

1 **The transcription and export complex THO/TREX contributes to**
2 **transcription termination in plants**

3
4
5

6 Ghazanfar Abbas Khan^{1,2}, Jules Deforges¹, Rodrigo S. Reis¹, Yi-Fang Hsieh¹, Jonatan
7 Montpetit¹, Wojciech Antosz³, Luca Santuari¹, Christian S Hardtke¹, Klaus Grasser³ and Yves
8 Poirier¹

9

10 ¹Department of Plant Molecular Biology, University of Lausanne, Switzerland.

11 ²School of Biosciences, University of Melbourne, VIC, Australia.

12 ³ Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of
13 Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany

14

15 **Corresponding authors:**

16 Ghazanfar Abbas Khan, ghazanfar.khan@unimelb.edu.au

17 Yves Poirier; yves.poirier@unil.ch

18

19 **Short title:** The THO/TREX complex participates in transcription termination

20 **Abstract**

21 Transcription termination has important regulatory functions, impacting mRNA stability,
22 localization and translation potential. Failure to appropriately terminate transcription can also
23 lead to read-through transcription and the synthesis of antisense RNAs which can have
24 profound impact on gene expression. The Transcription-Export (THO/TREX) protein complex
25 plays an important role in coupling transcription with splicing and export of mRNA. However,
26 little is known about the role of the THO/TREX complex in the control of transcription
27 termination. In this work, we show that two proteins of the THO/TREX complex, namely
28 TREX COMPONENT 1 (TEX1 or THO3) and HYPER RECOMBINATION1 (HPR1 or
29 THO1) contribute to the correct transcription termination at several loci in *Arabidopsis*
30 *thaliana*. We first demonstrate this by showing defective termination in *tex1* and *hpr1* mutants
31 at the nopaline synthase (NOS) terminator present in a T-DNA inserted between exon 1 and 3
32 of the *PHO1* locus in the *pho1-7* mutant. Read-through transcription beyond the NOS
33 terminator and splicing-out of the T-DNA resulted in the generation of a near full-length *PHO1*
34 mRNA (minus exon 2) in the *tex1 pho1-7* and *hpr1 pho1-7* double mutants, with enhanced
35 production of a truncated PHO1 protein that retained phosphate export activity. Consequently,
36 the strong reduction of shoot growth associated with the severe phosphate deficiency of the
37 *pho1-7* mutant was alleviated in the *tex1 pho1-7* and *hpr1 pho1-7* double mutants. Additionally,
38 we show that RNA termination defects in *tex1* and *hpr1* mutants leads to 3'UTR extensions in
39 several plant genes. These results demonstrate that THO/TREX complex contributes to the
40 regulation of transcription termination.

41

42 **Author summary**

43 Production of messenger RNAs (mRNAs) involves numerous steps including initiation of
44 transcription, elongation, splicing, termination, as well as export out of the nucleus. All these
45 steps are highly coordinated and failure in any steps has a profound impact on the level and
46 identity of mRNAs produced. The THO/TREX protein complex is associated with nascent
47 RNAs and contributes to several mRNA biogenesis steps, including splicing and export.
48 However, the contribution of the THO/TREX complex to mRNA termination was poorly
49 defined. We have identified a role for two components of the THO/TREX complex, namely the
50 proteins TEX1 and HPR1, in the control of transcription termination in the plant *Arabidopsis*
51 *thaliana*. We show that the *tex1* and *hpr1* mutants have defects in terminating mRNA at the
52 nopaline synthase (NOS) terminator found in T-DNA insertion mutants leading to the
53 transcriptional read-through pass the NOS terminator. We also show that *tex1* and *hpr1* mutants
54 have defects in mRNA termination at several endogenous genes, leading to the production of
55 3'UTR extensions. Together, these results highlight a role for the THO/TREX complex in
56 mRNA termination.

57

58

59 Introduction

60 In eukaryotes, mRNAs are generated by several dynamic and coordinated processes including
61 transcriptional initiation, elongation and termination, as well as splicing and nuclear export.
62 Failure in any of these processes has a profound impact on the level and identity of transcripts
63 [1-3]. These transcriptional steps are sequentially orchestrated by a multitude of RNA-binding
64 protein complexes that co-transcriptionally couple with the nascent RNA [4]. For example,
65 protein complex required for transcription termination cleaves pre-mRNA close to RNA
66 polymerase II (RNAPII) and adds a poly (A) tail to the 3'end of nascent RNA [3]. Pre-mRNA
67 cleavage exposes 5'end of nascent mRNA to 5'-3' exonucleases which degrades the RNA
68 attached to RNAPII, leading to transcription termination [5].

69

70 Cleavage and polyadenylation define the transcription termination at a given locus and has a
71 decisive role in regulating gene expression as it can influence stability and translation potential
72 of the RNA via the inclusion of regulatory sequence elements [6]. Moreover, transcription
73 termination avoid interference with the transcription of downstream genes and facilitates
74 RNAPII recycling [7]. It also prevents synthesis of antisense RNAs which can have a severe
75 effect on RNA production and overall gene expression [8]. Additional regulatory role of
76 transcription termination is the synthesis of chimeric transcripts formed by tethering of two
77 neighboring genes on the same chromosomal strand [8]. Considering its importance, molecular
78 mechanisms which regulate RNA termination are relatively poorly understood.

79

80 After transcription termination, nascent RNA is assembled in a ribonucleoprotein complex is
81 delivered for RNA export into the cytosol. Similar to other steps in RNA biogenesis which are
82 closely coupled in a sequential manner, it is likely that transcription termination is associated
83 with nuclear export of RNAs. The TREX (TRanscription-EXport) protein complex has
84 emerged as an important component in coupling transcription with RNA processing and export
85 [9]. In metazoans, TREX consists of THO core complex, which includes THO1/HPR1, THO2,
86 THO3/TEX1, THO5, THO6 and THO7 [10]. The proteins associating with the THO core
87 components and forming the TREX complex include the RNA helicase and splicing factor
88 DDX39B (SUB2 in yeast) as well as the RNA export adaptor protein ALY (YRA1 in yeast)
89 [10]. TREX is co-transcriptionally recruited to the nascent mRNA and regulates splicing,
90 elongation and export [11]. Moreover, THO/TREX complex is required for the genetic stability
91 as it is required for preventing DNA:RNA hybrids that lead to transcription impairment and are

92 responsible for genetic instability phenotypes observed in these mutants [12]. The genes
93 encoding the THO core components are conserved in plants, including in the model plant
94 *Arabidopsis thaliana* [13, 14]. *A. thaliana* mutants defective in THO components show a wide
95 range of phenotypes, from no obvious alteration and relatively mild phenotypes to lethal
96 phenotypes, suggesting overlapping but independent functions of these components [14-16]. *A.*
97 *thaliana* mutants in THO components, including HPR1, THO2 and TEX1, show defects in
98 small RNA biogenesis, mRNA elongation, splicing and export, but no defect in mRNA
99 termination has been reported [14-20].

100

101 In this work, we explored the regulatory function of two components of the THO/TREX
102 complex, namely TEX1 and HPR1, in transcription termination in *A. thaliana*. We show that
103 the *tex1* and *hpr1* mutants are defective in RNA termination at the Nopaline Synthase (NOS)
104 terminator present on a T-DNA inserted in the *PHO1* locus. Additionally, genome-wide
105 analysis of mRNAs revealed RNAPII termination defects in *tex1* and *hpr1* mutants at several
106 loci leading to the 3'UTR extensions.

107

108 **Results**

109 **A forward genetic screen using the T-DNA insertion mutant *pho1-7* for reversion of the**
110 **growth phenotype identified the *TEX1* gene**

111 The *PHO1* gene encodes an inorganic phosphate (Pi) exporter involved in loading Pi into the
112 root xylem for its transfer to the shoot [21-24]. Consequently, *pho1* mutants in both *A. thaliana*
113 and rice have reduced shoot Pi contents and shows all symptoms associated with Pi deficiency,
114 including highly reduced shoot growth and the expression of numerous genes associated with
115 Pi deficiency [23, 25, 26]. However, it has previously been shown that low shoot Pi content can
116 be dissociated from its major effects on growth and other responses normally associated with
117 Pi deficiency through the modulation of *PHO1* expression or activity [25, 27]. We thus used
118 the *pho1* mutant as a tool, in a forward genetic screen, to identify mutants which restore *pho1*
119 shoot growth to wild type (Col-0) level, while maintaining low shoot Pi contents. We performed
120 ethyl methane sulphonate (EMS) mutagenesis on seeds of the *pho1-7* mutant, derived from the
121 SALK line 119520 containing a single T-DNA inserted in the *PHO1* gene in between the first
122 and third exon of the *PHO1* gene leading to the deletion of the second exon from the genome
123 (S1 Text). Screening of 10'300 mutagenized *pho1-7* plants grown in soil for improved rosette
124 growth lead to the isolation of a suppressor mutant and had rosette growth similar to Col-0
125 while maintaining a low shoot Pi content similar to *pho1-7* (Fig 1AB) (see Material and
126 methods for further detail). Both *pho1-7* and the suppressor mutant maintained resistance to
127 kanamycin associated with the T-DNA insertion in *PHO1*.

128 Mapping-by-sequencing revealed that the mutation C116T is introduced into the *TEX1* gene in
129 the *pho1-7* suppressor mutant. This leads to a conversion of amino acid serine 39 to
130 phenylalanine in the *TEX1* protein. Transformation of *TEX1* gene into *pho1-7* suppressor led
131 to *pho1*-like phenotype, confirming that mutation in *tex1* was the causal mutation for restoration
132 of *pho1-7* shoot growth (Fig 1AB). Furthermore, crossing of a T-DNA allele *tex1-4*
133 (SALK_100012) to *pho1-7* also resulted in the suppression of *pho1-7* shoot growth phenotype
134 (Fig 2A), further confirming that mutation in *TEX1* is responsible for the suppression of shoot
135 growth phenotype in *pho1-7* suppressor mutant. Therefore, we named this new S39P mutant in
136 the *TEX1* gene as *tex1-6*. In agreement with previous reports, *TEX1* protein was localized to
137 the nucleus [19] (S1A Fig). *TEX1* promoter fusion with GUS showed that *TEX1* is expressed
138 in root, cotyledon and rosette (S1B Fig).

139

140 The *pho1-7 tex1-6* mutant shows Col-0-like shoot growth while maintaining a low Pi content
141 that is only slightly higher to the parental *pho1-7* (Fig 1A, B). A key molecular response of
142 *pho1* mutants is the manifestation of gene expression and lipid profiles in the shoots that are
143 associated with strong Pi deficiency [25]. To determine if the *tex1-6* mutation can also suppress
144 the induction of Pi starvation responses (PSR) in the rosettes of *pho1-7 tex1-6*, we performed
145 quantitative RT-PCR (qRT-PCR) to see the expression of PSR genes. *pho1-7 tex1-6* shoots
146 showed an expression profile of PSR genes that was comparable to Pi-sufficient Col-0 plants
147 (S2A Fig). Additionally, lipid analysis in *pho1-7* mutants showed a decrease of phospholipids
148 and an increase in galactolipids expected for Pi-deficient plants, while *pho1-7 tex1-6* plants
149 showed lipids profiles similar to Col-0 plants (S2B Fig), confirming that the *tex1-6* mutation
150 suppressed morphological as well as molecular response to Pi deficiency displayed by the *pho1-*
151 7 mutant.

152

153

154 **Mutation of *TEX1* in *pho1-7* resulted in the synthesis of a truncated PHO1 protein**

155 To determine if the *tex1* mutation also suppresses the growth phenotype associated with other
156 *pho1* alleles generated by EMS mutagenesis, a double mutant *pho1-4 tex1-4* was generated.
157 Surprisingly, *pho1-4 tex1-4* double mutant showed only minor improvement in shoot growth
158 and maintained low shoot Pi content (Fig 2A, B). In order to understand how the *tex1* mutation
159 can result in restoration of *pho1-7* shoot growth, we performed a detailed analysis of transcripts
160 produced at the *PHO1* locus in the *pho1-7 tex1-4* mutant. Interestingly, we identified a
161 truncated *PHO1*^{Δ249-342} transcript which only lacked the 2nd exon suggesting that the T-DNA is
162 spliced out from the mature mRNA (Fig 2C, S1 Text). The mRNA produced is in frame and
163 resulted in the production a truncated *PHO1*^{Δ84-114} protein (S1 Text). Western blot experiments
164 confirmed the presence of a *PHO1*^{Δ84-114} truncated protein in both *pho1-7* and *pho1-7 tex1-4*
165 roots with a strong increase of expression in the *pho1-7 tex1-4* double mutant as compared to
166 *pho1-7* (Fig 2D). This increase in protein quantity can be attributed to an increase in expression
167 of *PHO1*^{Δ249-342} RNA in the *pho1-7 tex1-4* double mutant (Fig 2E). We hypothesized that the
168 *PHO1*^{Δ84-114} protein variant was at least partially active as a Pi exporter and that its increased
169 expression in *pho1-7 tex1-4* partially restored *PHO1* function, resulting in an improvement of
170 the shoot growth phenotype. We confirmed this hypothesis by expressing the *PHO1*^{Δ84-114}
171 variant and the wild type *PHO1* fused to GFP using the *PHO1* promoter in the *pho1-4* null
172 mutant. As expected, *pho1-4* mutant which expressed the wild type *PHO1* fully complemented

173 the growth and Pi content to Col-0 level (Fig 3A, B). However, plants expressing the $\text{PHO1}^{\Delta 84-114}$ variant only restored the shoot growth phenotype while maintaining low Pi contents
174 comparable to *pho1-7 tex1-4* plants (Fig 3A, B). Confocal analysis of roots showed that
175 $\text{PHO1}^{\Delta 84-114}$ variant protein was localized similarly to wild type PHO1 (Fig 3C), which was
176 previously shown to be primarily in the Golgi and *trans*-Golgi network (TGN) [21].
177 Furthermore, transient expression of the $\text{PHO1}^{\Delta 83-114}$ -GFP fusion in *Nicotiana benthamiana*
178 leaves led to Pi export to the apoplastic space, demonstrating that the protein was competent in
179 Pi export (Fig 3D) [21]. Collectively, these results confirmed that restored expression of
180 $\text{PHO1}^{\Delta 249-342}$ RNA is responsible for the improved shoot growth in *pho1-7 tex1-4* double
181 mutants.
182

183

184 **Mutation in HPR1, another components of THO/TREX complex can also restore *pho1-7*
185 shoot growth but not mutations affecting tasiRNA biogenesis**

186 To investigate if *TEX1* exerts its function in the restoration of *PHO1* expression via the
187 THO/TREX complex, we crossed *pho1-7* to *hpr1-6* which is a mutant in another component of
188 THO/TREX core complex [14]. Double mutant *pho1-7 hpr1-6* partially restored shoot growth
189 while maintaining relatively low Pi contents comparable to the *pho1-7 tex1-6* but slightly higher
190 than *pho1-7* (Fig 1B and Fig 4 A-B).
191

192

193 THO/TREX complex has previously been demonstrated to participate in the biogenesis of trans
194 acting small interfering RNAs (tasiRNAs) and other small RNAs (siRNAs and miRNAs) that
195 can affect levels of transcription through DNA methylation and some unknown mechanisms.
196 We explored the possibility that changes in the biogenesis of tasiRNAs may be responsible for
197 the growth phenotype associated with the *pho1-7 tex1-4* and *pho1-7 hpr1-6* mutants. We
198 crossed *pho1-7* with two mutants in genes encoding core components required for the
199 biogenesis of tasiRNAs, namely *rdr6-11* and *sgs3-1* [28, 29]. Double mutants *pho1-7 rdr6-11*
200 and *pho1-7 sgs3-1* had shoot growth similar to the parental *pho1-7* (Fig 4C-D). Together, these
201 results indicate disruption in distinct genes of the THO/TREX complex, namely *TEX1* and
202 *HPR6*, can revert the growth phenotype of the *pho1-7* mutant and that biogenesis of tasiRNAs
203 is not implicated in these processes.
204
205

206 **Impaired mRNA termination at the NOS terminator restores expression of truncated**
207 **PHO1 in *pho1-7 tex1-4* mutant**

208 To elucidate how mutations in *TEX1* and *HPR1* lead to changes in transcription at the *PHO1*
209 locus, we performed paired-end next generation RNA sequencing of Col-0, *pho1-7*, *pho1-7*
210 *tex1-4* and *pho1-7 hpr1-6* mutants from roots. We first mapped the RNA reads of Col-0 and
211 *pho1-7* against the Col-0 genome and confirmed the absence of the second exon of *PHO1* in
212 the genome of *pho1-7* (S3A Fig). To understand the transcription dynamics at the *PHO1* locus
213 in the various mutants derived from *pho1-7*, we mapped RNA sequencing reads to the *pho1-7*
214 genomic configuration with the T-DNA insertion and exon 2 deletion. Detailed analysis of
215 mRNAs from *PHO1* locus in *pho1-7* mutants indicated that transcription was initiated in the
216 *PHO1* promoter and terminated at two different locations, namely at *NOS* terminator inside the
217 T-DNA and at the endogenous *PHO1* transcription termination site (Fig 5A-C). Using RT-PCR
218 and various primer combinations, we could detect four types of transcripts in the *pho1-7* mutant,
219 namely one unspliced and two spliced mRNA ending at the *NOS* terminator, and one long
220 transcript ending at the endogenous *PHO1* terminator and where *PHO1* exons 1 and 3 were
221 appropriately spliced, removing the T-DNA and generating the *PHO1*^{Δ249-342} RNA variant
222 (Figure 5A-D). While in the *pho1-7* mutant the four transcripts were expressed at similar low
223 level, in *pho1-7 tex1-4* and *pho1-7 hpr1-6* double mutants the majority of transcripts was the
224 *PHO1*^{Δ249-342} RNA variant (Fig 5C-D). Analysis by PacBio sequencing of full-length mRNAs
225 produced at the *PHO1* locus in Col-0, *pho1-7*, *pho1-7 tex1-4* and *pho1-7 hpr1-6* supported to
226 these conclusions and highlighted that essentially two classes of transcripts are produced in the
227 various mutants, namely transcripts that include the 5'portion of the T-DNA and end at the
228 *NOS* terminator and transcripts that end at the *PHO1* terminator and exclude the complete T-
229 DNA (S3B Fig). While in the *pho1-7* mutant the majority of transcripts were of the first type,
230 the *pho1-7 tex1-4* and *pho1-7 hpr1-6* mutants mostly expressed the second type. Such pattern
231 of transcripts are not consistent with alternative splicing but rather indicate that transcription
232 termination at the *NOS* terminator was suppressed in *pho1-7 tex1-4* and *pho1-7 hpr1-6* mutants,
233 and this enabled the transcription machinery to reach the *PHO1* terminator and generate a
234 transcript where exon 1 was spliced to exon 3, resulting in the removal of the T-DNA.
235 Chromatin immunoprecipitation using an antibody against the elongating RNAPII
236 (phosphorylated at S2 of the C-terminal domain) followed by qPCR showed that RNAPII
237 occupation at the *PHO1* locus situated after the T-DNA insertion was significantly reduced in
238 *pho1-7* mutants but increased in *pho1-7 tex1-4* mutant (Fig 5E), consistent with an increase in
239 transcriptional read-through past the T-DNA in the *pho1-7 tex1-4* double mutant (Fig 5D).

240
241 **THO/TREX complex is required for the correct termination of mRNAs in endogenous**
242 **loci**

243 To understand if TEX1 and HPR1 contribute to the termination of RNA transcription at
244 endogenous genes, RNA sequencing data generated from roots of Col-0, *pho1-7*, *pho1-7 tex1-4*
245 and *pho1-7 hpr1-6* grown in soil for 3 weeks were analyzed for the presence of 3' UTR
246 extensions. We observed significant changes in 3'UTR extensions in *pho1-7 tex1-4* and *pho1-7*
247 *hpr1-6* mutants as compared to both Col-0 and *pho1-7*. Two examples of such 3'UTR
248 extensions are shown in Fig 6A. While 3'UTR extensions were observed in only 3 transcripts
249 in *pho1-7*, 72 and 51 transcripts showed 3'UTR extensions in the *pho1-7 tex1-4* and *pho1-7*
250 *hpr1-6* mutants, respectively, but not in the *pho1-7* parent, with a subset of 38 transcripts found
251 in common between *pho1-7 tex1-4* and *pho1-7 hpr1-6* but not *pho1-7* (Fig 6B). These results
252 indicate that while a large proportion of genes affected in their 3'UTR extension in the *tex1-4*
253 respond similarly in the *hpr1-6*, the effects of these two mutations on RNA termination are not
254 completely redundant.

255 We hypothesized that if regulation of RNA termination by THO/TREX complex is generic and
256 robust, changes in 3'UTR extensions should be relatively insensitive to growth conditions. To
257 assess the robustness of 3'UTR extensions, we analyzed an independent RNA sequencing
258 dataset generated from roots of Col-0 and *tex1-4* mutant grown *in vitro* for 7 days in MS
259 medium supplemented with sucrose. A total of 77 transcripts showed 3'UTR extensions in the
260 *tex1-4* mutant relative to Col-0, with 48 transcripts found also in the dataset of 3'UTR
261 extensions for *pho1-7 tex1-4* mutant grown for 3 weeks in soil (S4 Fig), indicating that a large
262 proportion of transcripts with 3'UTR extensions observed in the *tex1-4* genetic background are
263 insensitive to major changes in growth conditions.

264 Validation of 3'UTR extensions in a set of genes identified by RNA sequencing was first
265 performed by qPCR using (Fig 6C). A transient assay was also developed whereby the sequence
266 500 bp downstream of the stop codon (which includes the 3'UTR) of two genes, AT1G76560
267 and AT1G03160, was fused after the stop codon of the nano-luciferase gene. These constructs
268 were expressed in Arabidopsis mesophyll protoplasts and the ratio of transcripts with an
269 extended 3'end relative to the main transcription termination site was determined by qRT-PCR
270 16 hours after transformation. Analysis revealed an increase, for both constructs, in the ratio of
271 long-to-short transcripts by approximately 50-60% in the *hpr1-6* and *tex1-4* mutants compared

272 to Col-0 (Fig 6D), further supporting the implication of both TEX1 and HPR1 in mRNA
273 termination.

274 GO term enrichment analysis of transcripts with impaired RNA termination in the *tex1-4*,
275 *pho1-7 tex1-4* and *pho1-7 hpr1-6* showed that these transcripts did not belong to a particular
276 functional category (S5 Fig). Therefore, we looked at the sequences of RNA termination sites
277 for mechanistic clues of impaired RNA termination and 3'UTR extension in *tex1* and *hpr1*
278 mutants. RNA termination sites are defined characteristic motifs, including an A-rich region at
279 approximately -20 nucleotides (position -1 being defined as the last nucleotide before the polyA
280 tail), which includes the AAUAAA-like sequence. This is followed by a U-rich region at -7
281 nucleotide and a second peak of U-rich region at approximately +25 nucleotides [30-32].
282 Analysis of the distribution of nucleotides upstream and downstream of the 3' cleavage site did
283 not reveal a significant difference from this distribution for genes showing a 3' extension in the
284 *tex1-4* and *hpr1-6* mutant backgrounds (Fig 7A). Additionally, we analyzed the differences at
285 -20 polyadenylation signal for the genes with 3' extensions compared to all *Arabidopsis* genes.
286 Although not statistically significant ($p=0.22$), a lower representation of the canonical
287 AAUAAA sequence appeared associated with the group of genes with 3' extension compared
288 to all genes (Fig 7B). We used the transient expression to test the effect of changing the single
289 AAUGAA polyadenylation signal present in gene AT1G76560 to the canonical AAUAAA.
290 While the optimized polyadenylation signal led to a small decrease in 3'UTR extensions
291 relative to the wild type sequence in Col-0, there was still an approximately 50% increase in
292 the ratio of long-to-short transcripts in the *hpr1-6* and *tex1-4* mutant compared to Col-0 (Fig
293 7C). Altogether, these results indicate that while HPR1 and TEX4 contribute to mRNA
294 termination, they do not appear to act primarily via the nature of the -20 polyadenylation signal.

295 **Discussion**

296 The contribution of the THO/TREX complex to mRNA biogenesis has been particularly studied
297 for splicing and export [9]. In contrast, the direct implication of the THO/TREX complex in
298 mRNA termination is poorly defined and reported only in few studies in human [33, 34]. The
299 THO5 was shown to interact with both CPSF100 and CFIm, two proteins involved in 3'end-
300 processing and polyadenylation site choice, and differences in mRNA polyadenylation were
301 observed in human cells depleted for THO5 [33, 34]. Recruitment of the cyclin-dependent
302 kinase CDK11 by the THO/TREX complex was shown to be essential for the phosphorylation
303 of RNAPII and the proper 3'end processing of the human immunodeficiency virus RNA,
304 although it is unknown if this interaction is also mediated via THO5 [35].

305 Although considerably less is known about mRNA biogenesis in plants compared to yeast and
306 metazoans, proteins forming the THO core complex are also found in plants, implicating a
307 conservation in their mode of action [13]. Indeed, *A. thaliana* mutants in the *HPR1* and *TEX1*
308 genes show defects in mRNA splicing and export [18, 19, 36]. However, most of our knowledge
309 in plants on THO core complex relates to its implication in small RNA biogenesis. *A. thaliana*
310 mutants in either *HPR1*, *TEX1*, *THO2* or *THO6* are defective in the synthesis of one or multiple
311 forms of small RNAs, including miRNA, siRNA, and tasiRNAs, although the mode of action
312 behind this defect is currently unknown [14-17]. Some of the phenotypes associated with the
313 *tex1* and *hpr1* mutants in *A. thaliana*, such as repression of female germline specification or
314 reduction in scopolin biosynthesis under abiotic stress, are likely caused by a reduction in
315 tasiRNA or miRNA production [37, 38].

316 This current work highlights the contribution of both *TEX1* and *HPR1* to mRNA termination.
317 Mutations in these genes in a *pho1-7* mutant background having a T-DNA insertion between
318 the *PHO1* exons 1 and 3 led to the suppression of mRNA termination at the NOS terminator
319 present in the T-DNA, followed by transcriptional read-through and splicing of the T-DNA,
320 resulting in the generation of a near full-length *PHO1* mRNA (minus exon 2). The truncated
321 *PHO1* protein generated from this mRNA maintained some Pi export activity, resulting in a
322 reversion of the growth phenotype associated with the severe Pi deficiency of the *pho1-7*
323 mutant.

324 Beyond its effect on the NOS terminator, mutations in the *HPR1* and *TEX1* genes also affected
325 mRNA 3' processing of endogenous loci leading to 3' UTR extensions. Interestingly, the

326 majority of loci with impaired transcription termination were shared between *tex1* and *hpr1*
327 mutants, suggesting that both proteins have overlapping functions in RNA termination.
328 Analysis of nucleotides surrounding of the 3' cleavage site did not reveal a significant
329 difference for genes showing a 3'extension in the *tex1-4* and *hpr1-6* mutants compared to the
330 Arabidopsis genome. The best defined DNA sequence involved in the control of mRNA
331 polyadenylation site is a A-rich region at approximately -20 nucleotides defined as the near
332 upstream element (NUE). Although the NUE canonical AAUAAA sequence is found very
333 frequently in animal genomes, the heterogeneity in NUE sequences is larger in plants [30, 39].
334 An apparent deviation (but not statistically significant) from the AAUAAA was observed in
335 genes showing a 3'UTR extension in the *hpr1-6* and *tex1-4*. Furthermore, optimization of the
336 polyadenylation site of the gene AT1G76560 from AAGAAA to AAUAAA did not affect the
337 extent of 3'UTR extension in the *tex1-4* and *hpr1-6* mutants compared to Col-0. It is likely that
338 the relatively low number of genes showing 3'UTR extensions significantly limits our ability
339 to identify nucleotide features that are important in 3'UTR extension in the *tex1-4* and *hpr1-6*
340 mutants through a bioinformatic approach. A more systematic analysis of the 3'UTR of the
341 genes affected in the *tex1-4* and *hpr1-6* mutants, such as AT1G76560 and AT1G03160, using
342 the transient assay described in this study may lead to the identification of the cis-elements
343 involved.

344

345 Analysis of the *A. tumefaciens* NOS transcript revealed two putative NUE sequences, namely
346 AAUAAA and AAUAAU, at position -135 and -50 nucleotides, which is much further
347 upstream than the usual -20 nucleotides [40]. It is thus likely that other sequences within the
348 NOS terminator play a determinant role in RNA transcription termination. Furthermore, while
349 the prominent dinucleotide located immediately before the cleavage site are typically CA or
350 UA, the dinucleotide GA is present in the NOS terminator [40]. While no detailed functional
351 analysis of the polyadenylation signal of the NOS gene has been reported, it is likely that the
352 its unusual structure is related to the bacterial origin of the gene. While the NOS terminator is
353 a common feature of many T-DNA vectors, several studies have shown that transgene
354 expression can be considerably enhanced either when the NOS terminator is combined with a
355 second terminator or when it is replaced by the terminator of plant endogenous genes [41-43].
356 For example, replacement of the NOS terminator with an extensin terminator was shown to
357 reduce read-through transcript and improve expression of transgenes [44]. Altogether, these
358 data suggest that mutations in the *HPR1* and *TEX1* genes may more prominently affect mRNA

359 3'processing for genes having unusual or weak polyadenylation signals, such as found in the
360 NOS terminator.

361 The 3'UTR of mRNAs have important regulatory functions, impacting mRNA stability,
362 localization and translation potential via interaction with numerous RNA binding proteins as
363 well as miRNAs [45]. Extension of the 3'UTRs of genes in the *hpr1-6* and *tex1-4* genetic
364 background may thus impact their expression in numerous ways. In some cases, extension of
365 3'UTR may also lead to disruption of the downstream gene by the formation of an antisense
366 RNA with potential to trigger siRNA-mediated gene silencing, or by transcriptional
367 interference via RNAPII collision [46]. The *tex1* and *hpr1* mutant are known to have multiple
368 phenotypes, ranging from defects in vegetative and reproductive development [18, 38],
369 responses to both biotic and abiotic stress [36, 37] and the expression of genes encoding acid
370 phosphatases [16] or ethylene signaling pathway repressor [20]. It would be of interest to
371 determine if the genes affected by 3'UTR extensions contribute to some extent to these
372 phenotypes.

373 Further work is necessary to gain detailed mechanistic insights as to how mutations in *tex1* and
374 *hpr1* lead to both suppression of termination at the NOS terminator and changes in the 3'UTR
375 of endogenous genes. Being part of the TREX complex associated with the mRNA transcription
376 machinery, TEX1 and HPR1 could affect mRNA transcription termination through interactions
377 with proteins more specifically involved in 3'end processing. This would be analogous to the
378 implication of the THOC5 protein, another component of the TREX complex, in mRNA 3'-end
379 processing in mammals via interactions with mRNA cleavage factors, including CPSF100 [33,
380 34]. Since TEX1 and HPR6 have both been implicated in the generation of small RNAs,
381 including tasiRNA, siRNA and miRNA, the contribution of these pathway to mRNA
382 termination should also be further examined. Reversion of the *pho1-7* growth phenotype could
383 not be reproduced by mutations in the *SGS3* and *RDR6* genes involved in small RNA
384 biogenesis, in particular of tasiRNAs, indicating that the effects of the *hpr1* and *tex1* mutations
385 in *pho1-7* could not be caused by changes in tasiRNAs generation [14, 15, 17, 18]. siRNA is
386 associated with DNA methylation, which in turn could impact RNA polymerase activity and
387 mRNA processing, including splicing and termination [47, 48]. Although the fact that T-DNA
388 present in the *pho1-7* mutant is both well transcribed and mediates resistance to kanamycin,
389 suggesting that it is unlikely to be strongly methylated, more subtle effects of siRNA-mediated
390 methylation on RNA transcription termination at the NOS terminator and endogenous loci
391 should be explored.

392 The N-terminal half of the PHO1 protein harbors a SPX domain which is involved in binding
393 inositol polyphosphate at high affinity via interactions with conserved tyrosine and lysine
394 residues [49, 50]. A PHO1 protein with mutations in these SPX conserved amino acids is unable
395 to complement the *pho1-2* null mutant, indicating that the binding of inositol polyphosphate is
396 important for PHO1 activity *in plantae* [50]. The protein PHO1^{Δ84-114} synthesized from the
397 *pho1-7* mutant does not affect the core of the SPX domain but only leads to a small deletion at
398 the N-terminal end of the second SPX subdomain (see S1 text). Heterologous expression of the
399 PHO1^{Δ84-114} protein in tobacco leaves led to specific Pi export activity, indicating that the 31
400 amino acid deletion does not completely inactivates the protein. Considering that *pho1-7 tex1-4*
401 and *pho1-7 hpr1-6* as well as the *pho1-4* null mutant expressing the PHO1^{Δ84-114} protein have
402 low shoot Pi, is thus likely that the PHO1^{Δ84-114} retains some Pi export activity in root xylem
403 parenchyma cells, but lower than the wild type protein. The high level of expression of the
404 PHO1^{Δ84-114} protein in the *pho1-7 tex1-4* mutant cannot be simply explained by a higher
405 expression of the truncated *PHO1*^{Δ249-342} mRNA in the double mutant background relative the
406 *pho1-7* parent, since the *PHO1*^{Δ249-342} mRNA remained lower than the full length *PHO1* mRNA
407 in Col-0 plants. PHO1 is known to be degraded by PHO2, a key protein involved in the Pi-
408 deficiency signaling pathway [51]. Whether the high level of PHO1^{Δ84-114} accumulation is a
409 reflection of greater stability of the truncated protein and/or increased translation efficiency of
410 the truncated mRNA remains to be determined.

411

412 Uncoupling low leaf Pi from its main effect on shoot growth has previously been reported for
413 plants under-expressing *PHO1* via silencing, indicating a role for high root Pi content and
414 PHO1 in modulating the response of the shoot to Pi deficiency [25]. The improved shoot growth
415 observed in the *pho1-7 tex1-4* and *pho1-7 hpr1-6* compared to the parent *pho1-7* is likely due
416 to the increased expression of the PHO1^{Δ84-114} hypomorphic protein and an increase in Pi export
417 activity. However, both *hpr1* and *tex1* mutants have low expression of the *RTE1* gene involved
418 in the repression of the ethylene signaling pathway which has been linked to an increase in root-
419 associated acid phosphatase activity and root hair elongation in these mutants, two
420 characteristics that can positively impact Pi acquisition [16, 20]. It is thus possible that a small
421 part of the growth improvement observed in the *tex1-4 pho1-7* and *hpr1-6 pho1-7* may also be
422 associated with the repression of the ethylene pathway.

423 **Materials and methods**

424

425 **Plant material and growth conditions**

426 All *Arabidopsis* plants used in this study, including mutants and transgenic plants, were in the
427 Columbia (Col-0) background. For *in vitro* experiments, plants were grown in half-strength
428 Murashige and Skoog (MS) salts (Duchefa M0255) containing 1% sucrose and 0.7% agar. For
429 Pi-deficient medium MS salts without Pi (Caisson Labs, MSP11) and purified agar (Conda,
430 1806) was used. Pi buffer pH5.7 (93.5% KH_2PO_4 and 6.5% K_2HPO_4) was added to obtain
431 different Pi concentrations. In the Pi-deficient media, Pi buffer was replaced by equimolar
432 amounts of KCl. Plants were also grown either in soil or in a clay-based substrate (Seramis)
433 supplemented with half-strength MS for the isolation of roots. Growth chamber conditions were
434 22°C, 60% humidity, and a 16h light/8h dark photoperiod with 100 $\mu\text{E}/\text{m}^2$ per sec of white
435 light for long days and 10h light/14h dark for short days. The *pho1-2*, *pho1-4*, *pho1-7*
436 (SALK_119529) and *tex1-4* were previously described [15, 22, 52] and *hpr1-6*
437 (SAIL_1209_F10) is a T-DNA mutant from SAIL collection. The *rdr6-11* is an EMS-derived
438 mutant while *sgs3-1* is a T-DNA mutant from the SALK collection (SALK_001394) and have
439 both been previously described [28].

440

441 ***pho1* suppressor screen**

442 Ethyl methanesulfonate (EMS) mutagenesis was performed on approximately 20,000 seeds of
443 homozygous *pho1-7*. Seeds were treated with 0.2% EMS in 100mM phosphate buffer for 8
444 hours and were rinsed with water 10 times afterwards. Approximately 10, 000 individual M1
445 plants were grown and seeds of their progeny were collected in bulk. Approximately 10'300
446 M2 plants were grown in soil for 4 weeks under an 18h/8h day/night light cycle. Plants showing
447 an increased rosettes size relative to the *pho1-7* parent were identified and their seeds collected.
448 In the next generation, plants retaining 100% kanamycin resistance mediated by the T-DNA in
449 *PHO1* were sown in soil and the Pi content in 3-week-old rosettes was determined using the
450 molybdate assay [53] as previously described [27]. Plants showing the combination of
451 increased rosettes size with low shoot Pi similar to *pho1-7* were then genotyped by PCR to
452 further confirm the presence of the T-DNA in the *PHO1* locus in an homozygous state.

453

454 **Identification of mutant genes by next generation sequencing**

455 *pho1-7* suppressor mutant was back-crossed to the parent *pho1-7* line to test if the mutation was

456 dominant or recessive and to generate an isogenic mapping population. Approximately 40
457 plants with a *pho1-7* suppressor phenotype were selected from the segregating F2 population.
458 DNA was extracted from the pool of these 40 mutants and sequencing was performed using
459 Illumina Hiseq 2000 system. DNA sequencing yielded an average coverage of 80 to 100
460 nucleotides per nucleotide per sample. Sequencing reads were mapped with Burrows-Wheeler
461 Aligner software (BWA) version 0.5.9-r16 using default parameters to the TAIR10 release of
462 the *A. thaliana* genome. Using SAM (Sequence Alignment/Map) tool the alignments were
463 converted to BAM format. SNPs were called with the Unified Genotyper tool of the Genome
464 Analysis Toolkit (GATK) version v1.4-24-g6ec686b. SNPs present in the parental line *pho1-7*
465 were filtered out using BEDTools utilities version v2.14.2.
466 TAIR10_GFF3_genes_transposons.gff file was used to filter out the SNPs present in the
467 transposons. The predicted effect of the remaining SNPs in coding regions was assessed with
468 SNPEff version 2.0.4 RC1. Unix command awk was used to extract the SNP frequencies (the
469 number of reads supporting a given SNP over the total number of reads covering the SNP
470 location) and were plotted with R 2.15.1.

471

472 Cloning and transgenic lines

473 For complementation of *pho1-7 suppressor* with *TEX1*, genomic sequence including 2 kb
474 promoter 5'UTR and 3'UTR was amplified using primers TEX1-gen-F -and TEX1-gen-R
475 (sequences of all primers used are listed in S1 Table). The amplicon was cloned into pENTR/D
476 TOPO vector (Invitrogen). The entry vector was then shuttled into the binary vector pMDC99
477 [54] using Gateway technology (Invitrogen). For pTEX1:TEX1:GFP fusion, *TEX1* promoter
478 and gene was amplified using primers TEX1-gen-F and TEX1-gen-R-w/o-stop. Reverse primer
479 was designed to remove the stop codon from *TEX1* gene. The amplicon was cloned into
480 pENTR/D TOPO vector (Invitrogen). The entry vector was then shuttled into the binary vector
481 pMDC107, which contains GFP at the C-terminal [54]. For *TEX1* promoter GUS fusion,
482 promoter was amplified using the primers TEX1-Pro-inf-LP and TEX1-Pro-inf-RP. The
483 amplicon was cloned into the gateway entry vector pE2B using Infusion technology
484 (Clonetech). The entry vector was then shuttled into the binary vector pMDC63 [54] using
485 Gateway technology (Invitrogen). For cloning pPHO1:gPHO1^{Δ83-114}:GFP, promoter and first
486 exon was amplified using primers P2BJ pPHO1 1exon L and P2BJ pPHO1 1exon R (fragment
487 1), *PHO1* gene from third exon until before the stop codon was amplified using primers P2BJ
488 PHO1gene 3rd exon F and P2BJ PHO1gene 3rd exon R (fragment 2). The two fragments were
489 combined together in the Gateway entry vector pE2B using Infusion technology (Clonetech).

490 The entry vector was then shuttled into the binary vector pMDC107 [54] using Gateway
491 technology (Invitrogen). All the binary vectors were transformed into *Agrobacterium*
492 *tumefaciens* strain GV3101 and plants were transformed using flower dip method [55].
493 For analysis of transcript termination by transient expression in *Arabidopsis* protoplasts, the
494 500 nucleotides located immediately after the stop codon of the genes AT1G76560 and
495 AT1G03160 were fused after the stop codon of the nano-luciferase (nLUC) gene. To achieve
496 this, the 500 bp 3' sequences from AT1G76560 (wild-type and mutated) and AT1G03160
497 flanked by attR1 and attR2 sites were synthesized and inserted in the pUC57 plasmid by
498 Genscript . The DNA insert was then shuttled by Gateway cloning into the dual-luciferase
499 vector nLucFlucGW (Genbank MH552885) [56] modified to lack the original nLuc 3'UTR and
500 terminator sequences. The final constructs had the hybrid genes expressed under the control of
501 the ubiquitin promoter, as well as the firefly luciferase gene (Fluc) constitutively expressed,
502 used for loading control.

503

504 **Quantitative RT PCR and phosphate measurement and Pi export assay.**

505 Quantitative RT-PCR was performed as previously described [27]. For transient expression of
506 PHO1, *Nicotiana benthamiana* tobacco plants were infiltrated with *A. tumefaciens* as
507 previously described [21]. Pi measurements were performed using the molybdate-ascorbic acid
508 method [53].

509

510 **Confocal microscopy**

511 Seedlings were incubated for ten min in a solution of 15 mM Propidium Iodide (sigma, P4170)
512 and rinsed twice with water. Excitation and detection window for GFP was set at 488 nm for
513 excitation and 490–555 nm for detection. Propidium iodide was excited at 555 nm and detected
514 at 600-700nm. All experiments were performed using Zeiss LSM 700 confocal microscope.

515

516 **Western blot analysis**

517 Plants were grown on clay-based substrate (Seramis) supplemented with half-strength MS
518 liquid medium. Proteins were extracted from homogenized 25-day-old roots at 4 °C in
519 extraction buffer containing 10 mM phosphate buffer pH 7.4, 300 mM sucrose, 150 mM NaCl,
520 5 mM EDTA, 5 mM EGTA, 1 mM DTT, 20 mM NaF and 1× protease inhibitor (Roche EDTA
521 free complete mini tablet), and sonicated for 10 min in an ice-cold water bath. Fifty micrograms

522 of protein were separated on an SDS-PAGE and transferred to an Amersham Hybond-P PVDF
523 membrane (GE healthcare). The rabbit polyclonal antibody to PHO1 [51] and goat anti-rabbit
524 IgG-HRP (Santa Cruz Biotechnology, USA) was used along with the Western Bright Sirius
525 HRP substrate (Advansta, USA). Signal intensity was measured using a GE healthcare
526 ImageQuant RT ECL Imager.

527

528 **Illumina RNA-sequencing data analysis**

529 RNA was extracted from roots of plants grown for 3 weeks in pots containing clay-based
530 substrate (Seramis) or for 7 days on vertical agar plates containing half-strength MS media with
531 1% sucrose. Strand-specific libraries were prepared using the TruSeq Stranded Total RNA kit
532 (Illumina). PolyA⁺ RNAs were selected according to manufacturer's instructions and the cDNA
533 libraries were sequenced on a HiSeq 2500 Illumina sequencer. The reads were mapped against
534 TAIR10.31 reference genome using Hisat2 [57] and the readcount for each gene was
535 determined using HTSeqcount [58]. Readcounts were normalized using DESeq2 [59]. Figures
536 showing read density from RNAseq data were generated using Integrative genomics viewer
537 (IGV) [60].

538 **Analysis of full-length mRNA using PacBio sequencing**

539 One μ g of total RNA was used to generate cDNA with the SMARTer PCR cDNA Synthesis
540 kit (Clontech, Mountain View, CA, USA). Fifty μ l of cDNA were amplified by 13 PCR cycles
541 with the Kapa HiFi PCR kit (Kapa Biosystems, Wilmington, MA, USA) followed by size
542 selection from 1.5kb to 3.5kb with a BluePippin system (Sage Science, Beverly, MA, USA).
543 Seventy ng of the size selected fragment were further amplified with Kapa HiFi PCR kit for 5
544 cycles and 2 minutes extension time and 750 ng was used to prepare a SMRTbell library with
545 the PacBio SMRTbell Template Prep Kit 1 (Pacific Biosciences, Menlo Park, CA, USA)
546 according to the manufacturer's recommendations. The resulting library was sequenced with
547 P4/C2 chemistry and MagBeads on a PacBio RSII system (Pacific Biosciences, Menlo Park,
548 CA, USA) at 240 min movie length using one SMRT cell v2. Bioinformatics analysis were
549 performed through SMRT[®] Analysis Server v2.3.0. using RS_IsoSeq.1 workflow and
550 TAIR10.31 as reference genome.

551

552 **Identification of 3'UTR extensions**

553 3' UTR extensions were identified following a procedure adapted from Sun et al. 2017 [8].
554 Briefly, reads obtained by single or paired-end polyA+ RNAseq were mapped with Hisat2 [57]
555 against the intergenic regions extracted from TAIR10.31 annotation. Each intergenic region
556 was divided into 10 nucleotide bins and the normalized readcount was determined for each bin
557 with HTSeq-count [58] and DESeq2 [59]. 3' extensions were then contiguously assembled
558 from the 5' end of intergenic intervals until a bin had a normalized readcount < 1. Only
559 extensions longer than 200 nucleotides were kept for further analyses.

560 The number of reads mapping each TAIR10.31 gene and newly identified 3' extensions was
561 determined with HTSeq-count [58]. Differential expression analysis was performed with
562 DESeq2 [59] to identify extensions significantly up or down-regulated independently of the
563 expression level of the TAIR10.31 annotated gene body, comparing different genotypes. An
564 extension was considered significantly differentially expressed if the adjusted pvalue corrected
565 for false discovery rate was < 0.1 and the fold change of the ratios normalized readcount 3'
566 extension / normalized readcount gene body between 2 genotypes was > 2.

567

568 To analyze the polyadenylation signal present in genes with and without 3'UTR extensions, the
569 frequency of each nucleotide at the polyadenylation consensus sequence AAUAAA was
570 calculated for each gene and a Chi square test was used to test for statistical significance.

571

572 **Chromatin immunoprecipitation analyzed by qPCR**

573 Leaves from 3-week-old *A. thaliana* seedlings from different genotypes were harvested and
574 immediately incubated in 37 ml of pre-chilled fixation buffer (1% formaldehyde in 0.4M
575 sucrose, 10 mM Tris pH 8, 1mM EDTA, 1 mM PMSF, 0.05% Triton X-100) for 10 min under
576 vacuum. 2.5 ml of Glycine (2.5 M) was added and samples were incubated 5 additional min
577 under vacuum, rinsed 3 times with water and frozen in liquid nitrogen. Frozen samples were
578 ground and the powder resuspended in 30 ml of extraction buffer I (0.4 M sucrose, 10 mM
579 HEPES pH 8, 5 mM β -mercaptoethanol, 0.1 g/ml 4-(2-aminoethyl) benzenesulfonyl fluoride
580 hydrochloride (AEBSF). After 20 min incubation at 4°C, the mixture was filtered through

581 Miracloth and centrifuged for 20 min at 3000 g at 4°C. The pellet was resuspended in 300 µl
582 of extraction buffer III (1.7 M sucrose, 10 mM HEPES pH 8, 0.15% Triton X-100, 2 mM
583 MgCl₂, 5 mM 5 mM β-mercaptoethanol, 0.1 g/ml AEBSF), loaded on top of a layer of 300 µl
584 of extraction buffer III and centrifuge for 1h at 16000 g at 4°C. The pellet was resuspended in
585 300 µl of Nuclei Lysis Buffer (50 mM HEPES pH 8, 10 mM EDTA, 1% SDS, 0.1 g/ml AEBSF)
586 and incubated on ice for 30 min.

587 Chromatin solution was centrifuged twice for 10 min at 14000 g, 4°C and incubated over-night
588 with S2P-RNApolII specific antibodies. The mixture was then incubated with Protein A beads
589 for 3h at 4°C. After washing, immune complexes were eluted twice with 50 µl of Elution Buffer
590 (1 % SDS, 0.1 NaHCO₃). To reverse crosslinking, 4 µl of a 5 M NaCl solution was added to
591 100 µl of eluate and the mixture incubated overnight at 65 °C. Two µl of 0.5 M EDTA, 1.5 µl
592 of 3 M Tris-HCl pH 6.8 and 20 µg of proteinase K were then added and the mixture incubated
593 for 3h at 45 °C. DNA was then extracted using the NucleoSpin kit from Macherey Nagel. DNA
594 samples were diluted 10 times and 2 µl were used for quantification by qPCR using Master Mix
595 SYBR Select (Applied Biosystems).

596 **Transient expression in *Arabidopsis* protoplasts**

597 *Arabidopsis* protoplasts were produced and transformed as previously described [61]. In brief,
598 wild type Col-0, as well as *hrp1-6* and *tex1-4* mutant plants were grown in long photoperiod
599 (16 h light and 8 h dark at 21 °C) for 4-5 weeks and leaves were cut with razor blades to produce
600 0.5-1 mm leaf strips. These were submerged in enzyme solution (1% cellulase, 0.25
601 % macerozyme, 0.4 M mannitol, 20 mM KCl, 20 mM MES and 10 mM CaCl₂),
602 vacuum infiltrated and incubated at room temperature for 2 h. Protoplasts were harvested by
603 centrifugation at 100 xg for 3 min, washed with W5 solution (154 mM NaCl, 125 mM CaCl₂,
604 5 mM KCl and 2 mM MES) and resuspended in MMG solution (4 mM MES, pH 5.7, 0.4 M
605 mannitol and 15 mM MgCl₂) at 1x10⁶ protoplast/ml. Protoplast transformation was performed
606 by combining ~1.5 x10⁵ protoplasts, 8 µg of plasmid, and PEG solution (40% PEG4000, 0.2 M
607 mannitol and 100 mM CaCl₂). After replacing PEG solution with W5 solution by
608 consecutive washings, protoplasts were kept in the dark for approximately 16 hours at 21°C.
609 Transformed protoplasts were harvested by centrifugation at 6000 xg for 1 min, and
610 resuspended in 1X Passive Lysis buffer (Promega, E1941). The lysate was cleared by
611 centrifugation and RNA was extracted using RNA purification kit as described by
612 the manufacturer (Jena Bioscience, PP-210), followed by DNase I treatment. cDNA

613 was synthesized from 0.1 µg RNA using M-MLV Reverse Transcriptase (Promega,
614 M3681) and oligo d(T)15 as primer following the manufacturer's instructions. qPCR analysis
615 was performed using SYBR select Master Mix (Applied Biosystems, 4472908) with primer
616 pairs specific to transcripts of interest and firefly luciferase mRNA, used for
617 data normalization. Long/short transcript ratio was calculated with the following formula:

618 $\Delta CT(\text{long transcript}) = CT(\text{long transcript}) - CT(\text{Fluc})$

619 $\Delta CT(\text{short transcript}) = CT(\text{short transcript}) - CT(\text{Fluc})$

620 $\Delta\Delta CT(\text{long/short}) = \Delta CT(\text{long transcript}) / \Delta CT(\text{short transcript})$

621 Long/short transcript ratio = $2^{\Delta\Delta CT(\text{long/short})}$

622

623

624 **Acknowledgment**

625 The authors are grateful to Syndie Delessert for technical assistance and to Tzyy-Jen Chiou
626 (Academia Sinica, Taiwan) for the PHO1 antibody.

627

628

629 References

- 630 1. Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by
631 RNA polymerase II. *Nat Rev Mol Cell Biol.* 2018;19(7):464-478.
- 632 2. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base:
633 co-transcriptional spliceosome assembly and function. *Nat Rev Mol Cell Biol.*
634 2017;18(10):637-650.
- 635 3. Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. *Genes*
636 *Dev.* 2009;23(11):1247-1269.
- 637 4. Hsin J-P, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA
638 processing. *Genes Dev.* 2012;26(19):2119-2137.
- 639 5. Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5' -> 3' exoribonucleases:
640 Structure, mechanisms and functions. *Biochim Biophys Acta.* 2013;1829(6-7):590-603.
- 641 6. Chen W, Jia Q, Song Y, Fu H, Wei G, Ni T. Alternative Polyadenylation: Methods,
642 Findings, and Impacts. *Genom Proteom Bioinf.* 2017;15(5):287-300.
- 643 7. Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. Crosstalk
644 between mRNA 3' End Processing and Transcription Initiation. *Mol Cell.* 2010;40(3):410-422.
- 645 8. Sun H-X, Li Y, Niu Q-W, Chua N-H. Dehydration stress extends mRNA 3' untranslated
646 regions with noncoding RNA functions in Arabidopsis. *Genome Res.* 2017;27(8):1427-1436.
- 647 9. Katahira J. mRNA export and the TREX complex. *Biochim Biophys Acta.*
648 2012;1819(6):507-513.
- 649 10. Heath CG, Viphakone N, Wilson SA. The role of TREX in gene expression and disease.
650 *Biochem J.* 2016;473:2911-2935.
- 651 11. Meinel DM, Burkert-Kautzsch C, Kieser A, O'Duibhir E, Siebert M, Mayer A, Cramer
652 P, Soding J, Holstege FCP, Straesser K. Recruitment of TREX to the Transcription Machinery
653 by Its Direct Binding to the Phospho-CTD of RNA Polymerase II. *PLoS Genet.* 2013;9(11).
- 654 12. Gomez-Gonzalez B, Garcia-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marin A,
655 Foiani M, Aguilera A. Genome-wide function of THO/TREX in active genes prevents R-loop-
656 dependent replication obstacles. *EMBO J.* 2011;30(15):3106-3119.
- 657 13. Ehrnsberger HF, Grasser M, Grasser KD. Nucleocytosolic mRNA transport in plants:
658 export factors and their influence on growth and development. *J Exp Bot.*
659 2019;doi:10.1093/jxb/erz173.

660 14. Yelina NE, Smith LM, Jones AME, Patel K, Kelly KA, Baulcombe DC. Putative
661 Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous
662 siRNA biosynthesis. *Proc Natl Acad Sci USA*. 2010;107(31):13948-13953.

663 15. Jauvion V, Elmayan T, Vaucheret H. The Conserved RNA Trafficking Proteins HPR1
664 and TEX1 Are Involved in the Production of Endogenous and Exogenous Small Interfering
665 RNA in Arabidopsis. *Plant Cell*. 2010;22(8):2697-2709.

666 16. Tao S, Zhang Y, Wang X, Xu L, Fang X, Lu ZJ, Liu D. The THO/TREX Complex
667 Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase
668 Activity Induced by Phosphate Starvation. *Plant Physiol*. 2016;171(4):2841-2853.

669 17. Francisco-Mangilet AG, Karlsson P, Kim M-H, Eo HJ, Oh SA, Kim JH, Kulcheski FR,
670 Park SK, Andres Manavella P. THO2, a core member of the THO/TREX complex, is required
671 for microRNA production in Arabidopsis. *Plant J*. 2015;82(6):1018-1029.

672 18. Furumizu C, Tsukaya H, Komeda Y. Characterization of EMU, the Arabidopsis
673 homolog of the yeast THO complex member HPR1. *RNA*. 2010;16(9):1809-1817.

674 19. Sorensen BB, Ehrnsberger HF, Esposito S, Pfab A, Bruckmann A, Hauptmann J,
675 Meister G, Merkl R, Schubert T, Laengst G *et al*. The Arabidopsis THO/TREX component
676 TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing
677 events. *Plant Mol Biol*. 2017;93(3):283-298.

678 20. Xu C, Zhou X, Wen C-K. HYPER RECOMBINATION1 of the THO/TREX Complex
679 Plays a Role in Controlling Transcription of the REVERSION-TO-ETHYLENE
680 SENSITIVITY1 Gene in Arabidopsis. *PLoS Genet*. 2015;11(2).

681 21. Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. Functional
682 expression of PHO1 to the Golgi and *trans*-Golgi network and its role in export of inorganic
683 phosphate. *Plant J*. 2012;71:479-491.

684 22. Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y.
685 Identification and characterization of the *Arabidopsis* PHO1 gene involved in phosphate
686 loading to the xylem. *Plant Cell*. 2002;14:889-902.

687 23. Poirier Y, Thoma S, Somerville C, Schiefelbein J. A mutant of *Arabidopsis* deficient in
688 xylem loading of phosphate. *Plant Physiol*. 1991;97:1087-1093.

689 24. Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, Bensimon M, Poirier Y.
690 Overexpression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux.
691 *Plant J*. 2011;66:689-699.

692 25. Rouached H, Stefanovic A, Secco D, Arpat AB, Gout E, Bligny R, Poirier Y.
693 Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1
694 expression in Arabidopsis. *Plant J.* 2011;65:557-570.

695 26. Secco D, Baumann A, Poirier Y. Charcaterization of the rice *PHO1* gene family reveals
696 a key role for *OsPHO1;2* in phosphate homeostasis and the evolution of a distinct clade in
697 dicotyledons. *Plant Physiol.* 2010;152:1693-1704.

698 27. Wege S, Khan GA, Jung J-Y, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier
699 Y. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via
700 a root-to-shoot signal. *Plant Physiol.* 2016;170(1):385-400.

701 28. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. SGS3 and
702 SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting
703 siRNAs in Arabidopsis. *Genes Dev.* 2004;18(19):2368-2379.

704 29. Ronemus M, Vaughn MW, Martienssen RA. MicroRNA-targeted and small interfering
705 RNA-mediated mRNA degradation is regulated by Argonaute, Dicer, and RNA-dependent
706 RNA polymerase in Arabidopsis. *Plant Cell.* 2006;18(7):1559-1574.

707 30. Loke JC, Stahlberg EA, Strenski DG, Haas BJ, Wood PC, Li QQ. Compilation of
708 mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential
709 secondary structures. *Plant Physiol.* 2005;138(3):1457-1468.

710 31. Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM, Barton
711 GJ, Simpson GG. Direct sequencing of *Arabidopsis thaliana* RNA reveals patterns of cleavage
712 and polyadenylation. *Nat Struct Mol Biol.* 2012;19(8):845-852.

713 32. Wu XH, Liu M, Downie B, Liang C, Ji GL, Li QQ, Hunt AG. Genome-wide landscape
714 of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation.
715 *Proc Natl Acad Sci USA.* 2011;108(30):12533-12538.

716 33. Doan Duy Hai T, Saran S, Williamson AJK, Pierce A, Dittrich-Breiholz O, Wiehlmann
717 L, Koch A, Whetton AD, Tamura T. THOC5 controls 3' end- processing of immediate early
718 genes via interaction with polyadenylation specific factor 100 (CPSF100). *Nucleic Acids Res.*
719 2014;42(19):12249-12260.

720 34. Katahira J, Okuzaki D, Inoue H, Yoneda Y, Maehara K, Ohkawa Y. Human TREX
721 component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian
722 cleavage factor I. *Nucleic Acids Res.* 2013;41(14):7060-7072.

723 35. Pak V, Eifler TT, Jaeger S, Krogan NJ, Fujinaga K, Peterlin BM. CDK11 in
724 TREX/THOC Regulates HIV mRNA 3' End Processing. *Cell Host Microbe.* 2015;18(5):560-
725 570.

726 36. Pan H, Liu S, Tang D. HPR1, a component of the THO/TREX complex, plays an
727 important role in disease resistance and senescence in *Arabidopsis*. *Plant J.* 2012;69(5):831-
728 843.

729 37. Doll S, Kuhlmann M, Rutten T, Mette MF, Scharfenberg S, Petridis A, Berreth DC,
730 Mock HP. Accumulation of the coumarin scopolin under abiotic stress conditions is mediated
731 by the *Arabidopsis thaliana* THO/TREX complex. *Plant J.* 2018;93(3):431-444.

732 38. Su Z, Zhao L, Zhao Y, Li S, Won S, Cai H, Wang L, Li Z, Chen P, Qin Y *et al.* The
733 THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the
734 TAS3-ARF3 Module. *Curr Biol.* 2017;27(11):1597-+.

735 39. Tian B, Hu J, Zhang HB, Lutz CS. A large-scale analysis of mRNA polyadenylation of
736 human and mouse genes. *Nucleic Acids Res.* 2005;33(1):201-212.

737 40. Depicker A, Stachel S, Dhaese P, Zambryski PC, Goodman H. Nopaline synthase:
738 transcript mapping and DNA sequence. *J Mol Appl Genet.* 1982;6:561-573.

739 41. Beyene G, Buenrostro-Nava MT, Damaj MB, Gao SJ, Molina J, Mirkov TE.
740 Unprecedented enhancement of transient gene expression from minimal cassettes using a
741 double terminator. *Plant Cell Rep.* 2011;30(1):13-25.

742 42. Nagaya S, Kawamura K, Shinmyo A, Kato K. The HSP Terminator of *Arabidopsis*
743 thaliana Increases Gene Expression in Plant Cells. *Plant Cell Physiol.* 2010;51(2):328-332.

744 43. Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. Production of hepatitis B surface
745 antigen in transgenic plants for oral immunization. *Nat Biotechnol.* 2000;18(11):1167-1171.

746 44. Rosenthal SH, Diamos AG, Mason HS. An intronless form of the tobacco extensin gene
747 terminator strongly enhances transient gene expression in plant leaves. *Plant Mol Biol.*
748 2018;96(4-5):429-443.

749 45. Mayr C. Regulation by 3'-untranslated regions. *Ann Rev Genet.* 2017;51:171-194.

750 46. Kindgren P, Ard R, Ivanov M, Marquardt S. Transcriptional read-through of the long
751 non-coding RNA SVALKA governs plant cold acclimation. *Nature Comm.* 2018;9.

752 47. Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation. *Nature*
753 *Plants.* 2016;2(11):e16163.

754 48. Mathieu O, Bouche N. Interplay between chromatin and RNA processing. *Curr Opin*
755 *Plant Biol.* 2014;18:60-65.

756 49. Jung J-Y, Ried MK, Hothorn M, Poirier Y. Control of plant phosphate homeostasis by
757 inositol pyrophosphates and the SPX domain. *Curr Opin Biotechnol.* 2018;49:156-162.

758 50. Wild R, Gerasimaite R, Jung J-Y, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen
759 HJ, Poirier Y, Hothorn M *et al.* Control of eukaryotic phosphate homeostasis by inositol
760 polyphosphate sensor domains. *Science*. 2016;352(6288):986-990.

761 51. Liu T-Y, Huang T-K, Tseng C-Y, Lai Y-S, Lin S-I, Lin W-Y, Chen J-W, Chiou T-J.
762 PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in *Arabidopsis*. *Plant*
763 *Cell*. 2012;24(5):2168-2183.

764 52. Khan GA, Vogiatzaki E, Glauser G, Poirier Y. Phosphate Deficiency Induces the
765 Jasmonate Pathway and Enhances Resistance to Insect Herbivory. *Plant Physiol*.
766 2016;171(1):632-644.

767 53. Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. *Methods*
768 *Enzymol*. 1966;8:115-118.

769 54. Curtis MD, Grossniklaus U. A gateway cloning vectors set for high-throughput
770 functional analysis of genes in *planta*. *Plant Physiol*. 2003;133:462-469.

771 55. Clough SJ, Bent AF. Floral dip: a simplified method for *Agrobacterium*-mediated
772 transformation of *Arabidopsis thaliana*. *Plant J*. 1998;6:735-743.

773 56. Deforges J, Reis RS, Jacquet P, Sheppard S, Geadekar VP, Hart-Smith G, Tanzer A,
774 Hofacker IL, Iseli C, Xenarios I *et al.* Control of cognate mRNA translation by *cis*-natural
775 antisense. *Plant Physiol*. 2019;180(1):305-322.

776 57. Kim D, Landmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory
777 requirements. *Nat Methods*. 2015;12(4):357-360.

778 58. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput
779 sequencing data. *Bioinformatics*. 2015;31(2):166-169.

780 59. Love M, Huber W, Anders S. Moderated estimation of fold change and dispersion for
781 RNA-seq data with DESeq2. *Genome Biol*. 2014;15:550.

782 60. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov
783 JP. Integrative genomics viewer. *Nat Biotechnol*. 2011;29(1):24-26.

784 61. Yoo S-D, Cho Y-H, Sheen J. *Arabidopsis* mesophyll protoplasts: a versatile cell system
785 for transient gene expression analysis. *Nat Protoc*. 2007;2(7):1565-1572.

786

787

788

789 **Figure legends**

790

791 **Fig 1. The *tex1* mutation suppresses the shoot growth phenotype of the *pho1-7* mutant.**

792 (A) Phenotype of Col-0, *pho1-7*, *pho1-7 suppressor*, and *pho1-7 suppressor* transformed with
793 the pTEX1:gTEX1:GFP. (B) Pi contents of 4-week-old rosettes. Data from a representative
794 experiment shows the mean Pi content from ten different plants grown in independent pots.
795 Errors bars represent standard deviation. Values marked with lowercase letters are statistically
796 significantly different from those for other groups marked with different letters (P < 0.05,
797 ANOVA with the Tukey-Kramer HSD test). Panel display a representative experiment

798

799

800 **Fig 2. *tex1* restores the expression of *PHO1* in the *pho1-7* mutant.** (A) Phenotype of 4-

801 week-old Col-0, *tex1-4*, *pho1-7*, *pho1-4*, *pho1-7 tex1-4* and *pho1-4 tex1-4* mutants. (B) Shoot
802 Pi contents of 4-week-old plants. Data from a representative experiment shows the means of Pi
803 contents from six individual plants grown in independent pots. Error bars represent standard
804 deviation. (C) Structure of truncated *PHO1* mRNA produced at the *PHO1* locus in the *pho1-7*
805 mutant. For the *PHO1* locus, exons are indicated as black open boxes, except for the second
806 exon, indicated as a green dotted box. Exon 2 is present in Col-0 but deleted in the *pho1-7*
807 mutant as a result of T-DNA insertion. The structure of the mRNA *PHO1*^{Δ249-342} found in the
808 *pho1-7* mutant is shown below. The pairs of oligonucleotides P1 and P2 used for RT-PCR is
809 shown. (D) Western blot showing full length and truncated *PHO1* protein in roots of Col-0,
810 *pho1-2* null mutant, *pho1-7* and *pho1-7 tex1-4*. Plants were grown for 4 weeks in a clay
811 substrate and total protein were extracted from roots. (E) Relative expression level of *PHO1*
812 gene in the roots of 4-week-old plants grown in a clay substrate. Data are means of three
813 samples from plants grown in independent pots and three technical replicates for each sample,
814 with each sample being a pool of three plants. Error bars represent standard deviation. For both
815 B and E, values marked with lowercase letters are statistically significantly different from those
816 for other groups marked with different letters. (P < 0.05, ANOVA with the Tukey-Kramer HSD
817 test).

818

819 **Fig 3. Truncated *PHO1*^{Δ84-114} is sufficient to restore the shoot growth phenotype of *pho1-4***

820 **null mutant.** (A) Phenotype of four-week-old plants. (B) Pi contents in the rosettes of 4-week-
821 old plants. Data from a representative experiment shows the means of Pi contents from six
822 individual plants grown in independent pots. Error bars represent standard deviation. (C)

823 Localization of full-length PHO1:GFP and PHO1^{Δ83-114}:GFP in the roots of 7-day-old
824 seedlings. Both *PHO1:GFP* and *PHO1^{Δ83-114}:GFP* were expressed under the control of native
825 *PHO1* promoter in the *pho1-4* null mutant. (D) Pi export mediated by PHO1:GFP and PHO1^{Δ84-}
826¹¹⁴:GFP from transient expression in *N. benthamiana* leaf discs. As controls, Pi export was
827 measured in leaf discs expressing either free GFP (EV) or not infiltrated (none). Data are means
828 of 4 measurements taken from independent infiltrated leaves. For B and D, values marked with
829 lowercase letters are statistically significantly different from those for other groups marked with
830 different letters. (P < 0.05, ANOVA with the Tukey-Kramer HSD test).

831

832 **Fig 4. *hpr1* can restore *pho1-7* shoot growth but not mutations in tasiRNA biogenesis.**

833 (A, C, D) Phenotype of four-week-old plants. (B) Pi contents in the rosettes of four-week-old
834 plants. Data from a representative experiment shows the means of Pi contents from ten different
835 plants grown in independent pots. Errors bars represent standard deviation. Values marked with
836 lowercase letters are statistically significantly different from those for other groups marked with
837 different letters (P < 0.05, ANOVA with the Tukey-Kramer HSD test).

838

839 **Fig 5. *tex1* mutant impairs transcription termination at the NOS terminator.** (A) Structure
840 of the wild type *PHO1* gene (top) and T-DNA (red) integrated in the *pho1-7* mutant (bottom).
841 Exons are indicated as black open boxes, except for the second exon, indicated as a green dotted
842 box. Exon 2 is present in Col-0 but deleted in the *pho1-7* mutant as a result of T-DNA insertion,
843 which is shown in red. Blue lines represent introns. pNOS, NOS promoter; NPTII, neomycin
844 phosphotransferase gene; tNOS, NOS terminator. (B) Structure of the four mRNA variants
845 produced at the *PHO1* locus in *pho1-7* mutants. The thick black and blue lines represent
846 sequences derived from *PHO1* exons and introns, respectively, while the thick red lines are
847 derived from the T-DNA. The sizes of the different transcripts are shown. Arrows indicate the
848 location of primers used for the qPCR shown in panel D. Forward primers (discontinued
849 arrows) in transcript 2 and 3 are at the junction of cryptic splicing sites to ensure specificity.
850 (C) Illumina RNA sequencing reads density graph showing mRNA expression at the *PHO1*
851 locus in various genotypes. The RNA sequencing reads are mapped against the *PHO1* locus in
852 *pho1-7*, represented in the lower section of panel A (D) Quantification via qPCR of four
853 different mRNA transcripts produced at the *PHO1* locus in the roots of 4-week-old plants. The
854 numbers associated with each transcript and primers used for qPCR are shown in panel B. (E)
855 CHIP-qPCR experiments showing the density of RNAPII-S2 at the 3'end of the *PHO1* gene.
856 For D and E, data are means of three samples from plants grown in independent pots and three

857 technical replicates for each sample. Error bars represent standard deviation. For D, statistical
858 analysis was performed comparing each *PHO1* transcript isoform in *pho1-7 tex1-4* and *pho1-7*
859 *hpr1-6* double mutants relative to the *pho1-7* parent, with asterisks denoting statistical
860 significance (*, $P < 0.05$; and ***, $P < 0.001$) according to Student's t test. For E, values marked
861 with lowercase letters are statistically significantly different from those for other groups marked
862 with different letters ($P < 0.05$, ANOVA with the Tukey-Kramer HSD test).

863

864 **Fig 6. 3' UTR extensions in endogenous genes of the *pho1-7 tex1-4* and *pho1-7 hpr1-6***
865 **mutants** . (A) Illumina RNAseq reads density maps (blue) showing examples of 3' UTR
866 extensions for genes AT1G03160 (left) and AT3G11310 (right) in the *pho1-7 tex1-4* and *pho1-*
867 *7 hpr1-6* mutants. The 3' UTR extensions are depicted by a red rectangle. The exons of the
868 genes are indicated as red boxes below. (B) Venn diagram showing the number and overlap in
869 genes with 3'UTR extensions. (C) Validation of 3' UTR extensions via qPCR. (D) Transient
870 expression of Luciferase gene fused after the stop codon to the 3'end of genes AT1G76560 and
871 AT1G03160. The constructs were expressed in Arabidopsis mesophyll protoplasts obtained
872 from Col-0, *hpr1-6* and *tex1-4*. The bar chart shows the relative ratios of long-to-short
873 transcripts in the various genotypes. For C, data are means of three samples with each sample
874 being a pool of seven seedlings and three technical replicates for each sample. For D, data are
875 means of four samples with each sample being an independent transfection of protoplasts. Error
876 bars represent standard deviation. Asterisks denote statistical significance ($P < 0.05$) from the
877 Col-0 control according to Student's t test (n.s.= not statistically different).

878

879 **Fig 7. Nucleotide composition near the 3' cleavage site of mRNAs.**

880 (A) Proportion of bases in a 200 nucleotide region 5' and 3' of the transcripts termination sites
881 for all genes (left) or genes showing 3'UTR extensions in the *hpr1-6* and *tex1-4* mutant
882 background (right). (B) Graphical representation of base enrichments found at the near
883 upstream element sequence of all genes (left) and genes with 3'UTR extensions in the *hpr1-6*
884 and *tex1-4* mutant background (right). Chi square test pvalue = 0.22 (C) Transient expression
885 of Luciferase gene fused after the stop codon to the 3'end of the gene AT1G76560 in which the
886 wild-type polyadenylation site AAUGAA was mutated to AAUAAA. The construct was
887 expressed in Arabidopsis mesophyll protoplasts obtained from Col-0, *hpr1-6* and *tex1-4*. The
888 bar chart shows the ratios of long-to-short transcripts in the various genotypes and values are
889 expressed relative to the wild-type construct in Col-0. Data are means of four samples with

890 each sample being an independent transfection of protoplasts. Error bars represent standard
891 deviation. Asterisks denote statistical significance ($P < 0.05$) from the Col-0 control according
892 to Student's t test.

893 **Supporting Information**

894 **Supporting Figure Legends**

895 **S1 Fig. *TEX1* is broadly expressed and localized in the nucleus.** (A) *TEX1* localization in
896 root tips of 5-day-old seedlings. Expression of *TEX1::GFP* fusion is under the control of the
897 endogenous *TEX1* promoter. (B) GUS expression from the *TEX1* promoter in roots and
898 cotyledons of 5-day-old seedlings (left) as well as rosette leaves of 4-week-old plants (right).
899 Plants were transformed with a *TEX1 promoter:GUS* construct. Inset (lower left) shows
900 expression in a section of mature root. (C) Expression profile of the *TEX1* gene in Arabidopsis
901 as visualized with the eFP Browser 2.0 (<https://bar.utoronto.ca/efp2/>).

902
903 **S2 Fig. *pho1-7* suppressor mutants restores the expression of phosphate starvation**
904 **response genes and lipid dynamics comparable to Col-0 level.** (A) Relative expression of
905 phosphate starvation-induced genes in the shoots of 4-week-old plants. (B) Lipid quantification
906 in the shoots of 4-week-old plants. DGDG, digalactosyldiacylglycerol; PG,
907 phosphatidylglycerol; PE, phosphatidylethanolamine. Data in A and B are means of three
908 samples from plants grown in independent pots and three technical replicates. Error bars
909 represent standard deviation. Values marked with lowercase letters are statistically significantly
910 different from those for other groups marked with different letters (P < 0.05, ANOVA with the
911 Tukey-Kramer HSD test).

912 **S3 Fig. Mapping of *pho1-7* RNA onto the *PHO1* locus.** (A) Illumina RNA sequencing reads
913 density graph mapped against the wild-type *PHO1* locus. Note that exon 2 of *PHO1* is missing
914 in the *pho1-7* mutant because of T-DNA insertion while it is present in Col-0. (B) Pac-Bio read
915 density graph showing full length mRNA structure at the *PHO1* locus. The top red box shows
916 the location of the T-DNA in *pho1-7*. pNOS, NOS promoter; NPTII, neomycin
917 phosphotransferase gene; tNOS, NOS terminator. The black boxes below shows the positions
918 of the 15 *PHO1* exons, except for exon 2 which is shown in green. Exon 2 is present in Col-0
919 but deleted in the *pho1-7*, *pho1-7 tex1-4* and *pho1-7 hpr1-6* mutants as a result of T-DNA
920 insertion. For each genotype, the sequence of independent cDNAs are shown by individual lines
921 (red and blue lines) with the grey areas representing the sequence density in each region.

922

923 **S4 Fig. Overlap in genes showing 3'UTR extensions in *tex1-4* mutant grown under various**
924 **conditions.** RNA extracted from roots of *pho1-7 tex1-4* and *pho1-7* plants grown in pots for 4

925 weeks (green) or *tex1-4* and Col-0 plants grown in petri dishes for 7 days (blue) were used.

926 **S5 Fig. Gene ontology of genes showing 3'UTR extensions in the *hpr1-6* and *tex1-4***
927 **mutants.** The histograms show the fold enrichment of a given gene ontology term.

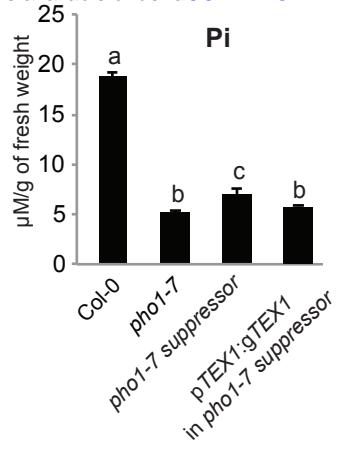
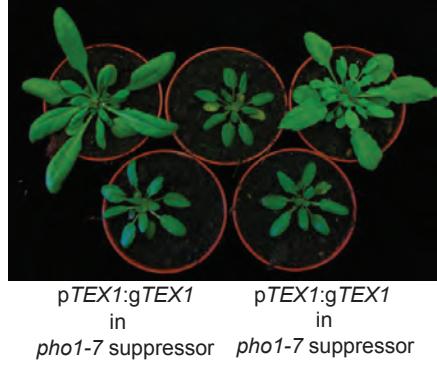
928

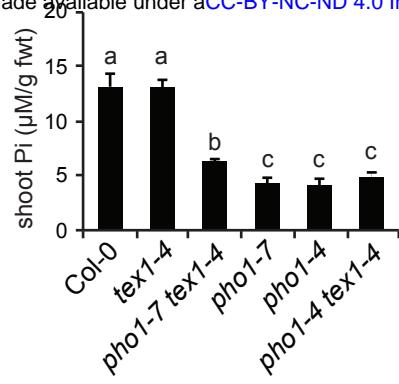
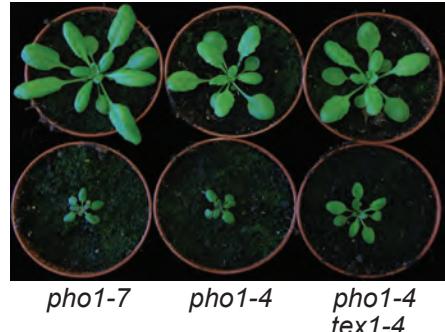
929

930

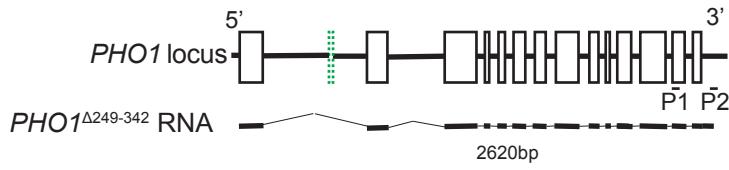
931 **Supporting Text S1**

932 Sequence of the *pho1-7* locus with the production of the truncated PHO1 protein.

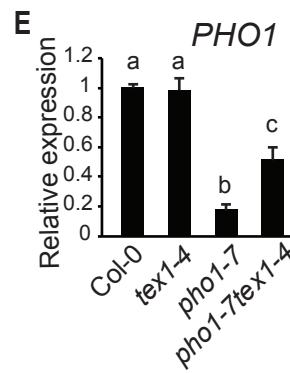
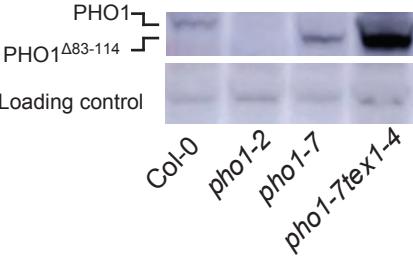


933

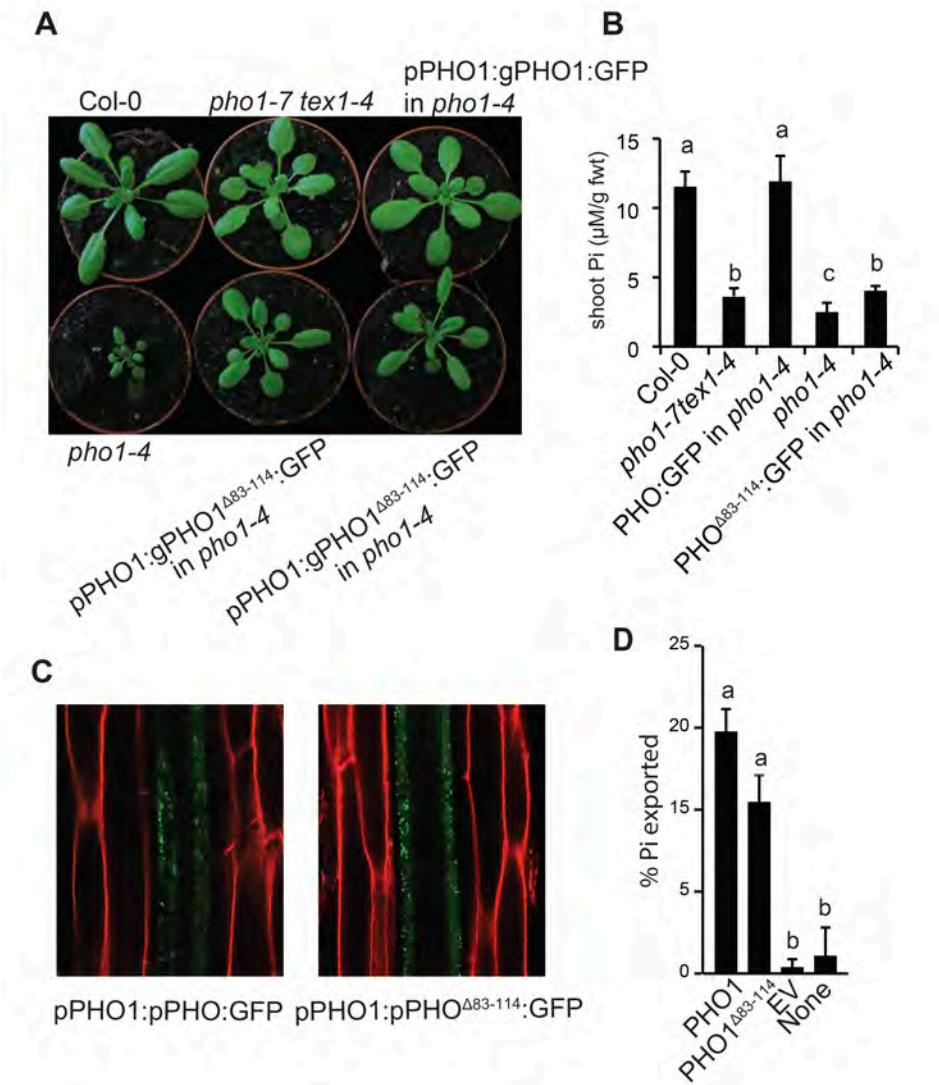


934

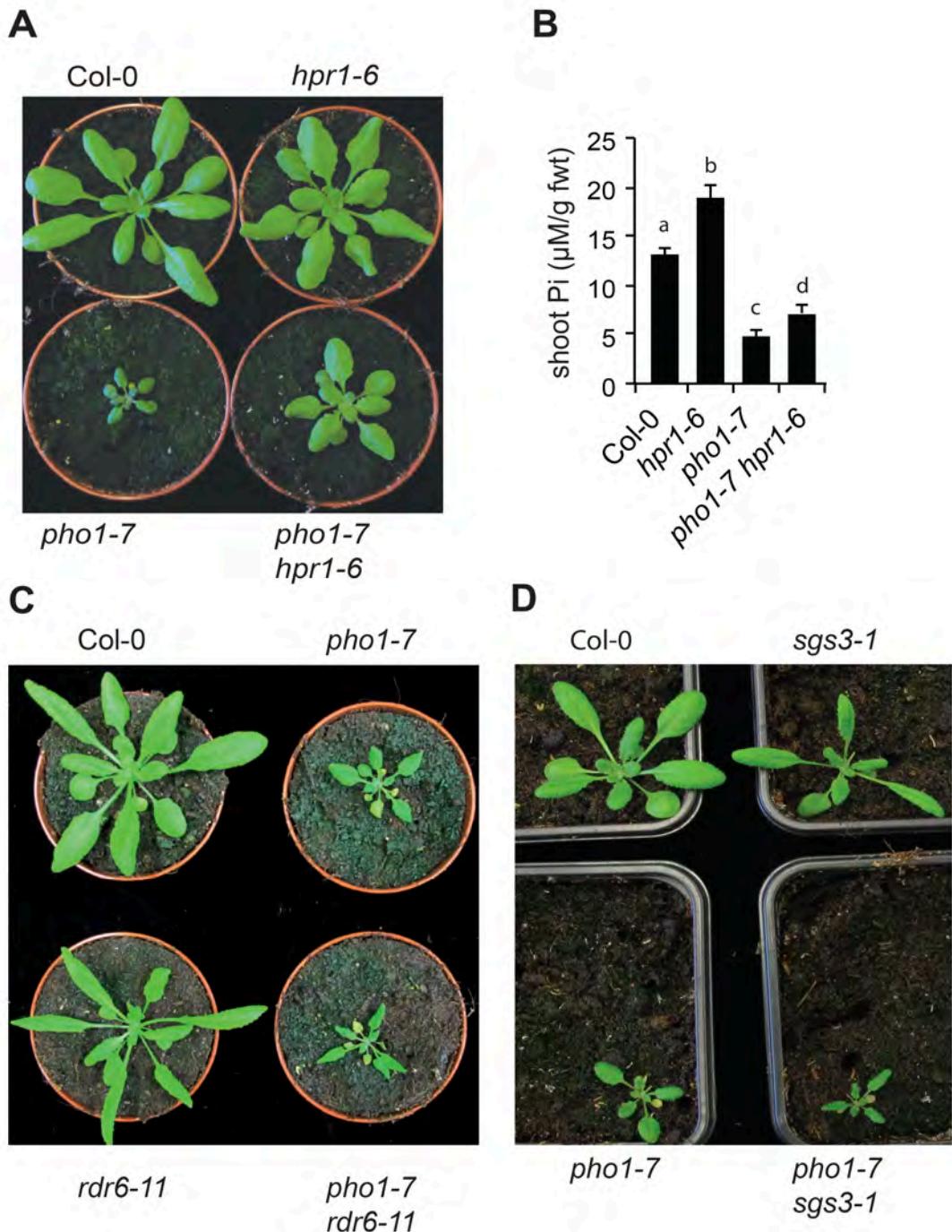
935 **Supporting Table S1**


936 List of oligonucleotides used in this study.

937




C

D

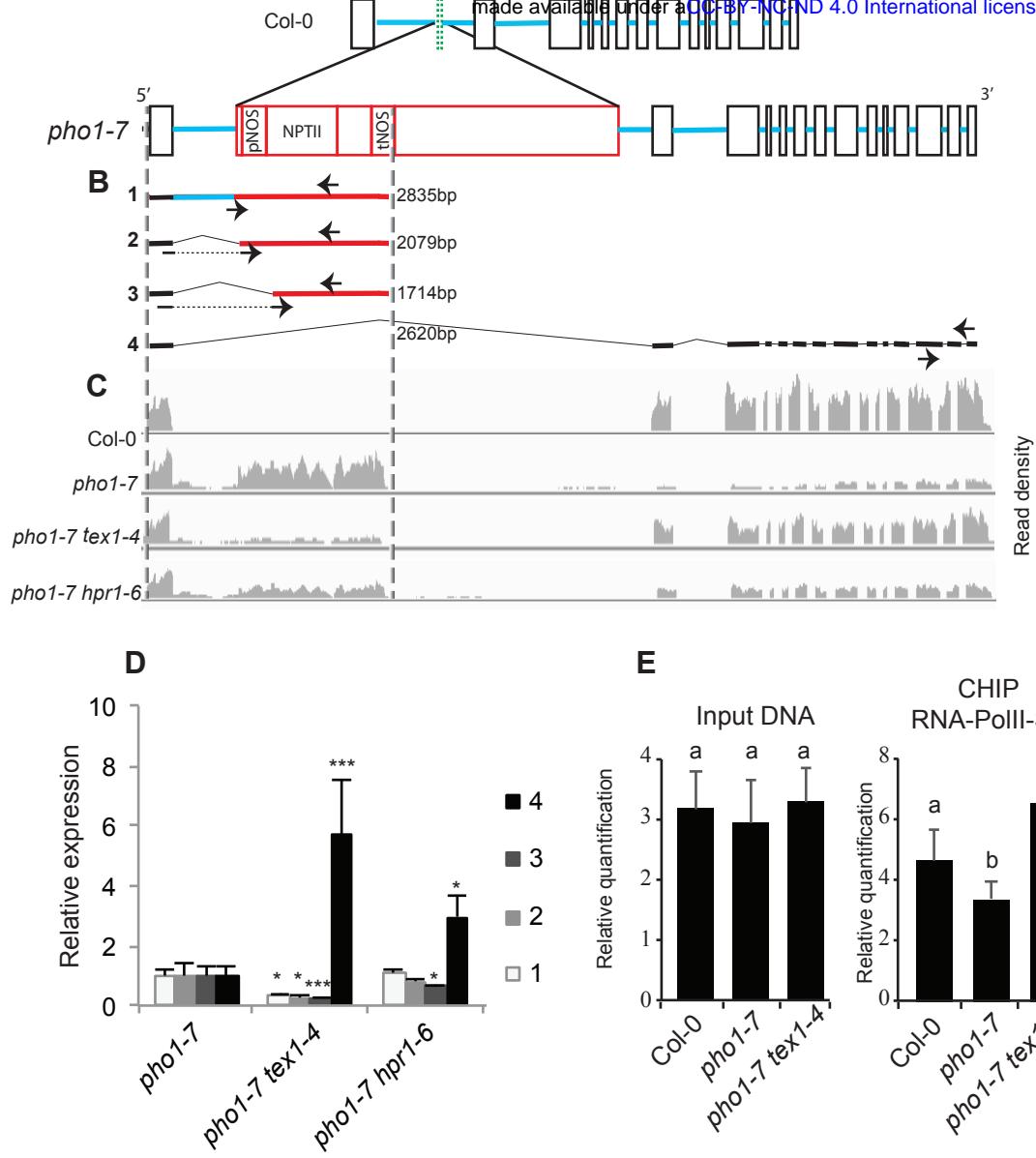


Figure 5

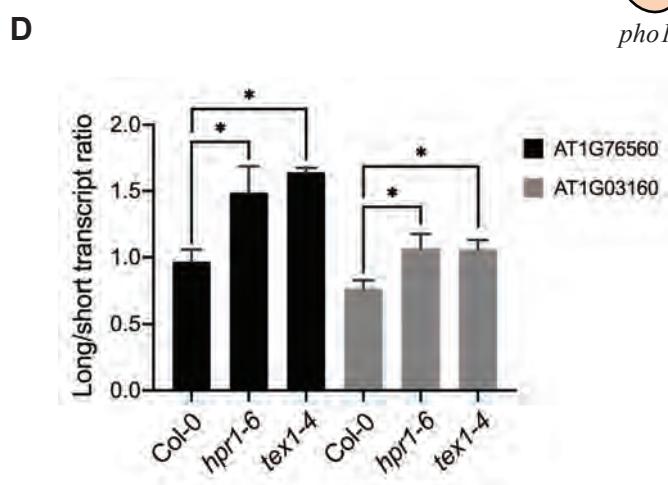
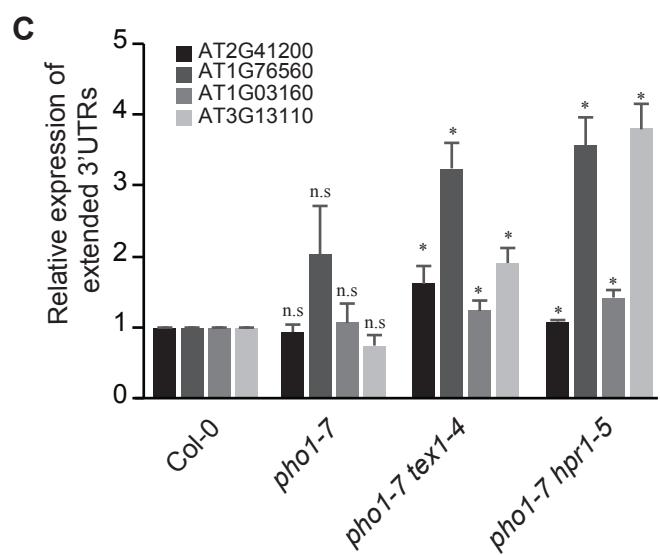
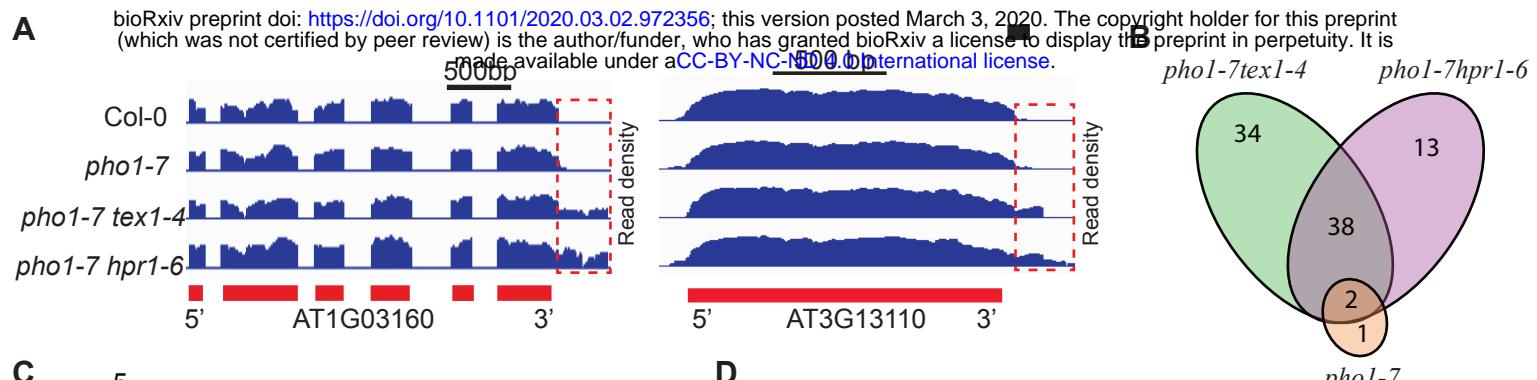
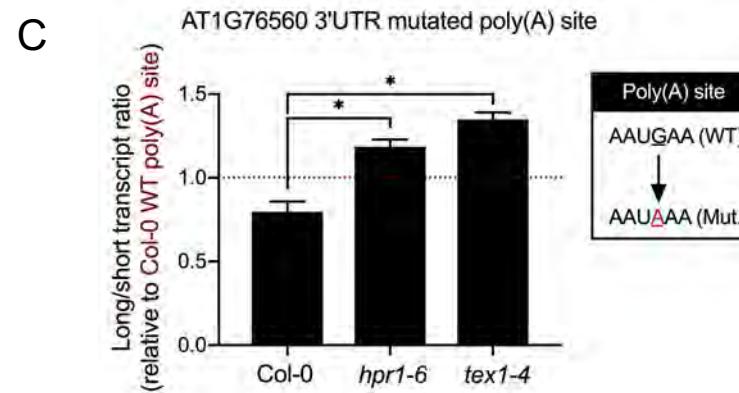
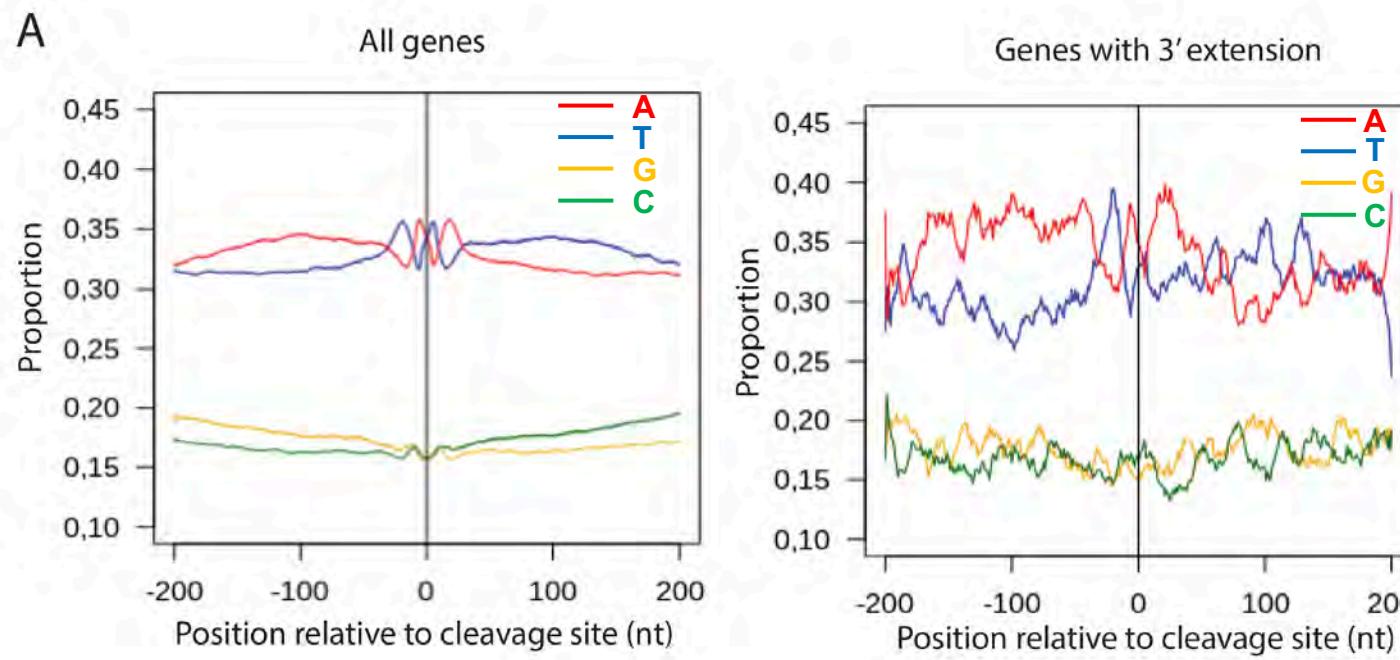
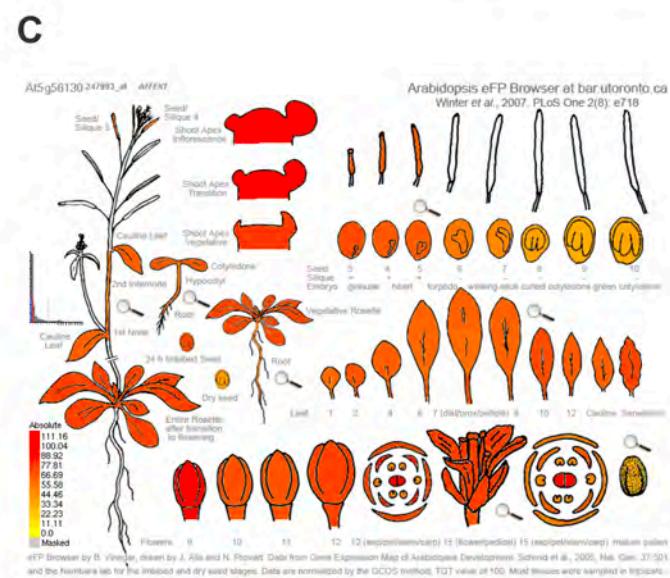
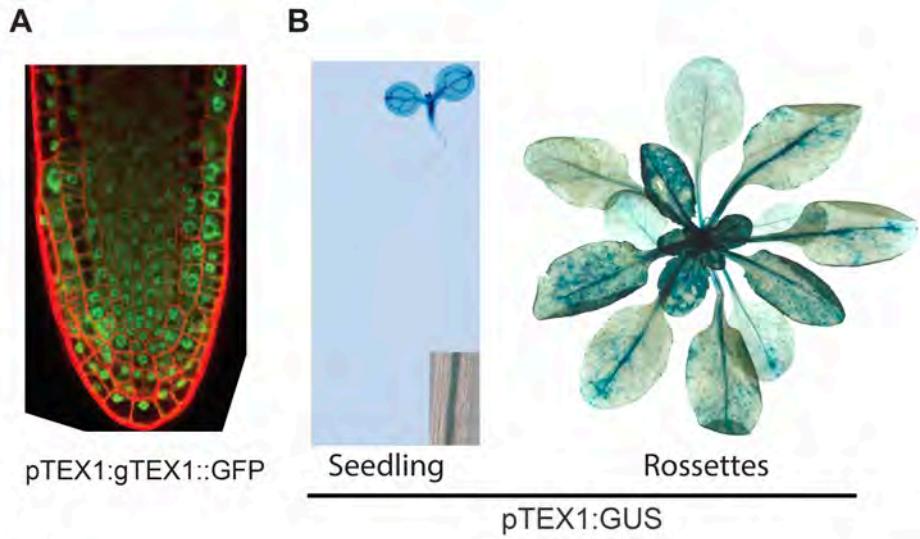
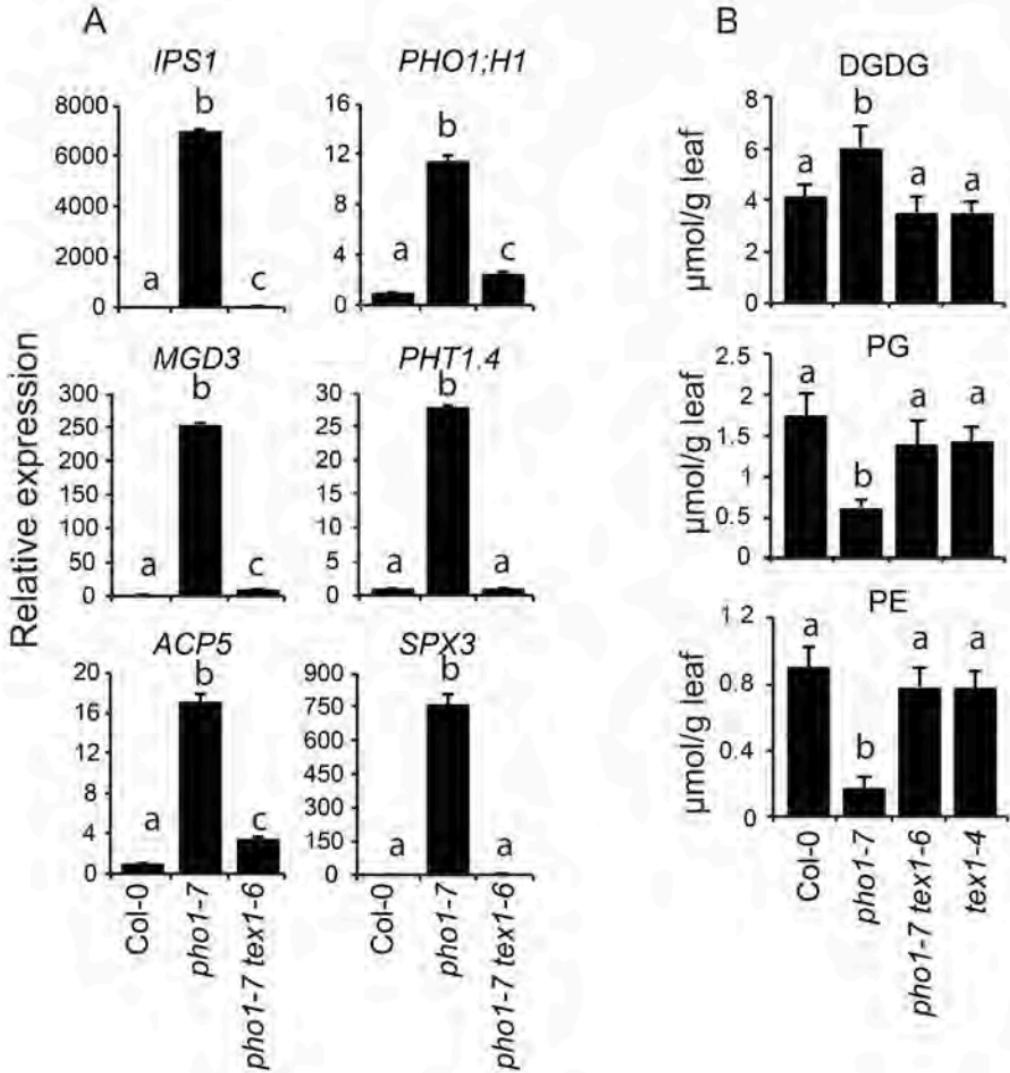
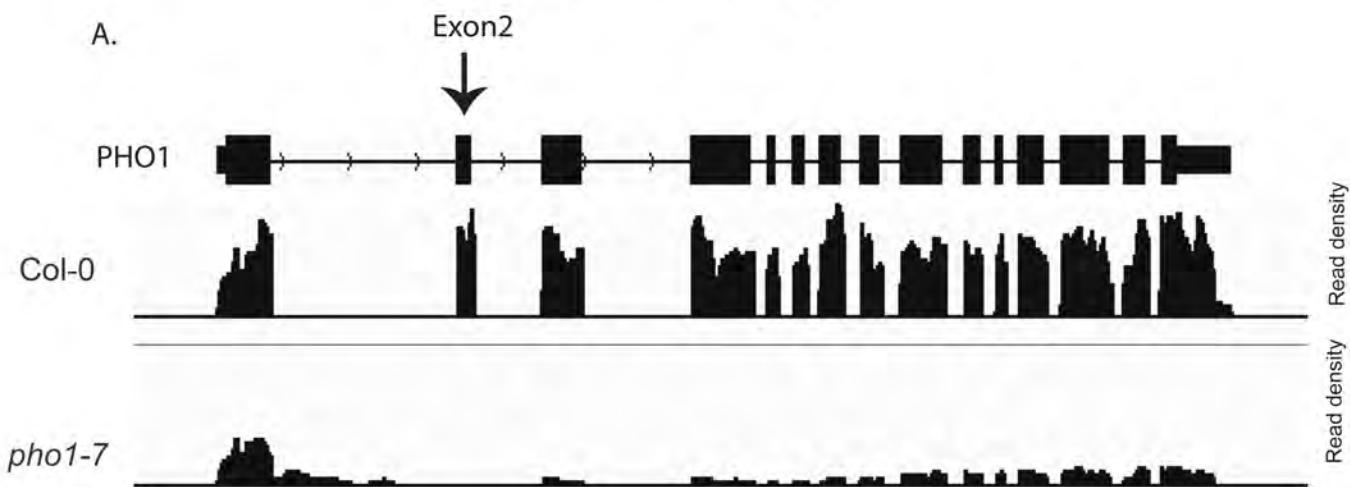
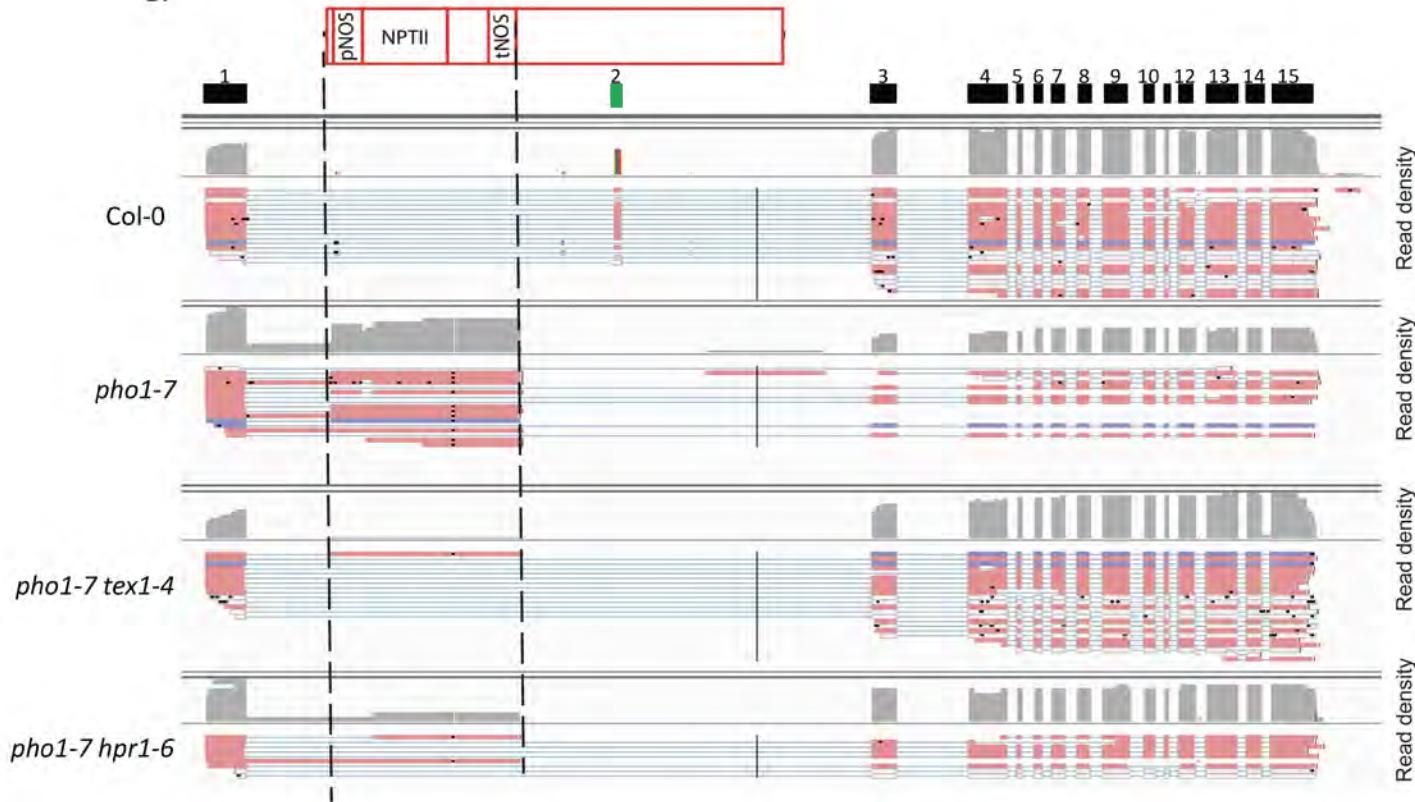









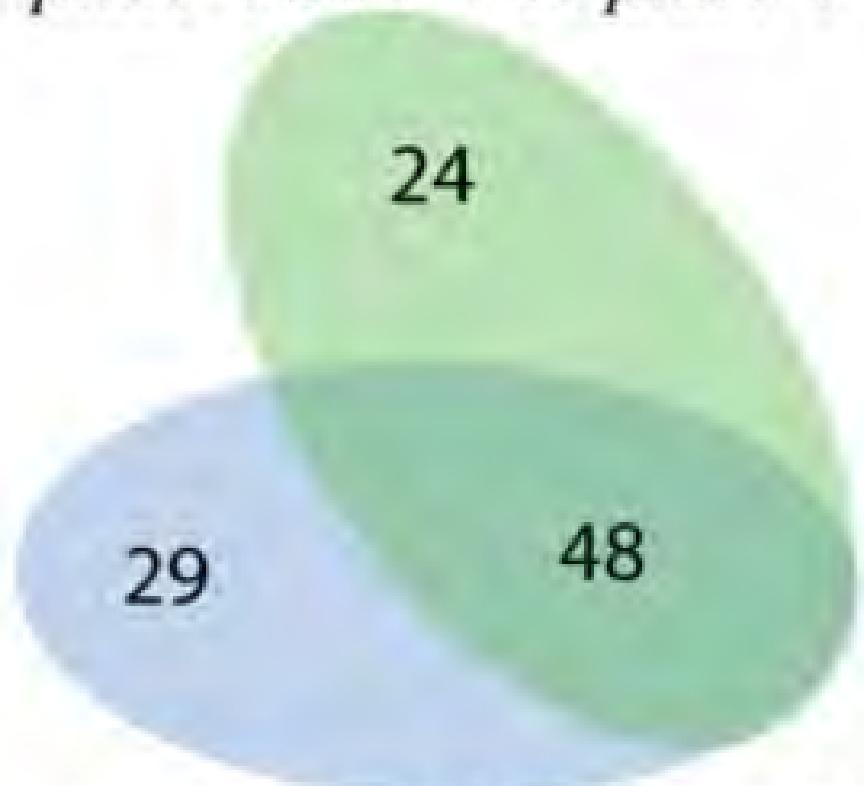
Figure 6

Figure 7

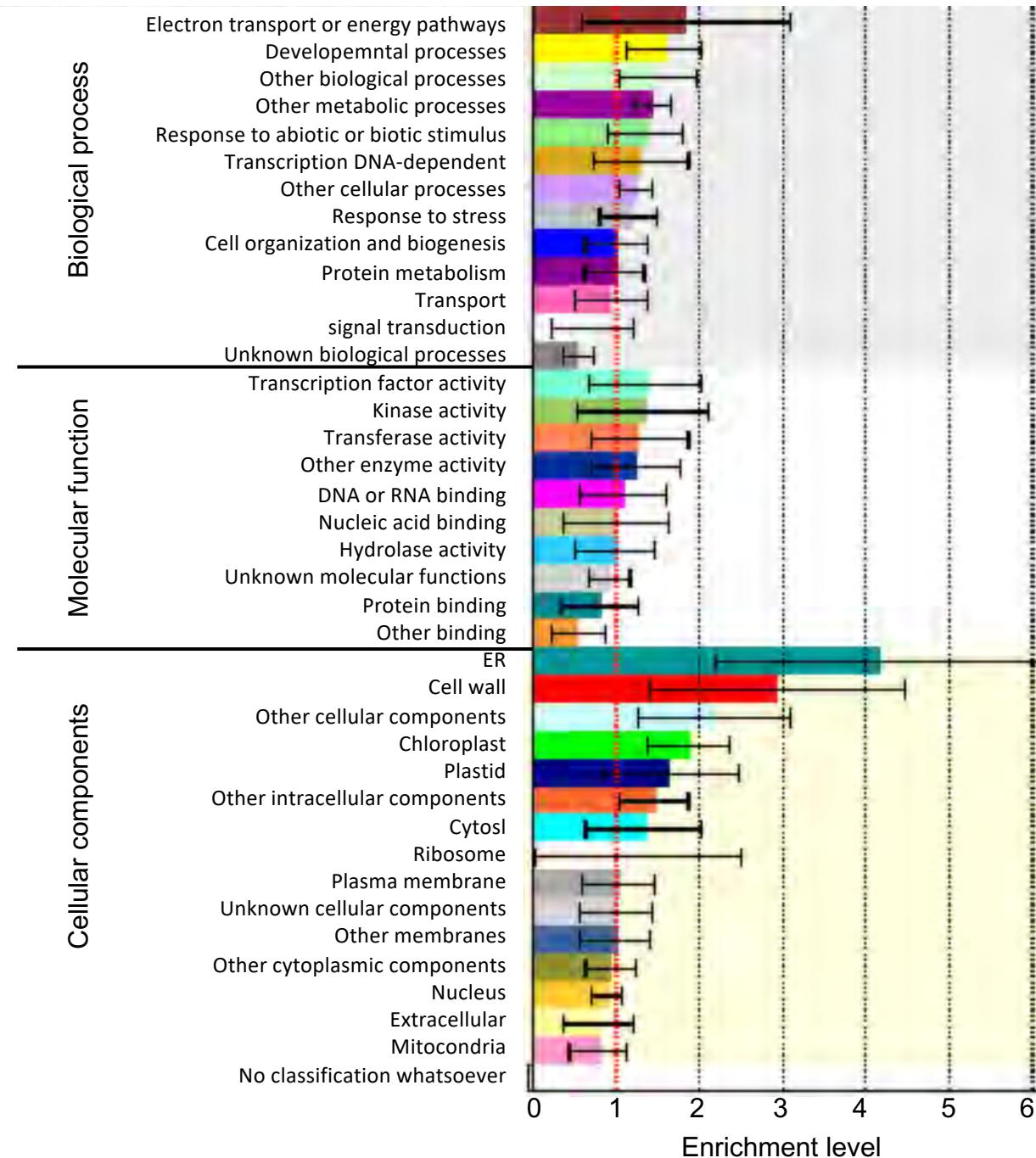



Illumina sequencing

A.



Pac-Bio sequencing


B.

pho1-7tex1-4 vs *pho1-7* in pot

tex1-4 vs Col0 in petris

Supplementary Text S1. Sequence of the *pho1-7* locus with the production of the truncated PHO1 protein.

T-DNA integration in *pho1-7* mutants

Capital letters show the exon.

Sequence highlighted in blue is T-DNA.

ATGGTGAAGTTCTCGAAGGAGCTAGAGGCACAACCTATACGGAGTGGAAAGAGGCCTTGT
TAACTATTGTTACTAAAGAAACAAATCAAGAAAATCAAACCTCTCGTAAACCAAAACCGG
CTTCTCATTACCCCCATTGGTCATCACTCCGATTTGGTCGATCTCTTTCGACCCGGTCGC
AAATTGCCAGGACCTCTCCGATAAAACTATTTCCAACTCAGAAAAACAGAGATTCTCCA
Gttaattaatcaactacttttagttgtcttaagaaaaacatgcttgattctttgtcggt
ttgaatgattagtcctaaattccgttaactttgtacccatgtctttagtctaaatgcatt
tttacggagttgaacatgataccattaggactaaaagattacaattggtagaccgtatg
ttttgagttgtcgataaagaatttagattttgtgataatgttagtgattttgttta
acttaatttaatttagcgtcttttggccatgattgtttagttagttgtatg
cttacgtcttgcattgcattacgcgtcagaattaccaggatattctgtcttgcattact
acatgagaaatctgcctttcttgcattttctacttttacaatattgattttgtcttcaa
aatatttattaaacgagatatgtaaatttacatattgacatgattttgttagttctaaata
tgtaatttcttgcatt
tatctaagtatttctgttcaggaaaacaatcattatacacatgtatttagaccctatagctca
tatcttaaccttagtaacccatccgcattccaaaattaaagaaaaatcctataaattaactaacc
ctgaaatctgccttt
ATAGTTAAACTGAAGGCGGAAACCGAAATTCTAATAAGGGGGAAAAATAAGGGGAGGCCAC
TTTATCCCCCCCAGCGATGACGCCGACAAGCCGTTTACGTTGGAACTGACAGAACCGCA
ACGTTGAAGGAGGCCACTCAGCCGGGTTCTGGAGTTAATGAGCTAACGACATACGTCA
AAACCAATTATTGCGCGTTCAAAAGTCGCTTAAGGTCACTATCAGCTAGCAAATATTCTTG
CAAAATGCTCCACTGACGTTCCATAAATTCCCTCGGTATCCAATTAGAGTCTCATATTCA
CTCTCAATTCAAATAATCTGCACCGGATCTGGATCGTTCGATGATTGAACAAAGATGGATT
GCACGCAGGTTCTCCGGCCGCTTGGGGAGAGGCTATTGGCTATGACTGGCACAACAGA
CAATCGGCTGCTCTGATGCCCGTGTCCGGCTGTCAGCGCAGGGCGCCGGTCTTTT
GTCAAGACCGACCTGTCCGGTGCCTGAATGAACCTGCAGGACGGAGGCAGCGCGGTATCGT
GCTGGCCACGACGGCGTTCTGGCAGCTGTGCTCGACGTTGTCACTGAAGCGGAAGGG
ACTGGCTGCTATTGGCGAAGTGCAGGGCAGGATCTCTGTCATCTCACCTTGCTCTGCC
GAGAAAGTATCCATCATGGCTGATGCAATGCCGGCTGCATACGCTTGTATCCGGTACCTG
CCCATTGACCAAGCGAACATCGCATCGAGCGAGCACGACTCGGATGGAAGCCGGTC
TTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGGCCAGCGAACTGTTGCC
AGGCTCAAGGCGCCATGCCGACGGCGATGATCTCGTGTGACCCATGGCGATGCCCTGCTT
GCCGAATATCATGGTGGAAAATGCCGTTTCTGGATTATCGACTGTGGCCGGCTGGTG
TGGCGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGG
GAATGGGCTGACCGCTTCTCGTGTGTTACGGTATGCCGCTCCAcgttagttCGATTGCCAG
CGCATGCCCTCATGCCCTCTGACGACTTCTGAGCAGGGACTCTGGGTTCGAAATG
ACCGACCAAGCGACGCCAACCTGCCATCACGAGATTGATCCACCGCCCTCTATGA
AAGGTTGGCTTCCGAATCGTTTCCGGACGCCGGCTGGATGATCTCCAGCGGGGATC
TCATGCTGGAGTTCTCGCCCACGGGATCTCGGAAACAGCGGTGAGGGTGGCGATATC
ATTACGACAGCAACGGCCACAAGCACAACGCCACGATCCTGAGCGACAATATGATCGGGCC
CGCGTCCACATCAACGGCGTGGCGGCGACTGCCAGGCAAGACCGAGATGCACCGCGATA
TCTTGCTCGTCCGGATATTCTGGAGTCCGCCACAGACCCGGATGATCCCCGATCGT
TCAAAACATTGGCAATAAGTTCTTAAGATTGAATCCTGTTGCCGGTCTGCGATGATTAT
CATATAATTCTGTTGAATTACGTTAAGCATGTAATAATTAAACATGTAATGCATGACGTTAT
TTATGAGATGGGTTTTATGATTAGAGTCCCGCAATTATAACATTAAACGCGATAGAAAAC
AAAATATAGCGCGAAACTAGGATAAATTATCGCGCCGGTGTATCTATGTTACTAGATCG
GCCCTCCTGTCAATGCTGGCGGGCTCTGGTGGTCTGGTGGCGGCTCTGAGGGTGGT
GGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCAGGGTCCGGTGGCTC
TGGTTCGGTGTATTGATTGAAAAGATGGCAAACGCTAATAAGGGGCTATGACCGAAA

ATGCCGATGAAAACCGCGTACAGTCTGACGCTAAAGGCAAACCTGATTCTGTCGCTACTGAT
TACGGTGCCTGCTATCGATGGTTCTGGTACGTTCCGGCCTTGCTAATGGTAATGGTGC
TACTGGTATTGCTGGCTCAATTCCAAATGGCTCAAGTCGGTACGGTATAATTAC
CTTTAATGAATAATTCCGTCAATATTACCTCCCTCCCAATCGGTTGAATGTCGCCCT
TTTGTCTTGGCCAATACGAAACCGCCTCTCCCGCGCGTGGCCGATTCAATTAGCAG
CTGGCACGACAGGTTCCCGACTGGAAAGCGGGCAGTGAGCGAACGCAATTAAATGTGAGTT
AGCTCACTCATTAGGCACCCAGGCTTACACTTATGCTTCCGGCTCGTATGTTGTGGA
ATTGTGAGaagCGGATAACAATTACACAGGAAACAGCTATGACCAGTACGCCAAGCT
TGCATGCCCTGCAGGTCCCCAGATTAGCCTTCAATTTCAGAAAGAATGCTAACCCACAGAT
GGTTAGAGAGGCTTACGCAGCAGGCTCATCAAGACGATCTACCCGAGGAATAATCTCCAGG
AAATCAAATACCTCCAAAGAAGGTTAAAGATGCAGTCAAAAGATTCAAGGACTAACTGCATC
AAGAACACAGAGAAAGATATATTCTCAAGATCAGAACTACTATTCCAGTATGGACGATTCA
AGGCTTGCCTCACAAACCAAGGCAAGTAATAGAGATTGGAGTCTCTAAAAAGGTAGTCCCA
CTGAATCAAAGGCATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTGCCGTAAAG
ACTGGCGAACAGTCATACAGAGTCTTACGACTCAATGACAAGAAGAAAATCTCGTCAA
CATGGTGGAGCACACACTTGTCTACTCCAAAATATCAAAGATACTCTCAGAACGACC
AAAGGGCAATTGAGACTTTCAACAAAGGTAATATCCGAAACCTCCCGATTCCATTGC
CCAGCTATCTGTCACTTATTGTGAAGATAGTGGAAAAGGAGTGGCTCTACAAATGCCA
TCATTGCGATAAAGGAAAGGCCATCGTGAAGATGCCCTGCGCACAGTGGTCCAAAGATG
GACCCCCACCCACGGAGCATCGTGGAAAAGAAGACGTTCCAACCACTCTCAAAGCAA
GTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCACTATCCTCGCA
AGACCCCTCCTCTATATAAGGAAGTTCATTTCATTGGAGAGAaagtACACGGGGACTCTA
GAGGATCCCCGGGTACCGAGCTCGAATTTCGGATCGTTCAAACATTGGCAATAAGTTT
CTTAAGATTGAATCTGTCGGTCTTGCATGATTATCATATAATTCTGTTGAATTACG
TTAACGATGTAATAATTACATGTAATGCATGACGTTATTGAGATGGTTTTATGATT
AGAGTCCCGCAATTATACATTAAACAGCGATAGAAAACAAATATAGCGCGAAACTAGGA
TAAATTATCGCGCGCGTGTCACTATGTTACTAGATAaggCGGAATTCACTGCCGTGCGT
TTTACAACGTCGTGACTGGGAAAACCTGGCGTTACCCAACTTAATGCCCTGCGCACATC
CCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGACCGATGCCCTCCAAACAGTTG
CGCAGCCTGAATGGCGCCCGCTCGTTCTCCCTTCTCGCCACGTTGCCCG
GCTTCCCGTCAAGCTCTAAATGGGGCTCCCTTAGGGTCCGATTAGTGTCTTACGG
CACCTCGACCCAAAAACTGATTGGGTGATGGTCACGTAGTGGCCATGCCCTGAT
AGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAAATAGTGGACTCTGTTCAA
ACTGGAAACAACACTCAACCCATCTCGGGCTATTCTTGTATTATAAGGGATTGCGGAT
TTCGGAACCAACCATCAAACAGGATTTCGCGCTGCTGGGCAAACCAGCGTGGACCGCTGCT
GCAACTCTCAGGGCCAGCGGTGAAGGGCAATCAGCTGTTGCCGTCTCACTGGTAAAA
AAAAACCAACCCAGTACATTAAACGTCCGCAATGTTATTAGTGTCTAACCGTCAA
TTGTTACACCACAATAataattacatccctatattattttctataaaagctgaaacttaa
attttattttattttgggattctatataactagctatattaactctttgtctataactg
tataagcttgaataaggacctattttgggtgcattttttactttagtttattatcatcat
cactattactatattacgaattcctttcttaagcttcaaaagcagaaaattaaataacat
agcacatagagatagtggtttattgctagcctaaattgcacaacacgaccacatcctaaat
cctaattaaatgtcaaaatttagactactttttcttccattaaagagttataatgttt
atctgtatttgaatgctttgttattgttacttttagGTAAAGTGTGTTTCGCTAGATTGGA
TGAAGAACTAACAAAGTGAATCAGTTCACAGCCAAAGAACAGAGTGGAAAGAG
GAGAGATTCTGAAGAACAGTTGGAGACTCTGCAGAACTCAAACAGATCTAAGTGTGATCGG
AAGAAGAGAAACTGTCTGGCTCAAATTACACATCGCTCCTCATCTGTTGAAACTC
TGATTCTCTGCAGttgtcttttattatgtttttactacaagtttaggtcagattt
agggtacttttagttaattctgcattttgacttaagagttaaagacttttattaaagctaac
attagtatatttgagatgtacgcggcctgcaccattagaaatcacaaaagtaggttatt
agggccgtttacgttagtgcggctagtaaaaagaaaagtaggttatttaatattttatatc
attgcacaatttagcgttttgaataatttaagtaaaaattcaaatgtttgttataacac

aatagaaaattctactactgaatgacaagattgttaagcatacaaattttgcattgtggat
gcaaaactcgaaagctgcataatgtgaaagaaaagaaatttttagagttttagattttattatg
tagacatgcataatcttcaatggccgacaagaacacaaatcgattctactaacaacaaacgaacaa
aatgtttgtgagtaagaaaataaaaatggaccgacaatagatggctaggtcgacaaaattt
ttatatttcttctttagacctgtgttaatagtacaaaatataattttgtattttaattttaatt
tatttttcttattgttcagGGTCTCCAGGAGAACTAAGTGAGATACAAAGTGAACATCAA
GAACAGATGAAATCATAGAGGCCTTAGAGAGGAACGGTGTGAGTTCATAAACTCTGCAACG
AGGAGCAAAACAAAAGGAGGCAAACCAAAAAATGTCTCTCCGCGTCGACATTCCGACGCTGT
GGCCGGAGCCGAAGGTGGTATCGCAAGATCCATGCCACCGCCATGTCTGTTCTGGGAAG
AGCTCGTTAACAAACCCAAAGATCAGATTCACCAACTGGAAAAATATTCAAAGCGCCGAGAAG
AAGATAACGAAGTGCCTTGTGAACTCTATAGAGGTCTTGGCTTAAAGACTTACAGgtat
tattcattaatgactcaatatcatttatttttagttagtgcattatcattttaatttctt
ttgttggcttattatggcagCTCGTTGAATATGATAGCTTCACAAAATAATGAAGAAAT
TCGATAAGgtaaattggtagattgtactttcggtgataaaccatgaaaaagataatca
tagtggtaatgatgaatcttgcattatataatgatcatcagGTTGCTGGTCAGAATGCAT
CATCAACGTATCTCAAAGTCGAAAGAGATCGCAATTATCAGCTCTGATAAGgtaaaataa
aaggaggcttatgctatgaataatttattgaaagattgtttgaaaatgattgtttgattaa
aattaaaaaaagGTGGTAAGACTTATGGACGAAGTGGAGTCCATATTCAAAGCAGTCACAT
AACAAATGACAGGAAAAGGCCATGAAATTCTGAAACCCACCAGACCAAAGATTCTCACAT
GGTCACTTCTTGTGtacttattcatttctctatcttatacccttataccattc
aaaaaaacagttcatcagagtttaacaaattgagattgttatctatgcagGGTTATTAC
GGGTTGCTTCATCTCATTGTTGTTATTACATAACTAGCCATCTTCTGGAATCTCA
CTTCTAGTGATCAAGTCTCTTATCTGGAGACTGTTATCCTGTTTCAGgtatgaataatt
atacgaattaatgatcaattcaacaaaactgtcaccatccaatgagacttaaccattatcg
cttacatttgtatgattttttaaaaacgcagCGTTTGTGCTGAGTCTACACATGT
TCATGTATGGATGCAATCTATACATGTGGAAGAACACAGAGGATAAAACTACACCTTATT
GAGTTGCACAAACACAGCGTTGCGTACCGAGACCGCTTCTGATGGAACCCACGTTCAT
GACCTCAGTTGTGGCAGCTATGGTCATCCACCTCATCCTCCGAGCCTCCGGTTCTCAGCTA
GTCAAGTAGACACCATTCCAGGCATCCTCCTGgtaaatcaaattacttagttcattaat
tatcatatggcgcgttcaatcgcaatcgctatcacaattgaaaccgcatttc
ttttcggtgtgcattgcacagATCTTCATATGCGTCTTGATATGCCATTAAACACATTCT
ACCGTCCAACAAGGTTCTGCTTCATCCGATCTGCGGAAGATTGTTGCTCACCAGTTCTAC
AAGgtaaacaaattggagttattggtagttacttcagcacaagaaatagcagaaacatgatttt
ttttcttgcgttacggtaatttagGTTTGATGGTTGATTCTCATGGCGATCAACTTACTA
GCCAGgtaaaactaagttatgcacattcaatagatgtgacgacatctaatttagtcataa
ttaacccattatcggttattcagATTCCATTGCTGAGACACCTTGAGACAAACCGGGTG
TTACTTCTGGCTCAAAGCTCAAACACTCACGAATAACATCGAAAAACGGAAGATACT
ATAGAGAATTGCTTACTTGATTCTTACCCACTTCTGGCGTGCATGCAAGtac
tcacttagggttctgtttttttttttgtcaagtcccttaaaacccatttcttctaa
gacactatgaacattatcacagTGTGTAAGGAGATGGGGACGAATCAAACCTGATCA
CCTAATCAACATGGAAAATACGTGTCAGCGATGGTGCAGCCGGAGTCCGCATAACCTACG
CGAGAGAAAACAACGACTTGTGGTTAACATGGCTCGTAAGCTCCGGTGGCAACTATT
TACCAATTATACTGGACTTGTCAAGGATTGGGTCTTCTAAACCTAAATCGAAAATCC
ATGGCTAAGAGACAATTGGTTCTCCGAAACAAGAACCTACTACCTCTCCATTgtac
aattacataactatcacatgcgtttcacaatttatgcatttcgcactaaatgttgagttgt
tcagGCGTTGAATTGGTGTGCGAGTTGCTGATCGAGACAAATTATGAGATTCAAGGGTCA
GTCCTGTTCAAGTCTCATTGCTAGATTCTTCTGGCGTCATTGAAGTCATTGTCAGGGC
CACTGGAACTTTACAGgtaaataaaaaacttcacccatggatttttttttttttttttt
atgttattgaacatgaatcttcttcgttattacagAGTGGAGAATGAGGACTAAACAA
TGTCGGCCAATTAGGGCAGTGAAGACCGTACCGTTACCGTTCTGACAGGGACTCAGACG
GTTAA

PHO1 coding cDNA

Sequence highlighted in green is deleted in *pho1-7* mutants (exon 2)

ATGGTGAAGTTCTCGAAGGAGCTAGAGGCACAACCTATACGGAGTGGAAAGAGGCCTTGTAAAC
TATTGTTACTAAAGAAACAAATCAAGAAAATCAAACCTCTGAAACCAAAACGGCTCTCATTA
CCCCATTGGTCATCACTCCGATTTGGCGATCTCTTGCACCCGGTCGCAAATTGGCCAGGACCT
TCTCGATAAAACTATTTCCAACTCAGAAAAACAGAGATTCTCAGGTAAAGGAGAAGAAGAGGTA
GCTCAGAAACTGGGGATGACGTCGATGAGATTACCAAACCTGAACCTGTCAGTTGTTCCGAAGA
AGACGAGGTTAAAGTGTTCGCTAGATTGGATGAAGAACTAAACAAAGTGAATCAGTTCACAA
GCCCAAAGAACAGAGTTTGGAAAGAGGGAGAGATTCTGAAGAACAGTTGGAGACTCTGCAG
AACTCAAACAGATCTTAAGTGTGATCGGAAGAAAGAGAAACTTGTCTGGCTCAAATTACATCGCTCCT
CTCATCTCTGTCGAAACTCTGATTTCTGCAGGGCTCCAGGAGAACTAAGTGAGATACAAAGT
GAAACATCAAGAACAGATGAAATCATAGAGGCCTAGAGAGGAACGGTGTGAGTTCATAAACTCT
GCAACGAGGAGCAAAACAAAAGGAGGCAAACCAAAATGTCCTCCCGTCGACATTCCGACGCT
GTGGCCGGAGCCGAAGGTGGATCGCAAGATCCATGCCACGCCATGTCTGTTCTGGGAAGAG
CTCGTTACAACCCAAGATCAGATTCAACACTGGAAAAATATTCAAAGCGCCGAGAAGAAGATAC
GAAGTGCCTTGTGAACTCTAGAGGTCTGGCTTAAAGACTTACAGCTCGTTGAATATGATA
GCTTCACAAAAATAATGAAGAAATTGATAAGGTTGCTGGTCAGAATGCATCATCACGTATCTCA
AAGTCGAAAGAGATCGCAATTATCAGCTCTGATAAGGTTGAGACTTATGGACGAAGTGGAGT
CCATATTCAAAGCACTTCGCCAACATGACAGGAAAAGGCCATGAAATTCTGAAACCCCCACCA
GACCAAAGATTCTCACATGGCACTTCTTGTGGTTATTACGGGTTGCTCATCTCATTGTTGT
TATTTCATAATACTAGCCCATTCTGGAAATCTCACTTCTAGTGTCAAGTCTCTTATCTGGAGAC
TGTTTATCCTGTTTCAGCGTTTGCCTGCTGAGTCTACACATGTTCATGTATGGATGCAATCTATA
CATGTGGAAGAACACGAGGATAAAACTACACCTTATTGAGTTGACCAAACACAGCGTTGCGT
TACCGAGACGCGTTCTGATGGGAACACGTTCATGACCTCAGTTGTCAGCTATGGTCATCCACC
TCATCCTCCGAGCCTCCGGTTCTCAGCTAGTCAAGTAGACACCATTCCAGGCATCCTCCTGATC
TTCATATGCGTCTGATATGCCATTAAACACATTCTACCGTCAACAGGTTGATGGTTATTCTCATGGG
TTGCGGAAGATTGTTGCTACCGTTACAAGGTTGATGGTTATTCTCATGGGATCAACT
TACTAGCCAGATTCCATTGCTGAGACACCTTGAGACAACCGGGTTACTTCTGGCTAAAGCTTCA
AAACTCACAATAACACCTGCAAAACGGAAGATACTATAGAGAATTGCTTACTTGATTCTTC
TTACCCCTACTCTGGCGTGCATGCAATGTGAAGGAGATGGTGGGACGAATCAAACCTGATCACC
TAATCAACATGGAAAATACGTGTAGCGATGGTGCAGCCGGAGTCGATAACCTACGCGAGAG
AAAACAACGACTTGTGGTTAACATGGTGTGCTGTAAGCTCCGTTGGCAACTATTACCAATTATAC
TGGGACTTGTCAAGGATTGGGTCTCTAAACCTAAATCGAAAAATCCATGGCTAAGAGACAATT
TGGTTCTCGGAACAGAACCTACTACCTCTCCATTGCGTTGAATTGGTGTGCGAGTTGCTTGG
ATCGAGACAATTATGAGATTAGGGTCAGGTGCTCAGTCTCATTTGCTAGATTCTCTGGCGTC
ACTTGAAGTCATTGTCGAGGCCACTGGAACCTTACAGAGTGGAGAATGAGCACTAAACAATGTC
GGCCAATTAGGGCAGTGAAGACCGTACCGTTACCGTCTGACAGGGACTCAGACGGTAA

PHO1 protein sequence

Sequence highlighted in red is deleted in *pho1-7* mutants

Sequence underlined form the 3 SPX subdomains, with amino acids in **green** involved in inositol polyphosphate binding

MVKFSKELEAQLIPEWKEAFVNYCLLKKQIKKIKTSRKPKPASHYPIGHHSDFGRSLFDPVRKLARTFSDKL
FSNSEKPEILQVRRRRGSSETGDDVDEIYQTELVQLFSEEDEVKVFFARLDEELNKVNQFHKPKETEFLERG
EILKKQLETLAELQILSDRKKRNLGSNSHRSFSSSVRNSDFSAGSPGELEIQSETSRTDEIIEALERNGVS
FINSATRSKTKGGKPMSLRVDIPDAVAGAEGGIARSIATAMSVLWEELVNNPRSDFTNWKNIQSAEKKI
RSAFVELYRGLGLLKTYSSLNMIAFTKIMKKFDKVAGQNASSTYLKVVRSQFISSDKVVRLMDEEVSIFTK
HFANNDRKKAMKFLKPHQTKDSHMVTFFVGLFTGCFISLFVIIIAHLSGIFTSSDQVSYLETVYPVFSVFA
LLSLHMFMYGCNLYMWKNTRINYTFIFEFAPNTALRYRDAFLMGTTMTSVVAAMVIHLLRASGFS
QVDTIPGILLLIFCVLICPFNTFYRPTRCFIRILRKIVCSPFYKVLMDFFMGDQLTSQIPLLRHLETTGCYFL
AQSFKTHEYNTCKNGRYYREFAYLISFLPYFWRAMQCVRWWDENPDHLINMGKYVSAMVAAGVRI
TYARENNDLWLTMVLVSSVVATIYQLWDFVKDWGLLNPKSKNPWLDNLVRNKNFYLSIALNLVR
VAWIETIMRFRVSPVQSHLLDFLASLEVRRGHWNFYRVENEHLNVGQFRAVKTVPLPFLDRSDG

Primer Name	Primer sequence	Description
SAIL_120P_F10 LP	GTTAGGCCACCGGGAAAGAC	
SAIL_120P_F10 RP	TTCTATGCGGACTGTGATC	
TEX1-gen F	CACCGAGTGTGCACTGATCAAGGCTT	Cloning of TEX1 Genomic region
TEX1-gen R	TGTCGCTTCTGTCTTAACTCC	Cloning of TEX1 promoter and gene without stop for GFP fusion
TEX1-gen F	CACCGAGTGTGCACTGATCAAGGCTT	Cloning of TEX1 promoter for GUS fusion
TEX1-gen R w/o stop	CGAGTCACGTCACCGTACCGGA	
TEX1-prm inf1 RP	CGCGTACAGAACCGGAGAACAGGAGATAA	
TEX1-prm inf1 RP	TAGATATCTCGAGTTTTAATTCTCAACTCTTC	
qRT-IPSI F	GGCTTTAAAGATATGGAAATG	qPCR
qRT-IPSI R	CGAACGCTGCCAAAGGATG	qPCR
qRT-MGD3 F	GGTAGCATTGGCGGAAGACTG	qPCR
qRT-MGD3 R	GTGCAACAGGCTTCAGGTG	qPCR
qRT PHO1_H1 LP	AACCGCTAGCTATGCCAACACAGGA	qPCR
qRT PHO1_H1 RP	TTCAGGGCTAACATAGGTGTAAGA	qPCR
PH1.4-qRT-F	CCA CGG TTC CTC AAG CTG AT	qPCR
PH1.4-qRT-R	CAA CCA AAG CGG TGT ACC TT	qPCR
ACP5_qRT-F	TGC ACA AAT GGG TCA CCTT CT	qPCR
ACP5_qRT-R	GAA GCC TAC CTA GCC TGC AA	qPCR
qRT-SPX3 LP	CGCCCGTGGAACTTATTTTGG	qPCR
qRT-SPX3 RP	CAGAACATTTCGGCCATGGAA	qPCR
qRT- ACT2 F	AGTGGCTGTACAACCGGTATGT	qPCR
qRT- ACT2 R	GATGGCATGGAGAACAGAGAAC	qPCR
qRTPHO1-7-LP	ACCTAGTAACCTACCGCTTCAA	qPCR 1st RNA isoform at the PHO1 locus in pho1-7 mutants
qRTPHO1-7-RP	TCCCTAACAGTTCGGGTCTGTCA	
qRTPHO1-7-LP	TCTCTTTCGACCCGGTTGCAAA	qPCR 2nd RNA isoform at the PHO1 locus in pho1-7 mutants
qRTPHO1-7-RP	TCTCAACGGCTGGTTCTGTCA	
qRTPHO1-3-LP	AGAACCTTCGGCTGGGGGGCGCG	qPCR 3rd RNA isoform at the PHO1 locus in pho1-7 mutants
qRTPHO1-3-RP	CTCTCTGGCTGGATTAATTCGG	
qRTPHO1 LP	GACAAATTGGTCTGGCGAACAG	
qRTPHO1 RP	GAA CGGTAAACGGTACGGCTTCAC	
AT1G76560-UTRext-F	ACGGTGTTCATGTGTCACT	qPCR PHO1 full length
AT1G76560-UTRext-R	CGGACTGGCGGATCAGAATTA	
AT1G3160-UTRext-F	CAGCTGGAAAGCCTATGGCAA	Expression of 3'UTR extensions by qPCR
AT1G3160-UTRext-R	GAAGGGAAACCGCATATGTG	
AT3G13110-UTRext-F	TGGGTTTCCTGGTTGGTTTC	Expression of 3'UTR extensions by qPCR
AT3G13110-UTRext-R	GCAAGACATCTGGATCTTCGAC	
AT2G41200-UTRext-F	TGCGATTCGGCTCATTA	Expression of 3'UTR extensions by qPCR
AT2G41200-UTRext-R	GCTTCTCGTGTATAACACAT	
TEX1-m F	GGGAAGGAAGGTGAAAGAAAG	
TEX1-m R	TCCAACAATGCTGATCCACAT	
PB1_pPHO1 1exon L	CGCGTACGATCTGTTGATGATTCTGGCAAGTA	
PB1_pPHO1 1exon R	TCTAAGATGTAGAGTAATAGAGTGTAGTA	
PB1_pPHO1 gen3 exon F	ACTCTACATCTTACGACCTTATTTATTTCTATAAAG	Confirm tex1-6 mutation by PCR and sequencing
PB1_pPHO1 gen3 exon R	ATATCTGAGTGTGGGACCTGCTGCTTCGTCAGGAA	Cloning PHO1Δ83-114: Amplification of PHO1 promoter and first exon.
Pho1_ex1 LP	CGAACGAGCTGAGGACACAACTTAC	Cloning PHO1Δ83-114: Amplification of PHO1 from third exon. Two amplicons were joined together in intron deleting the second exon
Pho1_ex1 RP	GAAGCGCGTTTGTGTTAGAGG	
Pho1_im1-3' 4 LP	CATAGACATAGAGATTTGTTTATGTGACTGCT	CHIP-qPCR: Primer binding within exon 1 of pho1
Pho1_im1-3' 4 RP	GACTCTGGCTGGCTGATTCATAGAGTGTGTCG	CHIP-qPCR: Primers binding within 3' part of intron 1 of pho1.
Pho1_im1-3' 4 RP	GAACCTGTGTCAGGGCAACAA	
At1g76560_3UTR_qPCR-R1	CAGTCGCTTCTTAAGTCCTGTT	Expression of luciferase fused to 3'UTRs of At1G76560 in protoplasts
At1g76560_3UTR_qPCR-R2	CGGAATCTGGCGGATCCAGATTA	Reverse primer for short RNA-Primer is placed before the predicted polyA signal
Fluc_qPCR-F	TGCGCGGAAGGAAGTTGTGT	Reverse primer for long RNA-Primer is placed after the predicted polyA signal
Fluc_qPCR-R	ACGGCGATCTTCCCGCCCTCT	Primers for qPCR of luciferase as an internal control for normalisation of expression.