets, their models and natural
211 backgrounds as perceived by a masked goby and by a mysid shrimp. Photoreceptor quantum
212 catch Q_i for a receptor of class i was calculated as:

213
$$Q_i = \int_{\lambda} R_i(\lambda) S^a(\lambda) I(\lambda) d\lambda$$

214 where $R_i(\lambda)$ is the absolute spectral sensitivity for receptor class i , $S^a(\lambda)$ is the reflectance
215 spectrum of a color patch a , $I(\lambda)$ is the irradiance spectrum, and integration is over the range
216 $\lambda = 350\text{--}650$ nm. Given the small distances ($d=25\text{--}50$ cm) over which models and mimics
217 interact with the receiver (i.e. the prey: masked goby or mysid shrimp) in clear coral reef
218 waters, we considered light attenuation effects negligible.

219 If we take the signal f_i of each receptor of class i as proportional to the natural
220 logarithm of the receptor quantum catch q_i , according to Weber-Fechner's law, the contrast
221 between two homologous patches, e.g. on the model vs on its mimic, will be:

222
$$\Delta f_i = \ln[q_i(\text{patch}_1) - q_i(\text{patch}_2)]$$

223 The Vorobyev-Osorio model assumes that discrimination thresholds are limited by
224 photoreceptor noise. Color contrasts ΔS between corresponding patches on model and mimic
225 viewed by the goby were calculated as:

226

$$\Delta S^2 = \frac{(\Delta f_2 - \Delta f_1)^2}{e_1^2 + e_2^2}$$

227 for a dichromatic species with short-wavelength (1) and long-wavelength (2) sensitive
228 photoreceptors, with e_1, e_2 , representing the photoreceptor noise associated with them. For
229 a trichromatic species with short- (1), medium- (2) and long-wavelength (3) sensitive
230 photoreceptors, the expression becomes:

231

$$\Delta S^2 = \frac{e_1^2(\Delta f_3 - \Delta f_2)^2 + e_2^2(\Delta f_3 - \Delta f_1)^2 + e_3^2(\Delta f_2 - \Delta f_1)^2}{(e_1 e_2)^2 + (e_1 e_3)^2 + (e_2 e_3)^2}$$

232 In relatively bright light conditions, as in the case of shallow waters in well-illuminated coral
233 reefs, the photon shot component of noise is negligible and neural noise will be largely
234 accounting for the photoreceptor noise e_i . Neural noise is inversely proportional to the
235 relative frequency of the receptor types as given by the following equation:

236

$$e_i \approx \omega / \sqrt{\eta_i}$$

237 where ω is the Weber fraction and η_i the relative density of photoreceptors of type i . For the
238 masked goby, we set a Weber fraction $\omega = 0.05$ for the long wavelength sensitive cone, a
239 conservative estimate for fishes (Cheney and Marshall 2009; Champ et al. 2016). During
240 preliminary MSP work, we did not find any evidence of short-wavelength sensitive cones in
241 this species. Taking a conservative approach, we decided to consider both a dichromat
242 scenario with the MSP values obtained in this study as well as a hypothetical trichromat

243 condition, adding a blue-sensitive cone located in a region of spectrum typical of other gobies
244 (Table S1, Suppl. Mat.). For the dichromat, we set the relative proportions of the different
245 cone types as 1:1 and at 1:4:4 for the trichromat scenario, to account for the apparent rarity
246 (if present) of the putative short-wavelength sensitive cone class in this species. The Weber
247 fraction for the mysid was set at 0.05.

248 Masked gobies and mysids might be able to discriminate mimic hamlets from models
249 based on differences in luminance. Based on studies of other fish and terrestrial animals
250 (Neumeyer et al. 1991; Kelber et al. 2003), we assumed that the longwave sensitive
251 photoreceptor in the masked goby and mysid shrimp is responsible for the achromatic
252 perception of luminance. Thus, we computed the luminance contrast ΔL between patches on
253 model and mimic as:

254
$$\Delta L = \Delta f_3 / \omega_3$$

255 where $\omega = 0.05$, a value close to that observed in other teleosts (Olsson et al. 2017). Color and
256 luminance distances were calculated separately at three different depths, using horizontal
257 irradiance (averaged over the 4 cardinal directions), measured at 2.5 m, 5.0 m and 7.5 m of
258 depth, spanning the range of hamlet territories on the studied reef.

259 We tested whether perceptual distances in color (dS) and luminance (dL) of
260 corresponding patches on hamlets and their putative models were statistically different with
261 a PERMANOVA approach, using color and luminance distances in JNDs, with the *adonis*
262 function in the R package *vegan* (Oksanen et al. 2007). Prior to this, the assumption of
263 homogeneity of variances was tested for each patch across species with an analysis of
264 variance followed by Tukey's multiple comparisons tests. The distance-based PERMANOVA

265 analysis was used to generate a pseudo-F statistics from the ratio of among/within distances
266 between groups, and to obtain a null distribution by randomizing distances between
267 observations (Anderson, 2005). We used 999 permutations to test for significant deviation
268 from the null distribution and used the R^2 as an estimate of effect size. Post-hoc tests were
269 performed with the *pairwiseAdonis* function (Martinez Arbizu 2019), returning adjusted p-
270 values on the pairwise comparisons.

271 We then assessed whether the effect size of the above differences between model and
272 mimic was sufficiently large for the visual system of the receiver (i.e. the prey: masked goby,
273 mysid shrimp) to perceive them. For each patch, we calculated distances in color space
274 between the geometric means of each species and derived confidence intervals by applying a
275 bootstrap procedure, as proposed by Maia and White (2018). All analyses were run
276 separately using the mysid shrimp and the masked goby visual systems, the latter under both
277 a dichromatic and a trichromatic scenario, and repeated at each of three depths.

278

279 **A prey's view of natural scenes**

280 We wished to gain insight into the spatial information available to masked gobies and
281 mysid shrimp, when attempting the discrimination of a hamlet from its model in a natural
282 scene. We applied the method of Caves and Johnsen (2018), implemented in the R package
283 *AcuityView* (R development Core Team, 2016) which uses a Fourier transform approach to
284 convert an image from spatial into frequency domain, then multiply it pixel by pixel by a
285 modulation transfer function (MTF). This method uses Snyder's (1977) MTF, which is a
286 function of the minimum resolvable angle of the viewer. The result is an image that is devoid
287 of all the frequencies above a threshold corresponding to the viewer's acuity. After inverse

288 Fourier transform to spatial domain, the image retains the level of detail that lies above the
289 contrast threshold dictated by the viewer's acuity and therefore provides us with insight into
290 the amount of spatial resolution available to the prey viewing a scene including a predator,
291 the hamlet, or a harmless 'passer-by', the model species.

292 Optical properties of the eye and spacing of photoreceptors and retinal ganglion cells
293 are considered the main anatomical factors limiting acuity, with the former generally playing
294 a minor role in affecting visual resolution in fishes. While photoreceptor densities are
295 intuitively expected to influence the minimum resolvable angle (Northmore and Dvorak,
296 1979), visual processing by neural cells in the retina and, in particular, visual summation by
297 ganglion cells, can significantly reduce resolution (in favor of increased sensitivity). Higher-
298 level processing might, in certain cases, lead to further loss of spatial information (Warrant
299 1999). This is consistent with the frequent observation of higher anatomical than behavioral
300 acuity values in fishes.

301 *i. Masked goby acuity*

302 We assessed the acuity of the masked goby *C. personatus* in terms of its optical anatomy,
303 based on ganglion cell densities. Therefore, we consider these estimates as representing an
304 upper limit to the masked goby acuity. To do this, we analyzed the population of ganglion cell
305 layer (GCL) cells and estimated the upper limits of spatial resolving power from two retinas
306 of *C. personatus*. The eyes were enucleated and fixed in paraformaldehyde (PFA) 4% diluted
307 in phosphate buffer saline (PBS) for 3 hours, and then transferred to PBS and stored at 4° C.
308 The cornea and lens were removed and the retinas were dissected from the sclera. The free-
309 floating retinas were immersed in 10% hydrogen peroxide solution diluted in PBS, for 72
310 hours, at room temperature, for retinal epithelium bleaching. The retinas were washed in PBS

311 and flattened onto a gelatinized glass slides with the ganglion cell layer facing up. The slides
312 were exposed to 4% PFA vapors overnight, at room temperature, in order to increase the
313 adhesion of the retina to the slide and for differentiation of the stained neurons (Stone 1981;
314 Coimbra et al. 2006). For Nissl staining, the tissues were rehydrated by passing through
315 ethanol series in decreasing concentrations (95%, 70% and 50%) and distilled water
316 acidified with glacial acetic acid. The retinas were stained in an aqueous solution of 0.1%
317 cresyl violet at room temperature for approximately 3 minutes and dehydrated by passing
318 through a series of ethanol and xylene. The slides were coverslipped using DPX (Sigma-
319 Aldrich, St. Louis, MO, USA). To evaluate shrinkage during the dehydration process, the areas
320 of the retinas were measured before and after staining, using the software ImageJ (NIH,
321 Bethesda, USA). Photographs of the retinas were taken with a digital camera (Axio CamMR,
322 Carl ZeissVision GmbH, Germany), coupled to a stereomicroscope (SMZ775-T, NIKON, Japan),
323 and software (Axio Vision 4.1, Carl Zeiss, Germany).

324 To estimate the total population of GCL cells, we applied the optical fractionator
325 method (West et al. 1991) with modifications for retinal wholemounts (Coimbra et al. 2009,
326 2012). The retina was considered a single section, and so the section sampling fraction was
327 equal to one. The total population of cells N_{tot} was estimated based on the total number of
328 counted cells ΣQ and the area of the sampling fraction asf , which corresponds to the ratio
329 between the counting frame and the sampling grid (Coimbra et al. 2009):

$$330 \quad N_{tot} = \Sigma Q \frac{1}{asf}$$

331 The cells were counted using a Leica DM5500B trinocular microscope with a motorized stage,
332 connected to a computer running the Stereo Investigator software (MicroBrightField,
333 Colchester, VT). The edges of the retina and the optic nerve were delineated using a 5x/NA

334 0.15 objective. Counts were made using x100/NA 1.4-0.7 oil immersion objective, at regular
335 intervals defined by a sampling grid at 150x150 μm placed in a random, uniform and
336 systematic fashion, covering the entire retinal area. An unbiased counting frame at 50x50 μm
337 was imposed at each sampling frame and cells were counted if they lay entirely within the
338 counting frame or if they touched the acceptance lines without touching the rejection lines
339 (Gundersen 1977). The coefficient of error was calculated using the method of Scheaffer et
340 al. (1996). All cellular elements located within the GCL were counted, independent of size
341 (Collin and Pettigrew 1988a, 1988b; Collin 1989; Collin and Partridge 1996).

342 The theoretical spatial resolving power of each eye was estimated based on the
343 maximum density of presumed retinal ganglion cells D and the focal length of the eye f,
344 obtained from a Matthiessen's ratio of 2.34, appropriate for gobies (Matthiessen 1880;
345 Hansen 1988; Wanzenbock et al. 1996; Ota et al. 1999). Considering a square array of retinal
346 ganglion cells, the mean cell-to-cell spacing S is related to the maximum density D of ganglion
347 cells per mm^2 through the expression $S^2 = 1/D$. The maximum spatial (Nyquist) frequency (v)
348 of a sinusoidal grating resolvable by a square arrangement is $v = 1/(2\Delta\Phi)$, where $\Delta\Phi$ is the
349 inter-receptor angle $\Delta\Phi = S/f$ (Snyder and Miller 1977). Substituting, we obtain:

350 $v = 1/(2\Delta\Phi) = f/(2S)$ cycles/radian or $v = f/(2S) 2\pi/360$ cycles/degree,
351 or its inverse, the smallest resolvable angle α , in degrees.

352
353 *ii. Mysidium shrimp acuity*
354 Behavioral estimates of visual acuity are available for the mysid shrimp *Mysidium columbiae*,
355 based on optomotor response experiments (Buskey 2000). Under conditions of optimal

356 illumination, individuals placed in an optokinetic drum, followed vertical black and white
357 stripes of varying width consistently resolving differences down to 6mm from a minimum
358 distance of 15mm. Given the known relationship between subtended angle α , reactive
359 distance d and stripe width w : $\alpha = 2\arctg(0.5w/d)$, this corresponds to a subtending arc of
360 7.66 degrees, the value of behavioral acuity we used in the spatial patterns analyses.

361

362 *iii. image collection*

363 Underwater scenes were captured with either a Canon 5D Mark III camera with a 24-70mm
364 f2.8 lens set on 50mm or with a Canon G7X. Two sets of high-resolution photos were taken.
365 First, hamlets and their models were photographed underwater at a depth of about 5m, from
366 an approximately horizontal line of view, against different natural backgrounds; ii. In
367 addition, during preliminary observations, we noted that the ventral silhouette of the butter
368 hamlet *H. unicolor* closely resembles in shape and colors that of its putative model, the
369 butterflyfish *C. capistratus*, despite having very different lateral profiles. In order to compare
370 the appearance of the butter hamlet and its model (and, for comparison, the black hamlet *H.*
371 *nigricans* and the barred hamlet *H. puella*), as seen from below at a 45° angle, as a masked
372 goby hovering above a coral is likely to do (see also next paragraph), we collected one
373 individual for each hamlet morph and a four-eye butterflyfish. Fish were euthanized with an
374 overdose of MS-222 in an aerated aquarium then moved for few minutes at -20°C. A hole was
375 then drilled on the dorsal area of each fish allowing a thin metal bar to be passed through the
376 body so that the butter, black, and barred hamlets and the four-eye butterflyfish could be
377 placed side by side on a common base and brought underwater. A series of photos were taken
378 at a depth of 5m in proximity to hamlets territories, at about 45° and 40cm from the metal

379 rod placed against different natural backgrounds. We did not note appreciable differences in
380 color patterns between live non-stressed individuals as observed in the wild and the
381 sacrificed individuals as treated in our protocol, but their eyes did take a cloudy appearance
382 and the tips of their fins showed some minor damage. However, it is significant that once we
383 completed photographing and the bar was left for few minutes above a dead coral head, two
384 hamlets, a blue and a butter, came immediately to inspect our setup and vigorously displayed
385 against the "intruding" hamlets on the bar without interrupting their territorial displays even
386 when we approached to try and recover the bar.

387

388 *iv. image processing and analysis*

389 Following Caves and Johnsen (2018)'s guidelines, high resolution photos were cropped to
390 1024x1024 pixels and saved separately for each RGB channel. The angular width of each
391 scene was obtained by scaling with an object of known actual size in the photo and by
392 selecting a biologically significant viewing distance. For the photos of live models and mimics
393 in their natural habitat (*i. above*), we measured the sizes of corals or rocks appearing in the
394 images, while for the bottom-up images of the mounted individuals (*ii., above*) we measured
395 the hamlets' inter-orbital distances, to derive image width.

396 Underwater observations of feeding hamlets in Bocas del Toro populations (MERP,
397 *pers. obs.*, 2015-2017) showed that they can rush from a distance of more than 4ft towards a
398 dense cloud of mysids or masked gobies, stopping for about 1-2 seconds at a distance of less
399 than 50cm (i.e. about five body lengths) away from the prey, for precision aiming at a single
400 individual. They then strike horizontally when preying on mysids and from above at about
401 45° when striking at masked gobies. Given this pattern of predatory behavior, we considered

402 that a mysid or a masked goby would have a reasonable chance of evading a predatory strike
403 if it recognized an approaching predator and initiated escape at a distance over three hamlet
404 body lengths away, i.e. about 25cm distance. We used these two values, 50cm and 25 cm as
405 the relevant viewing distances d , in the image analysis. The angle α subtending the scene is
406 then $\alpha = 2\text{arctg}(\text{actual width}/2d)$.

407

408 **RESULTS**

409 **Spectral measurements**

410 *i. Underwater spectral irradiances*

411 Downwelling spectral irradiance over our study site had typical characteristics of tropical
412 reef waters (Figure 1) with similar λP_{50} across depths (under-the-surface: 516nm; 2.5 m:
413 516nm; 5.0 m: 512nm; 7.5 m: 520nm) and values very close to those measured by McFarland
414 and Munz (1975) on a Pacific atoll ($\lambda P_{50} = 518\text{nm}$ at 5m depth). In contrast to that study,
415 however, we observed a more pronounced effect of attenuation on the irradiance spectrum,
416 particularly at longer wavelengths. The average diffuse attenuation coefficient of the
417 downwelling irradiance was highest at 680nm ($K_d = 0.143\text{ m}^{-1}$) with a second maximum in
418 the near-UV ($K_d = 0.106\text{ m}^{-1}$). The minimum was attained at 350nm, the shortest wavelength
419 recorded ($K_d = \text{m}^{-1}$) and a second minimum at 530nm ($K_d = 0.044\text{ m}^{-1}$) (Figure S1, Suppl. Mat.).
420 This pattern of higher attenuation with depth at short and long wavelengths is mirrored by
421 the narrowing of spectral bandwidth ($\Delta\lambda$) with depth (Figure 1, main text; Figure S1, Suppl.
422 Mat.). In clear atoll waters, at 5m depth, McFarland and Munz (1975) reported a $\Delta\lambda = 105\text{nm}$,
423 while at Punta Caracol, in Bocas del Toro, at a similar depth (5.0 m) we measured a
424 substantially narrower bandwidth ($\Delta\lambda = 75\text{nm}$), a value observed only at 20 m in their study.

425 Upwelling irradiance at maximum depth, closer to the bottom of this shallow reef system,
426 was shifted to longer wavelength (Figure 1) as a result of the mixed composition of the
427 bottom, consisting of coral outcrops interspersed with yellow sand patches. As the distance
428 from the bottom increased, the up-welling spectrum shifts to shorter wavelengths and to a
429 spectral profile similar to the down-welling and side-welling spectra.

430

431 *ii. Fish body reflectance*

432 Spectral reflectance measurements were collected from 7 homologous landmarks on the
433 body of 42 individuals across 5 species. Mean reflectance spectrum and confidence intervals
434 for a representative spot (pelvic fin) are shown in figure 2.

435

436 **Receivers visual system**

437 *i. Masked goby visual sensitivity*

438 We collected spectral sensitivity data from the retinas of $n = 4$ *C. personatus* individuals. The
439 retina of masked gobies appeared rod-dominated (rhodopsin $\lambda_{\max} = 500\text{nm}$). Double cones
440 showed either the same visual pigment with $\lambda_{\max} = 539\text{nm}$ or one member with $\lambda_{\max} = 531\text{nm}$
441 and the other with $\lambda_{\max} = 539\text{nm}$. We did not find any evidence for short wavelength cones.
442 The very small distance between the two green-sensitive cone λ_{\max} (531nm, 539nm) is
443 unlikely to provide the masked goby with true color vision but might confer the fish broader
444 sensitivity in that particular region of the light spectrum. Overall, these results are in line with
445 previously reported spectral sensitivities from other tropical gobies (Table S1). In particular,
446 the absence of a short wavelength cone in *C. personatus* is a condition shared with the only
447 other coral reef goby for which MSP data are available. However, we cannot exclude that

448 small blue or violet cones might be present in very low frequencies in the masked goby retina,
449 given the sampling design typical of micro-spectrophotometry. For this reason (see below),
450 we considered both a visual model that includes the cone repertoire found by our MSP study
451 and an additional one that incorporates a third short wavelength cone, positioned in the
452 region of sensitivity characteristic of other gobies ($\lambda_{\text{max}} \approx 455\text{nm}$), that would potentially
453 confer trichromatic color vision to the goby (Fig. 3 *left*, main text; Table S1, Suppl. Mat.).

454

455 ii. Masked goby lens transmittance

456 We examined the eye lenses of $n = 3$ individuals. The wavelength at which 50% of the
457 maximal transmittance was reached ($T_{50} = 410 \div 411\text{nm}$) and the shape of the transmittance
458 curve suggest that there is little scope for UV signals reception in this goby species (Figure 3,
459 *right*).

460

461 **Color and luminance discrimination**

462 *i. Masked goby*

463 The PERMANOVAs of differences in dS and dL between corresponding patches across species,
464 calculated at different depths, and with either two (531nm, 539nm) or three (455nm, 531nm,
465 539nm) cone classes, were all significant ($p < 0.001$; Table S2, Suppl. Mat.). Post-hoc tests on
466 chromatic distances dS showed that for almost all species pair contrasts, at least three or
467 more patches on the body were significantly different between species. The exceptions were
468 the two putative model-mimic pairs: the butter hamlet *H. unicolor* and its model, the
469 butterflyfish *C. capistratus*, were not significantly distinguishable in color at any of the
470 measured patches, when the viewer had the 531/539nm cone set and distinguishable by one

471 patch (#1) only, when the viewer was provided with a 455/531/539nm cone set, and this
472 irrespective of depth. In the black hamlet *H. nigricans* and its putative model, the damselfish
473 *S. adustus*, two patches (#3, #7) were significantly different in color between species when
474 seen by a 531/539nm viewer and three patches (#1, #3, #7) when seen by a 455/531/539nm
475 viewer, although not at all three depths (Table S2, Suppl. Mat.). Post-hoc tests on achromatic
476 distances dL reveal that at least four and up to all seven patches were significantly different
477 ($p < 0.05$) across species at any depth, with the only exception of the model-mimic pair butter
478 hamlet *H. unicolor* and butterflyfish *C. capistratus* for which all seven patches were
479 indistinguishable ($p > 0.21$) between species, irrespective of depth and cone set of the goby.

480 Whether the significant differences in color and luminance found between species are
481 of a magnitude detectable by the viewer was tested by calculating distances between the
482 geometric means of each species and generating confidence intervals by bootstrapping (Maia
483 and White 2018). We found that the only patch that was significantly different in the
484 PERMANOVA analysis between the *H. unicolor* – *C. capistratus* mimic-model pair, when the
485 goby was provided with three visual pigments 455/531/539, is effectively indistinguishable
486 by the goby ($dS < 0.31$) at all depths, as are all other patches (Figure 4), and this holds true
487 irrespective of depth and cone pigment repertoire of the goby (Figure 5 and Figure S2, Table
488 S3, Suppl. Mat.). This result suggests that the *H. unicolor* – *C. capistratus* pair fulfills the
489 requirement of a model-mimic relationship, in terms of color differences since color
490 distances between corresponding patches on model and mimic are well below the
491 discrimination threshold of the signal receiver, the goby. In the other putative mimic-model
492 pair, *H. nigricans* – *S. adustus*, the various patches that we found significantly different in the
493 PERMANOVA analysis, had color distances of magnitude below or at the discrimination

494 threshold (Figure 4), and that holds true at all depths and cone set conditions (Table S3,
495 Suppl. Mat.), in line with a model-mimic hypothesis. All other species pair contrasts were
496 above threshold when modelled with a 455/531/539 cone set, while chromatic contrasts
497 between the pair *S. adustus* – *C. capistratus* were below threshold when modelled with a
498 531/539 goby visual system (Table S3, Suppl. Mat.).

499 The bootstrap analysis of achromatic contrasts revealed that only one species pair is
500 indistinguishable by the goby and that is the putative mimic-model pair *H. unicolor* – *C.*
501 *capistratus* (mean $dL < 1$ for all patches: Figures 4, 5), consistent with a model -mimic
502 scenario. All other species contrasts contain at least four patches that can be discriminated
503 between species by the goby based on achromatic distances, including the second putative
504 mimic – model pair, *H. nigricans* – *S. adustus*, for which all seven patches can be discriminated
505 by the goby (Figure 4 and Figure S2, Table S3, Suppl. Mat.). This suggests that *H. nigricans* and
506 *S. adustus* do not represent a model - mimic pair, at least for the goby *C. personatus*.

507 *ii. mysid shrimp*

508 The PERMANOVAs of differences in dL between corresponding patches across species,
509 modelled with a single visual pigment and calculated at different depths were all significant
510 ($p < 0.004$). Post-hoc tests showed that at least four and up to all seven patches were
511 significantly different ($p < 0.05$) across species at any depth, with the single exception of the
512 model-mimic pair butter hamlet *H. unicolor* and butterflyfish *C. capistratus* for which all seven
513 patches were indistinguishable ($p > 0.23$) between species, irrespective of depth (Table S4,
514 Suppl. Mat.).

515 The bootstraps of species groups showed that at least five patches were
516 distinguishable (i.e. above detection threshold $dL > 1$) in any two species contrast (Figure S3,

517 Table S5, Suppl. Mat.). The notable exception is the pair *H. unicolor* – *C. capistratus*, for which
518 all spots were below detection ($dL < 1$), suggesting that putative mimic (*H. unicolor*) and
519 model (*C. capistratus*) are not discriminable by the mysid shrimp based on achromatic
520 contrast between corresponding patches. The achromatic differences in the second putative
521 pair, *H. nigricans* – *S. adustus*, are all above threshold.

522

523 **A prey's view of natural scenes**

524 Visual acuity in the masked goby was estimated from the total number of cells in the ganglion
525 cell layer of two retinal wholomounts from different *C. personatus* individuals. An average cell
526 population of $179,769 \pm 12,914$ was obtained (Table 1), with high densities observed in the
527 retinal periphery and peak density located in the ventral region ($89,400$ cells/mm 2) while
528 lowest densities were observed in the central retina ($1,200$ cells/mm 2). The upper limit of
529 the spatial resolving power estimated from lens radius and the maximum density of GCL cells
530 was 2.356 ± 0.14 corresponding to a minimum resolvable angle (MRA) $\alpha = 0.425 \pm 0.02$ (Table
531 1). The number of sites counted for each retina, Scheaffer's coefficient of error (CE) and area
532 of sampling fraction (ASF) are described in Table 1. Shrinkage was below 5% and considered
533 negligible (Coimbra et al. 2006). For the mysid shrimp, we used Buskey (2000)'s acuity
534 estimate of $\alpha = 7.66$ degrees (or 0.13 cycles/degree).

535 The underwater images taken at Punta Caracol and Punta Juan, in Bocas del Toro,
536 Panama, were modified to account for the spatial resolution of *C. personatus* masked gobies
537 and *Mysidium* shrimp. After processing, they provide a first approximation of scenes
538 including models or putative aggressive mimics, as perceived by the prey, masked goby or
539 mysid shrimp, given their visual acuity. The Fourier analysis of natural scenes suggests that

540 *Mysidium columbiae* shrimp are only able to discern, even at relatively small distances (25cm)
541 bright moving vs dark moving objects in their field of view. While temporal resolution was
542 not considered in this study, overall the visual system of this mysid shrimp would be unable
543 to distinguish, at the distances considered, a harmless moving target from a predator, based
544 on visual cues, with the exception, possibly, of information regarding the target's direction.
545 The visual acuity of masked gobies *C. personatus*, in contrast, was sufficient to gather relevant
546 information about other species' general features at both distances, despite poor color vision.
547 The juxtaposition of model and mimic *H. unicolor*-*C. capistratus* in figure 6, as seen by a
548 masked goby, reveals how the deceit might be obtained. The most relevant features shared
549 by both model and mimic (figure 6, second row, left) are a uniform bright (yellow) body
550 coloration with no vertical barring, a large black spot at the base of the tail highlighted by a
551 white ring, the yellow tip of the snout, and the bright yellow pelvic fin. In addition, moving in
552 a three-dimensional space, in the eyes of a receiver with little or no depth perception, will
553 make the silhouette of the targets change continuously, making overall shape differences
554 between model and mimic an unreliable cue for species discrimination.
555 The black hamlet *H. nigricans* is likely to gain an advantage in camouflage when moving
556 between corals in sheltered areas where it will be best protected from predation and
557 inconspicuous to its prey. However, its homogeneously dark coloration will stand out against
558 open water and brightly lit corals and sponges and sand, making it a very conspicuous threat
559 in the eyes of both masked goby and mysid shrimp. This suggests a defensive origin to this
560 color morph. The barred hamlet *H. puella* (Figure 6, two columns on right-end side) sports
561 dark vertical bars that are certainly a potential cue of a predator closing in, for a masked goby.
562 A pattern of light background with vertical bars is shared with other potential predators of

563 the masked goby so it would be adaptive to flee whenever an object with vertical barring is
564 approaching. Indeed, we believe the concealment of vertical barring in the butter hamlet *H.*
565 *unicolor* was the single most significant phenotypic change for the origin of the efficient deceit
566 on masked gobies. The images also show that *H. puella*'s colors and vertical bars act as
567 extremely efficient camouflage by disruptive patterning, for all three visual systems,
568 including our own, another case of defensive origin for a hamlet color morph.

569

570 **DISCUSSION**

571 The extraordinary variation in color patterns between *Hypoplectrus* hamlets has long been
572 attributed to aggressive mimicry (Randall and Randall 1960; Thresher 1978; Fischer 1980;
573 Domeier 1994; Puebla et al. 2007). However, apart from such comparisons frequently based
574 on color flash-enriched photos, no attempt has been made to examine the resemblance of
575 hamlets to the proposed models from the meaningful perspective of the intended signal
576 receiver under natural light conditions. In a case of aggressive mimicry such receiver is a
577 hamlet prey. Here we examined two putative mimicry pairs in the *Hypoplectrus* hamlet
578 complex as well as a non-mimic hamlet, from the point of view of the visual system of two
579 ecologically and taxonomically distinct prey species, the masked goby *C. personatus*, and the
580 planktonic mysid shrimp, *M. columbiae*. We evaluated the prey's discriminating ability in
581 terms of differences in hue, luminance and color pattern of models and mimics and
582 considered the effects of depth on the efficacy of mimicry. We found that one putative model-
583 mimic pair, the butter hamlet and the foureye butterflyfish, are the only pair-wise species
584 comparison that is indistinguishable in the eyes of the prey, while all others considered are
585 above the threshold of discriminability. This, together with behavioral evidence for the

586 association of this hamlet morph with its model butterflyfish (Puebla et al. 2007; Picq et al.
587 2019), constitutes strong support for an aggressive mimicry scenario in this pair. A second
588 putative model-mimic relationship (*H. nigricans* black hamlet - *S. adustus* dusky damselfish),
589 on the other hand, is not supported by our data, since discrimination between the two is well
590 above perceptual threshold by the visual systems of both masked goby and mysid shrimp.

591 Different visual cues (color, luminance, dark barring) are relevant for the
592 discrimination of different hamlet morphs from their harmless models by either prey.
593 However, depth had very limited influence on visual thresholds, not surprisingly given the
594 narrow depth range in which the majority of hamlet territories were located in our study
595 population. In both chromatic models, the ability of the masked goby to discriminate the
596 predator butter hamlet (*H. unicolor*) from its putative model, the four-eye butterflyfish (*C.*
597 *capistratus*) was well below threshold both in terms of color and luminance, suggesting the
598 prey would not be able to separate model from mimic based on differences in hue or
599 brightness, regardless of depth.

600 Modeling a mysid shrimp's visual system, which is devoid of color perception,
601 revealed that only butter hamlets and their putative model butterflyfish could represent a
602 valid model-mimic pair, the difference in achromatic contrast between the two being well
603 below the threshold of a mysid discrimination ability. On the contrary, the shrimp's visual
604 system has the potential to discriminate efficiently all other putative pairs on the basis of
605 achromatic contrast. In conclusion, at least for the masked goby *C. personatus* and the mysid
606 shrimp *M. columbiae*, known to be the principal diet items in the Bocas del Toro hamlet
607 populations, the butter hamlet (*H. unicolor*) represents the only case consistent with an
608 aggressive mimicry scenario, if color and/or luminance are used by the prey to discriminate

609 friend (the model) from foe (the mimic). In addition, the analysis of color patterns of model
610 and putative mimic in a natural scene, at biologically realistic distances, based on the visual
611 acuities of both preys, suggests that differences in the fine patterns over a relatively
612 homogeneous yellow coloration of butter hamlet and butterflyfish are imperceptible.

613 An alternative strategy seems to have been taken by the black hamlet (*H. nigricans*).
614 Its uniformly blue-black coloration did not fulfil the criterion of resemblance to a dusky
615 damselfish (*S. adustus*) model, as both masked goby and mysid shrimp are likely to
616 discriminate with efficiency the two, on the basis of color and/or luminance. However,
617 particularly in the relatively turbid underwater conditions in Bocas del Toro, black hamlets
618 can be quite hard to spot when not swimming well above the reef, and this is even more the
619 case for the generally limited spatial resolution of its prey. While it is unclear whether this
620 dark cryptic coloration confers any advantage to the black hamlet in approaching its prey, it
621 likely provides this morph some protection from its predators, as it does the dark brown
622 cryptic coloration of its hypothetical model, the dusky damselfish *S. adustus*.

623 The non-mimic barred hamlet (*H. puella*) was clearly discriminated from other
624 hamlets and putative models. Even when considering the most similar color patches between
625 butter and barred hamlet, masked gobies and mysid shrimp appear to be always able to
626 discriminate between the two hamlet morphs (while they cannot between butter hamlet and
627 its model butterflyfish), suggesting that the butter hamlet divergence from the barred morph
628 might indeed confer an advantage in approaching a prey over the barred form. In addition, a
629 barred hamlet at close distance from its prey can be easily identified by the typical highly
630 contrasting dark vertical bars over a comparatively brighter yellowish body, even by the very
631 limited acuity of a mysid, as suggested by the Fourier transform analysis. Interestingly, the

632 bright areas of the barred hamlet body are very close in color to a number of reef substrates
633 we measured (Pierotti et al. in prep), suggesting that, in combination with the dark body
634 areas, this might grant good camouflage by disruptive coloration, protecting the hamlet from
635 its own predators. This in turn might lead to a trade-off between predator avoidance by the
636 barred hamlet at the expense of its own predatory efficiency, by increased conspicuousness
637 at short range when approaching a prey, particularly from above, against an open water
638 background. It is interesting to note that barred and more complex disruptive patterns are
639 also typical of other sympatric basses and all invariably attack their prey almost horizontally
640 while close to the substrate. On the contrary, butter hamlets are often seen attacking from
641 about 45 degrees above masked gobies (MERP, pers. obs.). From this line of view the hamlet
642 silhouette and color is remarkably similar to that of a four-eye butterflyfish, in particular the
643 very conspicuous structural-yellow pelvic fins (Figure S4, Suppl. Mat.). Notably, while the
644 color of pelvic fins in hamlets is highly variable between individuals within morphs, from
645 colorless to bright yellow to highly saturated indigo or blue, this does not seem to be the case
646 for butter hamlets, invariably sporting bright structural yellow on their pelvics with very
647 similar hue to that of four-eye butterflyfish pelvics, as evidenced by the reflectance
648 measurements and below-threshold perceptual distances. Therefore, the observation that
649 butter hamlets attack masked gobies from slightly above suggests they might be behaviorally
650 optimizing the efficiency of their aggressive mimicry by presenting to the prey with best
651 visual abilities, the masked goby, the closest model-resembling area of their body. We did not
652 observe such top-down attack strategy by the butter hamlet when preying on mysids,
653 possibly because of the mysid's limited visual system.

654 In conclusion, this set of results, together with previous behavioral work by Puebla et
655 al. (2007; 2018) and Picq et al. (2019), lends support to the aggressive mimicry scenario for
656 the butter hamlet and its model, the four-eye butterflyfish, at least in the Bocas del Toro
657 population, where the 'model following' behavior was observed and where this study was
658 conducted.

659 Did the color patterns of the butter hamlet evolve for efficient aggressive mimicry by
660 imitating in color and behavior a common and harmless (to their prey) butterflyfish or other
661 selective forces brought about the similar appearance which was subsequently recruited for
662 aggressive mimicry? Picq et al. (2019) found that the model-tracking aggressive mimicry
663 behavior of butter hamlets represents in fact one of two alternative behavioral syndromes,
664 associated with territoriality. Territory holders with defined permanent hide-outs only rarely
665 engaged in aggressive mimicry, while roaming individuals, lacking a defined permanent hide-
666 out and territory systematically took advantage of this behavioral strategy. The authors'
667 results suggest that the aggressive mimic strategy confers an advantage in terms of foraging
668 opportunities, at the expense of higher exposure to predators and possibly fewer mating
669 opportunities. While the factors affecting the quality of hamlets territories and/or hide-outs
670 are unknown at present, it is reasonable to assume that typical hideouts with multiple
671 entrances of limited size (MERP, pers. obs.) in the proximity of clusters of epibenthic mysid
672 shrimp and/or *Coryphopterus* gobies would provide the benefits of foraging under low
673 predation risk. The location of these prey clusters above particular reef spots is remarkably
674 stable. A suitable safe hide-out near a foraging source is also likely to allow resource defense
675 from competing conspecifics, especially roaming individuals. The alternative strategy of
676 model-tracking aggressive mimics, while possibly providing an advantage in foraging

677 efficiency inevitably comes at the cost of increased exposure to predators. We speculate that
678 optimal hideouts and territories are likely to be in limited numbers over a reef leading some
679 individuals to be out on the reef with no stable hideout and territory forced to move from a
680 food patch to another, while exposed to conspecific aggression and to predation. In this
681 context, before aggressive mimicry evolved, it would have been beneficial for roaming
682 individuals to mix in and mimic, in behavior and appearance, a coral reef fish species
683 unpalatable for a wide number of small-to-medium sized hamlet predators and with simple
684 color patterns. In general, adult butterflyfish in the Caribbean are not a common occurrence
685 in stomach content records (Randall 1967), a testament to their effective defenses, mainly
686 high maneuverability, extremely deep bodies with long, robust spines, particularly in
687 benthivore species, a challenge for their gape-limited predators (Hodge et al 2018). In
688 addition, *C. capistratus* sports less complex color patterns than other Caribbean butterflyfish,
689 an easier starting point for the development of a hamlet mimic.

690 In conclusion, based on our findings, together with Picq et al (2019) observations, we
691 propose that butter hamlets' color patterns are unlikely to be the result of direct selection
692 for aggressive mimicry but rather evolved in the context of defensive (Batesian) mimicry, i.e.
693 for predator avoidance. This would configure a 'social trap' scenario, as proposed by
694 Robertson (2013) whereby the prey is not the agent of natural selection on aggressive
695 mimicry and resemblance evolves in other contexts, to be later recruited, once evolved, for
696 other functions, in our case aggressive mimicry. Robertson (2013) went so far as to imply
697 that butter hamlet color patterns are not at present under direct selection for aggressive
698 mimicry but simply an unintended by-product of 'coincidental look-alikes' with no advantage
699 gained by the inadvertent mimic. Our view is that while the close resemblance between

700 butter hamlet and foureye butterflyfish did not evolve to deceive the visual system of the
701 prey, and therefore not in the context of aggressive mimicry, the resemblance resulting from
702 selection for protective mimicry did eventually start giving butter hamlets an advantage
703 (Puebla et al. 2007) in accessing their prey. While not exerting direct selection on the butter
704 hamlet's color patterns, this fitness advantage is likely a big contributor to the maintenance
705 of this color morph. Indeed, a defensive and an aggressive role for hamlet mimicry are of
706 course not mutually exclusive and indeed are likely to be both contributing to the
707 maintenance of this behavioral strategy. However, our results suggest that the main prey of
708 butter hamlets, epibenthic masked gobies and mysid shrimp, might have not been the
709 intended signal receiver driving the evolution of mimic coloration, given that both its main
710 prey species are likely devoid of any color vision. On the contrary, predators of hamlets, such
711 as groupers and snappers, while lacking UV vision (Loew and Lythgoe 1978; Losey et al.
712 2003) that would potentially differentiate model from mimic (Figure 2), are generally at least
713 fully dichromatic when not trichromatic, and likely the receivers of *H. unicolor'* mimic
714 coloration.

715 Our study shows how the study of sensory systems not only broadens our
716 understanding of animal communication and signaling but has the potential to generate new
717 hypotheses on the origin and maintenance of phenotypic diversity and the evolutionary
718 trajectory of species.

719

720

721

722

723

Literature Cited

724 Aguilar-Perera, A., and C. González-Salas. 2010. Distribution of the genus *Hypoplectrus*
725 (Teleostei: Serranidae) in the Greater Caribbean Region: support for a color-based
726 speciation. *Marine Ecology* 31:375-387.

727 Anderson, M.J. 2005. Permutational multivariate analysis of variance. University of Auckland,
728 26:32-46.

729 Audzijonyte, A., J. Pahlberg, M. Viljanen, K. Donner, and R. Vainola. 2012. Opsin gene sequence
730 variation across phylogenetic and population histories in *Mysis* (Crustacea: Mysida) does
731 not match current light environments or visual-pigment absorbance spectra. *Molecular*
732 *Ecology* 21:2176-2196.

733 Bates, H.W. 1862. XXXII. Contributions to an Insect Fauna of the Amazon Valley. Lepidoptera:
734 Heliconidae. *Transactions of the Linnean Society of London* 23:495-566.

735 Bohlke and Robins 1962. The taxonomic position of the West Atlantic goby, *Eviota personata*,
736 with descriptions of two new related species. *Proceedings of the Academy of Natural*
737 *Sciences of Philadelphia* 114:175-189.

738 Buskey, E.J. 2000. Role of vision in the aggregative behavior of the planktonic mysid *Mysidium*
739 *columbiae*. *Marine Biology* 137:257-265.

740 Caves, E.M., and S. Johnsen. 2018. AcuityView: An r package for portraying the effects of visual
741 acuity on scenes observed by an animal. *Methods in Ecology and Evolution* 9:793-797.

742 Champ, C. M., M. Vorobyev, and N. J. Marshall. 2016. Colour thresholds in a coral reef fish.
743 *Royal Society open science* 3:160399.

744 Cheney, K.L., and N.J. Marshall. 2009. Mimicry in coral reef fish: how accurate is this deception
745 in terms of color and luminance? *Behavioral Ecology* 20:459-468.

746 Chittka, L., and D. Osorio. 2007. Cognitive dimensions of predator responses to imperfect
747 mimicry. *PLoS Biology* 5:e339.

748 Coimbra, J.P., M.L.V. Marceliano, B.L.S. Andrade-Da-Costa, and E.S. Yamada. 2006. The retina
749 of tyrant flycatchers: topographic organization of neuronal density and size in the
750 ganglion cell layer of the great kiskadee *Pitangus sulphuratus* and the rusty margined
751 flycatcher *Myiozetetes cayanensis* (Aves: Tyrannidae). *Brain Behavior and Evolution*
752 68:15–25.

753 Coimbra, J.P., N. Trevia, M.L. Marceliano, B.L. Da Silveira Andrade-Da-Costa, C.W. Picanço-
754 Diniz, and E.S. Yamada. 2009. Number and distribution of 163 neurons in the retinal
755 ganglion cell layer in relation to foraging behaviors of tyrant flycatchers. *Journal of*
756 *Comparative Neurology* 514:66–73.

757 Coimbra, J.P., P.M. Nolan, S.P. Collin, and N.S. Hart. 2012. Retinal ganglion cell topography
758 and spatial resolving power in penguins. *Brain Behavior and Evolution* 80:254–268

759 Collin, S.P. 1989. Topographic organization of the ganglion cell layer and intraocular
760 vascularization in the retinae of two reef teleosts. *Vision Research* 29:765-775.

761 Collin, S.P., and J.C. Partridge. 1996. Retinal specializations in the eyes of deep-sea teleosts.
762 *Journal of Fish Biology* 49:157-174.

763 Collin, S.P., and J.D. Pettigrew. 1988a. Retinal topography in reef teleosts. I. Some species
764 with well-developed areae but poorly developed streaks. *Brain Behavior and Evolution*
765 31:269-282.

766 Collin, S.P., and J.D. Pettigrew. 1988b. Retinal ganglion cell topography in teleosts: A
767 comparison between Nissl-stained material and retrograde labelling from the optic
768 nerve. *Journal of Comparative Neurology* 276:412-422.

769 Cuthill, I.C., and A.T. Bennett. 1993. Mimicry and the eye of the beholder. *Proceedings of the*
770 *Royal Society of London B: Biological Sciences* 253:203-204.

771 Dalziell, A.H., and J. A. Welbergen. 2016. Mimicry for all modalities. *Ecology Letters* 19:609-
772 619.

773 Darst, C.R., and M.E. Cummings. 2006. Predator learning favours mimicry of a less-toxic model
774 in poison frogs. *Nature* 440:208-211.

775 Dittrich, W., F. Gilbert, P. Green, P. McGregor, and D. Grewcock. 1993. Imperfect mimicry: a
776 pigeon's perspective. *Proceedings of the Royal Society of London B: Biological Sciences*
777 251:195-200.

778 Domeier, M.L. 1994. Speciation in the serranid fish *Hypoplectrus*. *Bulletin of Marine Science*
779 54:103-141.

780 Fechner, G.T. 1860. *Elemente der psychophysik, breitkopf und härtel.* Leipzig: Breitkopf und
781 Härtel.

782 Fischer, E.A. 1980. Speciation in the hamlets (*Hypoplectrus*: Serranidae): a continuing enigma.
783 *Copeia* 1980:649-659.

784 Govardovskii, V.I., N. Fyhrquist, T. Reuter, D.G. Kuzmin, and Donner, K. 2000. In search of the
785 visual pigment template. *Visual Neuroscience* 17:509-528.

786 Graves, J.E., and R.H. Rosenblatt. 1980. Genetic relationships of the color morphs of the
787 serranid fish *Hypoplectrus unicolor*. *Evolution* 34:240-245.

788 Gundersen, H.J.G. 1977. Notes on the estimation of the numerical density of arbitrary
789 profiles: the edge effect. *Journal of Microscopy* 111:219-223.

790 Hallberg, E. 1977. The fine structure of the compound eyes of mysids (Crustacea: Mysidacea).
791 *Cell and Tissue Research* 184:45-65.

792 Ham, A.D., E. Ihalainen, L. Lindstrom, and J. Mappes. 2006. Does colour matter? The
793 importance of colour in avoidance learning, memorability and generalisation. *Behavioral*
794 *Ecology and Sociobiology* 60:482-491.

795 Hansen, J. H. 1988. The ramp retina in some bottom-dwelling teleosts. *Videnskabelige*
796 *Meddelelser Dansk Naturhistorisk Forening* 147:25-35.

797 Hench, K., M. Vargas, M.P. Höppner, W.O. McMillan, and O. Puebla. 2019. Inter-chromosomal
798 coupling between vision and pigmentation genes during genomic divergence. *Nature
799 Ecology & Evolution* 3:657-667.

800 Hodge, J.R., C. Alim, N.G. Bertrand, W. Lee, S.A. Price, B. Tran, and P.C. Wainwright. 2018.
801 Ecology shapes the evolutionary trade-off between predator avoidance and defence in
802 coral reef butterflyfishes. *Ecology Letters* 21:1033-1042.

803 Holt, B.G., B.C. Emerson, J. Newton, M.J. Gage, and I.M. Côté. 2008. Stable isotope analysis of
804 the *Hypoplectrus* species complex reveals no evidence for dietary niche divergence.
805 *Marine Ecology Progress Series* 357:283-289.

806 Jokela-Määttä, M., J. Pahlberg, M. Lindström, P.P. Zak, M. Porter, M.A. Ostrovsky, T.W. Cronin,
807 and K. Donner. 2005. Visual pigment absorbance and spectral sensitivity of the *Mysis
808 relicta* species group (Crustacea, Mysida) in different light environments. *Journal of
809 Comparative Physiology A* 191:1087-1097.

810 Kelber, A., M. Vorobyev, and D. Osorio. 2003. Animal colour vision – behavioural tests and
811 physiological concepts. *Biological Reviews* 78:81-118.

812 Kilner, R.M., D.G. Noble, and N.B. Davies. 1999. Signals of need in parent-offspring
813 communication and their exploitation by the common cuckoo. *Nature* 397:667-672.

814 Lipetz, L.E., and T.W. Cronin. 1988. Application of an invariant spectral form to the visual
815 pigments of crustaceans: implications regarding the binding of the chromophore. *Vision
816 Research* 28:1083-1093.

817 Loew, E.R. 1982. A field-portable microspectrophotometer. *Methods in Enzymology* 81:647-
818 655.

819 Loew, E.R. 1994. A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (*Gekko
820 gekko*). *Vision Research* 34:1427-1431.

821 Loew, E.R., and J.N. Lythgoe. 1978. The ecology of cone pigments in teleost fishes. *Vision
822 Research* 18:715-722.

823 Losey, G.S., W.N. McFarland, E.R. Loew, J.P. Zamzow, P.A. Nelson, and N.J. Marshall. 2003.
824 Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments.
825 *Copeia* 2003:433-454.

826 Mackintosh, N.J. 1976. Overshadowing and stimulus intensity. *Animal Learning and Behavior*
827 4:186-192.

828 Maia, R., and T. E. White. 2018. Comparing colors using visual models. *Behavioral Ecology*
829 29:649-659.

830 Marshall, N.J. 2000. Communication and camouflage with the same 'bright' colours in reef
831 fishes. *Philosophical Transactions of the Royal Society of London, Series B: Biological*
832 *Sciences* 355:1243-1248.

833 Martinez Arbizu, P. 2019. *Pairwise.adonis*: pairwise multilevel comparison using adonis R
834 package version 0.3.

835 Matthiessen, L. 1880. Untersuchungen iiber dem aplanatismus und die periscopie der
836 kristalllinsen in den augen der fische. *Pflugers Archiv* 21:287-307.

837 McCartney, M.A., J. Acevedo, C. Heredia, C. Rico, B. Quenoville, E. Bermingham, and W.O.
838 McMillan. 2003. Genetic mosaic in a marine species flock. *Molecular Ecology* 12:2963-
839 2973.

840 McFarland, W.N., and F.W. Munz. 1975. Part II: The photic environment of clear tropical seas
841 during the day. *Vision Research* 15:1063-1070.

842 Mobley, C.D. 1994. Light and water radiative transfer in natural waters. Academic Press, San
843 Diego.

844 Moynihan, M. 1981. The coincidence of mimicries and other misleading coincidences. *The*
845 *American Naturalist* 117:372-378.

846 Munz, F.W., and W.N. McFarland. 1973. The significance of spectral position in the rhodopsins
847 of tropical marine fishes. *Vision Research* 13:1829-1874.

848 Neumeyer, C., J.J. Wietsma, and H. Spekreijse. 1991. Separate processing of "color" and
849 "brightness" in goldfish." *Vision research* 31:537-549.

850 Northmore, D.P.M., and C.A. Dvorak. 1979. Contrast sensitivity and acuity of the goldfish.
851 *Vision Research* 19:255-261.

852 Oksanen, J., R. Kindt, P. Legendre, B. O'Hara, M.H.H. Stevens, M.J. Oksanen, and M.A. Suggs.
853 2007. The vegan package. *Community ecology package* 10:631-637.

854 Olsson, P., O. Lind, and A. Kelber. 2017. Chromatic and achromatic vision: parameter choice
855 and limitations for reliable model predictions. *Behavioral Ecology* 29:273-282.

856 Ota, D., M. Francese, and E.A. Ferrero. 1999. Vision in the grass goby, *Zosterisessor*
857 *ophiocephalus* (Teleostei, Gobiidae): a morphological and behavioural study. *Italian*

858 Picq, S., M. Scotti, and O. Puebla. 2019. Behavioural syndromes as a link between ecology
859 and mate choice: a field study in a reef fish population. *Animal Behaviour* 150:219-237.

860 Puebla, O., E. Bermingham, F. Guichard, and E. Whiteman. 2007. Colour pattern as a single
861 trait driving speciation in *Hoploplectrus* coral reef fishes? *Proceedings of the Royal Society*
862 of London B: Biological Sciences 274:1265-1271.

863 Puebla, O., E. Bermingham, and F. Guichard. 2008. Population genetic analyses of
864 *Hoploplectrus* coral reef fishes provide evidence that local processes are operating during
865 the early stages of marine adaptive radiations. *Molecular Ecology* 17:1405-1415.

866 Puebla, O., E. Bermingham, and W.O. McMillan. 2014. Genomic atolls of differentiation in coral
867 reef fishes (*Hoploplectrus* spp., Serranidae). *Molecular Ecology* 23:5291-5303.

868 Puebla, O., S. Picq, J.S. Lesser, and B. Moran. 2018. Social-trap or mimicry? An empirical
869 evaluation of the *Hoploplectrus unicolor*-*Chaetodon capistratus* association in Bocas del
870 Toro, Panama. *Coral Reefs* 37:1127-1137.

871 Rainey, M.M., and G.F. Grether. 2007. Competitive mimicry: synthesis of a neglected class of
872 mimetic relationships. *Ecology* 88:2440-2448.

873 Randall, J.E. 1967. Food habits of reef fishes of the West Indies. *Studies in Tropical*
874 *Oceanography* 5:665-847.

875 Randall, J.E., and H.A. Randall. 1960. Examples of mimicry and protective resemblance in
876 tropical marine fishes. *Bulletin of Marine Science* 10:444-480.

877 Robertson, D.R. 2013. Who resembles whom? Mimetic and coincidental look-alikes among
878 tropical reef fishes. *PloS One* 8:e54939.

879 Ruxton, G.D., T.N. Sherratt, and M.P. Speed. 2004. *Avoiding attack: the evolutionary ecology*
880 *of crypsis, warning signals and mimicry*. Oxford University Press.

881 Scheaffer, R.L., W. Mendenhall, and L. Ott. 1996. *Elementary Survey Sampling*. 5th Ed. Boston,
882 PWS-Kent.

883 Snyder, A.W. 1977. Acuity of compound eyes: physical limitations and design. *Journal of*
884 *Comparative Physiology A* 116:161-182.

885 Snyder, A.W., and W.H. Miller. 1977. Photoreceptor diameter and spacing for highest
886 resolving power. *Journal of the Optical Society of America* 67:696-698.

887 Stone, J. 1981. *The wholemount handbook: a guide to the preparation and analysis of retinal*
888 *wholemounts*. Chicago: Maitland Publications.

889 Thresher, R.E. 1978. Polymorphism, mimicry, and the evolution of the hamlets (*Hypoplectrus*,
890 *Serranidae*). *Bulletin of Marine Science* 28:345-353.

891 Vane-Wright, R.I. 1980. On the definition of mimicry. *Biological Journal of the Linnean Society*
892 13:1-6.

893 Vorobyev, M., and D. Osorio. 1998. Receptor noise as a determinant of colour thresholds.
894 *Proceedings of the Royal Society of London B: Biological Sciences* 265:351-358.

895 Wallace, A. R. 1869. *The Malay Archipelago*. Weidenfeld and Nicholson, London, UK.

896 Wanzenbock, J., M. Zaunreiter, C. M. Wahl, and D. L. G. Noakes. 1996. Comparison of
897 behavioural and morphological measures of visual acuity of roach (*Rutilus rutilus*) and
898 yellow perch (*Perca flavescens*). Canadian Journal of Fisheries and Aquatic Sciences
899 53:1506–1512.

900 Warrant, E.J. 1999. Seeing better at night: life style, eye design and the optimum strategy of
901 spatial and temporal summation. Vision Research 39:1611-1630.

902 West M.J., L. Slomianka, and H.J.G. Gundersen. 1991. Unbiased stereological estimation of the
903 total number of neurons in the subdivisions of the rat hippocampus using the optical
904 fractionator. Anatomical Record 231:182–497.

905 Whiteman, E.A., and M.J.G. Gage. 2007. No barriers to fertilization between sympatric colour
906 morphs in the marine species flock *Hypoplectrus* (Serranidae). Journal of Zoology
907 272:305-310.

908 Whiteman, E.A., I.M. Côté, and J.D. Reynolds. 2007. Ecological differences between hamlet
909 (*Hypoplectrus*: Serranidae) colour morphs: between-morph variation in diet. Journal of
910 Fish Biology 71:235-244.

911 Wickler, W. 2013. Understanding mimicry—with special reference to vocal mimicry. Ethology
912 119:259-269.

913 Wittmann, K.J., and P. Wirtz. 2019. Revision of the amphiamerican genus *Mysidium* Dana,
914 1852 (Crustacea: Mysida: Mysidae), with descriptions of two new species and the
915 establishment of two new subgenera. European Journal of Taxonomy 495:1-48.

FIGURE LEGENDS

Figure 1. Down-welling (*top*), up-welling (*center*), and average side-welling (*bottom*) irradiances, measured at Punta Caracol, Bocas Del Toro, Panama, on a vertical depth profile, just under the surface (—), 2.5m (—), 5.0m (---) and 7.5m (···).

Figure 2. Mean spectral reflectance and confidence regions of body patch #5 (center of left pelvic fin) across species. *Left*: from top, four-eye butterflyfish *C. capistratus* (putative model), butter hamlet *H. unicolor* (putative mimic) and the non-mimic barred hamlet *H. puella*. *Right*: from top, the non-mimic barred hamlet *H. puella* and the black hamlet *H. nigricans* (putative mimic), and bottom, the dusky damselfish *S. adustus* (putative model). In the inset, the location of the final seven patches used in the analyses.

Figure 3. *Left*: Absorbance templates (from Lipetz and Cronin 1988; Govardovskji et al. 2000), representing the rod (501nm; in grey) and cone visual pigments (521nm, 539nm; in green) found in the retina of the goby *Coryphopterus personatus*; an additional blue cone pigment (455nm; in blue) was added, in an alternative modelling scenario (see main text). *Right*: Lens transmission spectrum of the masked goby *C. personatus*. The T_{50} is located at 410÷411 nm.

Figure 4. Color distances dS (on the left, in each box) and achromatic distances dL (on the right, in each box) and their bootstrap confidence limits, for each species pair viewed by the prey, a masked goby visual system with 455nm, 531nm, 539nm cone pigments, at a depth of 5m.

A continuous line, corresponding to dS (or dL) = 1, marks the perceptual threshold, below which a particular patch (#1-7, indicated in the sketch on the left) is likely indistinguishable by the viewer. Distances dS , $dL > 5.5$ are presented with an open dot at the top end of their respective box. Discriminable patches (either because dS or $dL > 1$, or both) are represented by grey-shaded boxes.

Figure 5. Chromatic (dS) and achromatic distances (dL) and their bootstrap confidence limits, for the mimic-model pair *H. unicolor* and *C. capistratus*, at different depths (2.5m, 5.0m, 7.5m), viewed by the prey, a masked goby visual system with 455nm, 531nm, 539nm cone pigments.

Figure 6. Images of *Hypoplectrus* hamlets in a natural scene, at a depth of 5 meters, on a coral reef in Bocas del Toro, Panama, as seen by humans and by the two main prey of hamlets, i.e. the masked goby *C. personatus* and a *M. columbiae* shrimp, at the distances in which interactions between these species are known to occur. First two columns, on the left, butter hamlet *H. unicolor* and its model, the foureye butterflyfish *C. capistratus*. Central columns, the black hamlet *H. nigricans*. Last two columns, on the right, barred hamlet *H. puella*. Acuity, expressed as minimum resolvable angle in degrees, is shown for each viewer.

Fig.1

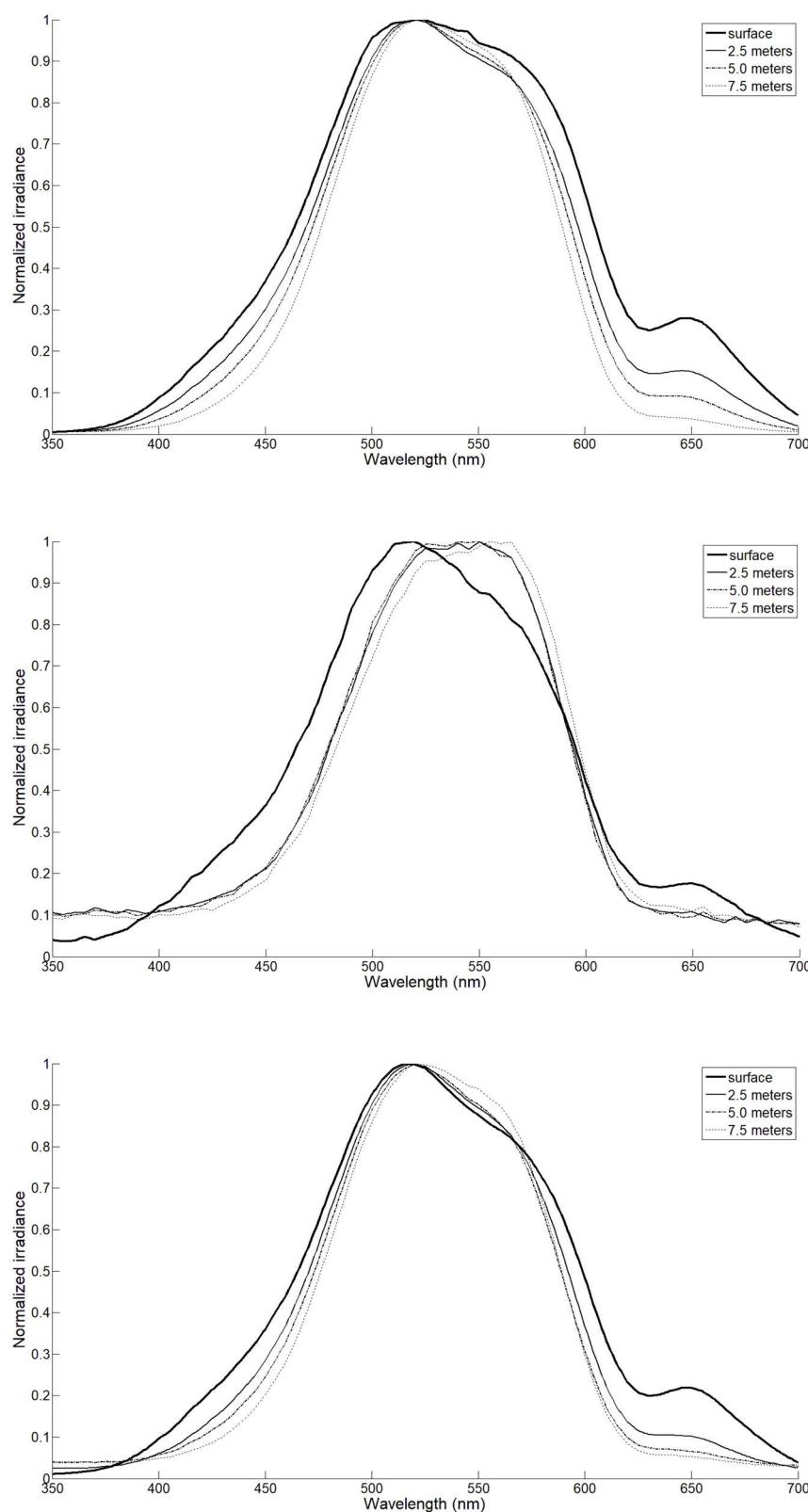


Fig.2

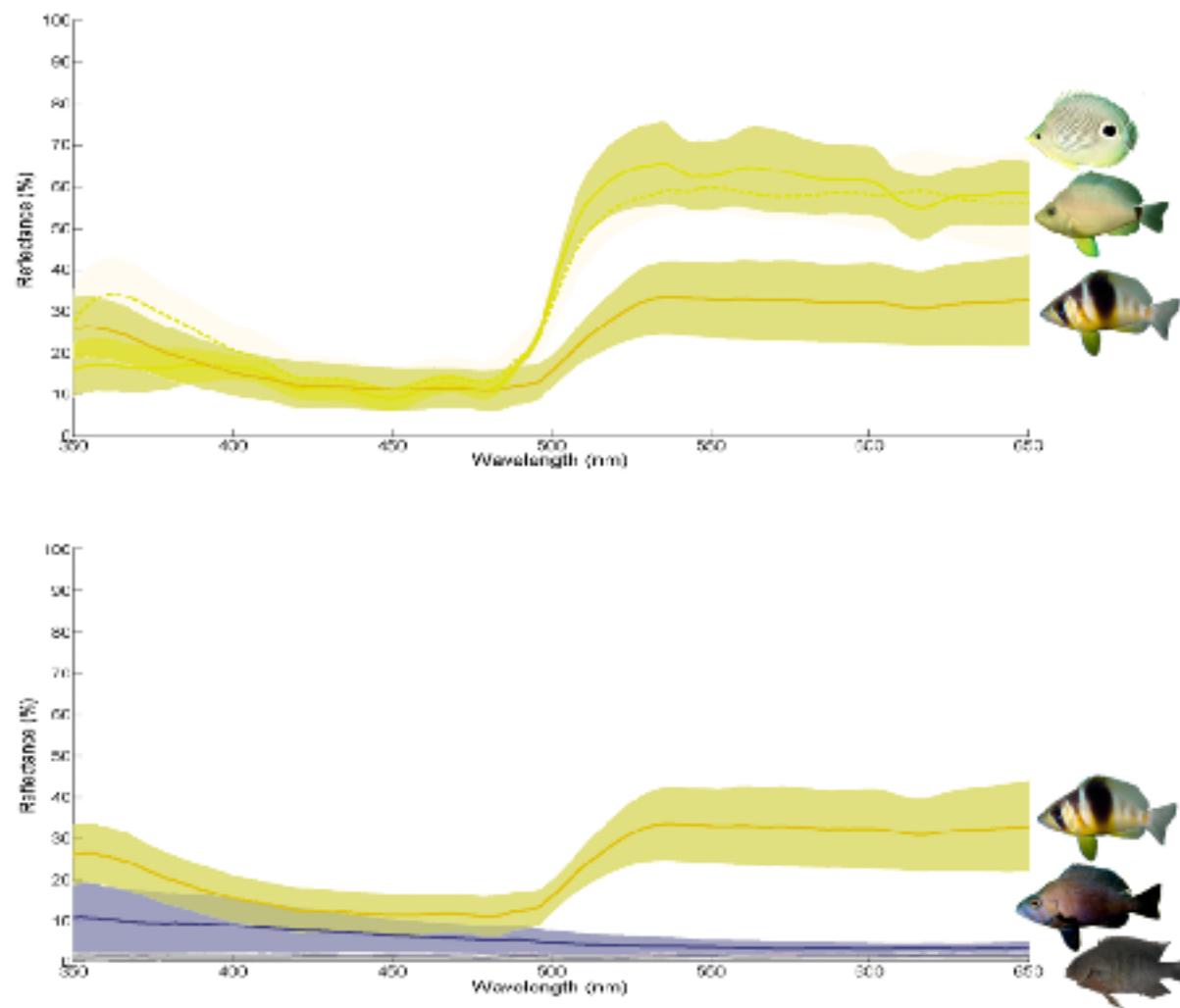
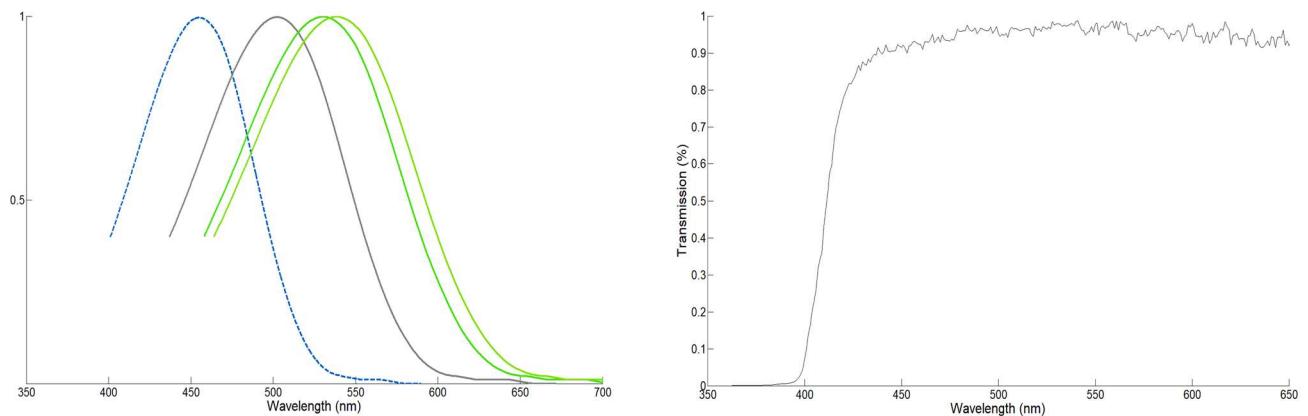
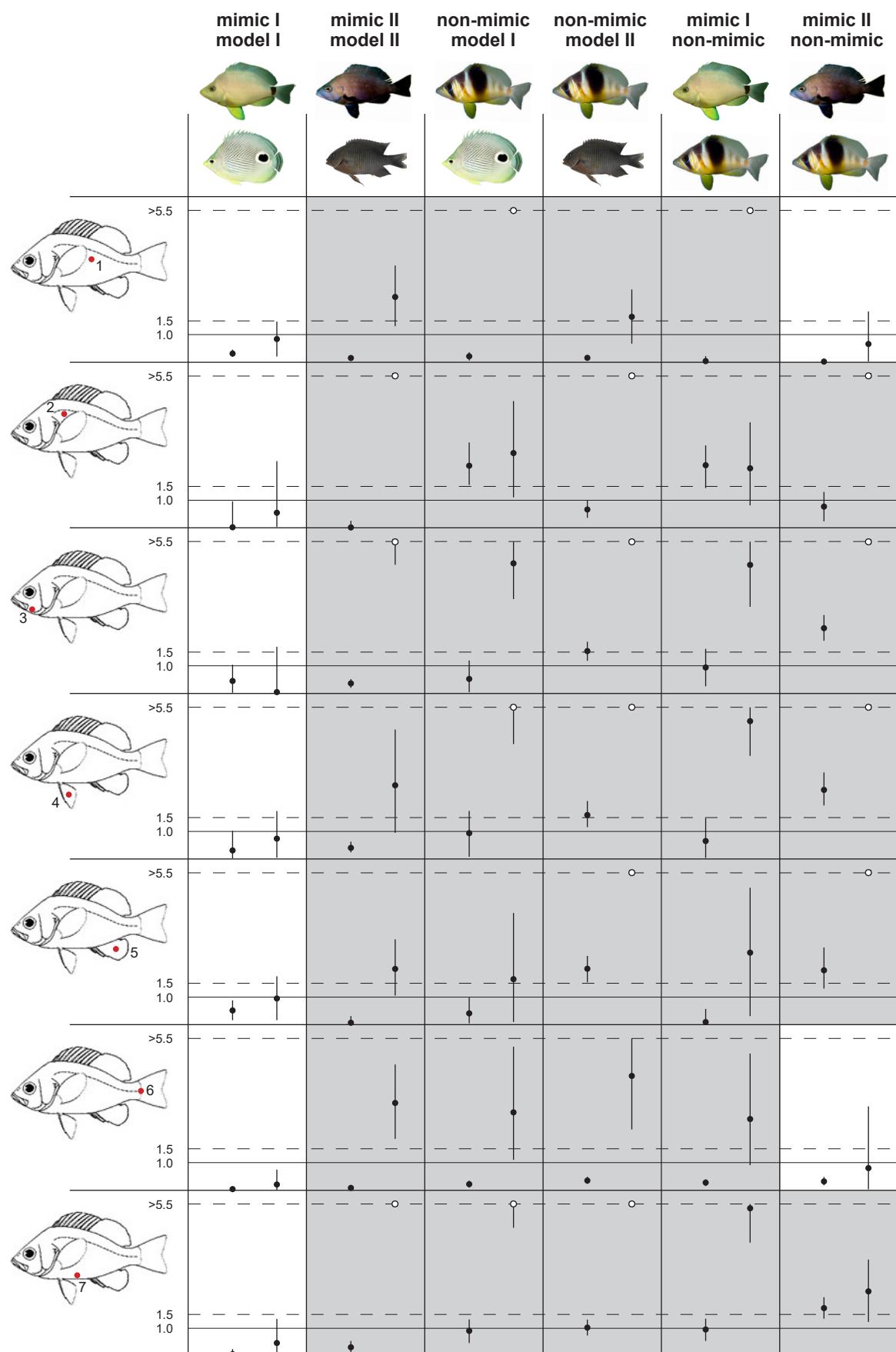




Fig. 3

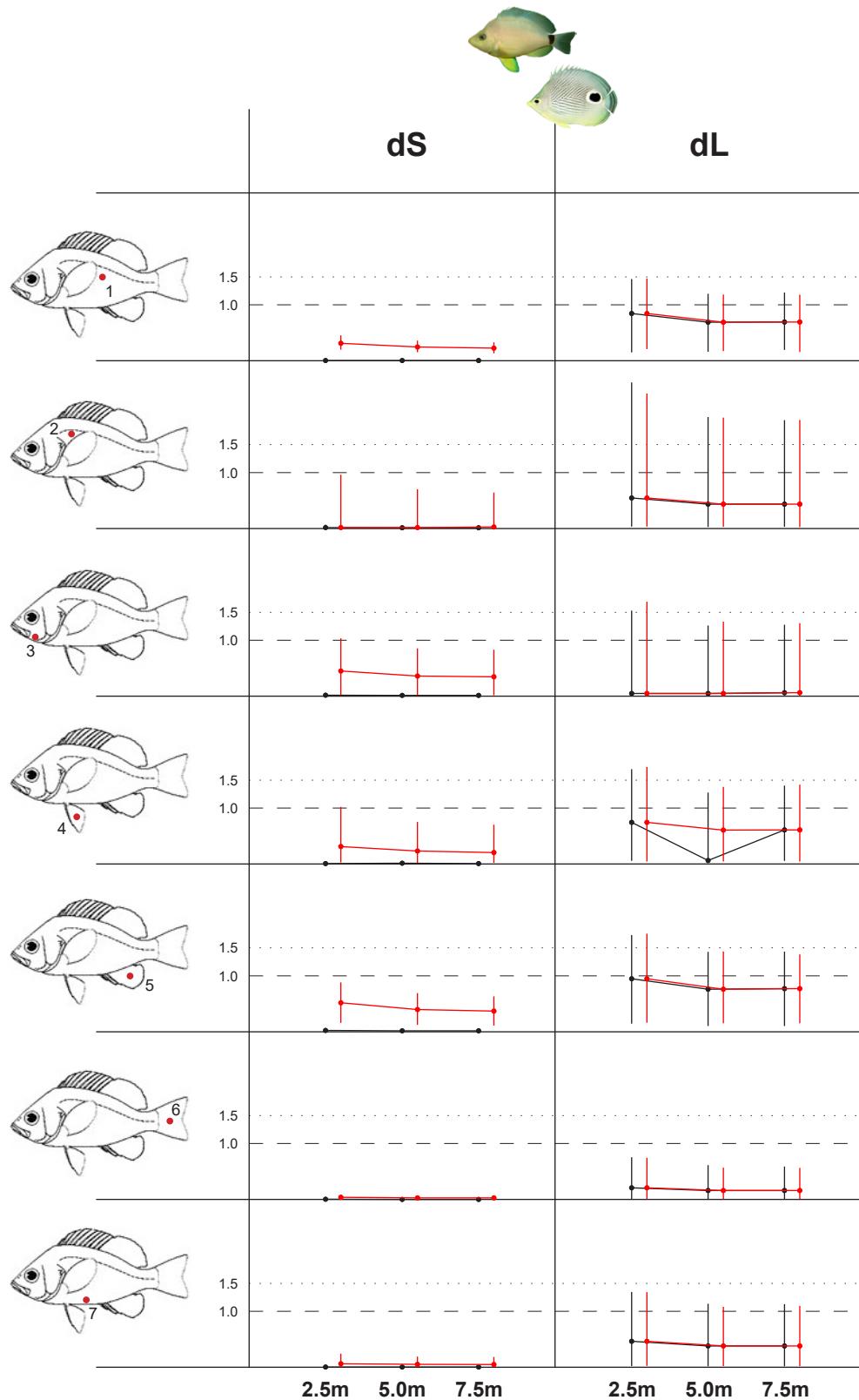


Fig. 6

Table 1. Stereological assessment of the population of cells in the retinal GCL of *Coryphopterus personatus* and the anatomical parameters used to estimate the upper limit of spatial resolution.

Individual	Retinal Area (mm ²)	Sites Counted	ASF	Total number of GCL cells	CE	Mean Density of GCL cells (cells/mm ²)	Peak Density of GCL cells	Lens diameter (mm)	Spatial Resolving Power in cycles/deg (MRA in degrees)
#1	5.3	190	0.09	170,638	0.046	32,196	84,000	0.83	2.456 (0.407)
#2	4.0	143	0.09	188,901	0.058	47,085	94,800	0.72	2.257 (0.443)
Mean ± sd	4.7 ± 0.9			179,769 ± 12,914		39,641 ± 10,529	89,400 ± 7,637		2.356 ± 0.14 (0.425 ± 0.02)

ASF, area of sampling fraction; GCL, ganglion cell layer; CE = Scheaffer's coefficient of error; MRA = minimum resolvable angle