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Abstract 15 

Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell 16 

death and compromised organ function. This is first observed in the thymus, the primary 17 

lymphoid organ that generates and selects T cells. However, the molecular and cellular 18 

mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse 19 

ageing leads to less efficient T cell selection, decreased self-antigen representation and 20 

increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and 21 

lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the 22 

function of mature thymic epithelial cells is compromised only modestly. Specifically, an early-23 

life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished 24 

at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance 25 
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of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs 26 

the core immunological functions of the thymus. 27 

 28 

Introduction 29 

Ageing compromises the function of vital organs via alterations of cell type composition and 30 

function (López-Otín et al., 2013). The ageing process is characterised by an upregulation of 31 

immune system associated pathways, referred to as inflamm-ageing, which is a conserved 32 

feature across tissues and species (Benayoun et al., 2019). Ageing of the immune system first 33 

manifests as a dramatic involution of the thymus. This is the primary lymphoid organ that 34 

generates and selects a stock of immunocompetent T cells displaying an antigen receptor 35 

repertoire purged of pathogenic “Self” specificities, a process known as negative selection, yet 36 

still able to react to injurious “Non-Self” antigens (Palmer, 2013). The thymus is composed of 37 

two morphological compartments that convey different functions: development of thymocytes 38 

and negative selection against self-reactive antigens are both initiated in the cortex before being 39 

completed in the medulla (Abramson and Anderson, 2017; Klein et al., 2014). Both 40 

compartments are composed of a specialized stromal microenvironment dominated by thymic 41 

epithelial cells (TECs). Negative selection is facilitated by promiscuous gene expression (PGE) 42 

in TEC, especially so in medullary TEC (mTEC) that express the autoimmune regulator, AIRE 43 

(Sansom et al., 2014). This selection ultimately leads to a diverse but self-tolerant T cell 44 

receptor (TCR) repertoire.  45 

 46 

Thymic size is already compromised in humans by the second year of life, decreases further 47 

during puberty, and continuously declines thereafter (Kumar et al., 2018; Linton and Dorshkind, 48 

2004; Palmer, 2013). With this reduced tissue mass, cell numbers for both lymphoid and 49 

epithelial cell compartments decline. This is paralleled by an altered cellular organization of the 50 

parenchyma, and the accumulation of fibrotic and fatty changes, culminating in the organ’s 51 
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transformation into adipose tissue (Shanley et al., 2009). Over ageing, the output of naïve T 52 

cells is reduced and the peripheral lymphocyte pool displays a progressively altered TCR 53 

repertoire (Egorov et al., 2018; Thome et al., 2016). What remains unknown, however, is 54 

whether stromal cell states and subpopulations change during ageing and, if so, how these 55 

changes impact on thymic TCR selection.  56 

 57 

To resolve the progression of thymic structural and functional decline we studied TEC using 58 

single-cell transcriptomics across the first year of mouse life. We investigated how known and 59 

previously unrecognized TEC subpopulations contribute to senescence of the stromal scaffold 60 

and correspond to alterations of thymocyte selection and maturation. Our results reveal 61 

transcriptional signatures in mature TEC subtypes that recode these cells’ functions during 62 

ageing. Unexpectedly, we discovered that the loss and quiescence of TEC progenitors are 63 

major factors underlying thymus involution. These findings have consequences for targeted 64 

thymic regeneration and the preservation of central immune tolerance. 65 
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66 
Figure 1: The decline of thymic cellularity and immune function with age 67 
(a) Age-dependent changes in thymic architecture, as shown by representative H&E staining of 68 
thymic sections. Scale bars represent 150µm. Medullary islands stain as light purple while 69 
cortical regions stain as dark purple. (b) Total and (c) TEC cellularity changes in the involuting 70 
mouse thymus. Error bars represent mean +/- standard error (5 mice per age). (d) Thymocyte 71 
negative selection declines with age: (Left) Schematic showing the progression of T cell 72 
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development and Wave selection stages in the thymus that were investigated; (Right) Volcano 73 
plot showing the differential abundance of each of these thymocyte negative selection 74 
populations over age. Populations that are statistically significantly altered with age (FDR 1%) 75 
are labelled and highlighted in red. (e-f) The distribution of log-fold changes showing the 76 
alterations in TCR J segment (e) and V segment (f) usage with (log2) age. Log fold changes +/- 77 
99% confidence intervals are plotted, with differentially abundant segments coloured in orange. 78 
(g) Mature thymocyte TCR repertoire diversity changes with age. The y-axis indicates the 79 
Shannon entropy of M2 thymocyte TCR CDR3 clonotypes at each age (n=4-7 mice per time 80 
point), derived from TCR-sequencing of ~15,000 cells per sample. P-value has been calculated 81 
from a linear model that regresses Shannon entropy on log age. (h) The number of non-82 
templated nucleotide insertions detected by TCR sequencing increases with age. The displayed 83 
P-value is from a linear model that regresses mean number of inserted nucleotides on log age. 84 
 85 

RESULTS 86 

Thymus function is progressively compromised by age 87 

Thymus morphological changes were evident by 4 weeks of age in female C57BL/6 mice, 88 

including cortical thinning and the coalescence of medullary islands (Figure 1a). These gross 89 

tissue changes coincided with changes in thymocyte and TEC cellularity (Figure 1b,c), as noted 90 

previously (Gray et al., 2006; Manley et al., 2011). Total thymic and TEC cellularity halved 91 

between 4 and 16 weeks of age (Figure 1b,c).  92 

 93 

Given this sharp decline in TEC cellularity, we investigated whether the primary function of the 94 

thymus was compromised. Using flow cytometry we profiled developing thymocytes undergoing 95 

negative selection (Methods; Supplementary Figure 1a), a process that can be partitioned into 96 

four key stages: (1) double positive thymocytes (Wave 1a: Helios+PD-1+), (2) immature 97 

CD4+/CD8+ single positive (SP) thymocytes (Wave 1b: Helios+PD-1+), (3) semi-mature 98 

CD4+/CD8+ SP thymocytes (Wave 2a: Helios+) and, (4) mature CD4+/CD8+ SP thymocytes 99 

(Wave 2b: Helios+; Figure 1d, left panel) (Daley and Smith, 2013). Across these control stages 100 

the frequency of negatively selected thymocytes varied with age (Figure 1d, right panel). 101 

Specifically, negative selection of MHC class II restricted (i.e. CD4+ SP) thymocytes decreased 102 

after the first week of life (Wave 1b) concomitant with an increased removal of MHC class I 103 

restricted (CD8+ SP) cells (Figure 1d, Supplementary Figure 1b,c). In contrast, the proportions 104 
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of both CD4+ and CD8+ semi-mature thymocytes undergoing negative selection in the medulla 105 

diminished with age (Figure 1d). 106 

 107 

Impaired negative selection in the medulla undermines the production of a self-tolerant TCR 108 

repertoire. Using TCR-targeted bulk sequencing of the most mature CD4+ SP thymocytes 109 

(denoted ‘M2’) (James et al., 2018), we observed that 1 week old mice exhibited shorter CDR3 110 

lengths and a lower proportion of non-productive TCR α and β chain sequences than older mice 111 

(Supplementary Figure 1d,e). V(D)J segment usage is altered by age, which has the potential to 112 

reshape the antigen specificity repertoire of newly generated T cells. Approximately one-third of 113 

β chain V or J segments showed an age-dependent use (38% and 29%, respectively), 114 

illustrating the robustness of TCR V(D)J usage to thymic involution and the decline in thymocyte 115 

negative selection. Diversity of the TCR repertoire amongst the most mature thymocytes, 116 

however, increased significantly over age (Figure 1g), along with the incorporation of more non-117 

templated nucleotides (Figure 1h). The latter is inversely correlated with the post-puberty 118 

decline in the expression of thymocyte terminal deoxynucleotidyl transferase (Cherrier et al., 119 

2002), suggesting an ageing-altered mechanism that is not intrinsic to the developing T cells. 120 

Taken together, these dynamic changes indicate that the principal immune functions of the 121 

thymus are progressively compromised with involution. 122 

 123 
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Figure 2: Thymic stromal remodelling during ageing. 124 
(a) A schematic showing the experimental design and FACS phenotypes of sorted cells for 125 
single-cell RNA-sequencing. Right panel shows cell composition fluctuations as a relative 126 
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fraction of all EpCAM+ TEC with respect to the TEC subsets investigated. Remaining EpCAM+ 127 
cells not FAC-sorted are represented in the EpCAM+ population. (b) A SPRING-layout of the 128 
shared nearest-neighbour graph of single TEC, derived from scRNA-seq transcriptional profiles. 129 
Graph nodes represent single cells and edges represent shared k-nearest neighbours (k=5). 130 
Cells are coloured by a clustering that joins highly connected networks of cells based on a 131 
random walk (Walktrap (Pons and Latapy, 2005)). Clusters are annotated based on 132 
comparisons to known TEC subsets and stereotypical expression profiles (Table 1). (c) A 133 
heatmap of marker genes for TEC subtypes identified from single-cell transcriptome profiling 134 
annotated as in (b). (d) Enrichment of MSigDB biological pathways with age in mature cTEC, 135 
intertypical TEC and mature mTEC, annotated as in (b). Bars denote normalised enrichment 136 
score (NES) for significant pathways (FDR 5%), with enrichments coloured by cell type. Age-137 
related alterations are shown in the context of pathways that are up-regulated (left), down-138 
regulated (right) or do not change (middle) across multiple tissues and species (Benayoun et al., 139 
2019). (e) A ribbon-plot demonstrating the compositional changes in TEC subtypes across 140 
ages, as an estimated fraction of all TEC (EpCAM+). Colours indicating each subtype are 141 
shown above the plot with unsorted TEC indicated in white. (f) A volcano-plot of a negative 142 
binomial generalised linear model (GLM) showing linear (left) and quadratic (right) changes in 143 
cell cluster abundance as a function of age. X-axis denotes the change (Δ) in cellularity per 144 
week, and the Y-axis shows the -log10 false discovery rate (FDR). Subtypes with statistical 145 
evidence of abundance changes (FDR 1%) are labelled and shown as red points. 146 
 147 

Ageing remodels the thymic stromal epithelium 148 

To determine whether the different TEC subpopulations were indiscriminately affected by 149 

ageing, we identified and analysed four major mouse TEC (CD45-EpCAM+) subpopulations at 5 150 

postnatal ages using flow cytometry (Supplementary Table 1) (Gray et al., 2002; Wada et al., 151 

2011): cortical TEC (cTEC), immature mTEC (expressing low cell surface concentrations of 152 

MHCII, designated mTEClo), mature mTEC (mTEChi) and terminally differentiated mTEC (i.e. 153 

mTEClo positive for desmoglein expression, Dsg3+ TEC) (Figure 2a & Supplementary Figure 154 

2a). Following index-sorting, SMART-Seq2 single-cell RNA-sequencing, and quality control 155 

(Supplementary Figure 2b-h), we acquired 2,327 single-cell transcriptomes, evenly distributed 156 

across the 4 cytometrically-defined subpopulations and the 5 ages.  157 

 158 

Our analysis revealed 9 TEC subtypes (Figure 2b,c), thus providing a greater richness of 159 

epithelial states than previously reported (Bornstein et al., 2018) (Supplementary Figure 3) and 160 

a greater diversity than the 4 phenotypes cytometrically selected in this study (Supplementary 161 

Figure 4a-b). The individual subtypes were distinguished by the expression of marker genes 162 
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(Figure 2c, and Supplementary Table 2), including some that are well established (post-AIRE 163 

mTEC: Krt80, Spink5; Mature cTEC: Prss16, Cxcl12; mature mTEC: Aire, Cd52) and others that 164 

have been described more recently (Tuft-like mTEC: Avil, Trpm5) (Bornstein et al., 2018; Miller 165 

et al., 2018). Importantly, each TEC subtype, as defined by its single-cell transcriptome (Figure 166 

2b), did not segregate exclusively with a single cytometrically defined TEC population 167 

(Supplementary Figure 4a, Table 1). For example, a subtype that we termed intertypical TEC 168 

(Ccl21a, Krt5; Table 1), and which was evident at all postnatal time-points, was composed of 169 

cells from each of the four cytometrically defined TEC subpopulations. Hereafter, for clarity, we 170 

refer to transcriptomically-defined TEC clusters as subtypes and cytometrically-specified TEC 171 

as subpopulations. 172 

 173 

Four novel TEC subtypes were identified (Table 1): perinatal cTEC (marked by the expression 174 

of Syngr1, Gper1), intertypical TEC (Ccl21a, Krt5) and two rare subtypes, termed neural TEC 175 

(nTEC: Sod3, Dpt) and structural TEC (sTEC, Cd177, Car8) based on their enrichment of 176 

neurotransmitter and extracellular matrix expression signatures (e.g. Col1a1, Dcn, Fbn1), 177 

respectively (Supplementary Figure 5). Specifically, nTEC both lacked expression of Rest (RE1 178 

silencing transcription factor), a transcriptional repressor that is typically expressed in all non-179 

neuronal cells (Nechiporuk et al., 2016), and expressed genes silenced by REST (Snap25, 180 

Chga, Syp). Perinatal cTEC were derived almost exclusively from the cytometric cTEC 181 

population and expressed β-5t (encoded by Psmb11), which is both a component of the cortical 182 

thymoproteosome and a marker of TEC progenitors (Mayer et al., 2016; Ohigashi et al., 2013). 183 

In addition to sharing many of the classical cTEC markers (Figure 2c; Prss16, Cxcl12), perinatal 184 

cTEC were characterised by a highly proliferative transcriptional signature (Supplementary 185 

Figure 5). In contrast, intertypical TEC were derived from both cortical and medullary 186 

subpopulations, and expressed gene markers associated with a progenitor-like TEClo phenotype 187 

(Table 1). 188 
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 189 

To investigate how involution affected expression changes within each subtype as well as 190 

relative changes in the abundance of individual subtypes, we identified genes that changed 191 

expression in an age-dependent manner (Figure 2d, Supplementary Figure 6) and modelled 192 

TEC subtype abundance as a function of age (Figure 2e,f). The cellular abundance of most TEC 193 

subtypes (6 of 9) varied significantly over age (Figure 2e,f; Methods). For example, perinatal 194 

cTEC represented approximately one-third of all TEC at week 1 (Figure 2e) but contributed less 195 

than 1% three weeks later. Conversely, the proportion of mature cTEC and intertypical TEC 196 

increased over time reaching ~30% and ~60% of all TEC, respectively, by 1 year. 197 

 198 

Table 1: Single-cell defined TEC subtypes and known concordant phenotypes.  199 

TEC subtype Locations Populations Reference 

nTEC Unknown
1 

nTEC (Wülfing et al., 2018) 

sTEC Unknown
1 

  

Perinatal cTEC Cortex   

Mature cTEC Cortex cTEC (Bornstein et al., 2018) 

Intertypical TEC Assumed:CMJ
2 
/Cortex mTEC I 

PDPN+ CCL21+ jTEC
 

MHCII
lo 

TPA
lo
 TEC 

SCA1+ PLET1+ TEC 

 

SCA1
hi 

α6 integrin+ TEC 

(Bornstein et al., 2018) 

(Onder et al., 2015) 

(Michel et al., 2017) 

(Ulyanchenko et al., 

2016) 

(Lepletier et al., 2019) 

Proliferating TEC Cortex & Medulla mTEC II (Bornstein et al., 2018) 

Mature mTEC Medulla mTEC II (Bornstein et al., 2018) 

Post-AIRE mTEC Medulla mTEC III 

Post-AIRE 

(Bornstein et al., 2018) 

(Nishikawa et al., 2010) 
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Tuft-like TEC Medulla mTEC IV (Bornstein et al., 2018) 

(Miller et al., 2018) 

1assumed cortex in adult. 2Corticomedullary junction    

 200 

Gene expression signatures that are characteristic of ageing across diverse organs and species 201 

have been reported (Benayoun et al., 2019). Many of these signatures were also evident in the 202 

transcriptomes of individual ageing TEC subtypes (Figure 2d). For example, as they aged, 203 

mature mTEC genes involved in inflammatory signalling, apoptosis and increased KRAS 204 

signalling were up-regulated, whereas genes involved in cholesterol homeostasis and oxidative 205 

phosphorylation were down-regulated (Figure 2d, left and right panels, respectively). In contrast, 206 

intertypical TEC displayed the opposite pattern (Figure 2d, left panel, dark green bars): their 207 

ageing-related decrease in cytokine signalling pathways contrasted with the stronger 208 

inflammatory signature characteristic of senescent tissues, a.k.a. inflamm-ageing (Franceschi et 209 

al., 2006). In summary, mouse thymus involution is mirrored by alterations in both TEC subtype 210 

composition and transcriptional states. The transcriptional signature of inflamm-ageing was 211 

restricted to mature cTEC and mTEC (Supplementary Figure 6) and altered subtype frequency 212 

was most striking for intertypical TEC and perinatal cTEC. 213 

A principal function of mTEC is the promiscuous expression of genes encoding self-antigen and 214 

this was also altered across age (Supplementary Figure 7). In general, mRNA abundance of 215 

AIRE-dependent and -independent tissue restricted antigen-genes (TRAs) declined with age 216 

(Supplementary Figure 7a-f). Transcripts of eye-, pancreas- and tongue-restricted antigens 217 

displayed the most striking reduction in expression (Supplementary Figure 7g-h). Notable 218 

exceptions to this general pattern of reduced TRA expression were macrophage-associated 219 

transcripts involved in inflammatory cytokine signalling, as noted above, whose expression 220 

increased over age (Figure 2d & Supplementary Figure 7i). PGE of AIRE-controlled genes was 221 
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diminished at later ages, even when Aire transcripts persisted, suggesting a mechanism of 222 

transcription that is reliant on factors other than AIRE abundance. Therefore, PGE in mature 223 

mTEC, and thus their capacity to represent “Self”, is increasingly compromised with age. 224 

 225 
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Figure 3. Intertypical TEC and medullary TEC are derived from a β5t+ progenitor. (a) 226 
Diffusion maps illustrating the transcriptional continuity between cortical, medullary and 227 
intertypical TEC across mouse age (top), and inferred diffusion pseudotime (DPT; bottom). (b) A 228 
schematic representing the transgenic Dox-inducible ZsGreen (ZsG) lineage tracing of β5t-229 
expressing mTEC precursors (top), and lineage tracing experiment in 1 week old thymi 230 
(bottom). The green arrow denotes the interval post-Dox treatment. (c) A Fruchterman-Reingold 231 
layout of the SNN-graph of FAC-sorted ZsG+ mTEC from 1 week old mice, 48 hours-post Dox 232 
treatment. Graph nodes represent cells coloured by a clustering of closely connected cells. Inset 233 
panels illustrate the expression of key medullary (Aire, Cd80) and cortical (Cxcl12, Prss16) 234 
marker genes. (d) A β5t-expressing precursor is the common origin of intertypical TEC and 235 
mature mTEC as shown by random forest classification of ZsG+ TEC. (e) A joint diffusion map 236 
between single TEC at week 1 (left panel), and ZsG+ TEC (right panel). Points represent single 237 
cells, and are coloured by their assigned cluster as in Figure 2 (week 1 TEC) or Figure 3d 238 
(ZsG+ TEC). 239 
 240 

Ageing compromises the differentiation of intertypical TEC into mature mTEC 241 

Our newly described intertypical TEC subtype exhibits a transcriptional signature that includes 242 

marker genes for both mature cTEC and mature mTEC, as well as previously described mTEC 243 

progenitors (Supplementary Table 2). Furthermore, based on their position in a diffusion map 244 

between mature TEC states (Figure 3a), we hypothesised that these cells represent a TEC 245 

progenitor state. Mature mTEC are derived from progenitor cells located at the cortico-medullary 246 

junction which express β-5t (encoded by Psmb11) (Mayer et al., 2016; Ohigashi et al., 2013). To 247 

experimentally investigate whether intertypical and mature TEC share a common progenitor, we 248 

lineage traced the progeny of β-5t+ TEC using a triple transgenic mouse (denoted 3xtgβ5t) with a 249 

doxycycline-inducible fluorescent reporter, ZsGreen (ZsG), under the control of the Psmb11 250 

promoter (Figure 3b; (Mayer et al., 2016; Ohigashi et al., 2013)). Forty-eight hours after 251 

doxycycline treatment, we isolated ZsG+ mTEC (Ly51-UEA1+CD86-) from a 1 week old mouse 252 

(Figure 3b) and profiled the traced cells using SMART-Seq2 scRNA-sequencing before 253 

comparing them with our reference atlas (Figure 3c-d). This revealed ZsG+ cells to be highly 254 

enriched for mature mTEC and intertypical TEC subtypes (Figure 3d-e) consistent with 255 

intertypical TEC and mature mTEC being derived from a common, β-5t+, progenitor, and with 256 

intertypical TEC including cells that have precursor potential to differentiate into mTEC.  257 

 258 
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 259 

 260 

 261 

 262 

 263 

Figure 4. Ageing restricts the differentiation of intertypical TEC into mature mTEC. (a) 264 
RNA velocity estimates overlaid on a uniform manifold approximation and projection (UMAP) of 265 
all single cells across all ages derived from 3xtgβ5t mice. Cells are coloured by annotated 266 
clusters (Supplementary Figure 8) defined using a random-walk on an SNN-graph (Methods). 267 
Annotations were assigned based on the co-expression of key marker genes (Supplementary 268 
Figures 9 & 10). Inset panel: schematic representation of ZsG lineage tracing of TEC across 269 
mouse ages. Paired colour arrows denote the time and age of doxycycline treatment. Numbers 270 
above the arrows represent the age of mice at the time of single-cell measurements. (b) 271 
Differential abundance testing of TEC clusters from (a) across age and between lineage tracing 272 
fractions. The volcano plot shows the log fold change (LFC; x-axis) against -log10 FDR (y-axis) 273 
of the interaction between lineage fraction and age. TEC clusters that have significantly different 274 
changes in the ZsG+ compared to ZsG- fraction over age (FDR 5%) are coloured in red and 275 
labelled. Positive log-fold changes represent a higher rate of change over age in the ZsG+ 276 
fraction, whilst negative log-fold changes represent a higher rate of change in the ZsG- fraction. 277 
(c) Individual best-fit line plots show the sub-cluster frequency (y-axis) at each dox-treatment 278 
age (x-axis), grouped and coloured by ZsG fraction. The shaded band represents the linear 279 
model 95% confidence interval around the linear fit. (d) Boxplot of Psmb11 single-cell 280 
expression (log10 normalised counts) across 4 intertypical TEC clusters, coloured by age at time 281 
of dox-treatment. 282 
 283 
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Ageing intertypical TEC were characterised by progressive quiescence with age (down-284 

regulation of Myc target genes; Figure 2d), and expression of Itga6 (CD49f; Supplementary 285 

Table 2), a marker of quiescent, radioresistant TEC (Dumont-Lagacé et al., 2017). 286 

Consequently, we reasoned that expansion of the intertypical TEC population during ageing 287 

reflects its diminished capacity to differentiate into mature mTEC. Therefore, we used the 3xtgβ5t 288 

mice to explore how the relationships among progenitor, intertypical and mature mTEC change 289 

with age. TEC were labelled at weeks 1, 4 and 16 and harvested 4 weeks later in triplicate 290 

(Figure 4a & Supplementary Figures 8-10). RNA velocity analysis across single-cells collected 291 

in this experiment corroborated our conclusion that mature mTEC are derived from intertypical 292 

TEC (Figure 4a). Labelled progenitor cells in older animals were unable to differentiate fully 293 

towards mature mTEC but, instead, accumulated as intertypical TEC, consistent with a partial 294 

block during differentiation (Figure 4b, Supplementary Figure 10). By following the β-5t+ and β-295 

5t- TEC states across age, we discovered that the gradual accumulation of intertypical TEC was 296 

specific to three of its four sub-clusters (denoted here as intertypical TEC-2, -3, or -4; Figure 4c). 297 

Of note, the intertypical TEC-3 sub-cluster is characterised by Psmb11 expression (Figure 4d, 298 

Supplementary Figure 9), suggesting that it represents the earliest mTEC precursor state. 299 

Moreover, the intertypical TEC-2 sub-cluster specifically accumulated in the ZsG- fraction 300 

(Figure 4c) indicating either that these cells had arrested their differentiation prior to the dox-301 

treatment and are thus more than 4 weeks old, or that they arose from a  β-5t- progenitor.  302 

 303 

In summary, by combining in vivo lineage tracing with single-cell transcriptome profiling we have 304 

discovered that progenitor cells become increasingly blocked in intertypical TEC states during 305 

ageing and that this reduced rate of maturation results in the decline of mTEC maintenance. 306 

 307 

Discussion 308 
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We have demonstrated how age re-models the thymic stromal scaffold to impair its core 309 

immunological function. Leveraging the resolution of single-cell transcriptomics we identified 9 310 

TEC subtypes, of which 4 were previously undescribed (Table1). This refined categorization of 311 

TEC subtypes highlights the insufficiency of previously established FACS-based and ontological 312 

TEC classifications, and should facilitate detailed investigations of their function using more 313 

specific markers (Supplementary Table 2). By tracing TEC types and states across the murine 314 

life course we have found that mature TEC subtypes exhibit age-altered gene expression 315 

profiles similar to those observed across many other tissues and species (Benayoun et al., 316 

2019). Intertypical TEC, a TEC subtype newly-defined in this study, however showed an 317 

opposing age-related pattern, with decreased expression in cytokine signalling pathways. 318 

Alongside the age-dependent decline in thymus cellularity, we observed how PGE in mature 319 

mTEC also waned over time.  320 

 321 

Bi-potent TEC have been described with distinctive molecular identities (e.g. β-5t expression) 322 

from the postnatal thymus where they dynamically expand and contribute to the mTEC scaffold 323 

(Bleul et al., 2006; Ucar et al., 2014; Ulyanchenko et al., 2016; Wong et al., 2014). During 324 

mouse development these TEC progenitors arise from the endoderm of the third pharyngeal 325 

pouch (mid-gestation) and subsequently develop into lineage-restricted cTEC and mTEC 326 

progenitors (Baik et al., 2013; Gordon et al., 2004; Hamazaki et al., 2007; Ohigashi et al., 2013; 327 

Ripen et al., 2011; Rodewald et al., 2001; Rossi et al., 2006; Shakib et al., 2009). Using lineage 328 

tracing, we revealed how intertypical TEC arise from a β-5t+ TEC progenitor population and are 329 

a precursor to mature mTEC (Figure 3e). Thus, intertypical TEC form a previously missing link 330 

in mTEC differentiation from β-5t+ progenitors. The ability of β-5t+ TEC progenitors to expand 331 

and maintain the mTEC scaffold is progressively reduced in adolescent mice (Mayer et al., 332 

2016). Our combined observations that intertypical TEC accumulate during ageing and up-333 

regulate a quiescent expression signature, along with the concomitant decline in mature mTEC, 334 
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are consistent with a diminished expansion and maintenance of the TEC scaffold (Figure 2d,e). 335 

Moreover, we observed that an intertypical TEC sub-cluster (intertypical TEC-3) both expresses 336 

β-5t (thus likely representing the earliest mTEC precursor) and expands with age as the 337 

population of mature mTEC contracts (Figure 4c,d). These observations indicate that the age-338 

related expansion of this intertypical TEC sub-cluster is a direct consequence of their failure to 339 

differentiate into mature mTEC. This begs the question of what molecular mechanism leads to 340 

this defect? A recent study (Lepletier et al., 2019), suggests that TEC progenitors are re-341 

programmed by interactions between BMP, Activin A and follistatin. In our data Fst (encoding 342 

follistatin), Bmp4 and Inhba (encoding Activin A) are specifically expressed in the intertypical 343 

TEC compartment (Supplementary Figure 11). If the model proposed by Lepletier et al. is 344 

correct, then TEC progenitors may be the architects of their own malfunction. 345 

 346 

The re-modelling of TEC maturation and the progression of inflam-ageing both alter thymus 347 

function and result in increased TCR diversity with age (Figure 1g). Concomitantly, two 348 

processes - diminution of mature TEC cellularity and blockage of TEC maturation - contribute to 349 

reduced presentation of self-antigens to developing thymocytes and thus to a less efficient 350 

negative selection. This impairment is in keeping with features of age-related thymic involution: 351 

its overall reduction in naïve T-cell output and an increased release of self-reactive T-cells 352 

(Goronzy and Weyand, 2003; Palmer, 2013). To compound these effects, the involuting thymus 353 

is also rapidly purged of its distinctive perinatal cTEC population (Figure 2e). The consequences 354 

of this are likely to be a further loss of antigen presenting cTEC and reduced support of 355 

thymocyte maturation. Taken together, we expect these TEC changes to impair the 356 

maintenance of central tolerance and could explain, at least in part, the increased incidence of 357 

autoimmunity with advancing age (Candore et al., 1997), in which the cumulative dysfunction of 358 

thymic central tolerance over time generates a slow drip feed of self-reactive T cells into the 359 

periphery.  360 
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 361 

In summary, our results reveal how the population and transcriptional dynamics of epithelial cell 362 

precursors across mouse life are coupled to age-related decline in thymic function. An 363 

enhanced understanding of the molecular mechanisms that prevent progenitors from fully 364 

progressing towards mature mTEC should facilitate studies exploring therapeutic interventions 365 

that reverse thymic decline. 366 

 367 

Materials and Methods 368 

Mice 369 

Female C57BL/6 mice aged 1 week, 4 weeks, 16 weeks, 32 weeks, or 52 weeks were obtained 370 

from Jackson Laboratories, and rested for at least one week prior to analysis. 3xtgβ5t mice [β5t-371 

rtTA::LC1-Cre::CAG-loxP-STOP-loxP-ZsGreen] mice were used for lineage-tracing experiments 372 

as previously described (Mayer et al., 2016). All mice were maintained under specific pathogen-373 

free conditions and according to United Kingdom Home Office regulations or Swiss cantonal 374 

and federal regulations and permissions, depending where the mice were housed.  375 

 376 

Isolation of thymic epithelial cells and thymocytes 377 

Thymic lobes were digested enzymatically using Liberase (Roche) and DNaseI (VWR). In order 378 

to enrich for TEC, thymic digests were subsequently depleted of CD45+ cells using a magnetic 379 

cell separator (AutoMACS, Miltenyi) before washing and preparation for flow cytometry. 380 

Thymocytes were isolated by physical disruption of thymic lobes using frosted microscope glass 381 

slides.  382 

 383 

Flow cytometry and cell sorting 384 

Cells were stained at a concentration of 5-10 x106 per 100µl in FACS buffer (2% fetal calf serum 385 

in PBS or 5% bovine serum albumin in PBS). Supplementary Table 3 provides details of 386 
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antibody staining panels. Staining for cell surface markers was performed for 20 minutes at 4°C, 387 

except for CCR7 which was performed for 30 minutes at 37°C in a water bath prior to the 388 

addition of other cell surface stains. The FoxP3 Transcription Factor Staining Buffer Kit 389 

(eBioscience) was used according to the manufacturer's instructions in order to stain for 390 

intracellular antigens. Cell viability was assessed using DAPI staining or LIVE/DEAD Fixable 391 

Aqua Dead Cell Stain (Invitrogen). Samples were acquired and sorted using a FACS Aria III (BD 392 

Biosciences). For single-cell RNA-sequencing index sorting was used and cells were sorted into 393 

384 well plates. Flow cytometry data was analysed using FlowJo V 10.5.3. 394 

 395 

TCR rearrangement simulations 396 

Simulations of TCR germline rearrangements were used to estimate TCR-sequencing sample 397 

sizes. Sequential steps of α- and β-chain rearrangement were simulated to model β-selection 398 

and double negative thymocyte maturation prior to negative selection. We uniformly sampled 399 

V(D)J segments from the C57BL/6 TCR locus. For the TCR β-chain, variable (V) and diversity 400 

(D) segments were randomly selected from available sequences. For joining (J) segments, the 401 

TRBJ1 locus was selected on the first attempt, and TRBJ2 if a second attempt to rearrange was 402 

made. Consequently the matching TRBC segment was selected based on the J segment that 403 

was chosen (either TRBC1 or TRBC2). For the concatenation of each segment pair, i.e. V-J, V-404 

D,  VD-J, randomly selected nucleotides were inserted between the adjoining segments, based 405 

on sampling from a Poisson distribution with λ=4. The productivity of the rearranged β-chain 406 

was determined by the presence of a complete open reading frame (ORF) beginning with a 407 

canonical start codon (‘ATG’) in the selected V segment that spanned the full V(D)J and 408 

constant segments. In the event of a failed rearrangement a second attempt was made using 409 

the TRBJ2 and TRBC2 segments. If either of these attempts produced a valid TCR β-chain, 410 

then under the principle of allelic exclusion the simulation proceeded to the α-chain 411 
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rearrangement. However, if the second rearrangement failed to produce a valid TCR β-chain, 412 

the process was repeated for the second allele. 413 

For the TCR α-chain, variable (V) and joining (J) regions were randomly selected from the 414 

available TCRA sequences. Following the same principle as above, if the simulated 415 

rearrangement failed to generate a valid TCR with a complete ORF spanning the V segment to 416 

the constant region then the simulation switched to the second allele. A successful TCR 417 

germline was recorded only in the event of both valid α- and β-chains. The complete simulation 418 

resulted in a valid α-chain in 40.2% of simulations, and a valid β-chain in 63.1% of simulations. 419 

To calculate sample sizes for our TCR-sequencing experiments we simulated 1 million 420 

“thymocytes”, and sub-sampled 10, 100, 500, 1000, 5000, 10000, 20000, 50000 and 100000 421 

cells, defined by a productive pair of TCR chains. To simulate replicates we ran these 422 

simulations with 10 different random initiations. To establish the required sample sizes we 423 

calculated the proportions of V(D)J segment frequencies for α- and β-chains. Additionally, we 424 

calculated the TCR diversity at each sample size using the Shannon entropy across α- and β-425 

chain CDR3 clonotypes, defined by the unique amino acid sequence. Results of simulations are 426 

shown in Supplementary Figure 12. 427 

 428 

TCR sequencing 429 

15,000 M2 thymocytes (TCRbhi, CCR7+, MHCI+, CD69-, CD8-, CD4+, CD25-) were sorted and 430 

RNA extracted using the Qiagen RNeasy Micro kit. 10ng of RNA was used to prepare bulk 431 

TCR-seq libraries using the SMARTer Mouse TCR a/b Profiling Kit (Takara) according to 432 

instructions. Libraries were sequenced on a MiSeq (300 base paired-end reads). Reads were 433 

trimmed using Trimmomatic, down-sampled to the smallest library size and aligned using 434 

MiXCR (version 3.0). 435 

 436 

Haematoxylin and eosin (H&E) staining of thymic sections 437 
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Thymic lobes were harvested and cleaned under a dissecting microscope before being fixed in 438 

10% Formalin (Sigma) for 12-36 hours, depending on size, and dehydrated in ethanol. After 439 

fixation the tissues were embedded in paraffin using an automated system (Tissue-Tek 440 

Embedding Centre, Sakura) and sectioned to a thickness of 8µm. H&E staining was performed 441 

using an automated slide stainer (Tissue-Tek DRS 2000, Sakura) and slides were visualised 442 

under a light microscope DM750 (Leica). 443 

 444 

Plate-based single-cell RNA-sequencing 445 

Lysis plates. Single thymic epithelial cells were index FAC-sorted into 384-well lysis plates. 446 

Lysis plates were created by dispensing 0.4 μl lysis buffer (0.5 U Recombinant RNase Inhibitor 447 

(Takara Bio, 2313B), 0.0625% Triton X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix 448 

(Thermo Fisher, R0193), 3.125 μM Oligo-dT 30 VN (IDT, 449 

5'AAGCAGTGGTATCAACGCAGAGTACT 30 VN-3') and 1:600,000 ERCC RNA spike-in mix 450 

(Thermo Fisher, 4456740) into 384-well hard-shell PCR plates (Biorad HSP3901) using a 451 

Tempest liquid handler (Formulatrix). All plates were then spun down for 1 minute at 3220g and 452 

snap frozen on dry ice. Plates were stored at -80°C until used for sorting.  453 

cDNA synthesis and library preparation. cDNA synthesis was performed using the Smart-454 

seq2 protocol (Picelli et al., 2014). Briefly, 384-well plates containing single-cell lysates were 455 

thawed on ice followed by first strand synthesis. 0.6 μl of reaction mix (16.7 U/μl SMARTScribe 456 

TM Reverse Transcriptase (Takara Bio, 639538), 1.67 U/μl Recombinant RNase Inhibitor 457 

(Takara Bio, 2313B), 1.67X First-Strand Buffer (Takara Bio, 639538), 1.67 μM TSO (Exiqon, 5'-458 

AAGCAGTGGTATCAACGCAGACTACATrGrG+G-3'), 8.33 mM DTT (Bioworld, 40420001-1), 459 

1.67 M Betaine (Sigma, B0300-5VL), and 10 mM MgCl 2 (Sigma, M1028-10X1ML)) were added 460 

to each well using a Tempest liquid handler. Bulk wells received twice the amount of RT mix 461 

(1.2 μl). Reverse transcription was carried out by incubating wells on a ProFlex 2x384 thermal-462 

cycler (Thermo Fisher) at 42°C for 90 min and stopped by heating at 70°C for 5 min. 463 
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Subsequently, 1.6 μl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa Biosystems, 464 

KK2602), 0.17 μM IS PCR primer (IDT, 5'-AAGCAGTGGTATCAACGCAGAGT-3'), and 465 

0.038U/μl Lambda Exonuclease (NEB, M0262L)) was added to each well with a Tempest liquid 466 

handler (Formulatrix). Bulk wells received twice the amount of PCR mix (3.2 μl). Second strand 467 

synthesis was performed on a ProFlex 2x384 thermal-cycler using the following program: 1. 468 

37°C for 30 minutes, 2. 95°C for 3 minutes, 3. 23 cycles of 98°C for 20 seconds, 67°C for 15 469 

seconds, and 72°C for 4 minutes, and 4. 72°C for 5 minutes. The amplified product was diluted 470 

with a ratio of 1 part cDNA to 9 parts 10mM Tris-HCl (Thermo Fisher, 15568025), and 471 

concentrations were measured with a dye-fluorescence assay (Quant-iT dsDNA High Sensitivity 472 

kit; Thermo Fisher, Q33120) on a SpectraMax i3x microplate reader (Molecular Devices). These 473 

wells were reformatted to a new 384-well plate at a concentration of 0.3 ng/μl and a final volume 474 

of 0.4 μl using an Echo 550 acoustic liquid dispenser (Labcyte). If the cell concentration was 475 

below 0.3 ng/μl, 0.4 μl of sample was transferred. Illumina sequencing libraries were prepared 476 

using the Nextera XT Library Sample Preparation kit (Illumina, FC-131-1096) (Darmanis et al., 477 

2017; Tabula Muris Consortium et al., 2018). Each well was mixed with 0.8 μl Nextera 478 

tagmentation DNA buffer (Illumina) and 0.4 μl Tn5 enzyme (Illumina), then tagmented at 55°C 479 

for 10 min. The reaction was stopped by adding 0.4 μl "Neutralize Tagment Buffer" (Illumina) 480 

and spinning at room temperature in a centrifuge at 3220 X g for 5 min. Indexing PCR reactions 481 

were performed by adding 0.4 μl of 5 μM i5 indexing primer, 0.4 μl of 5 μM i7 indexing primer, 482 

and 1.2 μl of Nextera NPM mix (Illumina). PCR amplification was carried out on a ProFlex 2x384 483 

thermal cycler using the following program: 1. 72°C for 3 minutes, 2. 95°C for 30 seconds, 3. 12 484 

cycles of 95°C for 10 seconds, 55°C for 30 seconds, and 72°C for 1 minute, and 4. 72°C for 5 485 

minutes.  486 

Library pooling, quality control, and sequencing. Following library preparation, wells of each 487 

library plate were pooled using a Mosquito liquid handler (TTP Labtech). Row A of the thymus 488 

plates, which contained bulk cells, was pooled separately. Pooling was followed by two 489 
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purifications using 0.7x AMPure beads (Fisher, A63881). Library quality was assessed using 490 

capillary electrophoresis on a Fragment Analyzer (AATI), and libraries were quantified by qPCR 491 

(Kapa Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System (Biorad). 492 

Plate pools were normalized to 2 nM and sequenced on the NovaSeq 6000 Sequencing System 493 

(Illumina) using 2x100bp paired-end reads with an S4 300 cycle kit (Illumina, 20012866). Row A 494 

thymus pools were normalized to 2 nM and sequenced separately on the NextSeq 500 495 

Sequencing System (Illumina) using 2x75bp paired-end reads with a High Output 150 cycle kit 496 

(Illumina, FC-404-2002). 497 

 498 

Single-cell RNA-sequencing processing, quality control and normalisation 499 

Paired-end reads were trimmed to a minimum length of 75nt using trimmomatic with a 4nt 500 

sliding window with a quality threshold of 15. Leading and trailing sequences were removed with 501 

a base quality score < 3 (Bolger et al., 2014). Contaminating adaptors were removed from reads 502 

with a single seed mismatch, a palindrome clip threshold of 30 and a simple clip threshold of 10. 503 

Trimmed and proper-paired reads were aligned to mm10 concatenated with the ERCC92 504 

FASTA sequences (Thermo Fisher Scientific) using STAR v2.5.3a (Dobin et al., 2013) and a 505 

splice-junction database constructed from the mm10 Ensembl v95 annotation with a 99nt 506 

overhang. Paired-end reads were aligned with the parameters: --outSAMtype BAM 507 

SortedByCoordinate --outSAMattributes All --outSAMunmapped Within KeepPairs; all other 508 

parameters used default values. Following alignment each single-cell BAM file was positionally 509 

de-duplicated using PicardTools MarkDuplicates with parameters: REMOVE_DUPLICATES = 510 

true, DUPLICATE_SCORING_STRATEGY = TOTAL_MAPPED_REFERENCE_LENGTH   511 

[http://broadinstitute.github.io/picard]. 512 

De-duplicated single-cell transcriptomes were quantified against exon sequences of the mm10 513 

Ensembl v95 using featureCounts (Liao et al., 2014). Poor quality single-cell transcriptomes 514 

were removed based on several criteria: contribution of ERCC92 to total transcriptome > 40%, 515 
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sequencing depth < 1x105 paired-reads and sparsity (% zeros) > 97%. From this initial round of 516 

quality control 2780 cells were retained for normalisation and downstream analyses. 517 

Deconvolution-estimated size factors were used to normalise for sequencing depth across 518 

single cells, prior to a log10 transformation with the addition of a pseudocount (+1), 519 

implemented in scran (Lun et al., 2016). 520 

 521 

Single-cell clustering and visualisation 522 

TEC from all ages and sort-types were clustered together using a graph-based algorithm that 523 

joins highly connected networks of TEC based on the similarity of their expression profile. To 524 

enhance the differences in the expression profile of individual TEC libraries, we first applied a 525 

text frequency-inverse document frequency (TF-IDF) transform (Manning et al., 2008) to the 526 

gene-by-cell expression matrix. This transform enhances the signal from rarely expressed 527 

genes (of particular importance would be those that are promiscuously expressed in TEC), while 528 

also lessening the contribution from widely expressed genes. The transformed matrix 529 

represents the product of the gene-frequency and the inverse-cell-frequency. To compute this 530 

transformed matrix, we first assigned the gene-frequency matrix as the log2 of normalised gene-531 

by-cell expression matrix (Gf = log2 (C); C is the normalised count matrix). Next, we computed 532 

the inverse-cell-frequency as the inverse frequency of detection of each gene (ICFx = log10 (N / 533 

(1+Ex)); N is the number of cells, Ex is the number of cells expressing gene X). Finally, the 534 

product of the gene-frequency matrix and inverse-cell-frequency was computed (GF_ICF = Gf * 535 

ICF). The highly variable genes from this transformed matrix were used to compute a shared 536 

nearest neighbor (SNN) graph (k=10), and the clusters were identified using a random walk 537 

(Walktrap (Pons and Latapy, 2005)) of the SNN graph. To assess the robustness of the 538 

clusters, we also clustered cells without the TF-IDF transform and using a series of alternate 539 

parameters. We computed a consensus matrix to determine how often the identified TEC 540 

subtypes co-clustered. We found that the identified TEC sub-types were robustly co-clustered 541 
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regardless of the parameters of the clustering that was applied (Supplementary Figure 13). 542 

Visualisation of the connected graph was computed using the SPRING algorithm to generate a 543 

force-directed layout of the K-nearest-neighbor graph (k=5) (Weinreb et al., 2018). 544 

 545 

Treatment with Doxycycline. 546 

One-week old 3xtgβ5t mice were treated with a single i.p. injection of 0.004mg of Doxycycline 547 

(Sigma) diluted in Hank’s Balanced Salt Solution (Life Technologies), whereas older mice (four-548 

week and sixteen-week old) were treated with two i.p. injections of Doxycycline (2mg, each) on 549 

two consecutive days during which they were also exposed to drinking water supplemented with 550 

the drug (2 mg/mL in sucrose (5% w/v)). 551 

 552 

Droplet-based single-cell RNA sequencing 553 

Preparation of TEC suspensions for single-cell RNA-sequencing. Single thymic epithelial 554 

cell suspensions were obtained by enzymatic digestion using Liberase (Roche), Papain (Sigma) 555 

and DNase (Sigma) in PBS as described in (Kim and Serwold, 2019; Mayer et al., 2016). Prior 556 

to FAC-sorting, TEC were enriched for EpCAM-positivity using a magnetic cell separator 557 

(AutoMACS, Miltenyi), as described above. Enriched cells were then stained for the indicated 558 

cell surface antigens (Supplementary Table 3) in conjunction with TotalSeq-A oligonucleotide-559 

conjugated antibodies (BioLegend) to allow for barcoding and pooling of different TEC 560 

subpopulations and subsequently sorted into 4 subpopulations: ZsGreen+ cTEC, ZsGreen- 561 

cTEC, ZsGreen+ mTEC, and ZsGreen- mTEC (Supplementary Figure 8a). After sorting, the cell 562 

viability and concentration of each of the cell samples collected were measured using a 563 

Nexcelom Bioscience Cellometer K2 Fluorescent Viability Cell Counter (Nexcelom Bioscience). 564 

Droplet-based single-cell RNA-sequencing. Equal cell numbers were pooled from each of the 565 

samples, and a total of 30000 cells were loaded per well onto a Chromium Single Cell B Chip 566 

(10X Genomics) coupled with the Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 and 567 
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Chromium i7 Multiplex Kit (10X Genomics) for library preparation, according to the 568 

manufacturer’s instructions. In short, the cell suspension was mixed with the GEM 569 

Retrotranscription Master Mix and loaded onto well number 1 on the Chromium Chip B (10x 570 

Genomics). Wells 2 and 3 were loaded with the appropriate volumes of gel beads and 571 

partitioning oil, respectively, after which the Chromium Controller (10X Genomics) was used to 572 

generate nanoliter-scale Gel Beads-in-emulsion (GEMs) containing the single cells to be 573 

analysed. The fact that cell samples containing 6 different hashtag antibodies were pooled 574 

together allowed us to overload the 10X wells with 30000 cells per well, aiming for a recovery of 575 

approximately 12000 single cells (40%) per well. This also allowed us to overcome the resulting 576 

increase in doublet rate by subsequently eliminating from further analysis any cell barcode 577 

containing more than one single hashtag sequence. Incubation of the GEM suspension resulted 578 

in the simultaneous production of barcoded full-length cDNA from poly-adenylated mRNA as 579 

well as barcoded DNA from the cell surface protein-bound TotalSeqA antibodies inside each 580 

individual GEM. Fragmentation of the GEMs allowed for the recovery and clean-up of the 581 

pooled fractions using silane magnetic beads. Recovered DNA was then amplified, and cDNA 582 

products were separated from the Antibody-Derived Tags (ADT) and Hashtag oligonucleotides 583 

(HTO) by size selection. The amplified full-length cDNA generated from polyadenylated mRNA 584 

were fragmented enzymatically and size selection was used to optimise amplicon size for the 585 

generation of 3’ libraries. Library construction was achieved by adding P5, P7, a sample index, 586 

and TruSeq Read 2 (read 2 primer sequence) via End Repair, A-tailing, Adaptor Ligation, and 587 

PCR. Separately, ADT and HTO library generation was achieved through the addition of P5, P7, 588 

a sample index, and TruSeq Read 2 (read 2 primer sequence) by PCR. Sequences of the 589 

primers designed for this purpose can be found in Supplementary Tables 4 and 5. 590 

Library pooling, quality control, and sequencing. Library quality was assessed using 591 

capillary electrophoresis on a Fragment Analyzer (AATI).  The concentration of each library was 592 

measured using a Qubit dsDNA HS Assay Kit (ThermoFisher Scientific), and this information 593 
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was then used to dilute each library to a 2nM final concentration. Finally, the different libraries 594 

corresponding to each sample set were pooled as follows: 85% cDNA + 10% ADT + 5% HTO, 595 

after which pooled libraries were sequenced on an Illumina NovaSeq 6000 using the NovaSeq 596 

6000 S2 Reagent Kit (100 cycles) (Illumina). 597 

 598 

Droplet-based single-cell RNA sequencing processing, de-multiplexing and quality control 599 

Multiplexed 10X scRNA-seq libraries were aligned, deduplicated and quantified using Cellranger 600 

v3.1.0. Gene expression matrices of genes versus cells were generated separately for each 601 

sample (i.e. each 10X Chromium chip well), as well as those for hashtag oligo (HTO) and 602 

antibody (ADT) libraries. Cells were called using emptyDrops, with a background UMI threshold 603 

of 100 (Lun et al., 2019). Experimental samples, i.e. replicates and ZsGreen-fractions, were 604 

demultiplexed using the assigned HTO for the respective sample (Stoeckius et al., 2018). 605 

Specifically, within each sample, the HTO fragment counts were normalised across cell 606 

barcodes for all relevant HTOs using counts per million (CPM). These CPMs were used to 607 

cluster cell barcodes using k-means with the expected number of singlet clusters, i.e. unique 608 

HTOs in the respective sample. To estimate a background null distribution for each HTO within 609 

a sample, we then selected the k-means partition with the highest average CPM for the HTO 610 

and excluded these cells, along with the top 0.5% of cells with the highest counts for the 611 

respective HTO. We then fitted a negative binomial distribution to the HTO counts for the 612 

remaining cells to estimate a threshold (q) at the 99th quantile. All cell barcodes with counts ≥ q 613 

were assigned this HTO. This procedure was repeated for each HTO within a sample. Cell 614 

barcodes that were assigned to a single HTO were called as ‘Singlets’, whilst cell barcodes 615 

assigned to > 1 HTO were called as ‘Multiplets’. Finally, cell barcodes with insufficient coverage 616 

across HTOs were called as ‘Dropouts’ (Supplementary Figure 8b). Only ‘Singlets’ were 617 

retained for normalisation and downstream analyses. 618 
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Poor quality cells barcodes were removed based on high mitochondrial content, defined within 619 

each sample as twice the median absolute deviation from the median mitochondrial fraction. 620 

Cell barcodes with low coverage (< 1000 UMIs detected) were also removed prior to 621 

normalisation. Finally, deconvolution-estimated size factors were calculated to normalise across 622 

single cells, then log10 transformed with a pseudocount (+1), as implemented in scran (Lun et 623 

al., 2016). 624 

 625 

Droplet single-cell RNA sequencing clustering and annotation 626 

Highly variable genes (HVGs) were defined across droplet single cells based on the estimated 627 

fit across cells between the mean log normalised counts and variance, at an FDR of 1x10-7 628 

(Brennecke et al., 2013). The first 20 principal components (PCs) across HVGs were calculated, 629 

and used as input to construct an SNN-graph (k=31) across all single cells. These were then 630 

clustered into closely connected communities using the Walktrap algorithm (Pons and Latapy, 631 

2005). Clusters were annotated based on the co-expression of TEC subtype marker genes 632 

(Supplementary Figures 8 & 9). Droplet single cells were visualised in reduced dimension with 633 

the first 20 PCs as input using uniform manifold approximation and projection (UMAP) (McInnes 634 

et al., 2018), with k=31 nearest neighbours and a minimum distance=0.3. 635 

 636 

RNA velocity 637 

RNA velocity estimates the future state of single-cells based on a mechanistic model of 638 

transcription to identify groups of genes that are actively up-regulated, or down-regulated, based 639 

on the ratio of splice/unspliced sequencing reads (La Manno et al., 2018). We calculated the 640 

velocity of each single cell across single-droplet RNA-sequencing experiments using the 641 

stochastic model implemented in scvelo (Bergen et al., 2019). Velocity vectors were overlaid on 642 

a UMAP representation constructed using scanpy (Wolf et al., 2018). 643 

 644 
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Diffusion map and pseudotime inference 645 

Diffusion maps and diffusion pseudotime trajectories were constructed using a matrix of log-646 

transformed size-factor normalized gene expression values across single cells as input, with 647 

highly variable genes to define the diffusion components, implemented in the Bioconductor 648 

package destiny (Angerer et al., 2016; Haghverdi et al., 2016). Diffusion maps for both ageing 649 

TEC and embryonic TEC used k=20. The ZsGreen experimental cells used k=21 and the first 650 

20 principal components as the input to the diffusion map estimation. Diffusion pseudotime 651 

distances were computed from an index cell defined in each analysis. 652 

 653 

Cell type classification - MARS-seq from Bornstein et al. 654 

The MARS-seq counts matrix from (Bornstein et al., 2018) were downloaded from Gene 655 

Expression Omnibus (GSE103967), and normalised using deconvolution size factors (Lun et al., 656 

2016), after removing cells with low sequencing coverage (<1000 UMIs, sparsity ≥98%). HVGs 657 

were detected, as described above, across single cells from all WT mice, the embryonic time 658 

points E14.5 & E18.5, 6 day old WT mouse, as well as the Aire and Pou2f knock-out mice at an 659 

FDR 0.1%. The log-transformed normalised counts for these HVGs were used as input to PCA, 660 

and the first 10 PCs were used to construct an SNN-graph (k=20). Clusters of single cells were 661 

defined based on a random walk on this graph (Pons and Latapy, 2005). A total of 9 clusters 662 

were detected. 663 

To map these cells across we constructed a kNN classifier (k=5) implemented in the R package 664 

FNN, trained on the ageing single-cell data. We first took the set of commonly expressed genes 665 

between our study and those of Bornstein et al., and performed a per-cell cosine normalisation 666 

on each data set. These data were used as input to classify each single cell into an ageing 667 

cluster (Supplementary Figure 3d).  668 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.973008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.973008
http://creativecommons.org/licenses/by/4.0/


30 

 669 

Age-dependent cluster abundance modelling 670 

Numbers of each TEC subtype or cluster were counted per replicate and at each age. Cell 671 

counts were modelled using a linear negative binomial model, with the total number of cells 672 

captured per replicate as a model weight, implemented in the Bioconductor package edgeR 673 

(McCarthy et al., 2012; Robinson et al., 2010). For the ZsGreen experiment we down-sampled 674 

the counts matrix to rebalance the ZsGreen+ and ZsGreen- fractions to equal proportions. We 675 

then tested the hypothesis that the interaction between age and ZsGreen fraction was different 676 

from 1. This amounts to comparing the gradients of the two regression slopes in ZsGreen+ 677 

versus ZsGreen- cells across ages. Statistically significant age-dependent changes were tested 678 

in these models using an empirical Bayes quasi-likelihood F-test (Chen et al., 2016). 679 

 680 

Tissue and tissue restricted antigen gene definition 681 

Tissue restricted antigen (TRA) genes were defined based on the specificity of their expression 682 

across a broad range of mouse tissues using the FANTOM5 cap analysis of gene expression 683 

with sequencing (CAGE-seq) data that are publicly available (http://fantom.gsc.riken.jp/data/). 684 

Tissue samples were grouped into 27 broad groups based on the annotation data 685 

(Supplementary Table 6). For each protein-coding gene (based on Ensembl identifier), the per-686 

tissue expression level was defined as the maximum run length encoding (RLE) normalised 687 

expression level. For genes with multiple transcriptional start sites, the mean RLE expression 688 

across isoforms was first taken. The specificity of tissue expression for each gene across 689 

tissues (n) was then calculated using the tau-index (τ) (Yanai et al., 2005): 690 

𝜏 =
∑ (1 − 𝑥)̂

𝑛 − 1
 

where 𝑥̂ =
𝑥𝑖

𝑚𝑎𝑥(𝑥𝑖)
. 691 
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Genes with τ ≥ 0.8 were defined as TRAs, whilst those with τ ≤ 0.4 were defined as 692 

constitutively expressed; all remaining genes were given the classification ‘miscellaneous’. Each 693 

TRA gene was assigned to one tissue, the one in which it was maximally expressed. Aire-694 

dependent and -independent genes were defined using the classification from Sansom et al. 695 

(Sansom et al., 2014). 696 

 697 

Age-dependent tissue-representation modelling 698 

The age-dependence of tissue-representation across single mTEC was tested using a negative 699 

binomial linear model. Specifically for each single mTEC the number of TRA genes with log 700 

expression > 0 was counted within each assigned tissue (see above). These single-cell tissue 701 

counts were aggregated across single mTEC at each time point, and for each replicate mouse, 702 

to yield ‘tissue counts’. Aggregated ‘tissue counts’ were then used as the dependent variable in 703 

a negative binomial linear model implemented in the Bioconductor package edgeR. Statistically 704 

significant age-dependent changes were defined at an FDR of 1%. 705 

 706 

Differential gene expression testing 707 

All differential gene expression testing was performed in a linear model framework, 708 

implemented in the Bioconductor package limma. To test for age-dependent gene expression 709 

changes, log-normalized gene expression values for each gene was regressed on log2(age) 710 

and adjusted for sequencing depth for each single cell using deconvolution size factors 711 

estimated using scran. 712 

 713 

Gene signature and functional enrichment testing 714 
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Marker genes or differentially expressed genes (throughout ageing) were tested to identify 715 

enriched pathways, specifically those from MSigDB hallmark genesets or Reactome pathways. 716 

Marker genes were identified as those genes with a 4-fold enrichment in the subtype relative to 717 

all other subtypes (adjusted p < 0.01). MSigDB hallmark (Liberzon et al., 2015; Subramanian et 718 

al., 2005) and Reactome pathway (Fabregat et al., 2018) enrichments for markers of each 719 

subtype were computed using the clusterProfiler package (Yu et al., 2012). For age-dependent 720 

differentially expressed genes, gene set enrichment analysis was used (GSEA) to identify 721 

enriched MSigDB hallmark genesets. These results were categorised based on the expected 722 

change in expression due to ageing across multiple tissues and species (Benayoun et al., 723 

2019). 724 

 725 

Age-dependent modelling of thymocyte negative selection 726 

Age-dependent variation in thymocyte negative selection was modelled using a negative 727 

binomial GLM implemented in the Bioconductor package edgeR. Cell counts were regressed on 728 

age, using the input parent population for each replicate as a model offset to control for variation 729 

in the preceding selected population. Across populations, multiple testing was accounted for 730 

using the false discovery rate procedure (Benjamini and Hochberg, 1995), where a statistically 731 

significant relationship with age was set at 1%. 732 

 733 

Code and data availability 734 

All code used to process data and perform analyses are available from 735 

https://github.com/WTSA-Homunculus/Ageing2019. All sequence data, counts matrices and 736 

meta-data are available from ArrayExpress with accession numbers E-MTAB-8560 (ageing 737 

thymus) and E-MTAB-8737 (lineage traced thymus). TCR sequencing data is available from 738 

SRA (PRJNA551022). 739 

 740 
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Supplementary Figure 2: Experimental investigation of the ageing thymus.  (a)  FACS 

gating strategy for isolation of TEC sort types. (b) Filtering strategy to identify high-quality 

TEC libraries. (c-f) Fractions of libraries filtered out based on sparsity threshold (c), the 

fraction of reads from mitochondrial genes expressed (d), library size thresholds (e), or 

ERCC-spike in RNA % expression threshold (f). (g) Sparsity in each single cell cluster by 

age. (h) Reassignment of libraries to clusters based on downsampling fraction. Excessive 

downsampling leads to an accumulation of the low-diversity library. 
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Supplementary Figure 3: Comparison of Bornstein et al. (Bornstein et al. 2018) single-cell 

transcriptomes to the TEC subtypes defined in this study. (a) tSNE representation of 

Bornstein et al. single-cell TEC libraries. (b) Nine clusters identified from Bornstein et al. 

single-cell data overlaid on tSNE visualisation. (c) Expression heatmap of marker genes 

acquired from Bornstein et al. clusters. (d) Comparison of Bornstein et al. single-cell clusters 

to ageing subtypes from this study.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.973008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.973008
http://creativecommons.org/licenses/by/4.0/


 
Supplementary Figure 4: Relationship between classical FAC sort-types and 

transcriptionally-defined single-cell subtypes. (a) Observed percentages (%) of TEC based 

on pre-scoring into classical sort-types. (b) Estimated contributions of each FAC sort type to 

each single cell subtype through age. Each coloured dot represents data from an 

independent experiment.    
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Supplementary figure 5: MSigDB (a) and Reactome (b) pathways enriched for expression 

of marker genes for each single cell subtype. The X-axis shows the fraction of marker genes 

that overlap the specified pathway, the size of the dot represents the number of marker 

genes in the enriched pathway, and the colour of the dot represents the p-value adjusted for 

multiple tests. 
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Supplementary Figure 6: Differential expression of genes throughout ageing. Each panel 

shows the average expression and the log2 fold-change with age for each single cell 

subtype. Significantly altered genes are shown in green and the total number of up- or down-

regulated genes per subtype are shown in the green font along the y-axis. The top 5 up- or 

down-regulated genes are labelled, where present. 
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Supplementary Figure 7: Details of tissue-restricted antigen (TRA) expression throughout 

ageing. (a) A volcano plot of differential TRA abundance testing, showing the consistent 

down-regulation of TRAs in mature mTEC. (b-i) Data for clusters 1 (Post-AIRE), 2 

(Intertypical TEC), 6 (proliferating TEC), 7 (Mature mTEC) are shown as differently-coloured 

boxes in boxplots. The number (#) of TRAs (b), of housekeeping genes (c), of Aire-

dependent TRAs (d) and of Aire-enhanced TRAs (e) expressed plotted against single-cell 

subtype and age of the mouse. The number of TRA genes detected from thymic (f), 

pancreas (g), tongue (h) and macrophage (i) specific groups by age and single-cell subtype. 
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detection 
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oligos (HTO). Coloured bars denotes the number of cells in each sample (Chromium chip 

well), where either no (Dropout), multiple (Multiplet) or a single HTO was detected in a 

droplet. (c) The distribution of singlet cells across samples and experimental conditions (age 

and ZsGreen fraction). (d) A mapping of single-cell clusters onto equivalent ageing clusters. 

(e) Uniform manifold approximation and projection (UMAP). Points are single cells coloured 

by the assigned TEC subtype. Cells are split into panels based on the age of the mouse at 

the time of doxycycline treatment. (f) A UMAP split by mouse age showing the estimated 

deconvolution size factors. The boxplot on the right shows the distribution of size factors 

across single-cell clusters. (g) The number of detected genes (log expression > 0) in single 

cells overlaid on a UMAP and split by age. The boxplots on the right-hand side show the 

distributions of the number of detected genes for each single cell cluster. 
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Supplementary Figure 9: Marker gene expression profiles across TEC clusters from β-5t 

lineage-traced single cells. Boxplots showing the distribution of marker gene expression (y-

axis) for TEC subtypes across TEC clusters (x-axis). Boxes are coloured by the inferred TEC 

subtype to which they belong. 
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Supplementary Figure 10: UMAP visualisation of TEC sub-clusters across all single-cells 

from lineage-traced thymi. Each panel is coloured according to the TEC subtype annotation 

and corresponds to Figure 4a. 
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Supplementary Figure 11: Boxplot showing the proportion of TEC in each subtype cluster 

which express key genes linked to thymic involution and TEC identity: (a) Psmb11 (β5-t), (b) 

Ly6a (Sca1), (c) Bmp4, (d) Inhba (Activin A), (e) Fst (follistatin) and (f) Acvr2a (Activin A 

receptor 2a). Boxplots are coloured by age of dox-treatment administered to 3xtgβ5t mice. 
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Supplementary Figure 12: T cell receptor repertoire simulations. (a) A schematic of T cell 

receptor rearrangements used to design simulations. (b) Proportions of valid TCRs (y-axis) 
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simulated at different sample sizes (x-axis). (c-f) Proportions of TCR alpha (c & d) and beta 

(e & f) chain segments from simulated TCRs at different sample sizes. (g-h) TCR repertoire 

diversity defined as the Shannon entropy across clonotypes in each of 10 (g) and 3 (h) 

independent TCR simulations. Entropy was calculated in each run using only the valid 

TCRs. 

 

 

 

 

 

 
 

Supplementary Figure 13: Consensus clustering of ageing single-cell TEC libraries. The 

heatmap shows the fraction of times that the libraries are co-clustered based on a variety of 

transformations, clustering methods and the number of features (Methods). The heatmap 

shows that the achieved clustering is robust to these different clustering methods.  
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