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Abstract

Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell
death and compromised organ function. This is first observed in the thymus, the primary
lymphoid organ that generates and selects T cells. However, the molecular and cellular
mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse
ageing leads to less efficient T cell selection, decreased self-antigen representation and
increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and
lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the
function of mature thymic epithelial cells is compromised only modestly. Specifically, an early-
life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished

at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance
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of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs

the core immunological functions of the thymus.

Introduction

Ageing compromises the function of vital organs via alterations of cell type composition and
function (L6pez-Otin et al., 2013). The ageing process is characterised by an upregulation of
immune system associated pathways, referred to as inflamm-ageing, which is a conserved
feature across tissues and species (Benayoun et al., 2019). Ageing of the immune system first
manifests as a dramatic involution of the thymus. This is the primary lymphoid organ that
generates and selects a stock of immunocompetent T cells displaying an antigen receptor
repertoire purged of pathogenic “Self” specificities, a process known as negative selection, yet
still able to react to injurious “Non-Self’ antigens (Palmer, 2013). The thymus is composed of
two morphological compartments that convey different functions: development of thymocytes
and negative selection against self-reactive antigens are both initiated in the cortex before being
completed in the medulla (Abramson and Anderson, 2017; Klein et al., 2014). Both
compartments are composed of a specialized stromal microenvironment dominated by thymic
epithelial cells (TECs). Negative selection is facilitated by promiscuous gene expression (PGE)
in TEC, especially so in medullary TEC (mTEC) that express the autoimmune regulator, AIRE
(Sansom et al., 2014). This selection ultimately leads to a diverse but self-tolerant T cell

receptor (TCR) repertoire.

Thymic size is already compromised in humans by the second year of life, decreases further
during puberty, and continuously declines thereafter (Kumar et al., 2018; Linton and Dorshkind,
2004; Palmer, 2013). With this reduced tissue mass, cell numbers for both lymphoid and
epithelial cell compartments decline. This is paralleled by an altered cellular organization of the

parenchyma, and the accumulation of fibrotic and fatty changes, culminating in the organ’s
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transformation into adipose tissue (Shanley et al., 2009). Over ageing, the output of naive T
cells is reduced and the peripheral lymphocyte pool displays a progressively altered TCR
repertoire (Egorov et al., 2018; Thome et al., 2016). What remains unknown, however, is
whether stromal cell states and subpopulations change during ageing and, if so, how these

changes impact on thymic TCR selection.

To resolve the progression of thymic structural and functional decline we studied TEC using
single-cell transcriptomics across the first year of mouse life. We investigated how known and
previously unrecognized TEC subpopulations contribute to senescence of the stromal scaffold
and correspond to alterations of thymocyte selection and maturation. Our results reveal
transcriptional signatures in mature TEC subtypes that recode these cells’ functions during
ageing. Unexpectedly, we discovered that the loss and quiescence of TEC progenitors are
major factors underlying thymus involution. These findings have consequences for targeted

thymic regeneration and the preservation of central immune tolerance.
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Figure 1: The decline of thymic cellularity and immune function with age

(a) Age-dependent changes in thymic architecture, as shown by representative H&E staining of
thymic sections. Scale bars represent 150um. Medullary islands stain as light purple while
cortical regions stain as dark purple. (b) Total and (c) TEC cellularity changes in the involuting
mouse thymus. Error bars represent mean +/- standard error (5 mice per age). (d) Thymocyte
negative selection declines with age: (Left) Schematic showing the progression of T cell
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73  development and Wave selection stages in the thymus that were investigated; (Right) Volcano
74  plot showing the differential abundance of each of these thymocyte negative selection
75  populations over age. Populations that are statistically significantly altered with age (FDR 1%)
76 are labelled and highlighted in red. (e-f) The distribution of log-fold changes showing the
77  alterations in TCR J segment (e) and V segment (f) usage with (log,) age. Log fold changes +/-
78  99% confidence intervals are plotted, with differentially abundant segments coloured in orange.
79 (g) Mature thymocyte TCR repertoire diversity changes with age. The y-axis indicates the
80  Shannon entropy of M2 thymocyte TCR CDR3 clonotypes at each age (n=4-7 mice per time
81  point), derived from TCR-sequencing of ~15,000 cells per sample. P-value has been calculated
82 from a linear model that regresses Shannon entropy on log age. (h) The number of non-
83 templated nucleotide insertions detected by TCR sequencing increases with age. The displayed
84  P-value is from a linear model that regresses mean number of inserted nucleotides on log age.
85
86 RESULTS
87  Thymus function is progressively compromised by age
88 Thymus morphological changes were evident by 4 weeks of age in female C57BL/6 mice,
89 including cortical thinning and the coalescence of medullary islands (Figure 1a). These gross
90 tissue changes coincided with changes in thymocyte and TEC cellularity (Figure 1b,c), as noted
91  previously (Gray et al., 2006; Manley et al., 2011). Total thymic and TEC cellularity halved
92 between 4 and 16 weeks of age (Figure 1b,c).
93
94  Given this sharp decline in TEC cellularity, we investigated whether the primary function of the
95 thymus was compromised. Using flow cytometry we profiled developing thymocytes undergoing
96 negative selection (Methods; Supplementary Figure 1a), a process that can be partitioned into
97 four key stages: (1) double positive thymocytes (Wave 1la: Helios+PD-1+), (2) immature
98 CD4+/CD8+ single positive (SP) thymocytes (Wave 1b: Helios+PD-1+), (3) semi-mature
99 CD4+/CD8+ SP thymocytes (Wave 2a: Helios+) and, (4) mature CD4+/CD8+ SP thymocytes
100 (Wave 2b: Helios+; Figure 1d, left panel) (Daley and Smith, 2013). Across these control stages
101 the frequency of negatively selected thymocytes varied with age (Figure 1d, right panel).
102  Specifically, negative selection of MHC class Il restricted (i.e. CD4+ SP) thymocytes decreased

103  after the first week of life (Wave 1b) concomitant with an increased removal of MHC class |

104  restricted (CD8+ SP) cells (Figure 1d, Supplementary Figure 1b,c). In contrast, the proportions
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105 of both CD4+ and CD8+ semi-mature thymocytes undergoing negative selection in the medulla
106  diminished with age (Figure 1d).

107

108 Impaired negative selection in the medulla undermines the production of a self-tolerant TCR
109 repertoire. Using TCR-targeted bulk sequencing of the most mature CD4+ SP thymocytes
110 (denoted ‘M2’) (James et al., 2018), we observed that 1 week old mice exhibited shorter CDR3
111 lengths and a lower proportion of non-productive TCR a and B chain sequences than older mice
112  (Supplementary Figure 1d,e). V(D)J segment usage is altered by age, which has the potential to
113 reshape the antigen specificity repertoire of newly generated T cells. Approximately one-third of
114 B chain V or J segments showed an age-dependent use (38% and 29%, respectively),
115 illustrating the robustness of TCR V(D)J usage to thymic involution and the decline in thymocyte
116 negative selection. Diversity of the TCR repertoire amongst the most mature thymocytes,
117  however, increased significantly over age (Figure 1g), along with the incorporation of more non-
118 templated nucleotides (Figure 1h). The latter is inversely correlated with the post-puberty
119 decline in the expression of thymocyte terminal deoxynucleotidyl transferase (Cherrier et al.,
120  2002), suggesting an ageing-altered mechanism that is not intrinsic to the developing T cells.
121  Taken together, these dynamic changes indicate that the principal immune functions of the
122  thymus are progressively compromised with involution.

123
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124  FEigure 2: Thymic stromal remodelling during ageing.
125 (a) A schematic showing the experimental design and FACS phenotypes of sorted cells for
126  single-cell RNA-sequencing. Right panel shows cell composition fluctuations as a relative



https://doi.org/10.1101/2020.03.02.973008
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.973008; this version posted March 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

127  fraction of all EpCAM+ TEC with respect to the TEC subsets investigated. Remaining EpCAM+
128 cells not FAC-sorted are represented in the EpCAM+ population. (b) A SPRING-layout of the
129  shared nearest-neighbour graph of single TEC, derived from scRNA-seq transcriptional profiles.
130 Graph nodes represent single cells and edges represent shared k-nearest neighbours (k=5).
131 Cells are coloured by a clustering that joins highly connected networks of cells based on a
132 random walk (Walktrap (Pons and Latapy, 2005)). Clusters are annotated based on
133 comparisons to known TEC subsets and stereotypical expression profiles (Table 1). (c) A
134 heatmap of marker genes for TEC subtypes identified from single-cell transcriptome profiling
135 annotated as in (b). (d) Enrichment of MSigDB biological pathways with age in mature cTEC,
136 intertypical TEC and mature mTEC, annotated as in (b). Bars denote normalised enrichment
137  score (NES) for significant pathways (FDR 5%), with enrichments coloured by cell type. Age-
138 related alterations are shown in the context of pathways that are up-regulated (left), down-
139 regulated (right) or do not change (middle) across multiple tissues and species (Benayoun et al.,
140 2019). (e) A ribbon-plot demonstrating the compositional changes in TEC subtypes across
141 ages, as an estimated fraction of all TEC (EpCAM+). Colours indicating each subtype are
142  shown above the plot with unsorted TEC indicated in white. (f) A volcano-plot of a negative
143  binomial generalised linear model (GLM) showing linear (left) and quadratic (right) changes in
144  cell cluster abundance as a function of age. X-axis denotes the change (A) in cellularity per
145 week, and the Y-axis shows the -log;o false discovery rate (FDR). Subtypes with statistical
146  evidence of abundance changes (FDR 1%) are labelled and shown as red points.

147

148  Ageing remodels the thymic stromal epithelium

149 To determine whether the different TEC subpopulations were indiscriminately affected by
150 ageing, we identified and analysed four major mouse TEC (CD45'EpCAM") subpopulations at 5
151 postnatal ages using flow cytometry (Supplementary Table 1) (Gray et al., 2002; Wada et al.,
152  2011): cortical TEC (cTEC), immature mTEC (expressing low cell surface concentrations of
153  MHCII, designated mTEC'"), mature mTEC (mTEC") and terminally differentiated mTEC (i.e.
154 mTEC" positive for desmoglein expression, Dsg3+ TEC) (Figure 2a & Supplementary Figure
155 2a). Following index-sorting, SMART-Seg2 single-cell RNA-sequencing, and quality control
156  (Supplementary Figure 2b-h), we acquired 2,327 single-cell transcriptomes, evenly distributed
157  across the 4 cytometrically-defined subpopulations and the 5 ages.

158

159  Our analysis revealed 9 TEC subtypes (Figure 2b,c), thus providing a greater richness of
160 epithelial states than previously reported (Bornstein et al., 2018) (Supplementary Figure 3) and
161 a greater diversity than the 4 phenotypes cytometrically selected in this study (Supplementary

162  Figure 4a-b). The individual subtypes were distinguished by the expression of marker genes
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163  (Figure 2c, and Supplementary Table 2), including some that are well established (post-AIRE
164 MTEC: Krt80, Spink5; Mature cTEC: Prss16, Cxcl12; mature mTEC: Aire, Cd52) and others that
165 have been described more recently (Tuft-like mTEC: Avil, Trpm5) (Bornstein et al., 2018; Miller
166 et al., 2018). Importantly, each TEC subtype, as defined by its single-cell transcriptome (Figure
167 2b), did not segregate exclusively with a single cytometrically defined TEC population
168 (Supplementary Figure 4a, Table 1). For example, a subtype that we termed intertypical TEC
169 (Ccl21a, Krt5; Table 1), and which was evident at all postnatal time-points, was composed of
170 cells from each of the four cytometrically defined TEC subpopulations. Hereafter, for clarity, we
171  refer to transcriptomically-defined TEC clusters as subtypes and cytometrically-specified TEC
172  as subpopulations.

173

174  Four novel TEC subtypes were identified (Table 1): perinatal cTEC (marked by the expression
175  of Syngrl, Gperl), intertypical TEC (Ccl21a, Krt5) and two rare subtypes, termed neural TEC
176 (nTEC: Sod3, Dpt) and structural TEC (STEC, Cd177, Car8) based on their enrichment of
177  neurotransmitter and extracellular matrix expression signatures (e.g. Collal, Dcn, Fbnl),
178 respectively (Supplementary Figure 5). Specifically, nTEC both lacked expression of Rest (RE1
179 silencing transcription factor), a transcriptional repressor that is typically expressed in all non-
180 neuronal cells (Nechiporuk et al., 2016), and expressed genes silenced by REST (Snap25,
181 Chga, Syp). Perinatal cTEC were derived almost exclusively from the cytometric cTEC
182  population and expressed B-5t (encoded by Psmb11), which is both a component of the cortical
183 thymoproteosome and a marker of TEC progenitors (Mayer et al., 2016; Ohigashi et al., 2013).
184 In addition to sharing many of the classical cTEC markers (Figure 2c¢; Prss16, Cxcl12), perinatal
185 cTEC were characterised by a highly proliferative transcriptional signature (Supplementary
186  Figure 5). In contrast, intertypical TEC were derived from both cortical and medullary
187  subpopulations, and expressed gene markers associated with a progenitor-like TEC" phenotype

188 (Table 1).
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To investigate how involution affected expression changes within each subtype as well as

relative changes in the abundance of individual subtypes, we identified genes that changed

expression in an age-dependent manner (Figure 2d, Supplementary Figure 6) and modelled
TEC subtype abundance as a function of age (Figure 2¢,f). The cellular abundance of most TEC
subtypes (6 of 9) varied significantly over age (Figure 2e,f; Methods). For example, perinatal
CTEC represented approximately one-third of all TEC at week 1 (Figure 2e) but contributed less
than 1% three weeks later. Conversely, the proportion of mature cTEC and intertypical TEC
increased over time reaching ~30% and ~60% of all TEC, respectively, by 1 year.

Table 1: Single-cell defined TEC subtypes and known concordant phenotypes.

TEC subtype Locations Populations Reference

nTEC Unknown" NnTEC (Wiilfing et al., 2018)
SsTEC Unknown'

Perinatal cTEC Cortex

Mature cTEC Cortex CTEC (Bornstein et al., 2018)
Intertypical TEC Assumed:CMJ*/Cortex  mTEC | (Bornstein et al., 2018)

PDPN+ CCL21+ TEC
MHCII® TPA° TEC

SCAl+ PLET1+ TEC

SCA1" 06 integrin+ TEC

(Onder et al., 2015)
(Michel et al., 2017)
(Ulyanchenko et al,
2016)

(Lepletier et al., 2019)

Proliferating TEC Cortex & Medulla mTEC Il (Bornstein et al., 2018)
Mature mTEC Medulla mTEC Il (Bornstein et al., 2018)
Post-AIRE mTEC Medulla mTEC IlI (Bornstein et al., 2018)

Post-AIRE (Nishikawa et al., 2010)

10
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Tuft-like TEC Medulla mTEC IV (Bornstein et al., 2018)

(Miller et al., 2018)

tassumed cortex in adult. “Corticomedullary junction

200

201  Gene expression signatures that are characteristic of ageing across diverse organs and species
202 have been reported (Benayoun et al., 2019). Many of these signatures were also evident in the
203 transcriptomes of individual ageing TEC subtypes (Figure 2d). For example, as they aged,
204 mature mTEC genes involved in inflammatory signalling, apoptosis and increased KRAS
205 signalling were up-regulated, whereas genes involved in cholesterol homeostasis and oxidative
206  phosphorylation were down-regulated (Figure 2d, left and right panels, respectively). In contrast,
207 intertypical TEC displayed the opposite pattern (Figure 2d, left panel, dark green bars): their
208 ageing-related decrease in cytokine signalling pathways contrasted with the stronger
209 inflammatory signature characteristic of senescent tissues, a.k.a. inflamm-ageing (Franceschi et
210 al., 2006). In summary, mouse thymus involution is mirrored by alterations in both TEC subtype
211 composition and transcriptional states. The transcriptional signature of inflamm-ageing was
212  restricted to mature cTEC and mTEC (Supplementary Figure 6) and altered subtype frequency

213  was most striking for intertypical TEC and perinatal cTEC.

214 A principal function of mTEC is the promiscuous expression of genes encoding self-antigen and
215 this was also altered across age (Supplementary Figure 7). In general, mRNA abundance of
216  AIRE-dependent and -independent tissue restricted antigen-genes (TRAs) declined with age
217 (Supplementary Figure 7a-f). Transcripts of eye-, pancreas- and tongue-restricted antigens
218 displayed the most striking reduction in expression (Supplementary Figure 7g-h). Notable
219  exceptions to this general pattern of reduced TRA expression were macrophage-associated
220 transcripts involved in inflammatory cytokine signalling, as noted above, whose expression

221 increased over age (Figure 2d & Supplementary Figure 7i). PGE of AIRE-controlled genes was

11
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222 diminished at later ages, even when Aire transcripts persisted, suggesting a mechanism of
223  transcription that is reliant on factors other than AIRE abundance. Therefore, PGE in mature

224  mTEC, and thus their capacity to represent “Self”, is increasingly compromised with age.
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226  Figure 3. Intertypical TEC and medullary TEC are derived from a B5t+ progenitor. (a)
227  Diffusion maps illustrating the transcriptional continuity between cortical, medullary and
228 intertypical TEC across mouse age (top), and inferred diffusion pseudotime (DPT; bottom). (b) A
229 schematic representing the transgenic Dox-inducible ZsGreen (ZsG) lineage tracing of B5t-
230 expressing mTEC precursors (top), and lineage tracing experiment in 1 week old thymi
231  (bottom). The green arrow denotes the interval post-Dox treatment. (c) A Fruchterman-Reingold
232 layout of the SNN-graph of FAC-sorted ZsG+ mTEC from 1 week old mice, 48 hours-post Dox
233 treatment. Graph nodes represent cells coloured by a clustering of closely connected cells. Inset
234  panels illustrate the expression of key medullary (Aire, Cd80) and cortical (Cxcl12, Prssl16)
235 marker genes. (d) A B5t-expressing precursor is the common origin of intertypical TEC and
236 mature mTEC as shown by random forest classification of ZsG+ TEC. (e) A joint diffusion map
237  between single TEC at week 1 (left panel), and ZsG+ TEC (right panel). Points represent single
238 cells, and are coloured by their assigned cluster as in Figure 2 (week 1 TEC) or Figure 3d
239  (ZsG+ TEC).

240

241  Ageing compromises the differentiation of intertypical TEC into mature mTEC

242  Our newly described intertypical TEC subtype exhibits a transcriptional signature that includes
243  marker genes for both mature cTEC and mature mTEC, as well as previously described mTEC
244 progenitors (Supplementary Table 2). Furthermore, based on their position in a diffusion map
245  between mature TEC states (Figure 3a), we hypothesised that these cells represent a TEC
246  progenitor state. Mature mTEC are derived from progenitor cells located at the cortico-medullary
247  junction which express -5t (encoded by Psmb11) (Mayer et al., 2016; Ohigashi et al., 2013). To
248  experimentally investigate whether intertypical and mature TEC share a common progenitor, we
249 lineage traced the progeny of B-5t+ TEC using a triple transgenic mouse (denoted 3xtg™") with a
250 doxycycline-inducible fluorescent reporter, ZsGreen (ZsG), under the control of the Psmbll
251  promoter (Figure 3b; (Mayer et al.,, 2016; Ohigashi et al., 2013)). Forty-eight hours after
252  doxycycline treatment, we isolated ZsG+ mTEC (Ly51-UEA1+CD86-) from a 1 week old mouse
253 (Figure 3b) and profiled the traced cells using SMART-Seq2 scRNA-sequencing before
254  comparing them with our reference atlas (Figure 3c-d). This revealed ZsG+ cells to be highly
255  enriched for mature mTEC and intertypical TEC subtypes (Figure 3d-e) consistent with
256 intertypical TEC and mature mTEC being derived from a common, B-5t+, progenitor, and with
257 intertypical TEC including cells that have precursor potential to differentiate into mTEC.

258
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264  Figure 4. Ageing restricts the differentiation of intertypical TEC into mature mTEC. (a)
265 RNA velocity estimates overlaid on a uniform manifold approximation and projection (UMAP) of
266  all single cells across all ages derived from 3xtg® mice. Cells are coloured by annotated
267  clusters (Supplementary Figure 8) defined using a random-walk on an SNN-graph (Methods).
268  Annotations were assigned based on the co-expression of key marker genes (Supplementary
269  Figures 9 & 10). Inset panel: schematic representation of ZsG lineage tracing of TEC across
270  mouse ages. Paired colour arrows denote the time and age of doxycycline treatment. Numbers
271 above the arrows represent the age of mice at the time of single-cell measurements. (b)
272  Differential abundance testing of TEC clusters from (a) across age and between lineage tracing
273  fractions. The volcano plot shows the log fold change (LFC; x-axis) against -logi, FDR (y-axis)
274  of the interaction between lineage fraction and age. TEC clusters that have significantly different
275 changes in the ZsG+ compared to ZsG- fraction over age (FDR 5%) are coloured in red and
276 labelled. Positive log-fold changes represent a higher rate of change over age in the ZsG+
277  fraction, whilst negative log-fold changes represent a higher rate of change in the ZsG- fraction.
278  (c¢) Individual best-fit line plots show the sub-cluster frequency (y-axis) at each dox-treatment
279 age (x-axis), grouped and coloured by ZsG fraction. The shaded band represents the linear
280 model 95% confidence interval around the linear fit. (d) Boxplot of Psmbll single-cell
281  expression (logie normalised counts) across 4 intertypical TEC clusters, coloured by age at time
282  of dox-treatment.

283
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284  Ageing intertypical TEC were characterised by progressive quiescence with age (down-
285 regulation of Myc target genes; Figure 2d), and expression of Itga6 (CD49f; Supplementary
286 Table 2), a marker of quiescent, radioresistant TEC (Dumont-Lagacé et al., 2017).
287  Consequently, we reasoned that expansion of the intertypical TEC population during ageing
288  reflects its diminished capacity to differentiate into mature mTEC. Therefore, we used the 3xtg®
289  mice to explore how the relationships among progenitor, intertypical and mature mTEC change
290 with age. TEC were labelled at weeks 1, 4 and 16 and harvested 4 weeks later in triplicate
291  (Figure 4a & Supplementary Figures 8-10). RNA velocity analysis across single-cells collected
292 in this experiment corroborated our conclusion that mature mTEC are derived from intertypical
293 TEC (Figure 4a). Labelled progenitor cells in older animals were unable to differentiate fully
294  towards mature mTEC but, instead, accumulated as intertypical TEC, consistent with a partial
295  block during differentiation (Figure 4b, Supplementary Figure 10). By following the (3-5t+ and -
296  5t- TEC states across age, we discovered that the gradual accumulation of intertypical TEC was
297  specific to three of its four sub-clusters (denoted here as intertypical TEC-2, -3, or -4; Figure 4c).
298  Of note, the intertypical TEC-3 sub-cluster is characterised by Psmb11l expression (Figure 4d,
299  Supplementary Figure 9), suggesting that it represents the earliest mTEC precursor state.
300 Moreover, the intertypical TEC-2 sub-cluster specifically accumulated in the ZsG- fraction
301 (Figure 4c) indicating either that these cells had arrested their differentiation prior to the dox-
302 treatment and are thus more than 4 weeks old, or that they arose from a [3-5t- progenitor.

303

304 In summary, by combining in vivo lineage tracing with single-cell transcriptome profiling we have
305 discovered that progenitor cells become increasingly blocked in intertypical TEC states during
306 ageing and that this reduced rate of maturation results in the decline of mMTEC maintenance.

307

308 Discussion
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309 We have demonstrated how age re-models the thymic stromal scaffold to impair its core
310 immunological function. Leveraging the resolution of single-cell transcriptomics we identified 9
311  TEC subtypes, of which 4 were previously undescribed (Tablel). This refined categorization of
312  TEC subtypes highlights the insufficiency of previously established FACS-based and ontological
313 TEC classifications, and should facilitate detailed investigations of their function using more
314  specific markers (Supplementary Table 2). By tracing TEC types and states across the murine
315 life course we have found that mature TEC subtypes exhibit age-altered gene expression
316  profiles similar to those observed across many other tissues and species (Benayoun et al.,
317 2019). Intertypical TEC, a TEC subtype newly-defined in this study, however showed an
318 opposing age-related pattern, with decreased expression in cytokine signalling pathways.
319 Alongside the age-dependent decline in thymus cellularity, we observed how PGE in mature
320 mTEC also waned over time.

321

322 Bi-potent TEC have been described with distinctive molecular identities (e.g. B-5t expression)
323  from the postnatal thymus where they dynamically expand and contribute to the mTEC scaffold
324  (Bleul et al.,, 2006; Ucar et al., 2014; Ulyanchenko et al., 2016; Wong et al., 2014). During
325 mouse development these TEC progenitors arise from the endoderm of the third pharyngeal
326 pouch (mid-gestation) and subsequently develop into lineage-restricted ¢cTEC and mTEC
327 progenitors (Baik et al., 2013; Gordon et al., 2004; Hamazaki et al., 2007; Ohigashi et al., 2013;
328 Ripen et al., 2011; Rodewald et al., 2001; Rossi et al., 2006; Shakib et al., 2009). Using lineage
329 tracing, we revealed how intertypical TEC arise from a B-5t+ TEC progenitor population and are
330 a precursor to mature mTEC (Figure 3e). Thus, intertypical TEC form a previously missing link
331 in mTEC differentiation from B-5t+ progenitors. The ability of B-5t+ TEC progenitors to expand
332 and maintain the mTEC scaffold is progressively reduced in adolescent mice (Mayer et al.,
333  2016). Our combined observations that intertypical TEC accumulate during ageing and up-

334 regulate a quiescent expression signature, along with the concomitant decline in mature mTEC,
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335 are consistent with a diminished expansion and maintenance of the TEC scaffold (Figure 2d,e).
336  Moreover, we observed that an intertypical TEC sub-cluster (intertypical TEC-3) both expresses
337  B-5t (thus likely representing the earliest mTEC precursor) and expands with age as the
338  population of mature mTEC contracts (Figure 4c,d). These observations indicate that the age-
339 related expansion of this intertypical TEC sub-cluster is a direct consequence of their failure to
340 differentiate into mature mTEC. This begs the question of what molecular mechanism leads to
341  this defect? A recent study (Lepletier et al., 2019), suggests that TEC progenitors are re-
342  programmed by interactions between BMP, Activin A and follistatin. In our data Fst (encoding
343 follistatin), Bmp4 and Inhba (encoding Activin A) are specifically expressed in the intertypical
344  TEC compartment (Supplementary Figure 11). If the model proposed by Lepletier et al. is
345  correct, then TEC progenitors may be the architects of their own malfunction.

346

347 The re-modelling of TEC maturation and the progression of inflam-ageing both alter thymus
348 function and result in increased TCR diversity with age (Figure 1g). Concomitantly, two
349  processes - diminution of mature TEC cellularity and blockage of TEC maturation - contribute to
350 reduced presentation of self-antigens to developing thymocytes and thus to a less efficient
351 negative selection. This impairment is in keeping with features of age-related thymic involution:
352 its overall reduction in naive T-cell output and an increased release of self-reactive T-cells
353 (Goronzy and Weyand, 2003; Palmer, 2013). To compound these effects, the involuting thymus
354 s also rapidly purged of its distinctive perinatal CTEC population (Figure 2e). The consequences
355 of this are likely to be a further loss of antigen presenting cTEC and reduced support of
356 thymocyte maturation. Taken together, we expect these TEC changes to impair the
357 maintenance of central tolerance and could explain, at least in part, the increased incidence of
358 autoimmunity with advancing age (Candore et al., 1997), in which the cumulative dysfunction of
359 thymic central tolerance over time generates a slow drip feed of self-reactive T cells into the

360  periphery.
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361

362 In summary, our results reveal how the population and transcriptional dynamics of epithelial cell
363  precursors across mouse life are coupled to age-related decline in thymic function. An
364 enhanced understanding of the molecular mechanisms that prevent progenitors from fully
365  progressing towards mature mTEC should facilitate studies exploring therapeutic interventions
366 that reverse thymic decline.

367

368 Materials and Methods

369  Mice

370 Female C57BL/6 mice aged 1 week, 4 weeks, 16 weeks, 32 weeks, or 52 weeks were obtained
371  from Jackson Laboratories, and rested for at least one week prior to analysis. 3xtg®®* mice [B5t-
372  rtTA:LC1-Cre::CAG-loxP-STOP-loxP-ZsGreen] mice were used for lineage-tracing experiments
373  as previously described (Mayer et al., 2016). All mice were maintained under specific pathogen-
374  free conditions and according to United Kingdom Home Office regulations or Swiss cantonal
375 and federal regulations and permissions, depending where the mice were housed.

376

377 Isolation of thymic epithelial cells and thymocytes

378  Thymic lobes were digested enzymatically using Liberase (Roche) and DNasel (VWR). In order
379 to enrich for TEC, thymic digests were subsequently depleted of CD45+ cells using a magnetic
380 cell separator (AutoMACS, Miltenyi) before washing and preparation for flow cytometry.
381  Thymocytes were isolated by physical disruption of thymic lobes using frosted microscope glass
382  slides.

383

384 Flow cytometry and cell sorting

385 Cells were stained at a concentration of 5-10 x10° per 100l in FACS buffer (2% fetal calf serum

386 in PBS or 5% bovine serum albumin in PBS). Supplementary Table 3 provides details of
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387 antibody staining panels. Staining for cell surface markers was performed for 20 minutes at 4°C,
388 except for CCR7 which was performed for 30 minutes at 37°C in a water bath prior to the
389  addition of other cell surface stains. The FoxP3 Transcription Factor Staining Buffer Kit
390 (eBioscience) was used according to the manufacturer's instructions in order to stain for
391 intracellular antigens. Cell viability was assessed using DAPI staining or LIVE/DEAD Fixable
392  Agqua Dead Cell Stain (Invitrogen). Samples were acquired and sorted using a FACS Aria lll (BD
393  Biosciences). For single-cell RNA-sequencing index sorting was used and cells were sorted into
394 384 well plates. Flow cytometry data was analysed using FlowJo V 10.5.3.

395

396 TCR rearrangement simulations

397 Simulations of TCR germline rearrangements were used to estimate TCR-sequencing sample
398 sizes. Sequential steps of a- and B-chain rearrangement were simulated to model 3-selection
399 and double negative thymocyte maturation prior to negative selection. We uniformly sampled
400 V(D)J segments from the C57BL/6 TCR locus. For the TCR B-chain, variable (V) and diversity
401 (D) segments were randomly selected from available sequences. For joining (J) segments, the
402 TRBJ1 locus was selected on the first attempt, and TRBJ2 if a second attempt to rearrange was
403 made. Consequently the matching TRBC segment was selected based on the J segment that
404  was chosen (either TRBC1 or TRBC2). For the concatenation of each segment pair, i.e. V-J, V-
405 D, VD-J, randomly selected nucleotides were inserted between the adjoining segments, based
406 on sampling from a Poisson distribution with A=4. The productivity of the rearranged B-chain
407 was determined by the presence of a complete open reading frame (ORF) beginning with a
408 canonical start codon (‘ATG’) in the selected V segment that spanned the full V(D)J and
409 constant segments. In the event of a failed rearrangement a second attempt was made using
410 the TRBJ2 and TRBC2 segments. If either of these attempts produced a valid TCR B-chain,

411  then under the principle of allelic exclusion the simulation proceeded to the a-chain
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412  rearrangement. However, if the second rearrangement failed to produce a valid TCR B-chain,
413  the process was repeated for the second allele.

414  For the TCR a-chain, variable (V) and joining (J) regions were randomly selected from the
415 available TCRA sequences. Following the same principle as above, if the simulated
416 rearrangement failed to generate a valid TCR with a complete ORF spanning the V segment to
417  the constant region then the simulation switched to the second allele. A successful TCR
418 germline was recorded only in the event of both valid a- and B-chains. The complete simulation
419  resulted in a valid a-chain in 40.2% of simulations, and a valid $-chain in 63.1% of simulations.
420 To calculate sample sizes for our TCR-sequencing experiments we simulated 1 million
421  “thymocytes”, and sub-sampled 10, 100, 500, 1000, 5000, 10000, 20000, 50000 and 100000
422  cells, defined by a productive pair of TCR chains. To simulate replicates we ran these
423  simulations with 10 different random initiations. To establish the required sample sizes we
424  calculated the proportions of V(D)J segment frequencies for a- and B-chains. Additionally, we
425 calculated the TCR diversity at each sample size using the Shannon entropy across a- and B-
426  chain CDR3 clonotypes, defined by the unique amino acid sequence. Results of simulations are
427  shown in Supplementary Figure 12.

428
429 TCR sequencing

430 15,000 M2 thymocytes (TCRb", CCR7+, MHCI+, CD69-, CD8-, CD4+, CD25-) were sorted and
431 RNA extracted using the Qiagen RNeasy Micro kit. 10ng of RNA was used to prepare bulk
432 TCR-seq libraries using the SMARTer Mouse TCR a/b Profiling Kit (Takara) according to
433  instructions. Libraries were sequenced on a MiSeq (300 base paired-end reads). Reads were
434  trimmed using Trimmomatic, down-sampled to the smallest library size and aligned using
435 MiXCR (version 3.0).

436

437 Haematoxylin and eosin (H&E) staining of thymic sections
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438 Thymic lobes were harvested and cleaned under a dissecting microscope before being fixed in
439 10% Formalin (Sigma) for 12-36 hours, depending on size, and dehydrated in ethanol. After
440 fixation the tissues were embedded in paraffin using an automated system (Tissue-Tek
441  Embedding Centre, Sakura) and sectioned to a thickness of 8um. H&E staining was performed
442  using an automated slide stainer (Tissue-Tek DRS 2000, Sakura) and slides were visualised
443  under a light microscope DM750 (Leica).

444

445 Plate-based single-cell RNA-sequencing

446  Lysis plates. Single thymic epithelial cells were index FAC-sorted into 384-well lysis plates.
447  Lysis plates were created by dispensing 0.4 ul lysis buffer (0.5 U Recombinant RNase Inhibitor
448  (Takara Bio, 2313B), 0.0625% Triton X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix
449  (Thermo Fisher, R0193), 3.125 uM Oligo-dT 30 VN (IDT,
450 5'AAGCAGTGGTATCAACGCAGAGTACT 30 VN-3') and 1:600,000 ERCC RNA spike-in mix
451 (Thermo Fisher, 4456740) into 384-well hard-shell PCR plates (Biorad HSP3901) using a
452  Tempest liquid handler (Formulatrix). All plates were then spun down for 1 minute at 3220g and
453  snap frozen on dry ice. Plates were stored at -80°C until used for sorting.

454  cDNA synthesis and library preparation. cDNA synthesis was performed using the Smart-
455  seqg?2 protocol (Picelli et al., 2014). Briefly, 384-well plates containing single-cell lysates were
456  thawed on ice followed by first strand synthesis. 0.6 pl of reaction mix (16.7 U/ul SMARTScribe
457 TM Reverse Transcriptase (Takara Bio, 639538), 1.67 U/ul Recombinant RNase Inhibitor
458 (Takara Bio, 2313B), 1.67X First-Strand Buffer (Takara Bio, 639538), 1.67 yM TSO (Exiqon, 5'-
459 AAGCAGTGGTATCAACGCAGACTACATIGrG+G-3Y), 8.33 mM DTT (Bioworld, 40420001-1),
460 1.67 M Betaine (Sigma, B0300-5VL), and 10 mM MgCI 2 (Sigma, M1028-10X1ML)) were added
461 to each well using a Tempest liquid handler. Bulk wells received twice the amount of RT mix
462 (1.2 ul). Reverse transcription was carried out by incubating wells on a ProFlex 2x384 thermal-

463 cycler (Thermo Fisher) at 42°C for 90 min and stopped by heating at 70°C for 5 min.
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464  Subsequently, 1.6 pl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa Biosystems,
465 KK2602), 0.17 uyM IS PCR primer (IDT, 5-AAGCAGTGGTATCAACGCAGAGT-3), and
466  0.038U/ul Lambda Exonuclease (NEB, M0262L)) was added to each well with a Tempest liquid
467  handler (Formulatrix). Bulk wells received twice the amount of PCR mix (3.2 pl). Second strand
468  synthesis was performed on a ProFlex 2x384 thermal-cycler using the following program: 1.
469  37°C for 30 minutes, 2. 95°C for 3 minutes, 3. 23 cycles of 98°C for 20 seconds, 67°C for 15
470  seconds, and 72°C for 4 minutes, and 4. 72°C for 5 minutes. The amplified product was diluted
471  with a ratio of 1 part cDNA to 9 parts 10mM Tris-HCI (Thermo Fisher, 15568025), and
472  concentrations were measured with a dye-fluorescence assay (Quant-iT dsDNA High Sensitivity
473  kit; Thermo Fisher, Q33120) on a SpectraMax i3x microplate reader (Molecular Devices). These
474  wells were reformatted to a new 384-well plate at a concentration of 0.3 ng/ul and a final volume
475  of 0.4 ul using an Echo 550 acoustic liquid dispenser (Labcyte). If the cell concentration was
476  below 0.3 ng/ul, 0.4 ul of sample was transferred. lllumina sequencing libraries were prepared
477  using the Nextera XT Library Sample Preparation kit (Illumina, FC-131-1096) (Darmanis et al.,
478  2017; Tabula Muris Consortium et al., 2018). Each well was mixed with 0.8 pl Nextera
479  tagmentation DNA buffer (lllumina) and 0.4 ul Tn5 enzyme (lllumina), then tagmented at 55°C
480 for 10 min. The reaction was stopped by adding 0.4 pl "Neutralize Tagment Buffer" (lllumina)
481 and spinning at room temperature in a centrifuge at 3220 X g for 5 min. Indexing PCR reactions
482  were performed by adding 0.4 pl of 5 uM i5 indexing primer, 0.4 yl of 5 yM i7 indexing primer,
483 and 1.2 pl of Nextera NPM mix (lllumina). PCR amplification was carried out on a ProFlex 2x384
484  thermal cycler using the following program: 1. 72°C for 3 minutes, 2. 95°C for 30 seconds, 3. 12
485  cycles of 95°C for 10 seconds, 55°C for 30 seconds, and 72°C for 1 minute, and 4. 72°C for 5
486  minutes.

487 Library pooling, quality control, and sequencing. Following library preparation, wells of each
488 library plate were pooled using a Mosquito liquid handler (TTP Labtech). Row A of the thymus

489  plates, which contained bulk cells, was pooled separately. Pooling was followed by two
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490 purifications using 0.7x AMPure beads (Fisher, A63881). Library quality was assessed using
491  capillary electrophoresis on a Fragment Analyzer (AATI), and libraries were quantified by gqPCR
492  (Kapa Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System (Biorad).
493  Plate pools were normalized to 2 nM and sequenced on the NovaSeq 6000 Sequencing System
494  (lllumina) using 2x100bp paired-end reads with an S4 300 cycle kit (Illumina, 20012866). Row A
495 thymus pools were normalized to 2 nM and sequenced separately on the NextSeq 500
496  Sequencing System (lllumina) using 2x75bp paired-end reads with a High Output 150 cycle kit
497  (lllumina, FC-404-2002).

498

499 Single-cell RNA-sequencing processing, quality control and normalisation

500 Paired-end reads were trimmed to a minimum length of 75nt using trimmomatic with a 4nt
501 sliding window with a quality threshold of 15. Leading and trailing sequences were removed with
502 a base quality score < 3 (Bolger et al., 2014). Contaminating adaptors were removed from reads
503 with a single seed mismatch, a palindrome clip threshold of 30 and a simple clip threshold of 10.
504  Trimmed and proper-paired reads were aligned to mm10 concatenated with the ERCC92
505 FASTA sequences (Thermo Fisher Scientific) using STAR v2.5.3a (Dobin et al., 2013) and a
506  splice-junction database constructed from the mm10 Ensembl v95 annotation with a 99nt
507 overhang. Paired-end reads were aligned with the parameters: --outSAMtype BAM
508 SortedByCoordinate --outSAMattributes All --outSAMunmapped Within KeepPairs; all other
509 parameters used default values. Following alignment each single-cell BAM file was positionally
510 de-duplicated using PicardTools MarkDuplicates with parameters: REMOVE_DUPLICATES =
511 true, DUPLICATE_SCORING_STRATEGY = TOTAL_MAPPED_REFERENCE_LENGTH
512  [http://broadinstitute.github.io/picard].

513  De-duplicated single-cell transcriptomes were quantified against exon sequences of the mm10
514  Ensembl v95 using featureCounts (Liao et al., 2014). Poor quality single-cell transcriptomes

515  were removed based on several criteria: contribution of ERCC92 to total transcriptome > 40%,
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516 sequencing depth < 1x10° paired-reads and sparsity (% zeros) > 97%. From this initial round of
517 quality control 2780 cells were retained for normalisation and downstream analyses.
518 Deconvolution-estimated size factors were used to normalise for sequencing depth across
519 single cells, prior to a logl0 transformation with the addition of a pseudocount (+1),
520 implemented in scran (Lun et al., 2016).

521
522 Single-cell clustering and visualisation

523 TEC from all ages and sort-types were clustered together using a graph-based algorithm that
524  joins highly connected networks of TEC based on the similarity of their expression profile. To
525 enhance the differences in the expression profile of individual TEC libraries, we first applied a
526 text frequency-inverse document frequency (TF-IDF) transform (Manning et al., 2008) to the
527  gene-by-cell expression matrix. This transform enhances the signal from rarely expressed
528 genes (of particular importance would be those that are promiscuously expressed in TEC), while
529 also lessening the contribution from widely expressed genes. The transformed matrix
530 represents the product of the gene-frequency and the inverse-cell-frequency. To compute this
531 transformed matrix, we first assigned the gene-frequency matrix as the log2 of normalised gene-
532  by-cell expression matrix (G; = log, (C); C is the normalised count matrix). Next, we computed
533 the inverse-cell-frequency as the inverse frequency of detection of each gene (ICF, = log10 (N /
534  (1+Ey)); N is the number of cells, Ey is the number of cells expressing gene X). Finally, the
535 product of the gene-frequency matrix and inverse-cell-frequency was computed (GF_ICF = G; *
536 ICF). The highly variable genes from this transformed matrix were used to compute a shared
537 nearest neighbor (SNN) graph (k=10), and the clusters were identified using a random walk
538 (Walktrap (Pons and Latapy, 2005)) of the SNN graph. To assess the robustness of the
539 clusters, we also clustered cells without the TF-IDF transform and using a series of alternate
540 parameters. We computed a consensus matrix to determine how often the identified TEC

541  subtypes co-clustered. We found that the identified TEC sub-types were robustly co-clustered
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542  regardless of the parameters of the clustering that was applied (Supplementary Figure 13).
543  Visualisation of the connected graph was computed using the SPRING algorithm to generate a
544  force-directed layout of the K-nearest-neighbor graph (k=5) (Weinreb et al., 2018).

545

546 Treatment with Doxycycline.

547  One-week old 3xtg®® mice were treated with a single i.p. injection of 0.004mg of Doxycycline
548 (Sigma) diluted in Hank’s Balanced Salt Solution (Life Technologies), whereas older mice (four-
549  week and sixteen-week old) were treated with two i.p. injections of Doxycycline (2mg, each) on
550 two consecutive days during which they were also exposed to drinking water supplemented with
551  the drug (2 mg/mL in sucrose (5% w/v)).

552

553 Droplet-based single-cell RNA sequencing

554  Preparation of TEC suspensions for single-cell RNA-sequencing. Single thymic epithelial
555 cell suspensions were obtained by enzymatic digestion using Liberase (Roche), Papain (Sigma)
556 and DNase (Sigma) in PBS as described in (Kim and Serwold, 2019; Mayer et al., 2016). Prior
557 to FAC-sorting, TEC were enriched for EpCAM-positivity using a magnetic cell separator
558 (AutoMACS, Miltenyi), as described above. Enriched cells were then stained for the indicated
559 cell surface antigens (Supplementary Table 3) in conjunction with TotalSeqg-A oligonucleotide-
560 conjugated antibodies (BioLegend) to allow for barcoding and pooling of different TEC
561  subpopulations and subsequently sorted into 4 subpopulations: ZsGreen+ cTEC, ZsGreen-
562 cTEC, ZsGreen+ mTEC, and ZsGreen- mTEC (Supplementary Figure 8a). After sorting, the cell
563 viability and concentration of each of the cell samples collected were measured using a
564  Nexcelom Bioscience Cellometer K2 Fluorescent Viability Cell Counter (Nexcelom Bioscience).

565 Droplet-based single-cell RNA-sequencing. Equal cell numbers were pooled from each of the
566  samples, and a total of 30000 cells were loaded per well onto a Chromium Single Cell B Chip

567 (10X Genomics) coupled with the Chromium Single Cell 3' GEM, Library & Gel Bead Kit v3 and

25


https://doi.org/10.1101/2020.03.02.973008
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.973008; this version posted March 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

568 Chromium i7 Multiplex Kit (10X Genomics) for library preparation, according to the
569 manufacturer's instructions. In short, the cell suspension was mixed with the GEM
570 Retrotranscription Master Mix and loaded onto well number 1 on the Chromium Chip B (10x
571 Genomics). Wells 2 and 3 were loaded with the appropriate volumes of gel beads and
572  partitioning oil, respectively, after which the Chromium Controller (10X Genomics) was used to
573 generate nanoliter-scale Gel Beads-in-emulsion (GEMs) containing the single cells to be
574 analysed. The fact that cell samples containing 6 different hashtag antibodies were pooled
575 together allowed us to overload the 10X wells with 30000 cells per well, aiming for a recovery of
576  approximately 12000 single cells (40%) per well. This also allowed us to overcome the resulting
577 increase in doublet rate by subsequently eliminating from further analysis any cell barcode
578 containing more than one single hashtag sequence. Incubation of the GEM suspension resulted
579 in the simultaneous production of barcoded full-length cDNA from poly-adenylated mRNA as
580 well as barcoded DNA from the cell surface protein-bound TotalSegA antibodies inside each
581 individual GEM. Fragmentation of the GEMs allowed for the recovery and clean-up of the
582  pooled fractions using silane magnetic beads. Recovered DNA was then amplified, and cDNA
583  products were separated from the Antibody-Derived Tags (ADT) and Hashtag oligonucleotides
584 (HTO) by size selection. The amplified full-length cDNA generated from polyadenylated mRNA
585 were fragmented enzymatically and size selection was used to optimise amplicon size for the
586  generation of 3’ libraries. Library construction was achieved by adding P5, P7, a sample index,
587 and TruSeq Read 2 (read 2 primer sequence) via End Repair, A-tailing, Adaptor Ligation, and
588 PCR. Separately, ADT and HTO library generation was achieved through the addition of P5, P7,
589 a sample index, and TruSeq Read 2 (read 2 primer sequence) by PCR. Sequences of the
590 primers designed for this purpose can be found in Supplementary Tables 4 and 5.

591 Library pooling, quality control, and sequencing. Library quality was assessed using
592  capillary electrophoresis on a Fragment Analyzer (AATI). The concentration of each library was

593 measured using a Qubit dsSDNA HS Assay Kit (ThermoFisher Scientific), and this information
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594  was then used to dilute each library to a 2nM final concentration. Finally, the different libraries
595 corresponding to each sample set were pooled as follows: 85% cDNA + 10% ADT + 5% HTO,
596  after which pooled libraries were sequenced on an lllumina NovaSeq 6000 using the NovaSeq
597 6000 S2 Reagent Kit (100 cycles) (lllumina).

598

599 Droplet-based single-cell RNA sequencing processing, de-multiplexing and quality control

600 Multiplexed 10X scRNA-seq libraries were aligned, deduplicated and quantified using Cellranger
601 v3.1.0. Gene expression matrices of genes versus cells were generated separately for each
602 sample (i.e. each 10X Chromium chip well), as well as those for hashtag oligo (HTO) and
603 antibody (ADT) libraries. Cells were called using emptyDrops, with a background UMI threshold
604 of 100 (Lun et al., 2019). Experimental samples, i.e. replicates and ZsGreen-fractions, were
605 demultiplexed using the assigned HTO for the respective sample (Stoeckius et al., 2018).
606  Specifically, within each sample, the HTO fragment counts were normalised across cell
607 barcodes for all relevant HTOs using counts per million (CPM). These CPMs were used to
608 cluster cell barcodes using k-means with the expected number of singlet clusters, i.e. unique
609 HTOs in the respective sample. To estimate a background null distribution for each HTO within
610 a sample, we then selected the k-means partition with the highest average CPM for the HTO
611 and excluded these cells, along with the top 0.5% of cells with the highest counts for the

612 respective HTO. We then fitted a negative binomial distribution to the HTO counts for the

613 remaining cells to estimate a threshold (q) at the 99th quantile. All cell barcodes with counts = q

614  were assigned this HTO. This procedure was repeated for each HTO within a sample. Cell
615 barcodes that were assigned to a single HTO were called as ‘Singlets’, whilst cell barcodes
616  assigned to > 1 HTO were called as ‘Multiplets’. Finally, cell barcodes with insufficient coverage
617 across HTOs were called as ‘Dropouts’ (Supplementary Figure 8b). Only ‘Singlets’ were

618 retained for normalisation and downstream analyses.
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619 Poor quality cells barcodes were removed based on high mitochondrial content, defined within
620 each sample as twice the median absolute deviation from the median mitochondrial fraction.
621 Cell barcodes with low coverage (< 1000 UMIs detected) were also removed prior to
622 normalisation. Finally, deconvolution-estimated size factors were calculated to normalise across
623  single cells, then log10 transformed with a pseudocount (+1), as implemented in scran (Lun et
624 al., 2016).

625

626 Droplet single-cell RNA sequencing clustering and annotation

627  Highly variable genes (HVGs) were defined across droplet single cells based on the estimated
628 fit across cells between the mean log normalised counts and variance, at an FDR of 1x10™’
629 (Brennecke et al., 2013). The first 20 principal components (PCs) across HVGs were calculated,
630 and used as input to construct an SNN-graph (k=31) across all single cells. These were then
631 clustered into closely connected communities using the Walktrap algorithm (Pons and Latapy,
632  2005). Clusters were annotated based on the co-expression of TEC subtype marker genes
633  (Supplementary Figures 8 & 9). Droplet single cells were visualised in reduced dimension with
634 the first 20 PCs as input using uniform manifold approximation and projection (UMAP) (Mclnnes
635 etal., 2018), with k=31 nearest neighbours and a minimum distance=0.3.

636

637  RNA velocity

638 RNA velocity estimates the future state of single-cells based on a mechanistic model of
639 transcription to identify groups of genes that are actively up-regulated, or down-regulated, based
640 on the ratio of splice/unspliced sequencing reads (La Manno et al., 2018). We calculated the
641 velocity of each single cell across single-droplet RNA-sequencing experiments using the
642  stochastic model implemented in scvelo (Bergen et al., 2019). Velocity vectors were overlaid on
643 a UMAP representation constructed using scanpy (Wolf et al., 2018).

644

28


https://doi.org/10.1101/2020.03.02.973008
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.973008; this version posted March 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

645 Diffusion map and pseudotime inference

646  Diffusion maps and diffusion pseudotime trajectories were constructed using a matrix of log-
647  transformed size-factor normalized gene expression values across single cells as input, with
648 highly variable genes to define the diffusion components, implemented in the Bioconductor
649 package destiny (Angerer et al., 2016; Haghverdi et al., 2016). Diffusion maps for both ageing
650 TEC and embryonic TEC used k=20. The ZsGreen experimental cells used k=21 and the first
651 20 principal components as the input to the diffusion map estimation. Diffusion pseudotime
652 distances were computed from an index cell defined in each analysis.

653

654  Cell type classification - MARS-seq from Bornstein et al.

655 The MARS-seq counts matrix from (Bornstein et al., 2018) were downloaded from Gene

656  Expression Omnibus (GSE103967), and normalised using deconvolution size factors (Lun et al.,

657  2016), after removing cells with low sequencing coverage (<1000 UMIs, sparsity 298%). HVGs

658  were detected, as described above, across single cells from all WT mice, the embryonic time

659 points E14.5 & E18.5, 6 day old WT mouse, as well as the Aire and Pou2f knock-out mice at an

660 FDR 0.1%. The log-transformed normalised counts for these HVGs were used as input to PCA,
661 and the first 10 PCs were used to construct an SNN-graph (k=20). Clusters of single cells were
662 defined based on a random walk on this graph (Pons and Latapy, 2005). A total of 9 clusters
663  were detected.

664  To map these cells across we constructed a kNN classifier (k=5) implemented in the R package
665 FNN, trained on the ageing single-cell data. We first took the set of commonly expressed genes
666  between our study and those of Bornstein et al., and performed a per-cell cosine normalisation
667 on each data set. These data were used as input to classify each single cell into an ageing

668  cluster (Supplementary Figure 3d).
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669

670 Age-dependent cluster abundance modelling

671 Numbers of each TEC subtype or cluster were counted per replicate and at each age. Cell
672 counts were modelled using a linear negative binomial model, with the total number of cells
673  captured per replicate as a model weight, implemented in the Bioconductor package edgeR
674  (McCarthy et al., 2012; Robinson et al., 2010). For the ZsGreen experiment we down-sampled
675 the counts matrix to rebalance the ZsGreen+ and ZsGreen- fractions to equal proportions. We
676 then tested the hypothesis that the interaction between age and ZsGreen fraction was different
677 from 1. This amounts to comparing the gradients of the two regression slopes in ZsGreen+
678  versus ZsGreen- cells across ages. Statistically significant age-dependent changes were tested
679 in these models using an empirical Bayes quasi-likelihood F-test (Chen et al., 2016).

680

681  Tissue and tissue restricted antigen gene definition

682  Tissue restricted antigen (TRA) genes were defined based on the specificity of their expression
683  across a broad range of mouse tissues using the FANTOMS cap analysis of gene expression

684  with sequencing (CAGE-seq) data that are publicly available (http://fantom.gsc.riken.jp/data/).

685 Tissue samples were grouped into 27 broad groups based on the annotation data
686 (Supplementary Table 6). For each protein-coding gene (based on Ensembl identifier), the per-
687  tissue expression level was defined as the maximum run length encoding (RLE) normalised
688  expression level. For genes with multiple transcriptional start sites, the mean RLE expression
689 across isoforms was first taken. The specificity of tissue expression for each gene across

690 tissues (n) was then calculated using the tau-index (1) (Yanai et al., 2005):

Y (1-x

n—1

Xi

691 where X = ——.
max(x;)
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692 Genes with 1 =2 0.8 were defined as TRAs, whilst those with 1 < 0.4 were defined as

693  constitutively expressed; all remaining genes were given the classification ‘miscellaneous’. Each

694 TRA gene was assigned to one tissue, the one in which it was maximally expressed. Aire-

695 dependent and -independent genes were defined using the classification from Sansom et al.
696 (Sansom et al., 2014).
697

698 Age-dependent tissue-representation modelling

699 The age-dependence of tissue-representation across single mTEC was tested using a negative
700 binomial linear model. Specifically for each single mTEC the number of TRA genes with log
701  expression > 0 was counted within each assigned tissue (see above). These single-cell tissue
702  counts were aggregated across single mTEC at each time point, and for each replicate mouse,
703 to yield ‘tissue counts’. Aggregated ‘tissue counts’ were then used as the dependent variable in
704  a negative binomial linear model implemented in the Bioconductor package edgeR. Statistically
705  significant age-dependent changes were defined at an FDR of 1%.

706

707 Differential gene expression testing

708 All differential gene expression testing was performed in a linear model framework,
709 implemented in the Bioconductor package limma. To test for age-dependent gene expression
710 changes, log-normalized gene expression values for each gene was regressed on log2(age)
711 and adjusted for sequencing depth for each single cell using deconvolution size factors
712  estimated using scran.

713

714  Gene signature and functional enrichment testing
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715 Marker genes or differentially expressed genes (throughout ageing) were tested to identify
716  enriched pathways, specifically those from MSigDB hallmark genesets or Reactome pathways.
717  Marker genes were identified as those genes with a 4-fold enrichment in the subtype relative to
718  all other subtypes (adjusted p < 0.01). MSigDB hallmark (Liberzon et al., 2015; Subramanian et
719 al., 2005) and Reactome pathway (Fabregat et al., 2018) enrichments for markers of each
720  subtype were computed using the clusterProfiler package (Yu et al., 2012). For age-dependent
721  (differentially expressed genes, gene set enrichment analysis was used (GSEA) to identify
722  enriched MSigDB hallmark genesets. These results were categorised based on the expected
723 change in expression due to ageing across multiple tissues and species (Benayoun et al.,
724 2019).

725

726 Age-dependent modelling of thymocyte negative selection

727  Age-dependent variation in thymocyte negative selection was modelled using a negative
728  binomial GLM implemented in the Bioconductor package edgeR. Cell counts were regressed on
729 age, using the input parent population for each replicate as a model offset to control for variation
730 in the preceding selected population. Across populations, multiple testing was accounted for
731 using the false discovery rate procedure (Benjamini and Hochberg, 1995), where a statistically
732  significant relationship with age was set at 1%.

733

734  Code and data availability

735 All code wused to process data and perform analyses are available from

736  https://github.com/WTSA-Homunculus/Ageing2019. All sequence data, counts matrices and

737 meta-data are available from ArrayExpress with accession numbers E-MTAB-8560 (ageing
738 thymus) and E-MTAB-8737 (lineage traced thymus). TCR sequencing data is available from
739 SRA (PRINA551022).

740
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Supplementary Figure 2: Experimental investigation of the ageing thymus. (a) FACS

gating strategy for isolation of TEC sort types. (b) Filtering strategy to identify high-quality
TEC libraries. (c-f) Fractions of libraries filtered out based on sparsity threshold (c), the
fraction of reads from mitochondrial genes expressed (d), library size thresholds (e), or
ERCC-spike in RNA % expression threshold (f). (g) Sparsity in each single cell cluster by
age. (h) Reassignment of libraries to clusters based on downsampling fraction. Excessive
downsampling leads to an accumulation of the low-diversity library.
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Supplementary Figure 3: Comparison of Bornstein et al. (Bornstein et al. 2018) single-cell
transcriptomes to the TEC subtypes defined in this study. (a) tSNE representation of
Bornstein et al. single-cell TEC libraries. (b) Nine clusters identified from Bornstein et al.
single-cell data overlaid on tSNE visualisation. (c) Expression heatmap of marker genes
acquired from Bornstein et al. clusters. (d) Comparison of Bornstein et al. single-cell clusters
to ageing subtypes from this study.
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Supplementary Figure 4: Relationship between classical FAC sort-types and
transcriptionally-defined single-cell subtypes. (a) Observed percentages (%) of TEC based
on pre-scoring into classical sort-types. (b) Estimated contributions of each FAC sort type to
each single cell subtype through age. Each coloured dot represents data from an
independent experiment.
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Supplementary figure 5: MSigDB (a) and Reactome (b) pathways enriched for expression
of marker genes for each single cell subtype. The X-axis shows the fraction of marker genes
that overlap the specified pathway, the size of the dot represents the number of marker
genes in the enriched pathway, and the colour of the dot represents the p-value adjusted for
multiple tests.
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Supplementary Figure 6: Differential expression of genes throughout ageing. Each panel
shows the average expression and the log2 fold-change with age for each single cell
subtype. Significantly altered genes are shown in green and the total number of up- or down-
regulated genes per subtype are shown in the green font along the y-axis. The top 5 up- or
down-regulated genes are labelled, where present.
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Supplementary Figure 7: Details of tissue-restricted antigen (TRA) expression throughout
ageing. (a) A volcano plot of differential TRA abundance testing, showing the consistent
down-regulation of TRAs in mature mTEC. (b-i) Data for clusters 1 (Post-AIRE), 2
(Intertypical TEC), 6 (proliferating TEC), 7 (Mature mTEC) are shown as differently-coloured
boxes in boxplots. The number (#) of TRAs (b), of housekeeping genes (c), of Aire-
dependent TRAs (d) and of Aire-enhanced TRAs (e) expressed plotted against single-cell
subtype and age of the mouse. The number of TRA genes detected from thymic (f),
pancreas (g), tongue (h) and macrophage (i) specific groups by age and single-cell subtype.
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Supplementary Figure 9

lineage-traced single cells. Boxplots showing the distribution of marker gene expression (y-
axis) for TEC subtypes across TEC clusters (x-axis). Boxes are coloured by the inferred TEC

subtype to which they belong.
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Supplementary Figure 10: UMAP visualisation of TEC sub-clusters across all single-cells
from lineage-traced thymi. Each panel is coloured according to the TEC subtype annotation
and corresponds to Figure 4a.


https://doi.org/10.1101/2020.03.02.973008
http://creativecommons.org/licenses/by/4.0/

available under aCC-BY 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.973008; this version posted March 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

h-ﬁ-—-:u._n....__uu._-cau.__.-._.

¢

i

s e e 000

2 2 2 o
¥ 8 a8 ¥

03L +e9k1 %

0

(b)

L*;*#ﬂ*ﬁiﬁ.u_mduaahwudg.ﬁ*ﬂ

2 9 9 o
38 °
L

+hquisd %

0

o3
—_
@
—

2-03LwynL
=03 LwynL
1-031'1eog
€-03L4loid
g-03Liloid
=031 Yloid
2-031wraiyisod
=03 Lwaiyisod
2-03L'MaN
=031 MeN
[-031W

g-031w

§-031w

y-031Ww

€-031w

z-o3Lw

1-031w
#=03 1 "[eoidApau
€-03 1 [eaidAueiul
2-03 L [eadAueiy
L-03 L fedidAvaiul
[EEIL

2-031°

1-0310

€-03LwynL
b-03wrynt

=031 moid
¢-03Luwralyisod
L-03 Luwranyised
¢-O3L'MeN
L=03L"MeN
£-03Lw

9-031w

§-o3Lw

P-031w

€-031w

031w

1-031w
p—03 1 reodAuaiug
€-03 1 "levdApaiu
2-03 1 feoidAuaul
1-03 L TeoidAuei|
L0318

e-031°

1-031°

Age
= Wk

T

Q3L +equul %
i
Jd
i
Jd
1
|
-
4
i
1
4
i
]
i
i
E]
i

-
=
B

8 -

4

. &

=1

88 2 R °

031 +rdwg %
Phe
o
C

E= Wki6

¢-03LwynL
L-03.1wynt
1-031'1eds
€-03L1lI0ld
¢-03Lyloid
=031 0id
¢-O31waiyisod
=03 1wanyisod
g-O3L'MeN
=03L1'mMeN
£=-031W
9-031wW
S-o3w
031w
€-o3w
¢-o3w
1=031w
y=03 1 [eoldAueiu
€-03 1 [eadAueiu
2-031 [eoidAusiu
=031 [eoidAus
10318

2-03lo

1-0319

¢-03LwynL
=03 1wynt
1-031'1eds
€-03.L4104d
2-031lI0d
=031 0id
¢-O3Lwalivisod
L-031walyisod
¢-O3L MmN
L-031'MeN
£=031w
9-031w
§-O31w
$-031w
£-031w
¢-03Llw
-o31w
=03 L' [ea1dA;
€-03L'[e! ul
2-03L'[el ul
=031 [ed1dAusIu|
[SeEIR

2-031°

-0310

ul

[ TR TR ]

b

——
R =3

i,

Q29 9 9
B ¥ & &

3L +egInoy %

0
0

1

o~
=
~

ﬁ'?*“_ﬂmw—.ﬂ.u&—.———.d‘&.—*u

2-03LwynL
L1-031wynL
=031 1eog
€-031loid
2-03Lyod
1-031Woid
Z-O3Lwanyisod
=03 1w auyisod
2-03LMeN
=031 MeN
£-031W

9-031w

§-03Lw

y=03Lw

€-03Lw

2-031w

1-031w

y—-03 L1eoidAusiy|
€-03 L [eadAuaiul
2-03L 1eddApai
1031 'leoidAuai|
10318

2-031°

1-0310

€-031wynL
L=031wynt

=03 1wanvisod
¢-O3L'MaN
=031 'MeN
£=031w

9-031w

§-o3Lw

P=-031w

€-031w

o=

=031

p—031 readAueu)
€-031 [eordApaju
2-031 readAusiu|

- $} =031 reodAuaiu)
$r1o3Le
{re-031
1p+-0310

€ K& =°

031 H84d %

—_
)
-

TEC subtype

Supplementary Figure 11: Boxplot showing the proportion of TEC in each subtype cluster
which express key genes linked to thymic involution and TEC identity: (a) Psmb11 (35-t), (b)
Ly6a (Scal), (c) Bmp4, (d) Inhba (Activin A), (e) Fst (follistatin) and (f) Acvr2a (Activin A

receptor 2a). Boxplots are coloured by age of dox-treatment administered to 3xtg®® mice.
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Supplementary Figure 12: T cell receptor repertoire simulations. (a) A schematic of T cell
receptor rearrangements used to design simulations. (b) Proportions of valid TCRs (y-axis)
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simulated at different sample 3{ZBRE(BRTCRLH) PrEFBIIEHEFTCR alpha (c & d) and beta
(e & f) chain segments from simulated TCRs at different sample sizes. (g-h) TCR repertoire
diversity defined as the Shannon entropy across clonotypes in each of 10 (g) and 3 (h)
independent TCR simulations. Entropy was calculated in each run using only the valid
TCRs.
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Supplementary Figure 13: Consensus clustering of ageing single-cell TEC libraries. The
heatmap shows the fraction of times that the libraries are co-clustered based on a variety of
transformations, clustering methods and the number of features (Methods). The heatmap
shows that the achieved clustering is robust to these different clustering methods.
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