

1 **A new role for histone demethylases in the maintenance of plant genome**
2 **integrity**

3
4 Author list:

5
6 Javier Antunez-Sanchez^{1,*}, Matthew Naish^{1,a,*}, Juan Sebastian Ramirez-Prado^{*2},
7 Sho Ohno^{1,7}, Ying Huang², Alexander Dawson¹, Deborah Manza-Mianza², Federico
8 Ariel², Cecile Raynaud², Anjar Wilbowo^{3,b}, Josquin Daron^{4,c}, Minako Ueda^{5,8}, David
9 Latrasse², R. Keith Slotkin^{6,9}, Detlef Weigel³, Moussa Benhamed², Jose Gutierrez-
10 Marcos¹

11
12 Author affiliation:

13
14 ¹ School of Life Science, University of Warwick, Coventry CV4 7AL, UK.

15
16 ² Institute of Plant Sciences Paris Saclay, Bureau 1.54 - Bâtiment 630 - Rue
17 Noetzlin, 91405 Orsay Cedex, France

18 ³ Department of Molecular Biology, Max Planck Institute for Developmental Biology,
19 Tübingen, Germany

20 ⁴ Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA

21 ⁵ Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-
22 ku, Nagoya, Aichi 464-8601, Japan

23 ⁶ Donald Danforth Plant Science Center, St. Louis, MO, USA

24 ⁷ Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho,
25 Sakyo-ku, Kyoto, 606-8502

26 ⁸ Division of Biological Science, Graduate School of Science, Nagoya University,
27 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602

28 ⁹ Division of Biological Sciences, University of Missouri, Columbia, MO, USA

29
30 ^a Present address: Department of Plant Sciences, University of Cambridge, CB2
31 3EA, UK

32 ^b Present address: Faculty of Science and Technology, Airlangga University,
33 Kampus C, Mulyorejo, Surabaya City, East Java 60115, Indonesia

34 ^c Present address: Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD),
35 34394 Montpellier, France

36
37 * Equal contribution

38
39 Correspondence:

40
41 moussa.benhamed@universite-paris-saclay.fr and j.f.gutierrez-
42 marcos@warwick.ac.uk

43
44 Keywords:

45 Arabidopsis, Chromatin, DNA methylation, Epimutation, Transposon

48 **Abstract:**
49 Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play
50 a critical role in the control of growth, development and adaptation to environmental
51 fluctuations in most multicellular eukaryotes. The catalytic activity of PRC2 is
52 counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the
53 genomic distribution of H3K27me3. Here, we show that two JMJ histone
54 demethylases in *Arabidopsis*, *EARLY FLOWERING 6* (ELF6) and *RELATIVE OF*
55 *EARLY FLOWERING 6* (REF6), play distinct roles in H3K27me3 and H3K27me1
56 homeostasis. We show that failure to reset these chromatin marks during sexual
57 reproduction results in the inheritance of epigenetic imprints, which cause a loss of
58 DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-
59 type histone demethylases in plants contribute towards maintaining distinct
60 transcriptional states during development and help safeguard genome integrity
61 following sexual reproduction.

62
63 **Introduction:**
64 In eukaryotes, chromatin accessibility is modified by DNA methylation, the covalent
65 modification of histone proteins and the deposition of histone variants. These
66 epigenetic modifications allow the establishment of specific transcriptional states in
67 response to environmental or developmental cues. While in most cases
68 environmentally-induced chromatin changes are transient, epigenetic changes
69 induced during development are often stably inherited through mitotic divisions, so
70 that cell identity is maintained and individual cells or tissues do not revert to previous
71 developmental states. A key chromatin modification implicated in these responses is
72 the post-translational modification of histone tails, which are associated with active or
73 inactive transcriptional states (Kouzarides, 2007). Among these, the methylation of
74 lysine 9 of histone H3 (H3K9me2) and H3K27me1 has been associated with the
75 repression of transposable elements (TEs) in constitutive heterochromatin, whereas
76 methylation in others, including H3K27me3, has been associated with the repression
77 of genes in euchromatic genome regions (Berger, 2007, Pfluger & Wagner, 2007).
78 The latter is deposited by PRC2 and plays a crucial role in development in most
79 multicellular eukaryotes (Laugesen, Hojfeldt et al., 2019). In plants, this modification
80 is found in approximately one quarter of protein-coding genes and is dynamically
81 regulated during growth and development (Lafos, Kroll et al., 2011, Roudier, Ahmed

82 et al., 2011, Zhang, Germann et al., 2007). The activity of PRCs is counterbalanced
83 by JMJ demethylases, which catalyze the specific removal of H3K27me3 (Liu, Lu et
84 al., 2010). In *Arabidopsis*, five histone demethylases [RELATIVE OF EARLY
85 FLOWERING 6 (REF6); EARLY FLOWERING 6 (ELF6); JUMONJI 13 (JMJ13);
86 JUMONJI 30 (JMJ30); and JUMONJI 32 (JMJ32)] have been implicated in the
87 demethylation of H3K27 (Crevillén, Yang et al., 2014, Gan, Xu et al., 2014, Lu, Cui et
88 al., 2011). These proteins are thought to mediate the temporal and spatial de-
89 repression of genes necessary for a wide range of plant processes such as
90 flowering, hormone signaling, and the control of the circadian clock. Inactivation of
91 *REF6* results in the ectopic accumulation of H3K27me3 at hundreds of loci, most of
92 them involved in developmental patterning and environmental responses (Lu et al.,
93 2011, Yan, Chen et al., 2018). It has been proposed that REF6 is recruited to a
94 specific sequence motif thought its zinc-finger domains (Cui, Lu et al., 2016, Lu et
95 al., 2011), however others have shown that it is also recruited by specific interactions
96 with transcription factors (Yan et al., 2018). Moreover, it has been shown that the
97 affinity of REF6 to chromatin is hindered by DNA methylation, which could explain
98 why its activity is primarily found at euchromatic loci (Qiu et al 2019).

99 Previous studies proposed that REF6 acts redundantly with ELF6 and JMJ13 to
100 restrict the accumulation of H3K27me3 in gene regulatory regions thereby unlocking
101 tissue-specific expression (Yan et al., 2018). Importantly, REF6, ELF6, JMJ30 and
102 JMJ32 appear to specifically remove methyl groups from H3K27me3 and H3K27me2
103 but not from H3K27me1 (Crevillén et al., 2014, Gan et al., 2014, Lu et al., 2011).
104 Previous investigations have shown that H3K27me1 in *Arabidopsis* is associated
105 with constitutive heterochromatin, where it is deposited by ARABIDOPSIS
106 TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATRX6 (Jacob, Feng et al., 2009,
107 Jacob, Stroud et al., 2010). However, several studies in mammals and plants have
108 shown that H3K27me1 is also found in euchromatin (Fuchs, Jovtchev et al., 2008,
109 Jacob et al., 2009, Vakoc, Sachdeva et al., 2006). The presence of H3K27me3 in
110 euchromatin is thought to be actively re-set during sexual reproduction – a view
111 supported by studies in *Arabidopsis* showing that ELF6, REF6 and JMJ13 are
112 necessary to reset and prevent the inheritance of this epigenetic mark by the
113 offspring (Crevillén et al., 2014, Liu, Feng et al., 2019, Zheng, Hu et al., 2019).
114 However, to what extent these epigenetic imprints are reset during sexual
115 reproduction remains unknown.

116 Here, we show that the histone demethylases REF6 and ELF6 play distinct roles in
117 the demethylation of histones in *Arabidopsis*, and that REF6 is a major player in the
118 deposition of H3K27me1 in active chromatin. We found that failure to reset
119 H3K27me3 marks during sexual reproduction results in the inheritance of these
120 epigenetic imprints even in the presence of fully functional histone demethylases.
121 The ectopic inheritance of H3K27me3 is associated with the loss of DNA methylation
122 at heterochromatic loci leading to activation of TEs. Moreover, we found that genetic
123 and epigenetic mutations arising in histone demethylase mutants are stably inherited
124 over multiple generations and result in pleiotropic developmental defects.
125 Collectively, our work has uncovered a hitherto unrecognized role for histone
126 demethylases in maintaining the genetic and epigenetic stability of plants.

127

128 **Results:**

129 ***Arabidopsis REF6 and ELF6 play distinct roles in H3K27me3 homeostasis***

130 The deposition of H3K27me3 by PRCs correlates with transcriptional repression both
131 in plants and animals. The dynamic regulation of this epigenetic mark enables the
132 reactivation of genes primarily implicated in developmental programs; thus, any
133 disruption to these regulatory networks results in major developmental aberrations
134 (Kassis, Kennison et al., 2017, Lewis, 1978, Molitor, Latrasse et al., 2016). The
135 demethylation of H3K27me3 has been linked to the enzymatic activity of five JMJ-
136 type proteins, which act antagonistically to SET-domain histone methyltransferases
137 from the PRC2 complex (Yan et al., 2018). In order to gain further knowledge about
138 these processes we investigated the function of two sequence-related histone
139 demethylases, ELF6 and REF6, in *Arabidopsis*. We isolated a loss-of-function
140 insertion located in the sixth exon of *REF6* (*ref6-5*) and a targeted CRISPR/Cas9
141 deletion to the first exon of *ELF6* (*elf6-C*) (Supplemental Fig. S1). Similar to previous
142 reports, we found that our *elf6-C* plants displayed an early flowering phenotype,
143 characterized by a reduced number of rosette leaves at bolting. Conversely, *ref6-5*
144 plants displayed a late flowering phenotype and an increased number of rosette
145 leaves at bolting stage (Fig 1A and Supplemental Fig. S2A-B). Moreover, *elf6-C/ref6-5*
146 double mutant plants displayed a dwarf phenotype, increased number of petals
147 and pleiotropic defects in leaf morphology, such as serrations and downward curling
148 (Fig 1A and Supplemental Fig. S2C-D). Notably, the phenotypes observed in *elf6-C/ref6-5*
149 have not been previously reported for double mutants of these histone

150 demethylases (Yu, Li et al., 2008), which could be explained by the fact that only
151 partial-loss-of-function mutations had been used previously (Yan et al., 2018).
152 Further phenotypic analysis revealed that *elf6-C/ref6-5* plants displayed a reduction
153 in siliques length (Fig 1B), thus suggesting that these mutations may affect plant
154 fertility. Microscopy analysis of developing seeds revealed that while embryo
155 development in *elf6-C* was normal, seeds from *ref6-5* and *elf6-C/ref6-5* contained
156 embryos that displayed patterning defects (Fig 1B). However, these embryonic
157 abnormalities did not give rise to any noticeable changes in seed germination rates
158 (Supplemental Fig. S2E).

159 REF6 is thought to be a H3K27me3 demethylase and a positive regulator of gene
160 expression (Hou, Zhou et al., 2014, Li, Gu et al., 2016, Lu et al., 2011, Wang, Gao et
161 al., 2019), while the role of ELF6 remains poorly understood. To shed light on the
162 function of these two proteins, we analyzed the distribution of H3K27me3 in *elf6-C*,
163 *ref6-5* and *elf6-C/ref6-5* seedlings through ChIP-seq assays and compared the
164 distribution of this epigenetic mark to that in wild-type plants. Overall, the
165 accumulation of H3K27me3 at genes was more pronounced in *ref6-5* than in *elf6-C*
166 (Fig 1C). Most of the hyper-methylated genes found in *elf6* (75%) were hyper-
167 methylated to a greater extent in both *ref6-5* and *elf6-C/ref6-5*, suggesting that these
168 histone demethylases have partially overlapping yet distinct roles in the control of
169 H3K27me3 homeostasis in *Arabidopsis* (Fig. 1D and Supplemental Fig. S3-S4). In
170 order to further understand the role of ELF6 and REF6 in transcriptional regulation,
171 we performed an RNAseq analysis. When combining transcriptomic and H3K27me3
172 ChIP-seq data, we found a strong correlation primarily between genes that were both
173 hyper-methylated at H3K27me3 and down-regulated, thus indicating that this
174 epigenetic mark contributes to the transcriptional repression of these genes (Fig. 1E
175 and Supplemental Fig.S5-S6). However, we also found genes that were hypo-
176 methylated and up-regulated, which could be linked to the global transcriptional
177 deregulation observed in these mutants. Taken together, our data point to the
178 essential, yet distinct, roles of REF6 and ELF6 in H3K27me3 homeostasis at genic
179 regions of the *Arabidopsis* genome.

180

181 ***REF6 controls H3K27me1 homeostasis in chromatin***

182 Biochemical analysis have revealed that REF6 and ELF6 can remove both tri- and
183 di-methyl groups but not mono-methyl groups at lysine 27 on histone 3 (Lu et al.,

184 2011). We therefore hypothesized that in addition to controlling H3K27me3
185 homeostasis, REF6 and ELF6 may be also implicated in H3K27me1 homeostasis. In
186 order to test this hypothesis, we determined the distribution of H3K27me1 through
187 ChIP-seq assays and found that most of the genes targeted by REF6 accumulate
188 high levels of H3K27me1 in wild-type (Fig. 2A-C and Supplemental Fig. S7).
189 Because the deposition of H3K27me1 in Arabidopsis is thought to be mediated by
190 ATXR5 and 6 (Jacob et al., 2009, Jacob et al., 2010), we determined the genomic
191 distribution of H3K27me1 in *atxr5/atxr6*. As previously described, H3K27me1 in
192 these mutants was significantly reduced at pericentromeric heterochromatin but not
193 affected in euchromatic regions (Supplemental Fig. S8). These data led us to
194 hypothesize that the maintenance of H3K27me1 at euchromatin could be mediated
195 by REF6. To validate this hypothesis, we investigated the relationship between
196 H3K27me1 and H3K27me3 at genes targeted by REF6. This analysis revealed that
197 the loss of REF6 activity results in both the accumulation of H3K27me3 and a drastic
198 reduction of H3K27me1 at those loci, while the loss of ELF6 did not have an effect
199 (Fig. 2B). We then assessed genomic regions directly targeted by REF6 (Cui et al.,
200 2016, Li et al., 2016) and found that the accumulation of H3K27me3 in *ref6-5* was
201 associated with a complete loss of H3K27me1 (Fig. 2C). Taken together these data
202 revealed that the maintenance of H3K27me1 in euchromatin is dependent on REF6.
203 Although it is well known that H3K27me1 in Arabidopsis contributes to the repression
204 of heterochromatic TEs, its role in euchromatin remains unknown. To address this
205 caveat, we examined the relationship between REF6-dependent H3K27me1
206 deposition and transcription. To aid this analysis, we divided the transcriptome into
207 10 quantiles of identical size according to their transcriptional state (Supplemental
208 Fig. S9). We found that while H3K27me3 was primarily associated with strongly
209 repressed genes in wild-type (first three quantiles), in *ref6-5*, the ectopic
210 accumulation of H3K27me3 primarily affected genes that displayed low levels of
211 expression (third to fifth quantiles) (Fig. 2D and Supplemental Fig. S10). Moreover,
212 we found that the activity of REF6 was required by low-level expression genes (third
213 to fifth quantile) (Fig. 2E and Supplemental Fig. S11). Collectively, these data
214 support the view that REF6 contributes to both gene activation, by the removal of
215 PRC2-dependent repressive marks, and to underpin low-level basal expression, by
216 maintaining H3K27me1 in transcriptionally active chromatin.

217

218 ***Inheritance of ectopic H3K27me3 imprints alters the epigenome***

219 It has been shown in *Arabidopsis* that histone demethylases are critical for the
220 resetting of H3K27me3 across generations (Crevillén et al., 2014, Gan et al., 2014,
221 Liu et al., 2019, Zheng et al., 2019). To understand the biological significance of this
222 epigenetic resetting that likely takes place during plant sexual reproduction, we
223 generated reciprocal crosses between *elf6-C/ref6-5* and wild-type plants. While F₁
224 hybrids from these crosses were indistinguishable from the wild-type, a few F₂
225 progenies (products of F₁ self-pollination) displayed unexpected developmental
226 phenotypes, including characteristics that were not present in either single or double
227 mutants (n=1,500; 4.42% paternal transmission; 4.65% maternal transmission) (Fig
228 3A). Notably, some abnormal plants from F₂ progenies were genetically wild-type for
229 *ELF6* and *REF6*, and when we grew them we uncovered an array of developmental
230 abnormalities that continued to segregate with stochastic frequencies in subsequent
231 generations (Fig 3A). We reasoned that these phenotypes could have resulted from
232 epimutations arising from the defective resetting of H3K27me3 during sexual
233 reproduction in *elf6-C/ref6-5*. – a phenomenon not previously reported in plants. To
234 test this hypothesis, we performed ChIP-seq analyses using seedlings from two
235 independent epimutant F₅ progeny. Our analysis revealed 535 euchromatic loci
236 displaying elevated levels of H3K27me3, of which one third were also found to be
237 hyper-methylated in the parental double mutant line used for reciprocal crosses (Fig.
238 3B). These data suggest that some of the H3K27me3 imprints present in epimutants
239 were formed in *elf6-C/ref6-5* and were stably transmitted over five generations even
240 after wild-type function was restored (Fig. 3C and Supplemental Fig. S12). We
241 therefore named these lines *epiER* (epimutants arising from *elf6-C/ref6-5*). Notably,
242 for both lines we found that the ectopic accumulation of H3K27me3 was particularly
243 elevated in constitutive heterochromatin within the pericentromeric regions (Fig. 3D).
244 Taken together, our data suggest that ELF6 and REF6 are necessary to limit the
245 transmission of H3K27me3 imprints to offspring and that failure to do so results in
246 epigenomic and developmental abnormalities.

247

248 ***Accumulation of ectopic H3K27me3 at centromeric heterochromatin is linked
249 to DNA hypomethylation***

250 Loss of DNA methylation has been linked to the abnormal deposition of H3K27me3
251 in heterochromatin (Batista & Kohler, 2020). However, mutants defective in

252 H3K27me3 deposition do not affect global DNA methylation levels (Stroud, Do et al.,
253 2014). To test if the ectopic accumulation of H3K27me3 found in *epiERs* could affect
254 DNA methylation, we performed a BS-seq analysis on the two F_5 epimutant
255 progenies used for the ChIP-seq analysis. We found that both *epiER* lines displayed
256 global reductions in DNA methylation, primarily at pericentromeric regions (Fig. 4A)
257 (Miura, Yonebayashi et al., 2001, Vongs, Kakutani et al., 1993, Zemach, Kim et al.,
258 2013). This global reduction in methylation occurred despite there being no ectopic
259 accumulation of H3K27me3 in the parental mutant at any genes involved in the DNA
260 methylation pathway. In addition, we found that the *epiERs* analysed displayed
261 notable differences in DNA methylation levels between lines and among
262 chromosomes (Fig 4A). In order to test if the observed differences and stochastic
263 phenotypic segregation could be attributed to variation in DNA methylation between
264 plants in the population, we performed a methylome analysis on individual plants.
265 This analysis revealed that while some plants were consistently devoid of DNA
266 methylation at pericentromeric regions, similar to the *ddm1* mutant, others displayed
267 intermediate states that varied from chromosome to chromosome (Fig 4B). The loss
268 of DNA methylation in constitutive heterochromatic regions is associated with a
269 decrease in methylation at TEs and genes located therein (Fig. 4C and
270 Supplemental Fig. S13). Since these pericentromeric regions fail to fully restore DNA
271 methylation to wild-type levels and were elevated for H3K27me3 we hypothesized
272 that they may be partially protected from the activity of the RNA-directed DNA
273 methylation (RdDM) pathway, which establishes and maintains DNA methylation at
274 euchromatic transposons and repetitive DNA elements in plants (Matzke & Mosher,
275 2014). To test this hypothesis, we investigated the relationship between DNA
276 methylation and H3K27me3 on transposons located in euchromatic and constitutive
277 heterochromatic genome regions. We found that in *epiERs*, heterochromatic TEs
278 that gained H3K27me3 had a proportional loss of DNA methylation, whereas
279 euchromatic TEs showed no change in DNA methylation (Fig. 4D). These data
280 support the view that a gain in H3K27me3 has a negative effect on the deposition
281 and/or the maintenance of DNA methylation at heterochromatic transposons. To
282 evaluate the extent to which these defects may affect chromatin compaction, we
283 performed immunostaining assays on interphase nuclei using specific antibodies.
284 We found that in *epiERs* heterochromatin compaction is strongly affected
285 (Supplemental Fig. S14) (Fig. 4E). Collectively, these data suggest that the ectopic

286 accumulation of H3K27me3 in *epiERs* results in pericentromeric heterochromatin
287 defects.

288

289 ***Epigenomic defects result in transcriptional activation of pericentromeric loci***
290 ***and genome instability***

291 We predicted that the abnormal distribution of epigenetic marks in ELF6/REF6-
292 mediated epimutants could be responsible for the developmental abnormalities
293 observed in these plants. To test this hypothesis, we performed a RNAseq analysis
294 and found that 1,240 and 1,128 genes were misregulated in *epiERs* A5.B1 and
295 A5.C6, respectively (Supplementary Table S1). A fraction of the upregulated in
296 *epiERs* (483 and 544) were also upregulated in *elf6-C/ref6-5* plants (Fig 5A and
297 Supplemental Fig S15A). Gene ontology analysis revealed that most upregulated
298 genes in epimutants were involved in biotic stress responses (Fig 5B and
299 Supplemental Fig S15B). When we investigated the chromosomal distribution of
300 these deregulated genes, we found that some were located in constitutive
301 pericentromeric heterochromatin and they showed the strongest upregulation effect
302 (Fig 5C). These data suggest that the abnormal distribution of epigenetic marks in
303 *epiERs* results in transcriptional activation of euchromatic and heterochromatic loci.
304 Pericentromeric heterochromatin in plants is rich in TEs and is tightly regulated by
305 DNA methylation and other epigenetic modifications (Dubin, Mittelsten Scheid et al.,
306 2018), thus we hypothesized that the epigenomic perturbations found in *epiERs*
307 could result in the activation of transposons. To test this hypothesis, we used our
308 transcriptome data to determine the transcriptional state of different TEs in the two
309 *epiER* progenies. We found that both RNA and DNA transposon families were
310 significantly upregulated in *epiERs* (Fig 6A and Supplemental Fig S15). To assess
311 whether the transcriptional activation of TEs in these epimutants could result in an
312 increase in their mobility we determined their copy number in different *epiER* lines.
313 We found that one heterochromatic transposon, CACTA1 (At2TE20205), and one
314 euchromatic transposon, EVD (At5TE20395), showed a significant increase in copy
315 number in both *epiERs* (Fig 6B). Further analysis revealed that these TEs were
316 depleted in DNA methylation and significantly upregulated (Fig 6C and Supplemental
317 FigS17). We then determined the precise location of some of the transposons newly
318 mobilized in the different epimutants. We found that most novel insertions
319 accumulated in euchromatin, continued to be active over multiple generations, and

320 sometimes disrupted gene expression resulting in developmental phenotypes (Fig
321 6D-F and Supplemental Table S2). Collectively our data demonstrate that the
322 developmental abnormalities found in *epiER* lines result from a combination of stably
323 inherited genetic and epigenetic mutations.

324

325 **Discussion:**

326 In plants, histone modifications deposited by PRC2 play a critical role in growth and
327 development, and in the adaptation of these processes to environmental fluctuations.
328 Previous studies in *Arabidopsis* have shown that the activity of a distinct group of
329 JmJ-type demethylases shape the genomic distribution of H3K27me3 (Yan et al.,
330 2018). Three of these proteins – JMJ13, ELF6 and REF6 – have been shown to play
331 important roles in development and in the regulation of environmental perception
332 (Noh, Lee et al., 2004, Zheng et al., 2019). Our data show that REF6 and ELF6
333 regulate the removal of H3K27me3 at different genomic loci; while REF6 has a large
334 repertoire of target genes, ELF6 activity is restricted to a small subset of genes, most
335 of which can also be targeted by REF6. These data combined with our genetic
336 analysis suggest that, despite the structural similarities between these two proteins,
337 they play somewhat distinct functions in H3K27me3 homeostasis. Our data also
338 support the view that although REF6 restricts the spreading of H3K27me3 to the
339 genomic regions flanking PRC2 targets (Yan et al., 2018), it also plays an hitherto
340 unrecognized role in the regulation of H3K27me1 homeostasis in euchromatin. This
341 view is also supported by the overlap observed between REF6 genomic targets and
342 the accumulation in wild-type plants of H3K27me1 in these regions, as well as by the
343 complete loss of this chromatin mark in PRC2 target loci when REF6 activity is lost.
344 Therefore, the deposition of H3K27me1 in *Arabidopsis* relies both on the activity of
345 ATXR5 and ATXR6 in heterochromatin (Jacob et al., 2009, Jacob et al., 2010) and
346 the activity of REF6 in transcriptionally active euchromatin (Supplemental FigS18). In
347 mammals, the histone demethylases UTX and JMJD3, also known as KDM6A and
348 KDM6B, have also been shown to catalyze the conversion of H3K27me3 and
349 H3K27me2 into H3K27me1 (De Santa, Totaro et al., 2007, Lan, Bayliss et al., 2007,
350 Lee, Villa et al., 2007, Swigut & Wysocka, 2007). Moreover, defects in PRC2
351 methyltransferase activity in mammals completely abolish the accumulation of
352 H3K27me1 in embryonic stem cells (Ferrari, Scelfo et al., 2014, Montgomery, Yee et
353 al., 2005), suggesting a conserved PRC2-mediated mechanism for H3K27me1

354 homeostasis in euchromatin, in both animals and plants. The precise mechanism
355 responsible for the deposition of this chromatin mark in *Arabidopsis* is currently
356 unknown, but two possible scenarios are envisaged: either the deposition of
357 H3K27me1 in euchromatin is dependent on the activity of PRC2 and REF6, or this
358 mark could be deposited by an unknown histone mono-methyltransferase which
359 requires REF6 for its maintenance (Fig. 7). In mammals the presence of H3K27me1
360 in actively transcribed genome regions has been associated with the promotion of
361 transcription (Ferrari et al., 2014). This may explain why, in *Arabidopsis*, genes
362 associated with H3K27me1 display moderate levels of expression whereas the
363 conversion of this mark into H3K27me3 negatively impacts their transcriptional rate.
364 Plant somatic cells accumulate H3K27me3 primarily at protein-coding genes,
365 however, in reproductive tissues and mutants where DNA methylation is reduced,
366 this mark also accumulates at transposon loci (Deleris, Stroud et al., 2012,
367 Weinhofer, Hehenberger et al., 2010). Other studies have also reported the
368 accumulation of H3K27me3 in transposon sites for plant species with reduced levels
369 of DNA methylation (Montgomery et al., 2005), as well as in mammal somatic and
370 reproductive tissues which also show a reduction in DNA methylation (Hanna, Perez-
371 Palacios et al., 2019, Reddington, Sproul et al., 2014, Saksouk, Barth et al., 2014).
372 However, our data does not fully support the idea that the deposition of this
373 chromatin mark acts as a compensatory system to silence hypomethylated TEs
374 (Deleris et al., 2012, Hanna et al., 2019). Instead, our results suggest that the
375 homeostasis and function of H3K27me1 and H3K27me3 in plants is more complex
376 than previously anticipated.

377 The stable inheritance of *de novo* acquired DNA methylation imprints in plants are
378 well documented. Mutations in the machinery involved in the deposition of DNA
379 methylation, such as the cytosine DNA *METHYLTRANSFERASE 1* (*MET1*) and the
380 chromatin-remodeling *DEFICIENT IN DNA METHYLATION 1* (*DDM1*), lead to the
381 formation of epimutations caused by DNA hypomethylation (Johannes, Porcher et
382 al., 2009, Kakutani, Jeddeloh et al., 1996, Mathieu, Reinders et al., 2007). These
383 epimutations are maintained during sexual reproduction and remain stable over
384 several generations, even after the function of *MET1* or *DDM1* is restored. Moreover,
385 natural epimutations created during asexual propagation and associated with DNA
386 hypomethylation are associated with TEs and can be stable over multiple
387 generations thus contributing to novel yet stable phenotypic variation (Ong-Abdullah,

388 Ordway et al., 2015, Wibowo, Becker et al., 2018). Despite accumulating evidence
389 for the active role of histone demethylases in resetting H3K27me3 at specific loci
390 during sexual reproduction (Crevillén et al., 2014, Noh et al., 2004), the precise
391 mechanism(s) remain unknown. Our data show that a failure to reset H3K27me3
392 during sexual reproduction results in the trans-generational inheritance of this
393 chromatin mark in euchromatin, even when functional demethylase activity is
394 restored. One possible explanation for these findings could be that some of the
395 H3K27me3 imprints that are ectopically deposited in histone demethylase mutants
396 cannot be reset because they are distal to the target sequences recognized by these
397 demethylases. Once established, these H3K27me3 imprints could be maintained
398 across generations as epimutations, which we termed *epiER*, through the
399 recruitment of LHP1-PRC2 complexes (Derkacheva, Steinbach et al., 2013). Our
400 data also revealed that the inheritance of these imprints causes defects in the
401 maintenance of DNA methylation at heterochromatic regions of the genome. The
402 ectopic deposition of H3K27me3 in constitutive heterochromatin may be linked to
403 defects in the resetting of DNA methylation thought to take place during
404 gametogenesis (Calarco, Borges et al., 2012, Ibarra, Feng et al., 2012, Slotkin,
405 Vaughn et al., 2009) and/or early embryo development (Bouyer, Kramdi et al., 2017).
406 Under this scenario, an active resetting of H3K27me3 in gametes would be critical
407 for the re-establishment of DNA methylation in heterochromatin after fertilization.
408 Moreover, epigenomic alterations could explain the heritable, yet unstable,
409 phenotypes observed in *epiER*s. Similar epimutations and phenotypic variation have
410 been shown to arise from crosses between wild-type plants and mutants defective in
411 the machinery that maintain DNA methylation (Kakutani et al., 1996, Kato,
412 Takashima et al., 2004, Marí-Ordóñez, Marchais et al., 2013, Mirouze, Lieberman-
413 Lazarovich et al., 2012). As in these studies, we also found that *epiER*s have defects
414 in the silencing of some transposons resulting in an increase in genetic lesions
415 associated with their mobilization.

416 Taken together our data reveal novel, critical roles for histone demethylases in
417 maintaining both genome integrity and transcriptional states during plant
418 development.

419
420 Acknowledgments:

421 We thank Gary Grant for help with plant husbandry; Xiaofeng Cao and Caroline
422 Dean for seed stocks and data. Ranjith Papareddy for the identification of *ref6-5* and
423 Liliana M. Costa for discussions and comments on the manuscript. Supported by the
424 ERC AdG IMMUNEMESIS Project, the DFG SPP1529 Program, and the Max Planck
425 Society (D.W.), ANR/CNRS grant (EpiGEN) to M.B., JSPS grant (JP19H05676) to
426 M.U. and BBSRC grants (BB/L003023/1, BB/N005279/1, BB/N00194X/1 and
427 BB/P02601X/1) to J.G-M.

428

429 Author contribution:

430 M.N., J.A.S., M.B. and JG-M conceived the project. M.N., S.O., D.L., C.R., Y.H.,
431 J.S.R-P., F.A., A.W., M.U. and JG-M designed and conducted experiments. M.N.,
432 J.A.S., A.D., S.O., D.L., D.M., J.D., M.U., M.B. and JG-M analysed the data. M.B.
433 and JG-M wrote the manuscript with input from the rest of the authors.

434

435 Declaration of interest: The authors declare that they have no competing interests.

436

437 Data and Materials Availability:

438 Sequence data (BS-seq, RNA-seq and ChIP-seq) that support the findings of this
439 study have been deposited at the European Nucleotide Archive (ENA) under the
440 accession code PRJEB36508.

441

442 **Figure 1. Arabidopsis Histone demethylases ELF6 and REF6 play distinct roles**
443 **in development and H3K27me3 homeostasis.**

444 (A) Representative growth phenotypes of Arabidopsis wild-type (WT) and histone
445 demethylase mutants (*elf6-C*, *ref6-5* and *elf6-C/ref6-5*). Scale bars, 1 cm.
446 (B) Siliques and embryos from Arabidopsis wild-type (WT) and different mutant
447 alleles of histone demethylase ELF6 and REF6. Numbers show the frequency of the
448 abnormal embryos (n=250). Scale bars 1 cm and 10 μ m, respectively.
449 (C) Venn diagram showing the overlap between genes accumulating H3K27me3 in
450 wild-type (WT) and histone demethylase mutants (*elf6-C*, *ref6-5* and *elf6-C/ref6-5*).
451 (D) Genome browser views of background subtracted ChIP-seq signals as
452 normalized reads per genomic content (RPGC). Shaded red boxes, genes targeted
453 exclusively by REF6. Shaded grey boxes, genes targeted by REF6 and ELF6.
454 Shaded purple boxes, genes targeted by both REF6 and ELF6, and only
455 hyper-methylated in double mutant *elf6-C/ref6-5*.
456 (E) Venn diagram showing overlap between differentially expressed genes (DEGs)
457 and H3K27me3 differentially methylated genes in histone demethylase mutants. To
458 the left metaplot for H3K27me3 levels for genes both up-regulated and hypo-
459 methylated and to the right metaplot of H3K27me3 levels in genes both down-
460 regulated and hyper-methylated. Top panel, *ref6-5*; Bottom panel, *elf6-C*. p-values
461 for Fisher's exact test are shown in brackets. N.S. Not Significant.
462

463 **Figure 2. Arabidopsis REF6 play an essential roles in the deposition of**
464 **H3K27me1 in active chromatin.**

465 (A) Genome browser views of background subtracted ChIP-seq signals for
466 H3K27me3 and H3K27me1 as normalized reads per genomic content (RPGC) in
467 wild-type (WT) and histone demethylase mutants (*elf6-C*, *ref6-5* and *elf6-C/ref6-5*).
468 Shaded boxes, genes targeted exclusively by REF6.
469 (B) Violin plots showing the distribution of H3K27me3 and H3K27me1 on genes
470 targeted by REF6. Genes were categorised as targeted if a H3K27me3 peak was
471 annotated on them in *ref6-5* and in *elf6-C/ref6-5* but not in WT.
472 (C) Heatmap showing the distribution of H3K27me3 and H3K27me1 on genomic
473 sequences targeted by REF6 for wild-type (WT) and *ref6-5* plants. Sample size n =
474 3,385.
475 (D) Bar charts showing the number of genes for different expression quantiles
476 predicted to be targeted by PRC2 and REF6.
477 (E) Heatmap showing the distribution of H3K27me3 and H3K27me1 present on
478 genes corresponding to low-expression (1-5) quantiles.
479

480 **Figure 3. Pleiotropic developmental abnormalities associated with the**
481 **inheritance of ectopic H3K27me3 imprints in Arabidopsis.**

482 (A) Abnormal phenotypes of plants from reciprocal crosses between *elf6-C/ref6-5*
483 and wild-type (WT). Representative images of phenotypes arising from different
484 progenies propagated by selfing. Bar chart, 1 cm.

485 (B) Venn diagram showing the overlap in genes accumulating H3K27me3 in *elf6*-
486 *C/ref6-5* and *F*₅ progenies from A5.B1. p-values for Fisher's exact test are shown in
487 brackets, N.S. Not Significant.
488 (C) Genome browser views of background subtracted ChIP-seq signals for
489 H3K27me3 as normalized reads per genomic content (RPGC) in wild-type (WT),
490 *elf6-C*, *ref6-5*, *elf6-C/ref6-5*, and *F*₅ progenies from A5.B1 and A5.C6. Shaded
491 boxes, genes showing transgenerational inheritance of H3K27me3.
492 (D) Top panel: Differences in the chromosomal distribution of H3K27me3 as
493 normalized reads per genomic content (RPGC) between *F*₅ progenies from A5.B1
494 and A5.C6 and wild-type (WT). Grey shaded boxes, pericentromeric regions. Bottom
495 panel: Genome browser view of ChIP-seq signal for H3K27me3 as normalized reads
496 per genomic content (RPGC) in wild-type (WT), and *F*₅ progenies from A5.B1 and
497 A5.C6 in a pericentromeric region.
498

499 **Figure 4. Ectopic accumulation of H3K27me3 is associated with the loss of**
500 **DNA methylation at pericentromeric heterochromatin and affects chromatin**
501 **condensation.**

502 (A) Distribution of DNA methylation across chromosomes of wild-type (WT) and
503 progenies from *epiERs* A5.B1 and A5.C6. Grey shaded boxes, pericentromeric
504 regions.
505 (B) Distribution of DNA methylation across chromosomes of individual plants from
506 wild-type (WT), *ddm1*, and *epiERs* A5.B1.3.B1, A5.B5.C5, A5.C5.A6, A5.C5.D6 and
507 A5.C6.C3. Grey shaded boxes, pericentromeric regions.
508 (C) Distribution of DNA methylation across Transposable Elements (TEs) and
509 Transposable Element Genes (TEGs) of individual plants from wild-type (WT) and
510 *epiERs* A5.B1.3.B1, A5.B5.C5, A5.C5.A6, A5.C5.D6 and A5.C6.C3. Black box,
511 centromeric regions.
512 (D) Correlation between DNA methylation changes and H3K27me3 changes on
513 euchromatic and heterochromatic TEs, in wild-type (WT) and *epiER* A5.B1.
514 (E) Immunolocalization showing the distribution of H3K27me3 and H3K27me1 in
515 interphase nuclei of wild-type, A5.C5.A2 and A5.C5.B4 plants. Scale bars, 5 μ m.
516

517 **Figure 5. Global upregulation of centromeric gene expression in *epiERs*.**

518 (A) Heatmap showing scaled expression levels of Differentially Expressed Genes
519 between wild-type and progeny of *epiER* A5.B1 in wild-type (WT) *elf6-C*, *ref6-5*, *elf6*-
520 *C/ref6-5*, and progenies of *epiERs* A5.B1 and A5.C6.
521 (B) Gene Ontology analysis showing the functional categories enriched in genes
522 upregulated in progeny of *epiERs* A5.B1.
523 (C) Differential gene expression across each *Arabidopsis* chromosome for genes
524 upregulated and downregulated in progenies of *epiERs* A5.B1 and A5.C6. Grey
525 shaded boxes, pericentromeric regions
526

527 **Figure 6. Transposon mobilization in *epiERs* results in heritable genetic**
528 **lesions.**

529 (A) Differential expression of DNA and RNA transposon families grouped by
530 superfamily in progenies of *epiER*s A5.B1 and A5.C6.
531 (B) Copy number variation of transposons in progenies of *epiER* A5.C6. Blue dots,
532 euchromatic TEs; Red dots, heterochromatic TEs.
533 (C) Genome browser views of normalized sequencing coverage (RPGC), DNA
534 methylation frequency (%) and RNAseq coverage (RPGC) in wild-type (WT) and
535 progenies of *epiER*s A5.B1 and A5.C6. Grey box, AT2TE20205 (CACTA1).
536 (D) Map of transposon insertion in AT3G11330 and its segregation in *epiER* A5.B1.3
537 progenies. P1-3, primers used for PCR amplification and sequencing.
538 (E) Map of transposon insertion in AT5G10770 and sequence footprint resulting from
539 re-mobilization in *epiER* A5.B1.3 progenies. P4-6, primers used for PCR amplification
540 and sequencing.
541 (F) Seed pigmentation defects caused by a sequence insertion in AT5G13930
542 (TRANSPARENT TESTA4/ CHALCONE SYNTHASE) resulting from transposon re-
543 mobilization in *epiER* A5.B1.3 progenies. P7-8, primers used for PCR amplification
544 and sequencing.
545

546 **Figure 7. Proposed model for the deposition of H3K27me3 and H3K27me1 in**
547 **Arabidopsis.**

548 Hypothetical model for the distinct mechanisms of deposition of H3K27me3 and
549 H3K27me1 in different chromatin compartments. In pericentromeric heterochromatin,
550 ATRX5/6 deposits in one one-step H3K27me1 in histones accumulating H3K9me2.
551 In euchromatin, the H3K27me3 deposited by histone methylases SWN/CLF from the
552 PRC2 complex is converted to H3K27me1 by the activity of histone demethylase
553 REF6. Alternatively, the deposition of H3K27me1 is mediated in one one-step
554 process by a yet unknown histone methylase and maintained by the activity of REF6
555 to prevent the deposition of additional methyl groups by PRC2. Dark blue circles,
556 methyl groups. C, represent Cytosines. H3.X represents a H3 variant that is not
557 H3.1. Coiled lines represent closed and inactive chromatin.
558

559
560

561 **Supplemental Figure S1. Graphical representation of mutant alleles for ELF6**
562 **and REF6 used in this study.**

563 (A) Schematic diagram of *ELF6* locus showing the location of different mutant
564 alleles: *elf6-3* is a T-DNA insertion (SALK_074694) in the first exon and *elf6-C* is a
565 CRISPR/Cas9 deletion in the first exon that leads to an early stop codon. Black
566 boxes represent exons, triangle shows the insertion site for *elf6-3* and red arrows
567 mark the start and end of the deleted region in *elf6-C*. Scale bar, 1 kb.
568 (B) Schematic diagram of *REF6* locus showing the location of different mutant
569 alleles: *ref6-5* (GABI_70E03) and *ref6-1* (SALK_001018) are T-DNA insertions in the
570 sixth and last exon, respectively. Black boxes represent exons and triangles shows
571 the T-DNA insertion sites. Scale bar, 1 kb.

572

573 **Supplemental Figure S2. Phenotypic characterization of *elf6-C*, *ref6-5* and**
574 **double mutants.**

575 (A) Rosette leaves at bolting stage for *Arabidopsis* wild-type (WT) and histone
576 demethylase mutants (*elf6-C*, *ref6-5* and *elf6-C/ref6-5*). Scale bars, 1 cm.
577 (B) Boxplot for leaf number at bolting stage for wild-type (WT) and different mutants.
578 Letters represent groups of statistically significantly different samples. Differences
579 between genotypes determined by Students t-test, using a sample size of n = 30.
580 (C) Growth phenotypes of wild-type (WT) and *elf6-C/ref6-5* mutant. Scale bar, 1 cm.
581 (D) Boxplot of plant height for wild-type (WT) and histone demethylase mutants.
582 Asterisks represent significant differences between samples. Differences between
583 genotypes determined by Students t-test test, **** p<0.001, sample size of n = 30.
584 (E) Boxplot of seed germination rates in wild-type (WT) and histone demethylase
585 mutants. Germination was scored as radicle protrusion through seed coat. n = 300
586 from six biological replicates.

587

588 **Supplemental Figure S3. Genes with differential K3K27me3 methylation in**
589 **histone demethylase mutants.**

590 (A) Euler diagram of H3K27me3 hyper-methylated genes in histone demethylase
591 mutants compared to WT.
592 (B) Euler diagram of H3K27me3 hypo-methylated genes in histone demethylase
593 mutants compared to WT.

594

595 **Supplemental Figure S4. Genomic regions accumulating K3K27me3 in histone**
596 **demethylase mutants.**

597 (A) Genome browser view of ChIP-seq signal as normalized reads per genomic
598 content (RPGC). Shaded red boxes, genes targeted by REF6.
599 (B) Genome browser view of ChIP-seq signal as normalized reads per genomic
600 content (RPGC). Shaded blue box, gene targeted exclusively by ELF6.

601 (C) Genome browser view of ChIP-seq signal as normalized reads per genomic
602 content (RPGC). Shaded purple boxes, genes targeted by both REF6 and ELF6, and
603 only hyper-methylated in the double mutant *elf6-C/ref6-5*.

604

605 **Supplemental Figure S5. Genes differentially expressed in histone**
606 **demethylase mutants.**

607 (A) Euler diagram of down-regulated genes in histone demethylase mutants
608 compared to WT.

609 (B) Euler diagram of up-regulated genes in histone demethylase mutants compared
610 to WT.

611

612 **Supplemental Figure S6. Relation between hypermethylation of**
613 **downregulation in *elf6-C/ref6-5*.**

614 Venn diagram showing overlap between differentially expressed genes (DEGs) and
615 H3K27me3 differentially methylated genes in *elf6-C/ref6-5*. Venn diagram showing
616 overlap between differentially expressed genes (DEGs) and H3K27me3 differentially
617 methylated genes in *elf6-C/ref6-5*. To the left metaplot for H3K27me3 levels for
618 genes both up-regulated and hypo-methylated and to the right metaplot of
619 H3K27me3 levels in genes both down-regulated and hyper-methylated. p-values for
620 Fisher's exact test are shown in brackets, N.S. Not Significant.

621

622 **Supplemental Figure S7. REF6 catalyses H3K27me3 to H3K27me1 in genes**
623 **causing derepression.**

624 (A) Heatmap showing the distribution of H3K27me3 (red) and H3K27me1 (green) on
625 genes targeted by REF6. Genes were categorised as targeted if a H3K27me3 peak
626 was annotated on them in *ref6-5* and in *elf6-C/ref6-5* but not in WT. n=1589.
627 Intensity of the colour represents RPGC of ChIP-seq. Genes are sorted by the
628 amount of H3K27me3 in WT. Boxes at the top represent metaplots of the average
629 signal for all these genes.

630 (B) Metaplot of median of H3K27me3 and H3K27me1 across both downregulated
631 and hypermethylated genes in *elf6-C/ref6-5* for wild-type (WT) and histone
632 demethylase mutants, n=968.

633 (C) Heatmap of the same genes as Fig S 7B. Intensity of the colour represents ChIP-
634 seq signal as RPGC.

635 (D) Metaplot of median of H3K27me3 and H3K27me1 across both upregulated and
636 hypomethylated genes in *elf6-C/ref6-5* for wild-type (WT) and histone demethylase
637 mutants, n=256.

638 (E) Heatmap of the same genes as Fig S 7D. Intensity of the colour represents ChIP-
639 seq signal as RPGC.

640

641 **Supplemental Figure S8. ATXR5/6 contributes to the deposition of H3K27me1**
642 **in pericentromeric regions.**

643 (A) Distribution of H3K27me1 across chromosomes of wild-type (WT) and *atxr5/6*
644 mutants. Grey shaded boxes, pericentromeric regions.

645 (B) Distribution of H3K27me1 across Chromosome 4 of Arabidopsis genome in wild-
646 type (WT) and *atxr5/6* mutants. Grey shaded boxes, pericentromeric regions.
647

648 **Supplemental Figure S9. Division of Arabidopsis genes according to their**
649 **levels of expression.**

650 Violin plot with boxplots representing the expression levels of genes in Arabidopsis
651 divided in 10 quantiles.
652

653 **Supplemental Figure S10. Histone demethylase mutants show an increase in**
654 **H3K27me3 on genes with intermediate levels of expression**

655 Heatmaps showing the H3K27me3 ChIP-seq signal across genes split by 10
656 quantiles of expression for wild-type (WT) and histone demethylase mutants. Boxes
657 on top represent metaplots of the median signal in each quantile. Genes are sorted
658 by the amount of H3K27me3 in WT. (A) WT. (B) *elf6-C*. (C) *ref6-5*. (D) *elf6-C/ref6-5*.
659

660 **Supplemental Figure S11. Distribution of different epigenetic features for**
661 **different expression quantiles.**

662 Heatmaps showing signal for different epigenetic features across 10 expression
663 quantiles for wild-type. Boxes on top represent metaplots of the median signal in
664 each quantile. Genes in all panels are always sorted by the amount of H3K27me3.
665 (A) H3K27me3. (B) H3K27me1. (C) H3K9ac. (D) ATAC-seq. (E) PolII-seq. (F)
666 Mnase-seq.
667

668 **Supplemental Figure S12. Inheritance of ectopic H3K27me3 in *epiERs*.**

669 (A) Venn diagram showing the intersection between genes showing accumulation of
670 H3K27me3 in *elf6-C/ref6-5* and *epiER A5.C6*. p-values for Fisher's exact test are
671 shown in brackets, N.S. Not Significant.

672 (B) Metaplot of the median of ChIP-seq RPGC across genes hypermethylated in
673 both *elf6-C/ref6-5* and *epiER A5.C6*. n=198.

674 (C) Euler diagram showing the intersection between the genes hypermethylated in
675 *elf6-C/ref6-5* and *epiERs A5.B1* and *A5.C6*.
676

677 **Supplemental Figure S13. DNA hypomethylation of transposable elements in**
678 ***epiERs*.**

679 Metaplot showing the proportion of DNA methylation across transposable elements
680 (A) and transposable element genes (B) for wild-type (WT) and progenies from two
681 *epiERs*.
682

683 **Supplemental Figure S14. Condensation of chromatin in *epiERs*.**

684 Bar plot showing the fraction of nuclei categorised as decondensed after DAPI
685 staining in wild-type (WT) and *epiERs A5.C5.A2*, *A5.C5.B4* and *A5.C5.C1*. Number
686 of nuclei for each category in each line shown inside plot.
687

688 **Supplemental Figure S15. Genes upregulated in *epiERs*.**

689 (A) Heatmap showing scaled expression levels of Differentially Expressed Genes
690 between wild-type and progeny of *epiER* A5.C6 in wild-type (WT) *elf6-C*, *ref6-5*, *elf6-C/ref6-5*, and progenies of *epiERs* A5.B1 and A5.C6..
692 (B) Gene Ontology analysis showing the functional categories enriched in genes
693 upregulated in *epiER* A5.C6.
694

695 **Supplemental Figure S16. Transcriptional upregulation of transposons in**
696 ***epiERs*.**

697 Heatmap showing scaled logged expression of all the families of transposons or
698 Arabidopsis. Samples represented are wild-type (WT), histone demethylase mutants
699 and *epiERs* A5.B1 and A5.C6.
700

701 **Supplemental Figure S17. Deregulation of EVD transposon in *epiERs*.**

702 Genome browser view showing normalised sequencing coverage (RPGC), DNA
703 methylation rate (%) and RNA-seq (RPGC) in wild-type (WT) and progenies from
704 *epiERs* A5.B1 and A5.C6. Grey box, AT2TE20395 (EVD).
705

706

707

708 **Methods**

709

710 **Plant material and Plant Growth**

711 All plant lines used in this study were derived from *Arabidopsis thaliana* Col-0
712 accession. The T-DNA insertion lines *ref6-1* (SALK_001018), *elf6-3* (SALK_074694),
713 *atxr5* (SALK_130607) and *atxr6* (SAIL_240_H01) have been previously described.
714 The *ref6-5* mutant (GABI_705E03) was obtained from the GABI-Kat collection
715 (Kleinboelting, Huep et al., 2012). The genomic deletion in *elf6-C* was produced
716 using two sgRNAs (Table S1) and CRISPR/Cas9 (Durr, Papareddy et al., 2018).
717 Double mutants were produced by hand crossing. The plant materials used for
718 crossing and flowering time measurements were grown in chambers under long day
719 conditions (16 h light, 8 h dark) with 120 μ mol m⁻² s⁻¹ light intensity (22°C daytime,
720 20°C at night). Plants for the screening were grown in a climate-controlled
721 greenhouse under long day conditions (20°C daytime, 20°C at night, 16 h light plus 8
722 h dark). The seeds were mixed in 0.1% Agarose and underwent 2 d cold treatment
723 at 4°C in the dark. After treatment seeds were directly sown on soil and transferred
724 to growth a chamber or greenhouse.

725

726 **Genotyping and Phenotyping**

727 Primary transformants were identified using the seed-specific RFP reporter under a
728 Leica MZ-FL III stereomicroscope (Leica Camera AG). Genotyping of CRISPR/Cas9-
729 based mutations and T-DNA insertions were performed using KAPA-Taq (Sigma-
730 Aldrich) following the manufacturer's instructions. PCR product size was selected
731 using gel electrophoresis and the introduced genetic lesion was determined by
732 sequencing (See Supplementary Table 3 and Supplementary Fig. S1). The
733 phenotypes of whole plants, leaf_number and rosette size were scored at bolting.
734 Siliques length measurement were carried out on the 6th-15th siliques of main
735 stems, when the last flowers of the inflorescence started producing siliques. The
736 mean value of the 10 siliques represented the siliques length of a plant. For embryo
737 analysis, ovules from self-pollinated plants were cleared with a chloral hydrate
738 solution, observed with a light microscope (Zeiss AxioImager A2) and
739 photographed with a digital camera (Zeiss AxioCam HRm).

740

741 **ChIP-seq assay**

742 ChIP-seq assays were performed on 14 days old *in vitro* shoot seedlings using anti-
743 H3K27me3 (Millipore 07-449) or anti- H3K27me1 (Millipore 07-448), following a
744 procedure modified from Gendrel, Lippman et al. (2005). Five grams of plantlets
745 were cross-linked in 1% (v/v) formaldehyde at room temperature for 15mn.
746 Crosslinking was then quenched with 0.125 M glycine for 5 min. The crosslinked
747 plantlets were ground and nuclei were isolated and lysed in Nuclei Lysis Buffer (1%
748 SDS, 50mM Tris-HCl pH 8, 10mM EDTA pH 8). Cross-linked chromatin was
749 sonicated using a water bath Bioruptor UCD-200 (Diagenode, Liège, Belgium) (15s

750 on/15s off pulses; 15 times). The complexes were immunoprecipitated with
751 antibodies, overnight at 4°C with gentle shaking, and incubated for 1 h at 4°C with 40
752 µL of Protein AG UltraLink Resin (Thermo Scientific). The beads were washed 2 × 5
753 min in ChIP Wash Buffer 1 (0.1% SDS, 1% Triton X-100, 20 mM Tris-HCl pH 8, 2
754 mM EDTA pH 8, 150 mM NaCl), 2 × 5 min in ChIP Wash Buffer 2 (0.1% SDS, 1%
755 Triton X-100, 20 mM Tris-HCl pH 8, 2 mM EDTA pH 8, 500 mM NaCl), 2 × 5 min in
756 ChIP Wash Buffer 3 (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate, 10 mM Tris-
757 HCl pH 8, 1 mM EDTA pH 8) and twice in TE (10 mM Tris-HCl pH 8, 1 mM EDTA pH
758 8). ChIPed DNA was eluted by two 15-min incubations at 65°C with 250 µL Elution
759 Buffer (1% SDS, 0.1 M NaHCO₃). Chromatin was reverse-crosslinked by adding 20
760 µL of NaCl 5M and incubated over-night at 65°C. Reverse-cross-linked DNA was
761 submitted to RNase and proteinase K digestion, and extracted with phenol-
762 chloroform. DNA was ethanol precipitated in the presence of 20 µg of glycogen and
763 resuspended in 50 µL of nuclease-free water (Ambion) in a DNA low-bind tube. 10
764 ng of IP or input DNA was used for ChIP-Seq library construction using NEBNext®
765 Ultra DNA Library Prep Kit for Illumina® (New England Biolabs) according to
766 manufacturer's recommendations. For all libraries, 12 cycles of PCR were used. The
767 quality of the libraries was assessed with Agilent 2100 Bioanalyzer (Agilent).

768

769 **Computational analysis of ChIP-seq**

770 Single-end sequencing of ChIP samples was performed using Illumina NextSeq 500
771 with a read length of 76 bp. Reads were quality controlled using FASTQC
772 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Trimmomatic was used
773 for quality trimming. Parameters for read quality filtering were set as follows:
774 Minimum length of 36 bp; Mean Phred quality score greater than 30; Leading and
775 trailing bases removal with base quality below 5. The reads were mapped onto the
776 TAIR10 assembly using Bowtie (Langmead, 2010) with mismatch permission of 1
777 bp. To identify significantly enriched regions, we used MACS2 (Zhang, Liu et al.,
778 2008). Parameters for peaks detection were set as follows: Number of duplicate
779 reads at a location: 1; mfold of 5:50; q-value cutoff: 0.05; extsize 200; broad peak.
780 Visualization and analysis of genome-wide enrichment profiles were done with IGB.
781 Peak annotations such as proximity to genes and overlap on genomic features such
782 as transposons and genes were performed using BEDTOOLS INTERSECT. To
783 identify regions that were differentially enriched in the H3K27me3 or H3K27me1
784 histone modification between WT and mutants, we used DIFFREPS (Shen, Shao et
785 al., 2013) with parameters of pvalue 0.05; z-score cutoff 2; windows 1000.

786

787 **Expression profiling by RNA-seq.**

788 Leaf samples were collected from 4 wk old plants. Total RNA was extracted using
789 RNeasy Plant Mini Kit (Qiagen) according to manufacturer's instructions and used to
790 produce libraries using TruSeq RNA library Prep Kit v2 (Illumina). Pooled libraries
791 were sequenced in a NextSeq®550 sequencing platform (Illumina). Two biological
792 replicates were generated for each genotype, and at least 20 million reads were
793 produced per replicate.

794

795 **Generation of epimutations using histone demethylase mutants**

796 The second generation of homozygous *elf6-C/ref6-5* were crossed reciprocally to
797 wild-type plants (Col-0). F_1 progenies were self-pollinated to generate F_2 seeds that
798 were grown in individual pots until bolting and the frequency of developmental
799 phenotypes was scored. Plants displayed developmental phenotypes not found in
800 *elf6-C*, *ref6-5* or *elf6-C/ref6-5* mutants where genotyped by PCR to determine their
801 zygosity.

802

803 **Bisulfite sequencing**

804 Rosette leaves from five plants were pooled for each sample. Genomic DNA was
805 extracted with the DNeasy Plant Mini Kit (Qiagen, Germany). DNA libraries were
806 generated using the Illumina TruSeq Nano kit (Illumina, CA, USA). DNA was
807 sheared to 350 bp. The bisulfite treatment step using the Epitect Plus DNA Bisulfite
808 Conversion Kit (Qiagen, Germany) was inserted after the adaptor ligation; incubation
809 in the thermal cycler was repeated once before clean-up. After clean-up of the
810 bisulfite conversion reaction, library enrichment was done using Kapa HiFi Uracil+
811 DNA polymerase (Kapa Biosystems, USA). Libraries were sequenced with 2 x 150
812 bp paired-end reads on an HiSeq 4000 (Illumina), with conventional gDNA libraries
813 in control lanes for base calling calibration. Sixteen to twenty four libraries with
814 different indexing adapters were pooled in each lane.

815

816 **Computational analysis of paired end BS-seq**

817 Paired-end quality was assessed using FASTQC (Andrews, Krueger et al., 2010).
818 Trimmomatic (Bolger, Lohse et al., 2014) was used for quality trimming. Parameters
819 for read quality filtering were set as follows: Minimum length of 40 bp; sliding window
820 trimming of 4 bp with required Phred quality score of 20. Trimmed reads were
821 mapped to the *Arabidopsis thaliana* TAIR10 genome assembly using bwa-meth
822 (Pedersen, Eyring et al., 2014) with default parameters. Mapped reads were
823 deduplicated using picardtools (Picard toolkit, 2019), and numbers of
824 methylated/unmethylated reads per position were retrieved using MehtylExtract
825 (Oliver, Barturen et al., 2014) and custom scripts.

826

827 **Pericentromeric heterochromatic regions**

828 Heterochromatin regions were defined as in Qiu, Mei et al. (2019)(Chr1:12,500,000–
829 17,050,000, Chr2:2,300,000–6,300,000, Chr3: 12,800,000–14,800,000, Chr4:
830 1,620,000–2,280,000; 2,780,000–5,804,000, Chr5: 10,680,000–14,000,000).

831

832 **Gene expression and ontology analysis**

833 We used agriGO v2.0 (Tian, Liu et al., 2017) to classify significantly enriched Gene
834 Ontology (GO) terms associated with differential expression.

835

836 **Immunostaining of chromatin**

837 Leaf protoplasts were isolated and fixed. After rehydration in PBS, slides were
838 blocked in 2% BSA in PBS (30 min, 37°C) and incubated overnight at 4°C in 1%
839 BSA in PBS containing antibodies (Upstate Biotechnology) specific to lysine-27-
840 monomethylated H3 (1:100 dilution), and lysine-27-trimethylated H3 (1:100 dilution).
841 Detection was carried out with an FITC-coupled antibody to rabbit IgG (Molecular
842 Probes; 1:100 dilution, 37°C, 40 min) in 0.5% BSA in PBS. DNA was counterstained
843 with 4,6 diamidino-2-phenylindole (DAPI) in Vectashield (Vector Laboratories).

844

845 **Data visualisation**

846 For visualising BS-seq, RNA-seq and ChIP-seq genomic data we used Integrative
847 Genomic Viewer (IGV) (Thorvaldsdóttir, Robinson et al., 2013), And R version 3.5.1
848 (www.r-project.org) with packages ggplot2 (Wickham, 2016), eulerr (Larsson, 2019),
849 pheatmap (Kolde, 2015) and EnrichedHeatmap (Gu, Eils et al., 2018).

850

851 **Prediction of new TE insertion sites and molecular validation**

852 We analysed Bisulfite-seq data using Bismark (Krueger & Andrews, 2011) using the
853 following parameters:–bowtie2 –ambiguous –unmapped –R 10 –score_min L,0,-0.6 -
854 N 1. Identification of new TE insertion sites was performed using epiTEome (Daron &
855 Slotkin, 2017). For the validation of new transposon insertions, we designed primers
856 outside of predicted TE insertion site and inside the transposon based on physical
857 reads identified by epiTEome. We used KAPA Taq Polymerase and PCR conditions
858 of 95°C for 5 min, followed by 30-35 cycles of 95°C for 30 s, 58°C for 15 s, and 72°C
859 for 2 min. The list of primers employed for this analysis are listed (Supplementary
860 Table S1).

861

862

863 **References**

864

865 Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S (2010) FastQC: a
866 quality control tool for high throughput sequence data. In Babraham, UK: Babraham
867 Institute

868 Batista RA, Kohler C (2020) Genomic imprinting in plants-revisiting existing models. *Genes*
869 *Dev* 34: 24-36

870 Berger SL (2007) The complex language of chromatin regulation during transcription. *Nature*
871 447: 407-12

872 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence
873 data. *Bioinformatics* 30: 2114-2120

874 Bouyer D, Kramdi A, Kassam M, Heese M, Schnittger A, Roudier F, Colot V (2017) DNA
875 methylation dynamics during early plant life. *Genome Biol* 18: 179

876 Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijo
877 JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides
878 epigenetic inheritance via small RNA. *Cell* 151: 194-205

879 Crevillén P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, Cao X, Dean C (2014) Epigenetic
880 reprogramming that prevents transgenerational inheritance of the vernalized state. *Nature*
881 515: 587-590

882 Cui X, Lu F, Qiu Q, Zhou B, Gu L, Zhang S, Kang Y, Cui X, Ma X, Yao Q, Ma J, Zhang X, Cao X
883 (2016) REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate
884 organ boundary formation in Arabidopsis. *Nature Genetics* 48: 694-699

885 Daron J, Slotkin RK (2017) EpiTEome: Simultaneous detection of transposable element
886 insertion sites and their DNA methylation levels. *Genome Biol* 18: 91

887 De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The Histone
888 H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated
889 Gene Silencing. *Cell* 130: 1083-1094

890 Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, Schubert D, Jacobsen SE (2012)
891 Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target
892 genes and redistribution of H3K27 trimethylation to transposons in *Arabidopsis thaliana*.
893 *PLoS Genet* 8: e1003062

894 Derkacheva M, Steinbach Y, Wildhaber T, Mozgova I, Mahrez W, Nanni P, Bischof S,
895 Gruissem W, Hennig L (2013) *Arabidopsis* MSI1 connects LHP1 to PRC2 complexes. *EMBO J*
896 32: 2073-85

897 Dubin MJ, Mittelsten Scheid O, Becker C (2018) Transposons: a blessing curse. *Current*
898 *Opinion in Plant Biology* 42: 23-29

899 Durr J, Papareddy R, Nakajima K, Gutierrez-Marcos J (2018) Highly efficient heritable
900 targeted deletions of gene clusters and non-coding regulatory regions in *Arabidopsis* using
901 CRISPR/Cas9. *Sci Rep* 8: 4443

902 Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D
903 (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and
904 enhancer fidelity. *Mol Cell* 53: 49-62

905 Fuchs J, Jovtchev G, Schubert I (2008) The chromosomal distribution of histone methylation
906 marks in gymnosperms differs from that of angiosperms. *Chromosome Research* 16: 891-
907 898

908 Gan ES, Xu Y, Wong JY, Goh JG, Sun B, Wee WY, Huang J, Ito T (2014) Jumonji demethylases
909 moderate precocious flowering at elevated temperature via regulation of FLC in
910 *Arabidopsis*. *Nat Commun* 5: 5098

911 Gendrel AV, Lippman Z, Martienssen R, Colot V (2005) Profiling histone modification
912 patterns in plants using genomic tiling microarrays. *Nat Methods* 2: 213-8

913 Gu Z, Eils R, Schlesner M, Ishaque N (2018) EnrichedHeatmap: An R/Bioconductor package
914 for comprehensive visualization of genomic signal associations. *BMC Genomics* 19: 234-234

915 Hanna CW, Perez-Palacios R, Gahurova L, Schubert M, Krueger F, Biggins L, Andrews S,
916 Colome-Tatche M, Bourc'his D, Dean W, Kelsey G (2019) Endogenous retroviral insertions
917 drive non-canonical imprinting in extra-embryonic tissues. *Genome Biol* 20: 225

918 Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H (2014) Nuclear factor Y-mediated H3K27me3
919 demethylation of the SOC1 locus orchestrates flowering responses of *Arabidopsis*. *Nature*
920 *Communications* 5: 1-14

921 Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N,
922 Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA
923 demethylation in plant companion cells reinforces transposon methylation in gametes.
924 *Science* 337: 1360-1364

925 Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M,
926 Jacobsen SE, Michaels SD (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases
927 required for chromatin structure and gene silencing. *Nature Structural & Molecular Biology*
928 16: 763-768

929 Jacob Y, Stroud H, LeBlanc C, Feng S, Zhuo L, Caro E, Hassel C, Gutierrez C, Michaels SD,
930 Jacobsen SE (2010) Regulation of heterochromatic DNA replication by histone H3 lysine 27
931 methyltransferases. *Nature* 466: 987-991

932 Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A,
933 Albuison J, Heredia F, Audiger P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V
934 (2009) Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits.
935 *PLoS Genetics* 5: e1000530-e1000530

936 Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ (1996) Developmental
937 abnormalities and epimutations associated with DNA hypomethylation mutations. *Proc Natl*
938 *Acad Sci U S A* 93: 12406-11

939 Kassis JA, Kennison JA, Tamkun JW (2017) Polycomb and trithorax group genes in
940 *drosophila*. *Genetics* 206: 1699-1725

941 Kato M, Takashima K, Kakutani T (2004) Epigenetic Control of CACTA Transposon Mobility in
942 *Arabidopsis thaliana*. *Genetics* 168: 961-969

943 Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B (2012) GABI-Kat
944 SimpleSearch: new features of the *Arabidopsis thaliana* T-DNA mutant database. *Nucleic*
945 *Acids Res* 40: D1211-5

946 Kolde R (2015) pheatmap: Pretty heatmaps [Software]. In
947 Kouzarides T (2007) Chromatin Modifications and Their Function. *Cell* 128: 693-705

948 Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-
949 Seq applications. *Bioinformatics* 27: 1571-2

950 Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic
951 Regulation of H3K27 Trimethylation during *Arabidopsis* Differentiation. *PLoS Genetics* 7:
952 e1002040-e1002040

953 Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I,
954 Canaani E, Roberts TM, Chang HY, Shi Y (2007) A histone H3 lysine 27 demethylase regulates
955 animal posterior development. *Nature* 449: 689-694
956 Langmead B (2010) Aligning short sequencing reads with Bowtie. *Curr Protoc Bioinformatics*
957 Chapter 11: Unit 11 7
958 Larsson J (2019) <i>eulerr</i>: Area-proportional <i>Euler</i> and <i>Venn</i> diagrams
959 with ellipses. In
960 Laugesen A, Hojfeldt JW, Helin K (2019) Molecular Mechanisms Directing PRC2 Recruitment
961 and H3K27 Methylation. *Mol Cell* 74: 8-18
962 Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Croce LD, Shiekhattar R (2007)
963 Demethylation of H3K27 Regulates Polycomb Recruitment and H2A Ubiquitination. *Science*
964 318: 447-450
965 Lewis EB (1978) A gene complex controlling segmentation in Drosophila. *Nature* 276: 565-70
966 Li C, Gu L, Gao L, Chen Chen C-QWQQC-WCSWLJL-FAC-YCSYVNYQMPSAL, Cui Y (2016)
967 Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling
968 ATPase BRM in Arabidopsis. *Nature genetics* 48: 687-693
969 Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. *Annu Rev Plant Biol* 61:
970 395-420
971 Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, Zhang Y, Wang M, Deng Y, Wang E, He Y, Bäurle I, Li J,
972 Cao X, He Z (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates
973 transgenerational thermomemory in Arabidopsis. *Cell Research* 29: 379-390
974 Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27
975 demethylase. *Nature Genetics* 43: 715-719
976 Marí-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O (2013)
977 Reconstructing de novo silencing of an active plant retrotransposon. *Nature Genetics* 45:
978 1029-1039
979 Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J (2007) Transgenerational
980 stability of the Arabidopsis epigenome is coordinated by CG methylation. *Cell* 130: 851-62
981 Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of
982 increasing complexity. *Nat Rev Genet* 15: 394-408
983 Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski
984 J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis.
985 *Proceedings of the National Academy of Sciences* 109: 5880-5885
986 Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization
987 of transposons by a mutation abolishing full DNA methylation in Arabidopsis. *Nature* 411:
988 212-4
989 Molitor A, Latrasse D, Zytnicki M, Andrey P, Houba-Hérin N, Hachet M, Battail C, Del Prete S,
990 Alberti A, Quesneville H, Gaudin V (2016) The Arabidopsis hnRNP-Q Protein LIF2 and the
991 PRC1 subunit LHP1 function in concert to regulate the transcription of stress-responsive
992 genes. *The Plant Cell* 28: tpc.00244.2016-tpc.00244.2016
993 Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T (2005)
994 The Murine Polycomb Group Protein Eed Is Required for Global Histone H3 Lysine-27
995 Methylation. *Current Biology* 15: 942-947
996 Noh B, Lee S-H, Kim H-J, Yi G, Shin E-A, Lee M, Jung K-J, Doyle MR, Amasino RM, Noh Y-S
997 (2004) Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger-Class Transcription
998 Factor Proteins in the Regulation of Arabidopsis Flowering Time. *The Plant Cell* 16: 2601-
999 2613

1000 Oliver JL, Barturen G, Rueda A, Hackenberg M (2014) MethylExtract: High-Quality
1001 methylation maps and SNV calling from whole genome bisulfite sequencing data.
1002 *F1000Research* 2: 217-217

1003 Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N, Hashim AT, Ishak Z,
1004 Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R,
1005 Singh R, Low ET, Chan KL et al. (2015) Loss of Karma transposon methylation underlies the
1006 mantled somaclonal variant of oil palm. *Nature* 525: 533-7

1007 Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA (2014) Fast and accurate alignment of
1008 long bisulfite-seq reads.

1009 Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome
1010 accessibility in plants. *Current Opinion in Plant Biology* 10: 645-652

1011 Qiu Q, Mei H, Deng X, He K, Wu B, Yao Q, Zhang J, Lu F, Ma J, Cao X (2019) DNA methylation
1012 repels targeting of Arabidopsis REF6. *Nature Communications* 10: 2063-2063

1013 Reddington JP, Sproul D, Meehan RR (2014) DNA methylation reprogramming in cancer:
1014 does it act by re-configuring the binding landscape of Polycomb repressive complexes?
1015 *Bioessays* 36: 134-40

1016 Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E,
1017 Duvernois-Berthet E, Al-Shikhley L, Giraut L, Desprás B, Drevensek S, Barneche F, Dérozier S,
1018 Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML et al. (2011) Integrative
1019 epigenomic mapping defines four main chromatin states in Arabidopsis. *EMBO Journal* 30:
1020 1928-1938

1021 Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A, Rey E, Mateos-Langerak J, Urbach
1022 S, Reik W, Torres-Padilla ME, Imhof A, Dejardin J, Simboeck E (2014) Redundant mechanisms
1023 to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation.
1024 *Mol Cell* 56: 580-94

1025 Shen L, Shao NY, Liu X, Maze I, Feng J, Nestler EJ (2013) diffReps: detecting differential
1026 chromatin modification sites from ChIP-seq data with biological replicates. *PLoS One* 8:
1027 e65598

1028 Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA (2009)
1029 Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen. *Cell*
1030 136: 461-472

1031 Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG
1032 methylation patterns shape the epigenetic landscape in Arabidopsis. *Nat Struct Mol Biol* 21:
1033 64-72

1034 Swigut T, Wysocka J (2007) H3K27 Demethylases, at Long Last. *Cell* 131: 29-32

1035 Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): High-
1036 performance genomics data visualization and exploration. *Briefings in Bioinformatics* 14:
1037 178-192

1038 Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) AgriGO v2.0: A GO analysis toolkit
1039 for the agricultural community, 2017 update. *Nucleic Acids Research* 45: W122-W129

1040 Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of Histone Lysine Methylation
1041 across Transcribed Mammalian Chromatin. *Molecular and Cellular Biology* 26: 9185-9195

1042 Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) *Arabidopsis thaliana* DNA
1043 methylation mutants. *Science* 260: 1926-8

1044 Wang X, Gao J, Gao S, Song Y, Yang Z, Kuai B (2019) The H3K27me3 demethylase REF6
1045 promotes leaf senescence through directly activating major senescence regulatory and
1046 functional genes in *Arabidopsis*. *PLOS Genetics* 15: e1008068-e1008068

1047 Weinhofer I, Hohenberger E, Roszak P, Hennig L, Kohler C (2010) H3K27me3 profiling of the
1048 endosperm implies exclusion of polycomb group protein targeting by DNA methylation.
1049 *PLoS Genet* 6

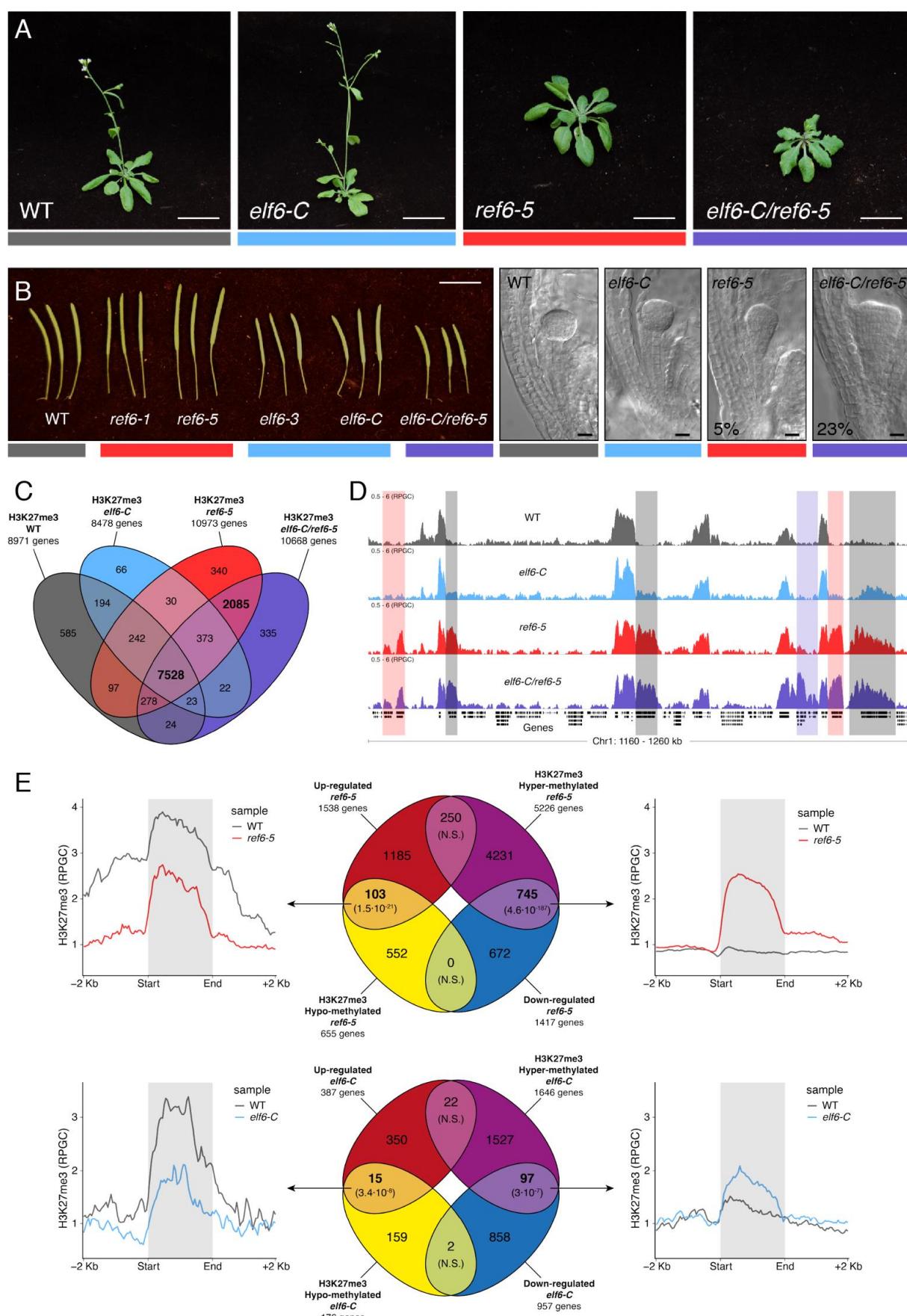
1050 Wibowo A, Becker C, Durr J, Price J, Spaepen S, Hilton S, Putra H, Papareddy R, Saintain Q,
1051 Harvey S, Bending GD, Schulze-Lefert P, Weigel D, Gutierrez-Marcos J (2018) Partial
1052 maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to
1053 heritable phenotypic variation. *Proc Natl Acad Sci U S A* 115: E9145-E9152

1054 Yan W, Chen D, Smaczniak C, Engelhorn J, Liu H, Yang W, Graf A, Carles CC, Zhou D-X,
1055 Kaufmann K (2018) Dynamic and spatial restriction of Polycomb activity by plant histone
1056 demethylases. *Nature Plants* 4: 681-689

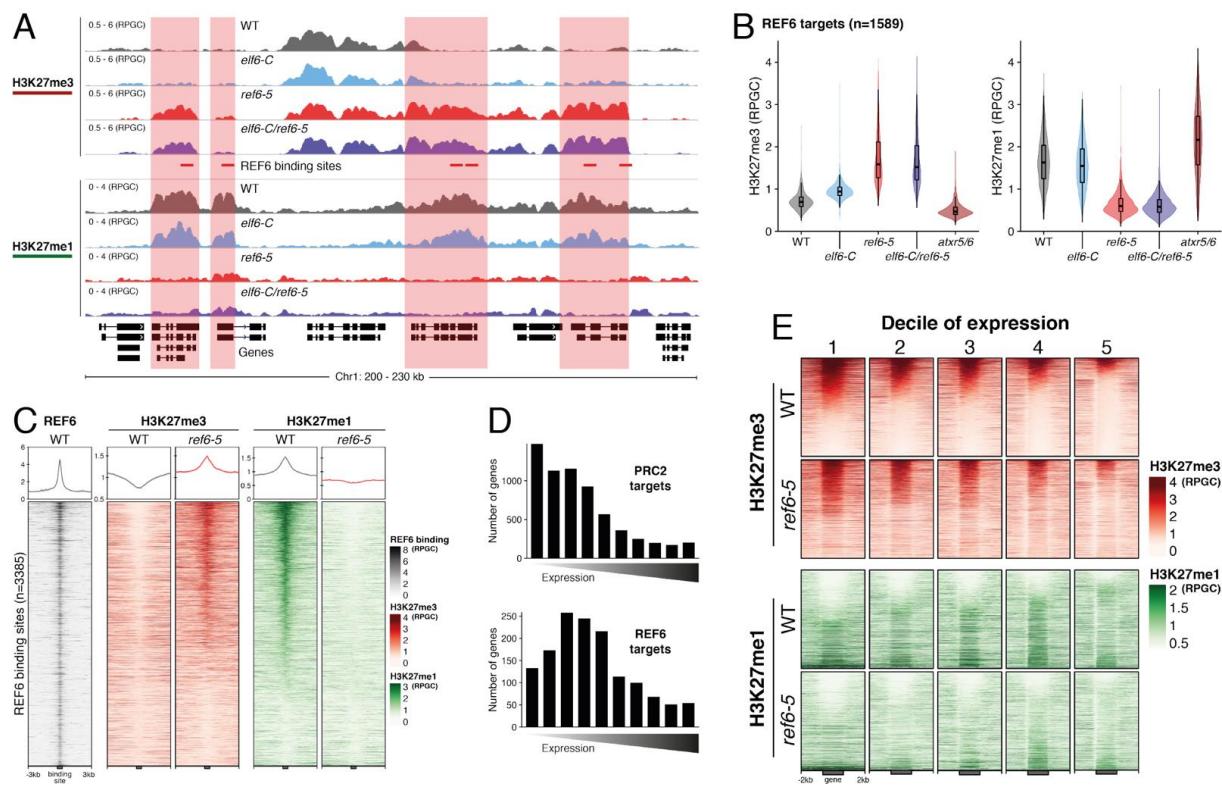
1057 Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene
1058 expression by jumonji domain-containing proteins ELF6 and REF6 in *Arabidopsis*.
1059 *Proceedings of the National Academy of Sciences* 105: 7618-7623

1060 Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL,
1061 Zilberman D (2013) The *Arabidopsis* nucleosome remodeler DDM1 allows DNA
1062 methyltransferases to access H1-containing heterochromatin. *Cell* 153: 193-205

1063 Zhang X, Germann S, Blus BJ, Khorasanizadeh S, Gaudin V, Jacobsen SE (2007) The
1064 *Arabidopsis* LHP1 protein colocalizes with histone H3 Lys27 trimethylation. *Nature structural
1065 & molecular biology* 14: 869-71


1066 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM,
1067 Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). *Genome Biol* 9:
1068 R137

1069 Zheng S, Hu H, Ren H, Yang Z, Qiu Q, Qi W, Liu X, Chen X, Cui X, Li S, Zhou B, Sun D, Cao X, Du
1070 J (2019) The *Arabidopsis* H3K27me3 demethylase JUMONJI 13 is a temperature and
1071 photoperiod dependent flowering repressor. *Nature Communications* 10: 1303-1303


1072

1073

1074

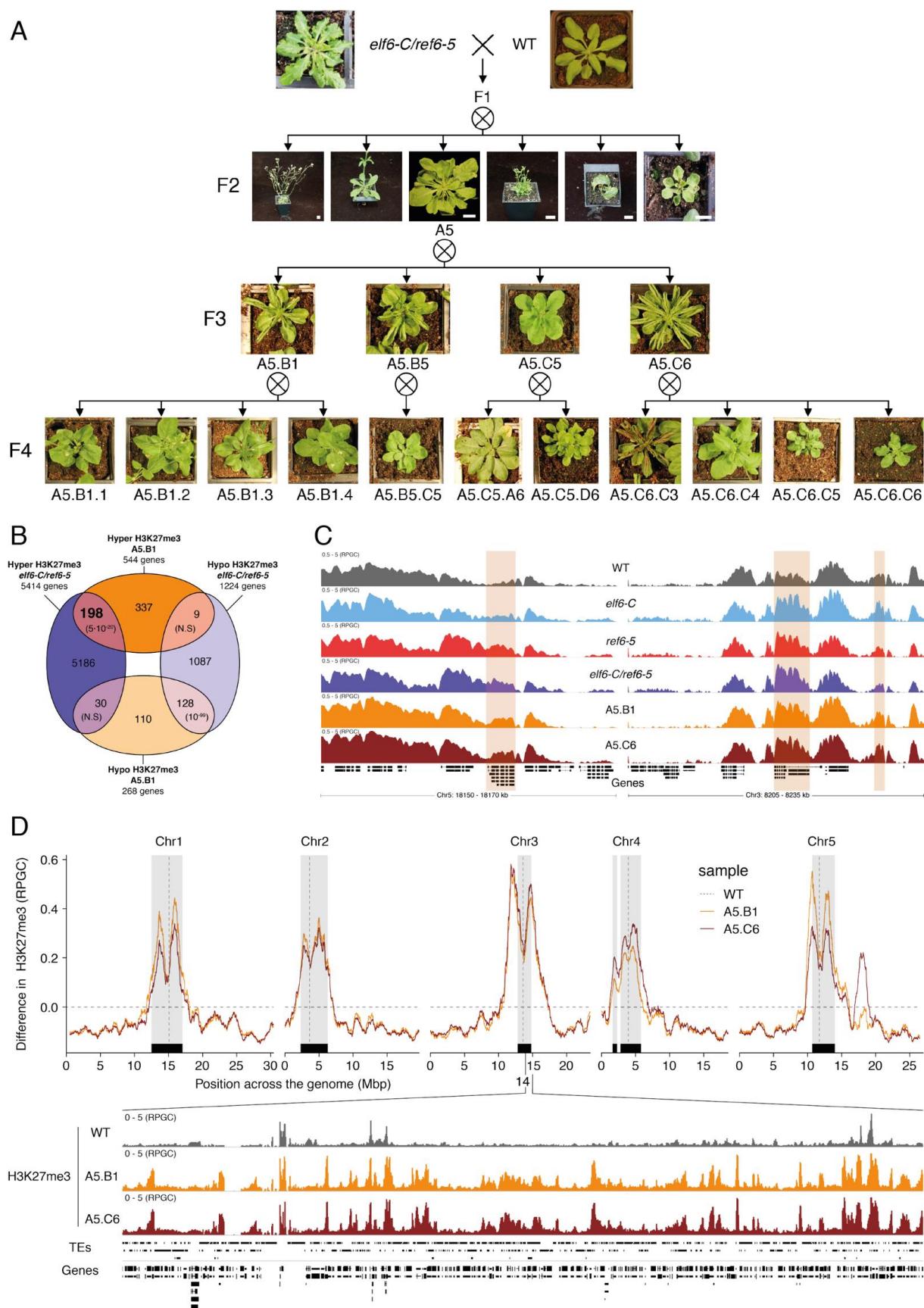
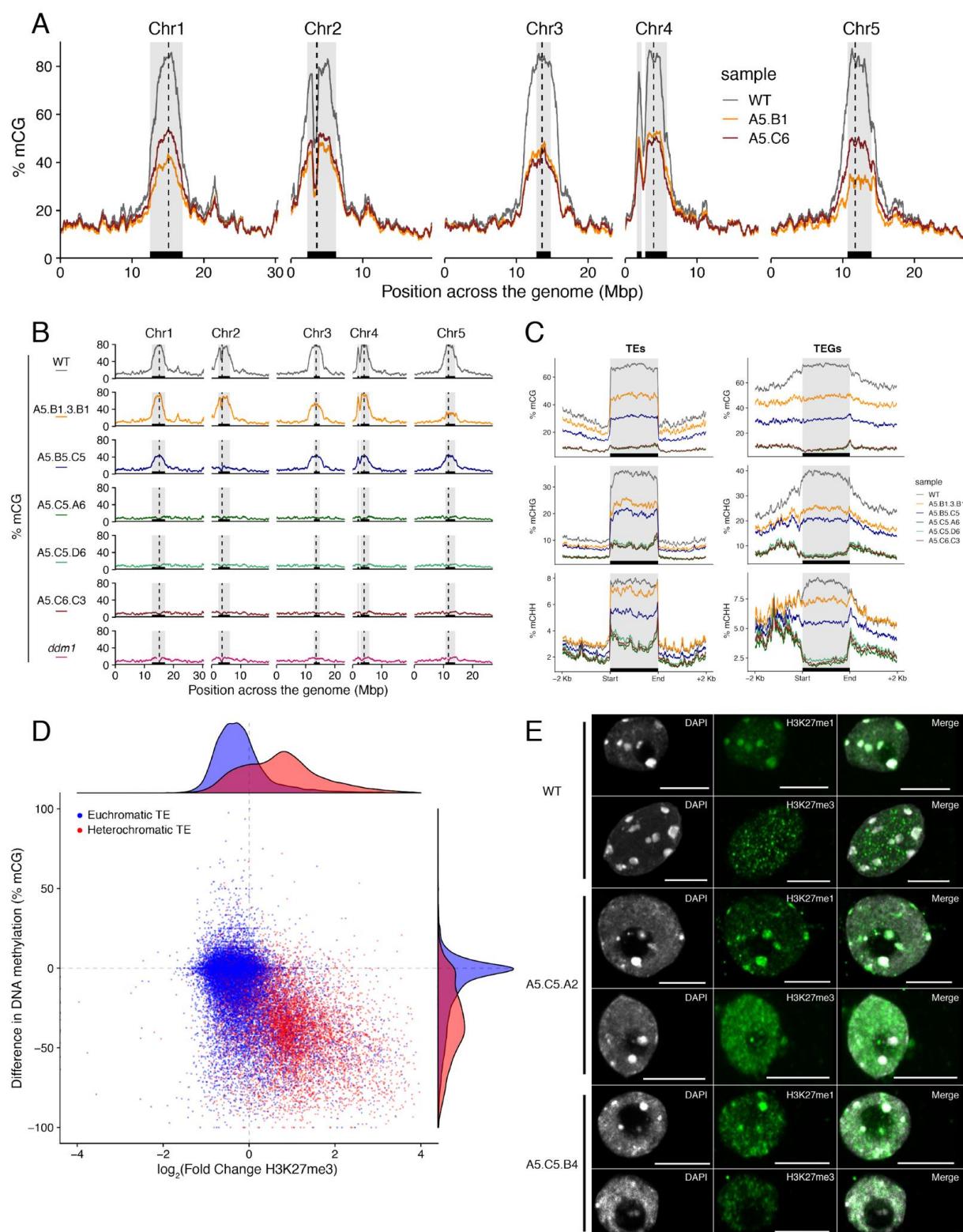


Figure 1



1078
1079

Figure 2

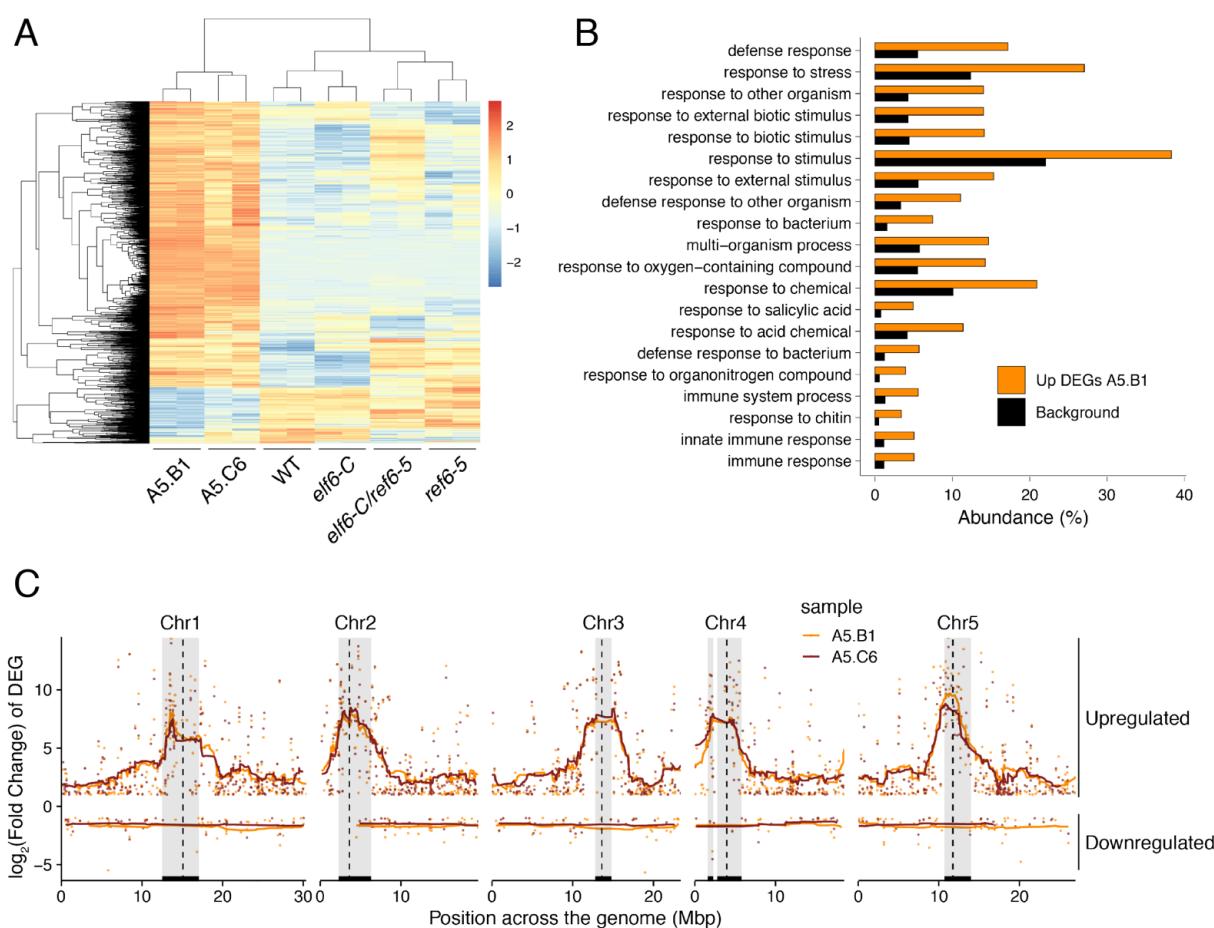


Figure 3

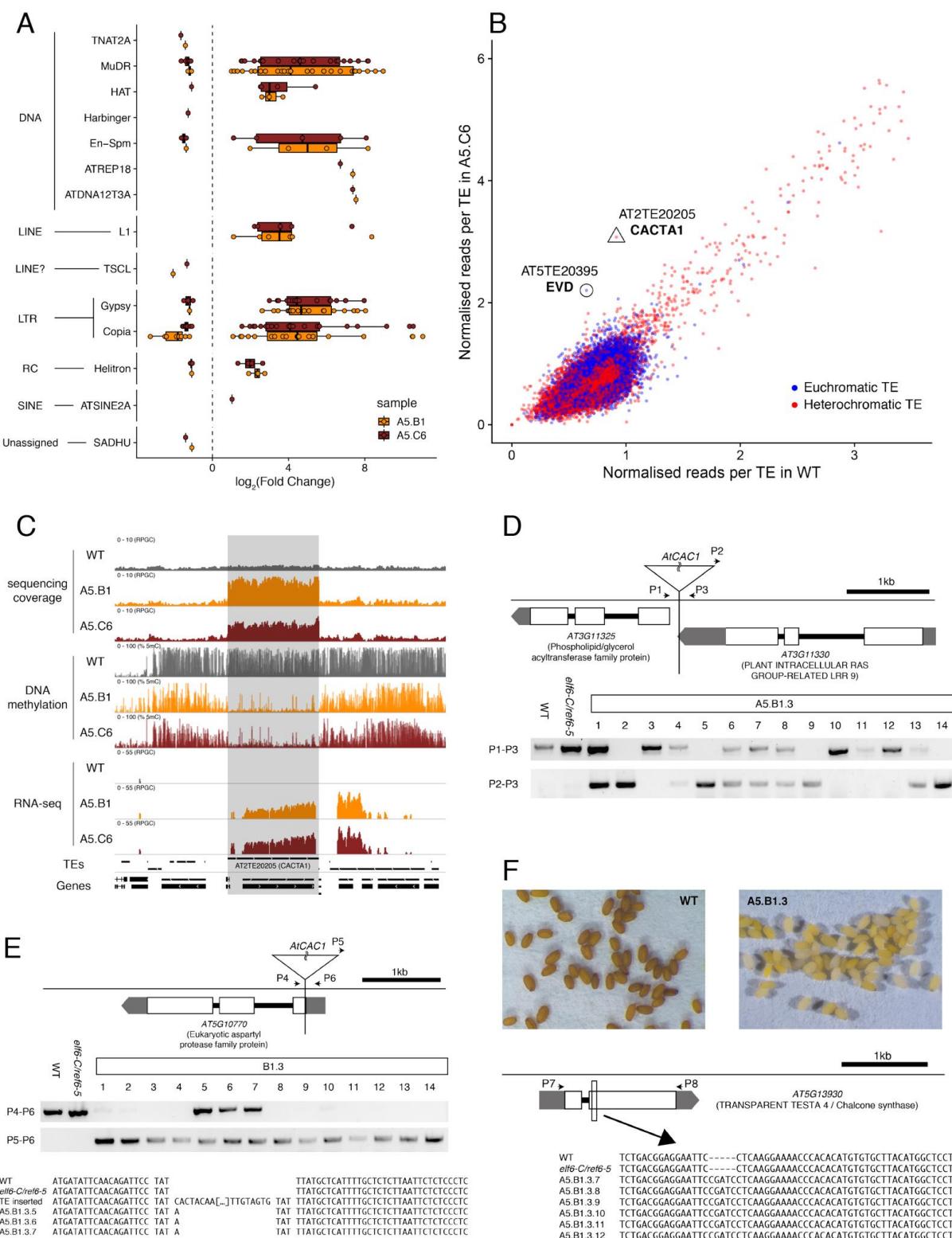
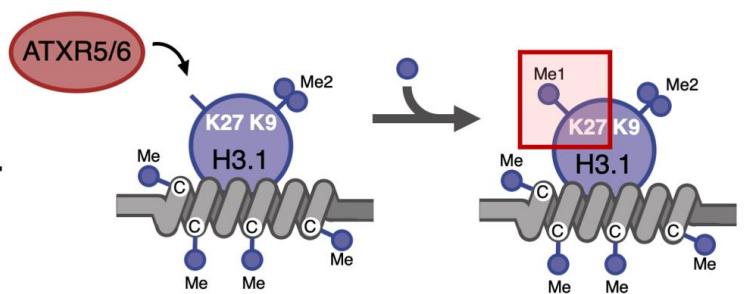
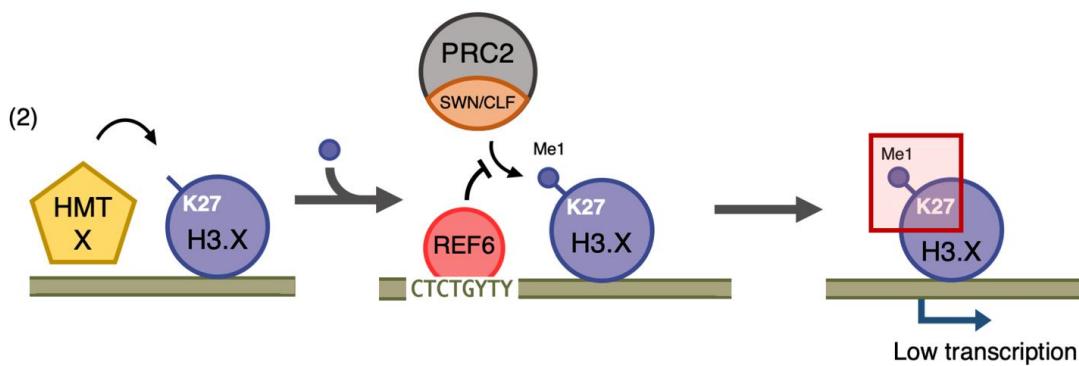
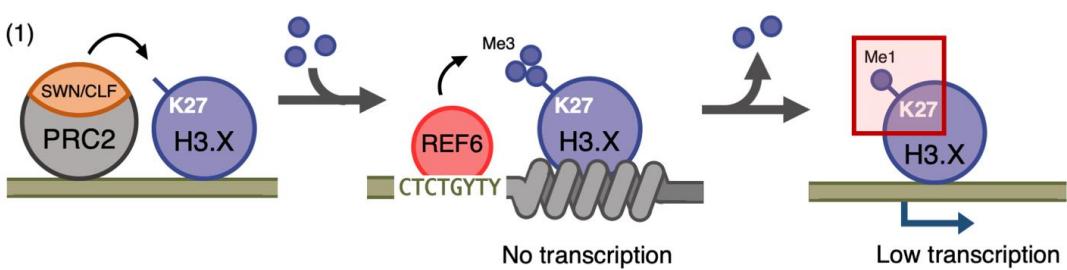

1082
1083

Figure 4



1084
1085

Figure 5

A model for H3K27me1

Heterochromatin

Euchromatin

1088

1089 **Figure 7**

1090

1091