

1 **MicroRNA-214 prevents pulmonary angiogenesis and alveolarization**
2 **in neonatal rats with hyperoxia-mediated impairment of lung**
2 **development by blocking PIGF-dependent STAT3 signaling pathway**

3

4 **Running title:** Role of miR-214 in neonatal rats with hyperoxia-mediated impairment of lung development

5

6 **Zhi-Qun Zhang^{*}, Xiao-Xia Li, Jing Li, Hui Hong, Xian-Mei Huang**

7 *Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University*

8 *School of Medicine, Hangzhou 310000, P.R. China*

9

10 *** Correspondence to:** Dr. **Zhi-Qun Zhang**, Department of Neonatology, Affiliated Hangzhou First
11 People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou
12 310000, Zhejiang Province, P.R. China

13 **E-mail:** zhiqun.zhang@163.com

14 **Tel.:** +86-0571-56005600

15

16 **Abstract**—In recent years, the roles of microRNAs (miRNAs) in pulmonary diseases have been
17 widely studied and researched. However, the molecular mechanism by which miR-214 affects
18 bronchopulmonary dysplasia (BPD) remains elusive and merits further exploration. Hence, this
19 study aims to clarify the function of miR-214 in pulmonary angiogenesis and alveolarization in
20 preterm infants with BPD. BPD neonatal rat model was induced by hyperoxia, and pulmonary
21 epithelial cells were isolated from rats and exposed to hyperoxia. Gain- or loss-of-function
22 experiments were performed in BPD neonatal rats and hyperoxic pulmonary epithelial cells.
23 MiR-214 and PlGF expression in BPD neonatal rats, and eNOS, Bcl-2, c-myc, Survivin, α -SMA
24 and E-cadherin expression in hyperoxic pulmonary epithelial cells were detected using RT-qPCR
25 and western blot analysis. The interaction between PlGF and miR-214 was identified using dual
26 luciferase reporter gene assay and RIP assay. ELISA was adopted to assess IL-1 β , TNF- α , IL-6,
27 ICAM-1 and Flt-1 expression in rats. Decreased miR-214 expression and elevated PlGF expression
28 were evident in the lung tissues of neonatal rats with BPD. PlGF was a target of miR-214, and
29 miR-214 downregulated PlGF to inactivate the STAT3 signaling pathway. miR-214 overexpression
30 or PlGF silencing decreased apoptosis of hyperoxic pulmonary epithelial cells and declined
31 pulmonary angiogenesis and alveolarization in BPD neonatal rats. Collectively, miR-214 can
32 protect against pulmonary angiogenesis and alveolarization in preterm infants with BPD by
33 suppressing PlGF and blocking STAT3 signaling pathway.

34

35 **Key words:** MicroRNA-214; PlGF; STAT3 signaling pathway; Bronchopulmonary dysplasia;
36 Pulmonary angiogenesis; Alveolarization

37

38 INTRODUCTION

39 As a chronic lung disease, bronchopulmonary dysplasia (BPD) afflicts preterm infants and is
40 characterized by retarded lung growth. It remains a principle cause of neonatal morbidity and
41 triggers serious adverse consequences (13, 30). Around 45% of the preterm infants whose gestation
42 was below 29 weeks are found to have BPD (25). It has already been documented that
43 hyperoxia-induced acute lung injury is a key promoter of BPD pathogenesis in preterm infants (27).
44 It is well known that lung alveolarization could cause incapacity of lungs to exchange gas
45 effectively (23). However, the underlying molecular mechanisms are still largely unknown.

46 Through mediation of cellular proliferation, differentiation and metastasis, microRNAs
47 (miRNAs or miRs) are involved in the pathogenesis of multiple diseases and thus have great
48 potentials in serving as therapeutic targets (11). MiR-214, as a pivotal oncomiR, is upregulated in
49 various kinds of diseases and cancers (32). In lung cancer, miR-214-3p has been demonstrated to
50 downregulate fibroblast growth factor receptor 1 and to provide beneficial effects to patients (34).
51 Also, downregulation of miR-214 could reverse the erlotinib resistance in non-small-cell lung
52 cancer by upregulating its direct target gene LHX6 (15). In our study, placental growth factor (PIGF)
53 was predicted to be the target gene of miR-214. Moreover, it has been predicted in a prior study that
54 PIGF might serve as a potential biomarker for BPD occurrence (36). Besides, PIGF could be
55 increased under hyperoxic exposure and downregulating PIGF ameliorated the hyperoxia-induced
56 lung impairment in neonatal rats (37). PIGF has also been proved to accelerate the phosphorylation
57 of STAT3 (2). Moreover, neonatal exposure to hyperoxia has been found to lead to a significant
58 increase of the signal transducer and activator of transcription 3 (STAT3) mRNA expression in
59 pulmonary endothelial cells (5). In this regard, we hypothesized that a regulatory network of
60 miR-214/PIGF/STAT3 signaling pathway may be involved in BPD. Therefore, the current study
61 was conducted with the aim to verify the expected involvement of miR-214/PIGF/STAT3 axis in
62 BPD, and to elucidate the underlying molecular mechanisms.

64 MATERIALS AND METHODS

65 ***Ethics statement.*** Animal experiment protocols were approved by the Experimental Animal
66 Ethics Committee of Affiliated Hangzhou First People's Hospital, Zhejiang University School of
67 Medicine. All animal experiments were performed in accordance with the Guide for the Care and
68 Use of Laboratory animals published by the US National Institutes of Health. Extensive efforts
69 were made to ensure minimal suffering of animals during the study.

70

71 ***Analysis of BPD gene expression dataset and bioinformatics prediction.*** The gene expression
72 dataset GSE25293 of mouse BPD models was retrieved from the annotation platform GPL1261 in
73 the Gene Expression Omnibus (GEO) database (<https://www.ncbi.nlm.nih.gov/gds>) and then
74 analyzed using R language. The databases DIANA TOOLS
75 (<http://diana.imis.athena-innovation.gr/DianaTools/>), miRWalk (energy < -30)
76 (<http://mirwalk.umm.uni-heidelberg.de>), mirDIP (Integrated Score > 0.6)
77 (<http://ophid.utoronto.ca/mirDIP/>), miRDB (<http://www.mirdb.org>) and miRSearch
78 (<https://www.exiqon.com/miRSearch>) were used to analyze the intersected upstream miRNAs in
79 human body. A box plot was drawn using R language to extract key miRNA expression data from
80 the miRNA dataset GSE25293 from the annotation platform GPL11199 in the GEO database.
81 Protein-protein interaction (PPI) analysis was performed on String website (<https://string-db.org>) to
82 obtain proteins that could potentially bind to BPD. Cytoscape (<https://cytoscape.org>) was used to
83 process the visual graphs of PPI analysis, and its downstream regulatory pathways were predicted
84 based on existing literatures.

85

86 ***Establishment of hyperoxia-induced BPD rat models.*** Twelve specific-pathogen-free (SPF)
87 Sprague-Dawley (SD) rats with a gestational age of 15 days were purchased from Shanghai SLAC
88 Laboratory Animal Co., Ltd. (Shanghai, China) and housed at $22 \pm 3^\circ\text{C}$ and with humidity of $60 \pm 5\%$
89 and circadian rhythm of 12 h. Each neonatal rat was housed individually and was self-delivered

90 after 1 week of adaptive feeding. Then 60 neonatal rats within 12 h of birth difference after delivery
91 were randomly grouped into the hyperoxia treatment group and the control group. And the
92 hyperoxia-treated rats with BPD were then treated with miR-214 negative control (NC), miR-214
93 agomir, miR-214 NC + PIgf vector, and miR-214 agomir + PIgf (n = 12 in each treatment). After
94 the recombinant adenoviruses were packaged, cloned, amplified, purified and titrated, the
95 hyperoxia-induced BPD rats were subject to the following procedures as previously reported (3, 8):
96 they were placed in an atmospheric oxygen box with polymethyl methacrylate. The oxygen was
97 continuously inputted, and the fraction of inspired oxygen (Fio₂) was maintained above 85%.
98 Sodium lime was used to absorb CO₂, and the temperature was set at 25 - 27°C with 50% - 70%
99 humidity. The rats in the control group (Air group) were exposed to the air (with FiO₂ of 21%), and
100 the remaining experimental control conditions and operations were the same as those in the
101 hyperoxia treatment group. The box was routinely opened for 30 min every day, and water and food
102 were added and the litter was replaced. The mother rats were exchanged with the control group (to
103 avoid the decreased feeding ability of mother rats because of oxygen toxicity). The rats in control
104 group were placed in the same room, with the similar experimental control factors to those in the
105 hyperoxia treatment group. Three newborn rats were randomly selected from the two groups by
106 random number method at the 3rd, 7th and 14th days after the experiment began, and then received
107 intraperitoneal injection of 90 mg/kg pentobarbital sodium for anesthesia. Next, the abdominal
108 cavity was opened immediately, and the right lungs were taken out and placed in an RNase-free
109 cryo vial (Eppendorf, Hamburg, Germany). After rapidly frozen with liquid nitrogen, the lungs were
110 stored in a - 80°C refrigerator for subsequent reverse transcription quantitative polymerase chain
111 reaction (RT-qPCR) and western blot analysis. Then 40 g/L paraformaldehyde was slowly injected
112 to the rats through the left bronchus until the apex of lung was inflated, placed in an embedding box,
113 and added with 40g/L paraformaldehyde solution for overnight fixation for subsequent detection.

114

115 **Enzyme-linked immunosorbent (ELISA) assay.** The strips used in the experiment were

116 equilibrated at room temperature for 20 min. Standard and sample wells were set separately, and 50
117 μ L of standards (IL-1 β , TNF- α and IL-6) at different concentration was added into the standard
118 wells respectively. Then 10 μ L of samples was added into the sample wells and 40 μ L of sample
119 dilution was then added to the samples. The blank wells were not subject to treatment. Next, 100 μ L
120 of horse radish peroxidase (HRP)-labeled antibody to be detected was added to the standard wells
121 and the sample wells respectively, and the blank wells were not subject to treatment. The wells were
122 sealed with microplate sealers, followed by incubation for 60 min in a 37°C incubator. After the
123 liquid was discarded, the experimental strips were washed in full-automatic washing machine. Then
124 50 μ L of substrate A and B were added to each well and incubated for 15 min a 37°C incubator in
125 subdued light. Subsequently, 50 μ L of the stop buffer was added to each well and allowed to stand
126 for 15 min, after which the OD value of each well was measured at a wavelength of 450 nm.

127

128 ***Hematoxylin-eosin (HE) staining.*** The lung tissues of rats in each group were fixed with 4%
129 paraformaldehyde for 24 h, dehydrated with 80%, 90% and 100% ethanol and n-butanol
130 respectively, immersed in a wax box at 60°C, dewaxed with xylene and hydrated. The sections were
131 first stained with hematoxylin (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China)
132 for 2 min, then washed with distilled water for 1 min, stained with eosin for 1 min, rinsed with
133 distilled water for 10 s, dehydrated with gradient ethanol, cleared with xylene, and fixed with
134 neutral rubber. Finally, the morphological changes of lung tissues were observed and analyzed
135 under an optical microscope (XP-330, Bingyu Optical Instrument Co., Ltd., Shanghai, China).

136

137 ***Alveolar epithelial cell isolation using Immunomagnetic bead.*** The fetal rats were taken out
138 by cesarean section from the SD rats with a gestational age of 15 days under sterile condition and
139 were transected at the chest, after which the lungs were taken out and put in pre-cooled phosphate
140 buffer solution (PBS) to remove residual non-lung tissues. Digestion, filtration, centrifugation,
141 sorting and so on were carried out according to the experimental operations. CD14 magnetic beads

142 were added to the cells ($20 \mu\text{L}/10^7$ cells), mixed well, and incubated at 4 - 8°C for 15 min. The cells
143 were washed with buffer solution ($1 \text{ mL}/10^7$ cells) and centrifuged at 1500 r/min for 10 min, with
144 the supernatant completely removed. The cells were resuspended in 500 μL of buffer solution, and
145 the cell suspension was added to a MS separation column. The unlabeled cells that had flowed out
146 first were collected, which were negative cells. The MS separation column was washed with 1500
147 μL of buffer solution. The separation column was removed from the magnetic field and the cells
148 retained on the column were quickly eluted with 1 mL of buffer solution. These cells were
149 magnetically labeled positive cells. Under a modified Barthel microscope, more dark particles in the
150 cytoplasm were visible with characteristic eosinophils observed, which presented with obvious
151 microvilli in lamellar bodies and cell membranes. This indicated that type II alveolar epithelial cells
152 in the fetal rats were successfully isolated.

153

154 ***Development of hyperoxia-provoked cell injury models.*** Pulmonary epithelial cells after 2
155 days of growth were exposed to air (control) or hyperoxia. The cells exposed to air and hyperoxia
156 were placed in a closed oxygen chamber with 21% oxygen volume fraction. The hyperoxic cells
157 were further transfected with plasmids of miR-214 NC, miR-214 mimic, miR-214 NC + PI GF
158 vector, miR-214 NC + PI GF, and miR-214 mimic + PI GF. Then the recombinant adenoviruses were
159 packaged, cloned, amplified, purified and titrated. The pulmonary epithelial cells were infected with
160 these adenoviruses and placed in a closed oxygen chamber with 85% oxygen volume fraction.

161

162 ***Transmission electron microscope.*** After the pulmonary epithelial cells were centrifuged at
163 10,000 rpm for 10 min, the supernatant was discarded and the cells were fixed in 4% glutaraldehyde
164 at 4°C for more than 2 h. The cells were then washed with 0.01 M PBS three times, fixed with 1%
165 osmium tetroxide for 2 h, and dehydrated with gradient ethanol and acetone. The cells were then
166 immersed with epoxy resin, embedded and polymerized, and then made into semi-thin sections with
167 a thickness of 0.5 μm . The sections were positioned under a microscope, stained with uranyl acetate

168 and lead citrate, and observed and photographed under a transmission electron microscope
169 (H-7500).

170

171 ***RNA binding protein immunoprecipitation (RIP).*** The pulmonary epithelial cells were
172 washed twice with cold PBS, then added with 10 mL of PBS, scraped off with a cell scraper and
173 transferred into a centrifuge tube. The cells were centrifuged at 1500 rpm for 5 min at 4°C, then
174 added with RIP Lysis Buffer, mechanically dissociated into and mixed thoroughly, and lysed on ice
175 for 5 min to prepare cell lysate. Next, 50 µL of magnetic beads were added into each tube and
176 mixed well, after which 0.5 mL RIP Wash Buffer was added to rinse the magnetic beads, and 100
177 µL RIP Wash Buffer was added to resuspend beads. Then 5 µg of Ago2 antibody was added to
178 the tubes and incubated in rotation for 30 min at room temperature. The supernatant was discarded
179 and the beads were washed twice with 0.5 mL RIP Wash Buffer for subsequent experiments. 900 µL
180 of RIP Immunoprecipitation Buffer was added to the magnetic bead-antibody mixture, after which
181 the centrifugation was carried out at 14000 rpm for 10 min at 4°C. The supernatant was collected
182 and transferred into a new eppendorf (EP) tube, and then 100 µL of the supernatant was taken into
183 the tube containing the magnetic bead-antibody. 1.0 mL served as the final volume of the
184 immunoprecipitation reaction, and incubation was conducted overnight at 4°C. Then the magnetic
185 beads were washed 6 times with 0.5 mL RIP Wash Buffer, 150 µL of proteinase K buffer was added,
186 and the RNA was purified by 30 min of incubation at 55°C. The RNA was extracted by a
187 conventional TRIzol method followed by RT-qPCR detection.

188

189 ***Giemsa staining.*** The rats were anesthetized by intraperitoneal injection of 1% sodium
190 pentobarbital solution, and fixed on a simple operation table. The thoracic cavities of rats were
191 exposed after being euthanized by exsanguination, after which the pleural tissues around the trachea
192 were bluntly separated, the trachea was fully exposed and a needle was used to stab at the 1/3 of the
193 trachea. The tip of the 18G indwelling needle was previously trimmed into a hernia type, and the

194 tracheal intubation was performed along the trial point and ligated with a surgical line. 1 mL of
195 pre-cooled sterile normal saline was used to perfuse the lung tissues of the rats for three times. The
196 bronchoalveolar lavage fluid (BALF) was collected and stored in a pre-cooled EP tube and
197 subsequently centrifuged at 1200 r/min for 20 min at 4°C. The supernatant was stored in a -80°C
198 freezer for subsequent use. The cell precipitate was resuspended in 100 µL of PBS, smeared with 50
199 µL of the suspension, and stained with Swiss Giemsa. The number of neutrophils was counted
200 under an oil microscope and the total number of cells in 10 µL of the suspension was counted by a
201 hemocytometer.

202

203 **Immunohistochemistry.** The specimen was fixed in 10% formaldehyde, and embedded into
204 paraffin and continuously made into 4 µm sections. Then the tissue sections were placed in a 60°C
205 oven for 1 h, dewaxed by xylene in conventional manner, then dehydrated with gradient alcohol,
206 and incubated in 3% H₂O₂ (Sigma-Aldrich, Shanghai, China) for 30 min at 37°C. Then the tissue
207 sections were boiled in 0.1 M citrate buffer solution for 20 min at 95°C after PBS rinse, cooled to
208 room temperature, and rinsed with PBS again. The sections were blocked with 10% normal goat
209 serum for 10 min at 37°C followed by rabbit anti-eNOS (AF0096, Affinity) incubation at 4°C for 12
210 h. After PBS wash, the sections were treated with biotin-labeled goat anti-rabbit secondary antibody
211 at room temperature for 10 min. After thoroughly washed, S-A/HRP was added to react at room
212 temperature for 10 min. The tissue sections were developed using diaminobenzidine (DAB) away
213 from light at room temperature for 8 min. Then the tissues were rinsed with tap water,
214 counter-stained with hematoxylin, dehydrated, cleared, blocked, and observed under a light
215 microscope. The number of positive cells was counted using image analysis software (Nikon
216 Corporation, Tokyo, Japan). Five fields of equal area were selected from each section, and the
217 proportion of positive cells was calculated with the average value calculated. The cells with
218 apparent brown or brownish yellow particles in the cytoplasm were positive cells. The experiment
219 was repeated three times.

220

221 **Dual luciferase reporter gene assay.** The target gene of miR-214 was analyzed on biological
222 prediction website, and dual luciferase reporter gene assay was performed to further verify whether
223 PIGF was a direct target of miR-214. In short, the artificially synthesized PI GF 3' untranslated
224 regions (UTR) gene fragment was constructed into pMIR-reporter (Promega, Madison, WI, USA).
225 A complementary sequence with mutation of the seed sequence was designed based on the wild
226 type (WT) of PI GF and constructed into the pMIR-reporter reporter plasmid. The correctly
227 sequenced luciferase reporter plasmids WT and MUT were respectively co-transfected with
228 miR-214 mimic and miR-214 NC into HEK293T cells. After 48 h of transfection, cells were
229 collected and lysed, and the luciferase activity was measured using Dual-Luciferase Reporter Assay
230 System (Promega, Madison, WI, USA). The experiment was repeated three times.

231

232 **RT-qPCR assay.** Total RNA was extracted from cells using the Trizol kit (Invitrogen Inc.,
233 Carlsbad, CA, USA) and reverse transcribed into cDNA according to the instructions of TaqMan
234 MicroRNA Assays Reverse Transcription Primer (4427975, Applied Bio-systems, Foster City,
235 CA, USA). The reverse transcribed cDNA was diluted to 50 ng/µL. The expression of relevant genes
236 was analyzed. U6 gene was taken as an internal reference of miRNA, and
237 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was taken as an internal reference of other
238 genes. The fold changes were calculated using relative quantification (the $2^{-\Delta\Delta Ct}$ method). The
239 primers used are shown in Table 1.

240

241 **Western blot assay.** The lung tissues or cells were washed twice with PBS, added with lysis
242 buffer, shaken on a vortex agitator, and centrifuged at 12000 r/min for 30 min at 4°C to remove
243 tissues or cell debris. The supernatant was taken and the total protein concentration was measured
244 using a bicinchoninic acid (BCA) kit. 50 µg of protein was subjected to 10% sodium dodecyl
245 sulfate polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membranes by

246 wet transfer method. After blocked with 5% skim milk powder at room temperature for 1 h, the
247 PVDF membrane was then incubated with diluted primary antibodies Survivin (# 2808S, CST,
248 Danvers, MA, USA), GAPDH (#5174, CST, Danvers, MA, USA), B-cell lymphoma-2 (Bcl-2,
249 #3498, CST, Danvers, MA, USA), c-myc (#13987, CST, Danvers, MA, USA), PIgf (ab74778,
250 Abcam, Cambridge, UK), E-cadherin (ab11512, Abcam, Cambridge, UK) and α -smooth muscle
251 actin (α -SMA, ab32575, Abcam, Cambridge, UK), and then diluted according to the instructions.
252 The membrane was washed 3 times with TBST and then incubated with HRP-labeled secondary
253 antibody for 1 h. After rinsed with TBST, the membrane was placed on a clean glass plate. The
254 immunocomplexes on the membrane were visualized using enhanced chemiluminescence (ECL)
255 fluorescence detection kit (BB-3501, Amersham, Little Chalfont, UK), and band intensities were
256 quantified using a Bio-Rad image analysis system and Quantity One v4.6.2 software. The ratio of
257 the gray value of the target band to GAPDH was representative of the relative protein expression.

258

259 **Statistical analysis.** Data analyses were conducted using SPSS 21.0 (IBM Corp, Armonk, NY,
260 USA). Measurement data were described using mean \pm standard deviation. An unpaired *t*-test was
261 conducted to compare the data obeying normal distribution and homogeneity of variance between
262 two groups. Data comparisons between multiple groups were performed using one-way analysis of
263 variance (ANOVA), followed by a Tukey's multiple comparisons posttest. Data comparisons at
264 different time points were performed by repeated measures ANOVA, followed by a Bonferroni post
265 hoc test for multiple comparisons. Pearson correlation was used to analyze the relationship between
266 two indicators. A value of $p < 0.05$ was considered to be statistically significant.

267

268 **RESULTS**

269 ***miRNA and mRNA expression profiles in BPD.*** There has been literature showing that PIgf
270 is an important gene participating in BPD in preterm infants, but the regulatory pathway of this
271 gene is still unknown and possesses great research potential (14). A boxplot shown in Figure 1A

272 illustrating that PIIGF was highly expressed in BPD model. The predicted results from DIANA
273 TOOLS, miRWalk (energy < -30), mirDIP (Integrated Score > 0.6), miRDB and miRSearch
274 databases revealed that the upstream miRNA number of PIIGF (actually PGF was used during
275 prediction) were 80, 196, 5, 58 and 39 respectively. Only one intersected miRNA was obtained
276 shown by the Venn map, which was miR-214 (Fig. 1B). Besides, the binding site suggested by
277 DIANA Tools also indicated the potential interaction between PIIGF and miR-214-3p (Fig. 1C). The
278 boxplot on miR-214 expression drawn using R language showed that miR-214 was downregulated
279 in BPD neonatal rats induced by hyperoxia (Fig. 1D). Existing studies have shown that miR-214-3p
280 is a miRNA related to lung cancer and is downregulated in lung tumor tissues (6). PPI analysis
281 indicated that PIIGF (PGF) may be related with several signaling pathways (Fig. 1E), and some
282 literature has shown that high expression of PIIGF can promote the expression of STAT3 (20, 22).
283 Therefore, we hypothesized that miR-214 can regulate the expression of PIIGF and further regulate
284 the STAT3 signaling pathway, thus affecting the progression of BPD in preterm infants.

285

286 ***miR-214 is downregulated in the lung tissues of hyperoxia-induced BPD neonatal rats.*** In
287 order to verify miR-214 expression in the lung tissues of neonatal rats exposed to hyperoxia,
288 neonatal rats were selected for experiments. After BPD models were established, miR-214
289 expression in the lung tissue of neonatal rats exposed to hyperoxia was first detected by RT-qPCR.
290 The results showed that on 3rd, 7th, and 14th days, miR-214 expression in lung tissue of neonatal
291 rats with BPD was lower than that of normal neonatal rats ($p < 0.05$; Fig. 2A). PIIGF expression was
292 detected by RT-qPCR and western blot analysis, which showed that PIIGF expression in the lung
293 tissue of neonatal rats with BPD were higher than that in normal neonatal rats on 3rd, 7th, and 14th
294 days ($p < 0.05$; Fig. 2B-C). Correlation analysis showed a negative correlation between miR-214
295 and PIIGF expressed in lung tissues ($p < 0.05$; Fig. 2D). The above results suggested that expression
296 level of miR-214 was decreased and PIIGF was elevated in lung tissue of neonatal rats exposed to
297 hyperoxia, and there was a certain correlation between them.

298

299 ***Overexpression of miR-214 blocks pulmonary angiogenesis and alveolarization in neonatal***
300 ***rats with BPD in vivo.*** To validate the effect of miR-214 overexpression on neonatal rats with BPD,
301 we established hyperoxia-induced neonatal rats with BPD and we injected them with miR-214 NC
302 and miR-214 agomir. Then, ELISA, immunohistochemistry, Giemsa staining, and HE staining were
303 performed respectively. When compared with neonatal rats exposed to air, the BPD neonatal rats
304 exhibited increased levels of inflammatory factors (IL-1 β , TNF- α , IL-6, Flt-1 and ICAM-1) ($p <$
305 0.05; Fig. 3A-D), elevated eNOS expression (Fig. 3E), and increased number of macrophages (Fig.
306 3F) (all $p < 0.05$), which was reversed by miR-214 agomir treatment ($p < 0.05$). HE staining
307 revealed that compared with neonatal rats exposed to air, BPD neonatal rats showed reduced alveoli
308 number and simplified structure, the alveolar wall ruptured and merged into pulmonary bullae, the
309 pulmonary microvessel density was decreased, and the ratio of alveolar area/pulmonary septal area
310 was increased ($p < 0.05$). While after miR-214 treatment, the alveolar structure of BPD neonatal
311 rats exhibited a contrasting trend in the aforementioned factors ($p < 0.05$; Fig. 3G-H). The above
312 results indicated that overexpression of miR-214 can prevent pulmonary angiogenesis and
313 alveolarization in neonatal rats with BPD.

314

315 ***Overexpression of miR-214 decreased the pulmonary epithelial cell apoptosis in vitro.*** To
316 elucidate the effect of miR-214 on pulmonary epithelial cells, pulmonary epithelial cells were
317 obtained from rats, and their ultrastructures after transfection were observed under a transmission
318 electron microscope. The results showed that compared with pulmonary epithelial cells exposed to
319 air, the pulmonary epithelial cells treated with hyperoxia displayed destroyed cytoplasmic lamellar
320 structure of the alveolar epithelium, with relatively large vacuoles formed and gap between
321 blood-air barriers increased, which can be rescued by miR-214 mimic transfection (Fig. 4A). Next,
322 Western blot analysis was performed to assess the expression of apoptosis-related genes (Survivin,
323 Bcl-2 and c-myc). As depicted in Figure 4B-C, in hyperoxic pulmonary epithelial cells, Survivin,

324 Bcl-2 expression was decreased and c-myc expression was increased, while miR-214 mimic
325 treatment triggered an opposite trend of the gene expression level. Also, α -SMA and E-cadherin
326 expression in pulmonary epithelial cells was detected. α -SMA expression was increased while
327 E-cadherin expression was decreased in hyperoxic pulmonary epithelial cells. While in the
328 miR-214-treated cells, we observed decreased α -SMA expression and elevated E-cadherin
329 expression (Fig. 4D-E). Taken together, overexpression of miR-214 can attenuate pulmonary
330 epithelial cell alteration in BPD rats.

331

332 ***PIGF is a target gene of miR-214.*** Then, the regulatory mechanism of miR-214 was explored.
333 Bioinformatics analysis using an online prediction software revealed a complementary sequence of
334 PIGF within the sequence of miR-214 (Fig. 5A). Dual luciferase reporter gene assay verified that
335 co-transfection of miR-214 mimic with the 3'-UTR of WT-PIGF showed reduced luciferase activity,
336 whereas co-transfection of miR-214 mimic with the 3'-UTR of MUT-PIGF showed no significant
337 difference (Fig. 5B). RT-qPCR and western blot analysis presented that the mRNA and protein level
338 of PIGF were reduced in cells treated with miR-214 mimic (Fig. 5C-D). RIP experiment further
339 confirmed that the enrichment of miR-214 and PIGF was higher in Ago2 group than that in IgG (Fig.
340 5E). Collectively, miR-214 targeted and regulated the expression of PIGF.

341

342 ***Overexpressed miR-214 disrupts pulmonary angiogenesis and alveolarization by
343 inactivating PIGF-dependent STAT3 signaling pathway in neonatal rats with BPD.*** The
344 downstream regulatory pathway of PIGF was predicted using KEGG and GeneMANIA databases
345 and the results showed that PIGF was closely related to the STAT3 signaling pathway (Fig. 6A). To
346 examine the regulatory role of STAT3 signaling pathway in BPD, we used western blot analysis to
347 detect the activation of the STAT3 signaling pathway in lung tissue of neonatal rats exposed to
348 hyperoxia. The results showed that STAT3 phosphorylation was increased in the lung tissue of
349 neonatal rats exposed in hyperoxia, which suggested that STAT3 signaling pathway was activated

350 hyperoxia treated neonatal rats (Fig. 6B). The neonatal rats with BPD were then respectively treated
351 with miR-214 NC + PI GF vector, miR-214 NC + PI GF, or miR-214 agomir + PI GF. Then, western
352 blot analysis, ELISA, immunohistochemistry, giemsa staining and HE staining were performed. The
353 results showed that compared with BPD rats treated with miR-214 NC + PI GF vector, the BPD rats
354 treated with miR-214 NC + PI GF presented with increased expression of phosphorylated
355 STAT3/STAT3 (Fig. 6C), levels of IL-1 β , TNF- α , IL-6, ICAM-1 and Flt-1 (Fig. 6D-E), eNOS
356 expression (Fig. 6F) and number of macrophages (Fig. 6G), which was abrogated by treatment of
357 miR-214 agomir + PI GF (all $p < 0.05$). Moreover, compared with BPD rats co-treated with miR-214
358 NC and PI GF vector, BPD rats treated with miR-214 NC + PI GF displayed reduced number of
359 alveoli and simplified structure. The alveolar wall ruptured to form a large pulmonary vesicle with
360 declined pulmonary microvessels density and elevated ratio of alveolar area/pulmonary septal area
361 (A/S) ($p < 0.05$; Fig. 6H-I), and we observed a opposite trend in alveolar alterations in BPD rats
362 treated with miR-214 agomir + PI GF. These results suggested that miR-214 targeted PI GF to inhibit
363 the STAT3 signaling pathway, thus blocking pulmonary angiogenesis and alveolarization in
364 neonatal with BPD.

365

366 ***Overexpressed miR-214 reduces pulmonary epithelial cell apoptosis via inactivation of***
367 ***PI GF-dependent STAT3 signaling pathway.*** *in vitro.* To study the effect of miR-214 on pulmonary
368 epithelial cells of rats with BPD, pulmonary epithelial cells were obtained from rats and their
369 ultrastructures after transfection were observed under a transmission electron microscope. The
370 result showed that, compared with the cells co-transfected with miR-214 NC and PI GF vector, in
371 the rats following transfection with miR-214 NC + PI GF, the cytoplasmic lamellar structure of the
372 alveolar epithelium was destroyed, large vacuoles were formed, the blood-air barriers gap was
373 increased (Fig. 7A). Moreover, there was a reduction in the expression of anti-apoptotic proteins
374 Survivin and Bcl-2 (Fig. 7B-C) as well as α -SMA (Fig. 7D-E), while an increase in the expression
375 of pro-apoptotic protein c-myc (Fig. 7B-C) and E-cadherin ($p < 0.05$; Fig. 7D-E). When compared

376 with the rats co-transfected with miR-214 NC and PI GF, in the rats co-transfected with miR-214
377 mimic and PI GF, the cytoplasmic lamellar structure of the alveolar epithelium and the gap of the
378 blood-air barrier were improved (Fig. 7A), Survivin and Bcl-2 expression were significantly
379 increased (Fig. 7B-C), and α -SMA expression was significantly elevated (Fig. 7D-E), together with
380 reduced expression of c-myc (Fig. 7B-C) and E-cadherin ($p < 0.05$; Fig. 7D-E). These results
381 indicated that overexpression of miR-214 targeting PI GF can inhibit the effect of STAT3 signaling
382 pathway on rat bronchial embryonic pulmonary epithelial cells.

383

384 DISCUSSION

385 BPD is a respiratory condition occurring in preterm neonates and can lead to chronic
386 respiratory problems driven by several prenatal and/or postnatal factors (19). The known risk
387 factors associated with BPD development in preterm neonates include small gestational age,
388 preeclampsia, chorioamnionitis and infiltration of the chorioamnion by neutrophils (10, 18). The
389 most likely underlying pathogenesis is the constant inflammation in lung, and thus corticosteroid,
390 which has a strong anti-inflammatory effect, has been employed in the treatment of BPD (9). In
391 order to highlight a novel therapeutic method to prevent and cure the pulmonary angiogenesis and
392 alveolarization in neonatal infants with BPD, we planned the current study, and the *in vitro* and *in*
393 *vivo* results demonstrated that miR-214 could inhibit pulmonary angiogenesis and alveolarization in
394 neonatal infants with BPD *via* PI GF-dependent STAT3 signaling pathway blockade.

395 Our findings illustrated that miR-214 was downregulated in hyperoxia-induced BPD neonatal
396 rats. MiR-214, a member of microRNA precursors, plays a pivotal role in the pathogenesis of
397 multiple human disorders, including cardiovascular diseases and cancers (26, 38). The expression of
398 miR-214 increased by TWIST1 promotes the epithelial-to-mesenchymal transition and metastasis in
399 lung adenocarcinoma (16). Additionally, our study portrayed that PI GF, which was highly expressed
400 in the lung tissues of preterm rats with BPD, was negatively targeted by miR-214 and activated the
401 STAT3 signaling pathway. PI GF was found to be highly expressed in the BPD rats (33). Moreover,

402 an inverse correlation has been detected in our study between miR-214 and PIgf, and the
403 post-transcriptional miR-214 possesses the ability to modulate the expression of PIgf in lung
404 tissues (12). On the basis of a prior study, PIgf could increase the phosphorylation of STAT3 (2).
405 MiR-214 has been proven to downregulate the expression of STAT3 in human cervical and
406 colorectal cancer cells (4).

407 Moreover, another critical finding of our study was that miR-214 overexpression could
408 downregulate the expression of IL-1 β , TNF- α and IL-6 and repress pulmonary angiogenesis and
409 alveolarization in hyperoxia-induced BPD neonatal rats. IL-1 β is one of the main mediators of
410 inflammation and plays a causative role in innumerable diseases (24). In the primary pathological
411 features of BPD, IL-1 β contributes to excessive alveolar elastogenesis through the interaction with
412 av β 6 which serves as an epithelial or a mesenchymal signaling molecule (29). TNF is a kind of
413 ligand related to systemic inflammation of human bodies (7). TNF- α overexpression not only
414 increases the release of glutamate but decreases the cell cycling activity of marrow mesenchymal
415 stem cells (35). IL-6 is a typical proinflammatory cytokine which plays a functional role in a
416 number of physiological inflammatory and immunological processes (1). It has been supported that
417 there is a close correlation between the dysregulation of IL-6 with moderate and severe BPD in
418 preterm infants with a small gestational age (21). PIgf overexpression contributes an exaggerated
419 inflammatory state (17). MiR-214 can inhibit angiogenesis procession by suppressing Quaking and
420 pro-angiogenic growth factor expression (28). Through the depletion of PIgf, Kaempferol exerts
421 suppressive effects on angiogenesis of human retinal endothelial cells (31). Therefore, our studies
422 evidenced that miR-214 overexpression could reduce the expression of pro-inflammatory factors,
423 thus blocked pulmonary angiogenesis and alveolarization as well as inhibit cell apoptosis of lung
424 epithelium in neonatal rats with BPD.

425 In conclusion, upregulated miR-214 can potentially block the activation of STAT3 pathway by
426 inhibiting its downstream target gene PIgf, ultimately preventing pulmonary angiogenesis and
427 alveolarization in neonatal infants with BPD (Fig. 8). Investigation of miR-214-PIgf-STAT3

428 pathway in BPD and their functions yields a better understanding of their vivo mechanisms and
429 may have potentially provide important therapeutic implications in the treatment of BPD. However,
430 the molecular mechanism of the miR-214-PIGF-STAT3 pathway in BPD still requires further
431 elucidation with clinical cases involved in the future.

432

433 **GRANTS**

434 None.

435

436 **DISCLOSURES**

437 The authors have no conflicts of interest, financial or otherwise, to disclose.

438

439 **AUTHOR CONTRIBUTIONS**

440 ZQZ, XXL, JL, HH and XMH conceived and designed research; ZQZ and XXL performed
441 experiments; JL and XMH analyzed data; ZQZ and HH interpreted results of experiments; ZQZ and
442 XXL prepared figures; HH and XMH drafted manuscript; ZQZ, XXL and JL edited and revised
443 manuscript; ZQZ, XXL, JL, HH and XMH approved final version of manuscript.

444

445 REFERENCES

- 446 1. **Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL.** Gene of the month: Interleukin 6 (IL-6). *J
447 Clin Pathol* 67: 932-937, 2014. doi: 10.1136/jclinpath-2014-202493.
- 448 2. **Bellik L, Vinci MC, Filippi S, Ledda F, Parenti A.** Intracellular pathways triggered by the selective
449 FLT-1-agonist placental growth factor in vascular smooth muscle cells exposed to hypoxia. *Br J Pharmacol* 146:
450 568-575, 2005. doi: 10.1038/sj.bjp.0706347.
- 451 3. **Cetinkaya M, Cansev M, Kafa IM, Tayman C, Cekmez F, Canpolat FE, Tunc T, Sarici SU.** Cytidine
452 5'-diphosphocholine ameliorates hyperoxic lung injury in a neonatal rat model. *Pediatr Res* 74: 26-33, 2013. doi:
453 10.1038/pr.2013.68.
- 454 4. **Chandrasekaran KS, Sathyaranayanan A, Karunagaran D.** miR-214 activates TP53 but suppresses the
455 expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells. *Cell Biochem Funct* 35:
456 464-471, 2017. doi: 10.1002/cbf.3304.
- 457 5. **Chao CM, van den Bruck R, Lork S, Merkle J, Krampen L, Weil PP, Aydin M, Bellusci S, Jenke AC,
458 Postberg J.** Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures
459 associated with NOS3 and STAT3 in a mouse model. *Clin Epigenetics* 10: 37, 2018. doi:
460 10.1186/s13148-018-0469-0.
- 461 6. **Chen X, Du J, Jiang R, Li L.** MicroRNA-214 inhibits the proliferation and invasion of lung carcinoma cells by
462 targeting JAK1. *Am J Transl Res* 10: 1164-1171, 2018.
- 463 7. **Cheng X, Shen Y, Li R.** Targeting TNF: a therapeutic strategy for Alzheimer's disease. *Drug Discov Today* 19:
464 1822-1827, 2014. doi: 10.1016/j.drudis.2014.06.029.
- 465 8. **de Visser YP, Walther FJ, Laghmani el H, Steendijk P, Middeldorp M, van der Laarse A, Wagenaar GT.**
466 Phosphodiesterase 4 inhibition attenuates persistent heart and lung injury by neonatal hyperoxia in rats. *Am J
467 Physiol Lung Cell Mol Physiol* 302: L56-67, 2012. doi: 10.1152/ajplung.00041.2011.
- 468 9. **Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL.** Early (< 8 days) systemic postnatal corticosteroids for
469 prevention of bronchopulmonary dysplasia in preterm infants. *Cochrane Database Syst Rev* 10: CD001146, 2017.
470 doi: 10.1002/14651858.CD001146.pub5.
- 471 10. **Dravet-Gounot P, Torchin H, Goffinet F, Aubelle MS, El Ayoubi M, Lefevre C, Jarreau PH, Zana-Taieb E.**
472 Bronchopulmonary dysplasia in neonates born to mothers with preeclampsia: Impact of small for gestational age.
473 *PLoS One* 13: e0204498, 2018. doi: 10.1371/journal.pone.0204498.
- 474 11. **Du L, Borkowski R, Zhao Z, Ma X, Yu X, Xie XJ, Pertsemlidis A.** A high-throughput screen identifies miRNA
475 inhibitors regulating lung cancer cell survival and response to paclitaxel. *RNA Biol* 10: 1700-1713, 2013. doi:
476 10.4161/rna.26541.
- 477 12. **Gonsalves CS, Li C, Mpollo MS, Pullarkat V, Malik P, Tahara SM, Kalra VK.** Erythropoietin-mediated
478 expression of placenta growth factor is regulated via activation of hypoxia-inducible factor-1alpha and
479 post-transcriptionally by miR-214 in sickle cell disease. *Biochem J* 468: 409-423, 2015. doi: 10.1042/BJ20141138.
- 480 13. **Isayama T, Lee SK, Yang J, Lee D, Daspal S, Dunn M, Shah PS, Canadian Neonatal N, Canadian Neonatal
481 Follow-Up Network I.** Revisiting the Definition of Bronchopulmonary Dysplasia: Effect of Changing Panoply of
482 Respiratory Support for Preterm Neonates. *JAMA Pediatr* 171: 271-279, 2017. doi:
483 10.1001/jamapediatrics.2016.4141.
- 484 14. **Janer J, Andersson S, Haglund C, Karikoski R, Lassus P.** Placental growth factor and vascular endothelial
485 growth factor receptor-2 in human lung development. *Pediatrics* 122: 340-346, 2008. doi:
486 10.1542/peds.2007-1941.
- 487 15. **Liao J, Lin J, Lin D, Zou C, Kurata J, Lin R, He Z, Su Y.** Down-regulation of miR-214 reverses erlotinib
488 resistance in non-small-cell lung cancer through up-regulating LHX6 expression. *Sci Rep* 7: 781, 2017. doi:
489 10.1038/s41598-017-00901-6.

490 16. **Liu C, Luo J, Zhao YT, Wang ZY, Zhou J, Huang S, Huang JN, Long HX, Zhu B.** TWIST1 upregulates
491 miR-214 to promote epithelial-to-mesenchymal transition and metastasis in lung adenocarcinoma. *Int J Mol Med*
492 42: 461-470, 2018. doi: 10.3892/ijmm.2018.3630.

493 17. **Newell LF, Holtan SG, Yates JE, Pereira L, Tyner JW, Burd I, Bagby GC.** PIGF enhances TLR-dependent
494 inflammatory responses in human mononuclear phagocytes. *Am J Reprod Immunol* 78: 2017. doi:
495 10.1111/aji.12709.

496 18. **Ogawa R, Mori R, Iida K, Uchida Y, Oshiro M, Kageyama M, Kato Y, Tanaka T, Nakata Y, Nishimura Y,**
497 **Hokuto I, Bonno M, Matsumoto N, Ito M, Takahashi N, Namba F.** Effects of the early administration of
498 sivelestat sodium on bronchopulmonary dysplasia in infants: A retrospective cohort study. *Early Hum Dev* 115:
499 71-76, 2017. doi: 10.1016/j.earlhumdev.2017.09.016.

500 19. **Principi N, Di Pietro GM, Esposito S.** Bronchopulmonary dysplasia: clinical aspects and preventive and
501 therapeutic strategies. *J Transl Med* 16: 36, 2018. doi: 10.1186/s12967-018-1417-7.

502 20. **Qi L, Jiang J, Jin P, Kuang M, Wei Q, Shi F, Mao D.** Expression patterns of claudin-5 and its related signals
503 during luteal regression in pseudopregnant rats: The enhanced effect of additional PGF treatment. *Acta Histochem*
504 120: 221-227, 2018. doi: 10.1016/j.acthis.2018.02.001.

505 21. **Rocha G, Proenca E, Guedes A, Carvalho C, Areias A, Ramos JP, Rodrigues T, Guimaraes H.** Cord blood
506 levels of IL-6, IL-8 and IL-10 may be early predictors of bronchopulmonary dysplasia in preterm newborns small
507 for gestational age. *Dis Markers* 33: 51-60, 2012. doi: 10.3233/DMA-2012-0903.

508 22. **Rovani MT, Ilha GF, Gasperin BG, Nobrega JE, Jr., Siddappa D, Glanzner WG, Antoniazzi AQ, Bordignon
509 V, Duggavathi R, Goncalves PBD.** Prostaglandin F2alpha-induced luteolysis involves activation of Signal
510 transducer and activator of transcription 3 and inhibition of AKT signaling in cattle. *Mol Reprod Dev* 84: 486-494,
511 2017. doi: 10.1002/mrd.22798.

512 23. **Ruiz-Camp J, Quantius J, Lignelli E, Arndt PF, Palumbo F, Nardiello C, Surate Solaligue DE, Sakkas E,
513 Mizikova I, Rodriguez-Castillo JA, Vadasz I, Richardson WD, Ahlbrecht K, Herold S, Seeger W, Morty RE.** Targeting
514 miR-34a/Pdgfra interactions partially corrects alveogenesis in experimental bronchopulmonary
515 dysplasia. *EMBO Mol Med* 11: 2019. doi: 10.15252/emmm.201809448.

516 24. **Sitia R, Rubartelli A.** The unconventional secretion of IL-1beta: Handling a dangerous weapon to optimize
517 inflammatory responses. *Semin Cell Dev Biol* 83: 12-21, 2018. doi: 10.1016/j.semcdb.2018.03.011.

518 25. **Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP,
519 Wyckoff M, Das A, Hale EC, Ball MB, Newman NS, Schibler K, Poindexter BB, Kennedy KA, Cotten CM,
520 Watterberg KL, D'Angio CT, DeMauro SB, Truog WE, Devaskar U, Higgins RD, Eunice Kennedy Shriver
521 National Institute of Child H, Human Development Neonatal Research N.** Trends in Care Practices, Morbidity,
522 and Mortality of Extremely Preterm Neonates, 1993-2012. *JAMA* 314: 1039-1051, 2015. doi:
523 10.1001/jama.2015.10244.

524 26. **Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J.** MiR-214 is an important
525 regulator of the musculoskeletal metabolism and disease. *J Cell Physiol* 234: 231-245, 2018. doi:
526 10.1002/jcp.26856.

527 27. **Syed M, Das P, Pawar A, Aghai ZH, Kaskinen A, Zhuang ZW, Ambalavanan N, Pryhuber G, Andersson S,
528 Bhandari V.** Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. *Nat Commun* 8:
529 1173, 2017. doi: 10.1038/s41467-017-01349-y.

530 28. **van Mil A, Grundmann S, Goumans MJ, Lei Z, Oerlemans MI, Jaksani S, Doevedans PA, Sluijter JP.** MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. *Cardiovasc Res* 93: 655-665, 2012. doi: 10.1093/cvr/cvs003.

531 29. **Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, Guo C.** Interleukin-1beta Promotes Epithelial-Derived Alveolar
532 Elastogenesis via alphavbeta6 Integrin-Dependent TGF-beta Activation. *Cell Physiol Biochem* 36: 2198-2216,
533 2015. doi: 10.1159/000430185.

536 30. **Will JP, Hirani D, Thielen F, Klein F, Vohlen C, Dinger K, Dotsch J, Alejandre Alcazar MA.** Strain-dependent
537 effects on lung structure, matrix remodeling, and Stat3/Smad2 signaling in C57BL/6N and C57BL/6J mice after
538 neonatal hyperoxia. *Am J Physiol Regul Integr Comp Physiol* 317: R169-R181, 2019. doi:
539 10.1152/ajpregu.00286.2018.

540 31. **Xu XH, Zhao C, Peng Q, Xie P, Liu QH.** Kaempferol inhibited VEGF and PGF expression and in vitro
541 angiogenesis of HRECs under diabetic-like environment. *Braz J Med Biol Res* 50: e5396, 2017. doi:
542 10.1590/1414-431X20165396.

543 32. **Yang L, Zhang W, Wang Y, Zou T, Zhang B, Xu Y, Pang T, Hu Q, Chen M, Wang L, Lv Y, Yin K, Liang H,
544 Chen X, Xu G, Zou X.** Hypoxia-induced miR-214 expression promotes tumour cell proliferation and migration by
545 enhancing the Warburg effect in gastric carcinoma cells. *Cancer Lett* 414: 44-56, 2018. doi:
546 10.1016/j.canlet.2017.11.007.

547 33. **Yang WC, Chen CY, Chou HC, Hsieh WS, Tsao PN.** Angiogenic Factors in Cord Blood of Preterm Infants
548 Predicts Subsequently Developing Bronchopulmonary Dysplasia. *Pediatr Neonatol* 56: 382-385, 2015. doi:
549 10.1016/j.pedneo.2015.02.001.

550 34. **Yang Y, Li Z, Yuan H, Ji W, Wang K, Lu T, Yu Y, Zeng Q, Li F, Xia W, Lu S.** Reciprocal regulatory mechanism
551 between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. *Oncogenesis* 8: 50, 2019. doi:
552 10.1038/s41389-019-0151-1.

553 35. **Yue Y, Luo Z, Liao Z, Zhang L, Liu S, Wang M, Zhao F, Cao C, Ding Y, Yue S.** Excessive activation of NMDA
554 receptor inhibits the protective effect of endogenous bone marrow mesenchymal stem cells on promoting
555 alveolarization in bronchopulmonary dysplasia. *Am J Physiol Cell Physiol* 316: C815-C827, 2019. doi:
556 10.1152/ajpcell.00392.2018.

557 36. **Zhang ZQ, Huang XM, Lu H.** Early biomarkers as predictors for bronchopulmonary dysplasia in preterm infants:
558 a systematic review. *Eur J Pediatr* 173: 15-23, 2014. doi: 10.1007/s00431-013-2148-7.

559 37. **Zhang ZQ, Zhong Y, Li XX, Huang XM, Du LZ.** The effect of anti-placental growth factor antibody treatment
560 on abnormal development of pulmonary vasculature and alveoli in hyperoxia-exposed neonatal rats. *Brazilian
561 Journal of Medical and Biological Research* Minor and Accept: 2019.

562 38. **Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P.** The role of miR-214 in cardiovascular
563 diseases. *Eur J Pharmacol* 816: 138-145, 2017. doi: 10.1016/j.ejphar.2017.08.009.

564

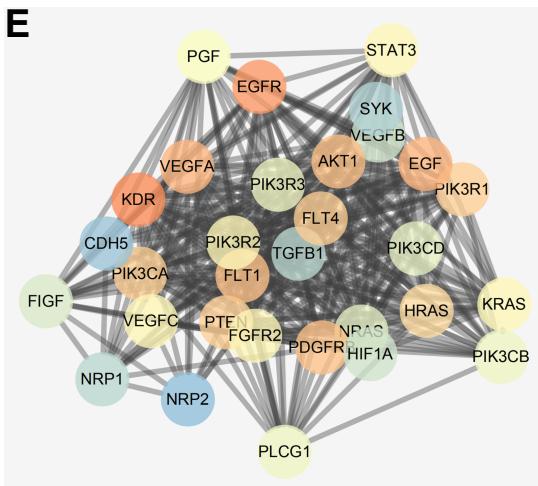
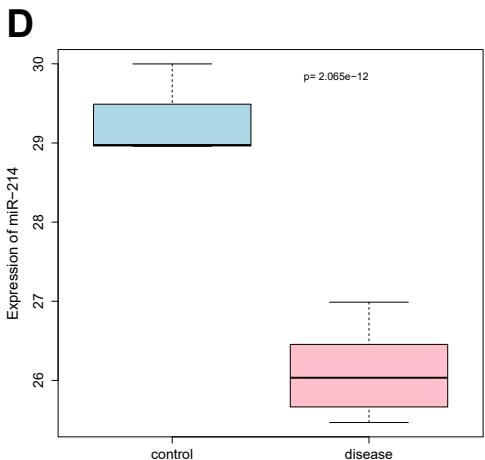
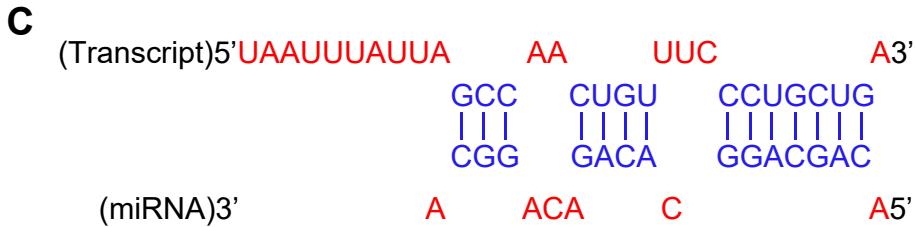
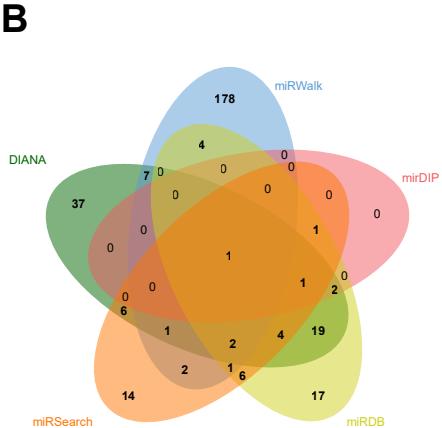
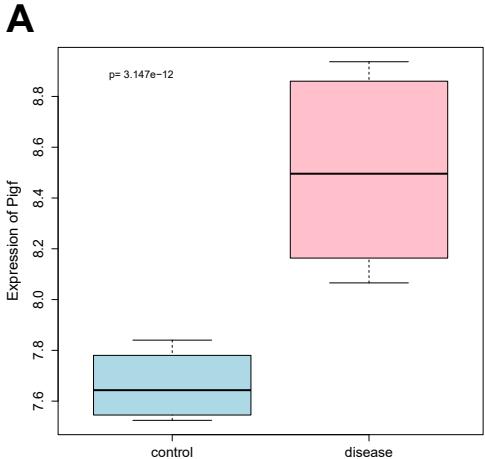
565 **LEGENDS**

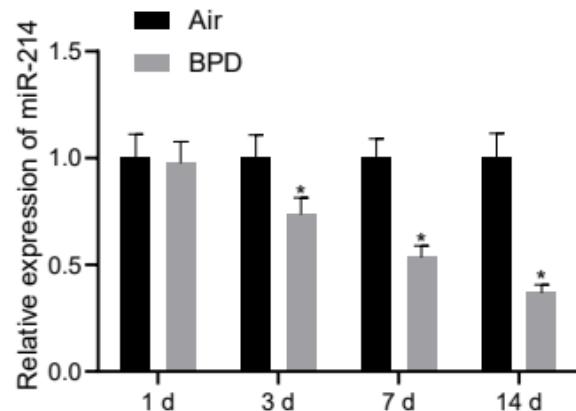
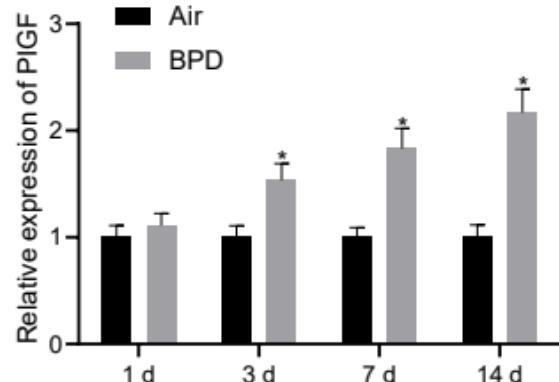
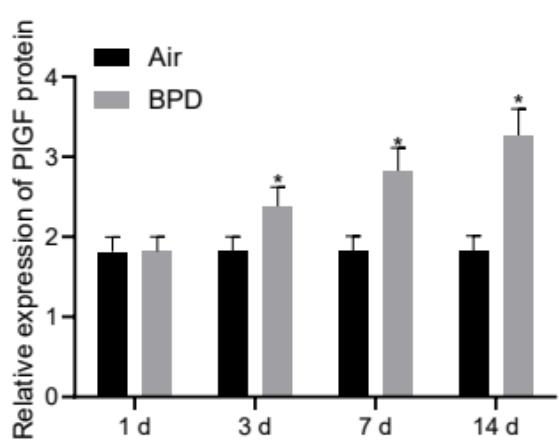
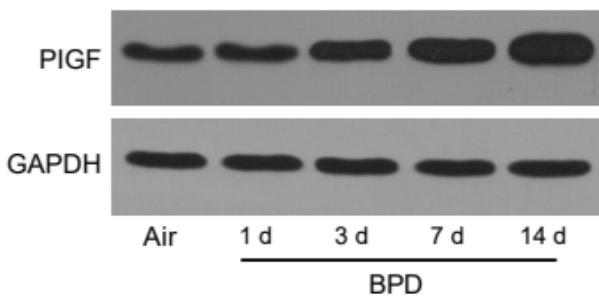
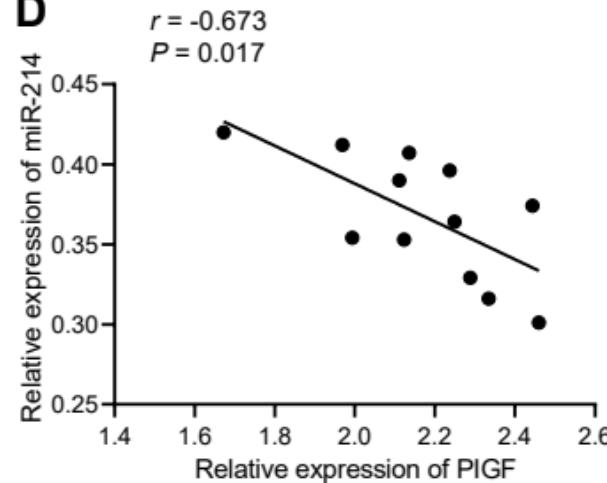
566 **Fig. 1** PlGF/miR-214/STAT3 axis is predicted to be involved in BPD. *A*, PlGF expression in the
567 dataset GSE25293-GPL1261, in which the blue box on the left indicates the expression of normal
568 samples, and the red box on the right indicates the expression of BPD samples. *B*, The upstream
569 miRNAs of PlGF predicted by DIANA Tools, miRWALK, mirDIP, miRDB and miRSearch databases.
570 *C*, The binding site of PlGF and miR-214 predicted by DIANA Tools. *D*, miR-214 expression in the
571 dataset GSE25293-GPL11199, in which the blue box on the left indicates the expression of normal
572 samples, and the red box on the right indicates the expression of BPD samples. *E*, PPI analysis of
573 PlGF (PGF), in which the redder gene sphere indicates greater importance, and the bluer gene
574 sphere indicates a lower importance.

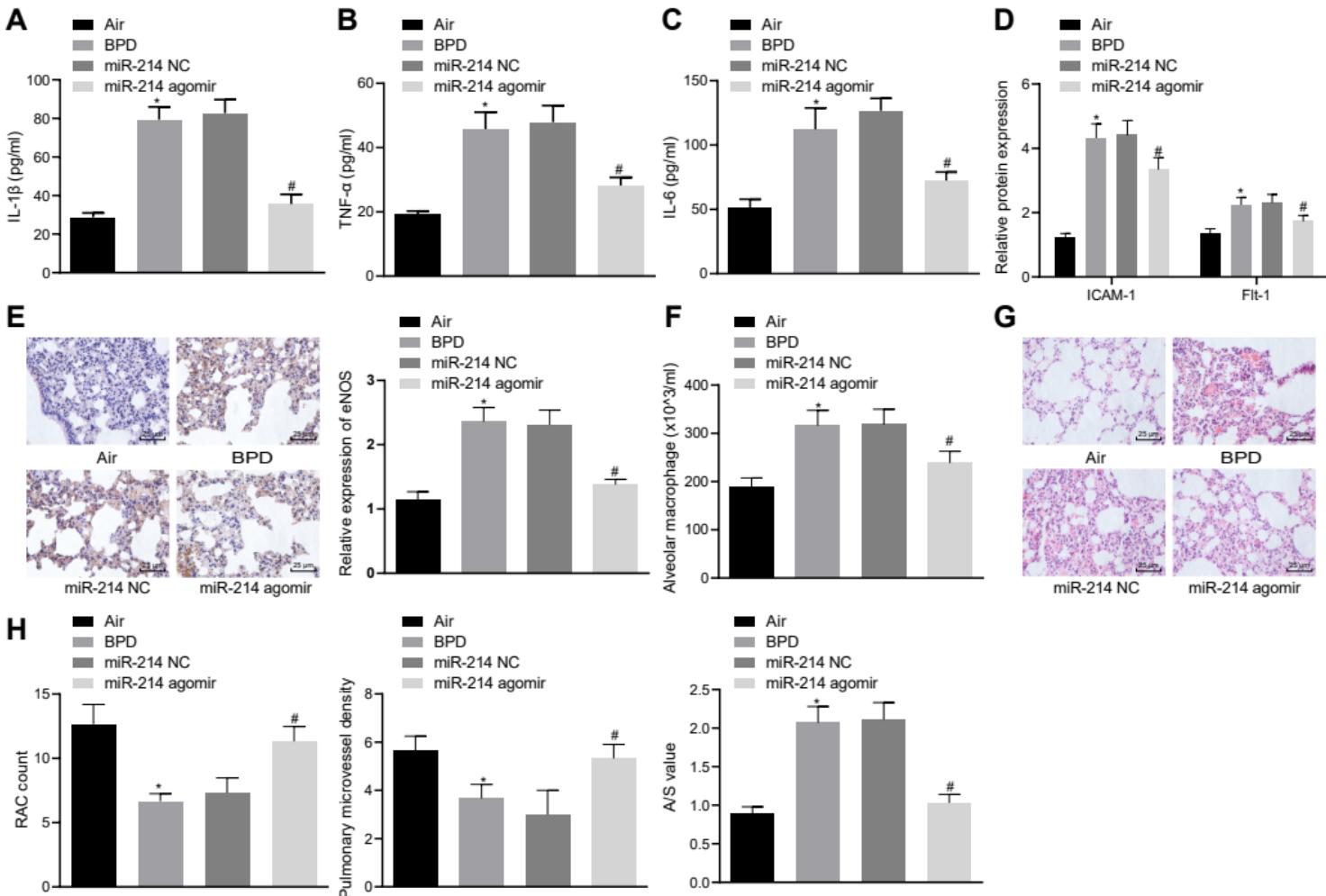
575 **Fig. 2** Decreased miR-214 expression and increased PlGF expression are found in the lung tissues
576 of neonatal rats with BPD. *A*, miR-214 expression in neonatal rats with BPD detected by RT-qPCR
577 normalized to U6. *B*, mRNA level of PlGF in neonatal rats with BPD detected by RT-qPCR
578 normalized to GAPDH. *C*, Western blot analysis of PlGF protein expression in neonatal rats with
579 BPD normalized to GAPDH. *D*, Correlation analysis of miR-214 and PlGF expression. The data
580 were measurement data and expressed as mean \pm standard deviation. * $p < 0.05$ vs. neonatal rats
581 exposed to air. Data comparisons at different time points were performed by repeated measures
582 ANOVA, followed by a Bonferroni post hoc test for multiple comparisons. $n = 12$.

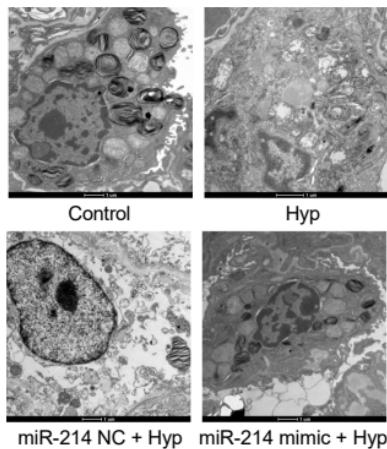
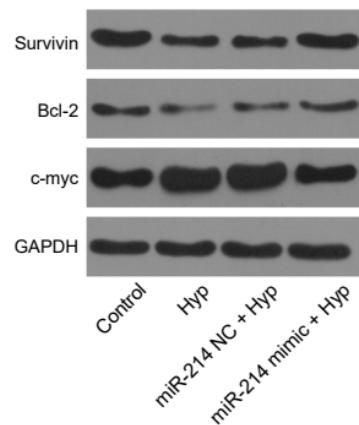
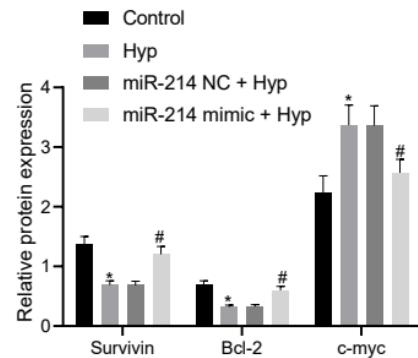
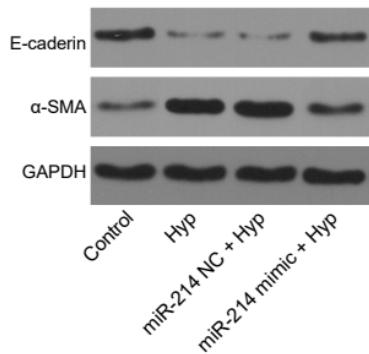
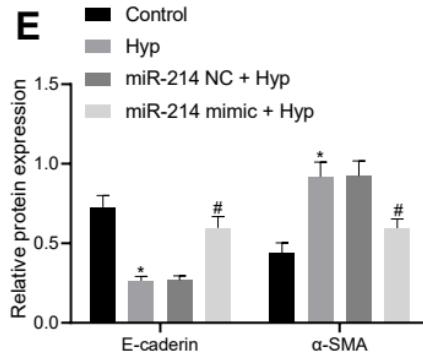
583 **Fig. 3** Overexpressed miR-214 represses pulmonary angiogenesis and alveolarization in neonatal
584 rats with BPD. BPD neonatal rats were injected with miR-214 NC and miR-214 agomir. *A-C*,
585 ELISA detection of the expression of inflammatory factors IL-1 β , TNF- α and IL-6 in rats. *D*,
586 Detection of ICAM-1 and Flt-1 levels in rats by ELISA. *E*, Immunohistochemistry of eNOS
587 expression in pulmonary microvascular endothelium of rats ($\times 400$). *F*, Giemsa staining of the
588 number of macrophages in rats. *G*, HE staining of pulmonary microvascular ($\times 400$). *H*, HE staining
589 showing the number of alveoli, pulmonary microvessel count, and the growth of alveolar. The data
590 were measurement data and expressed as mean \pm standard deviation. * $p < 0.05$ vs. neonatal rats

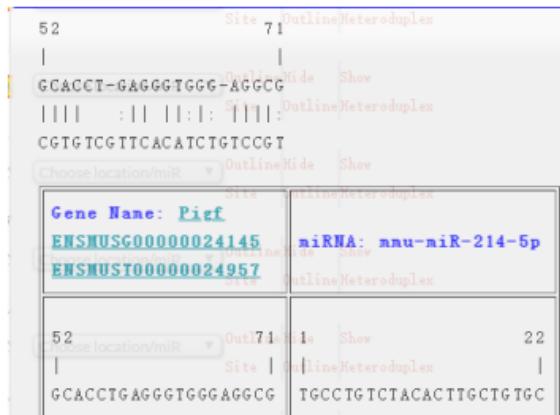
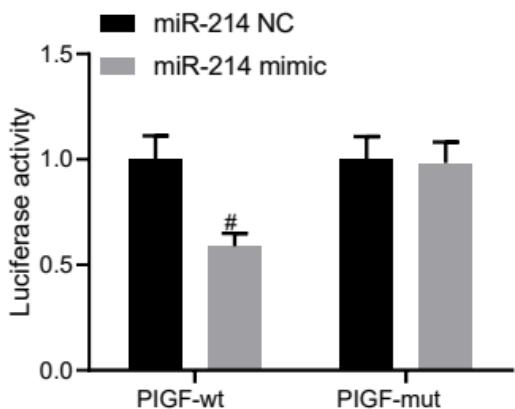
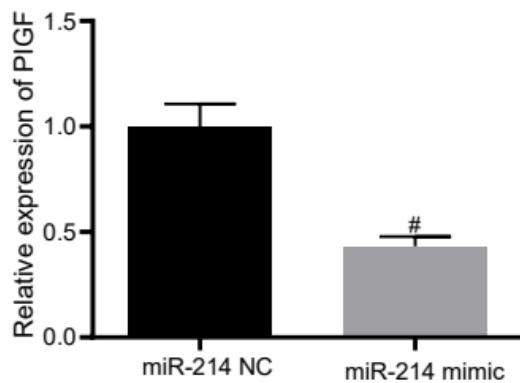
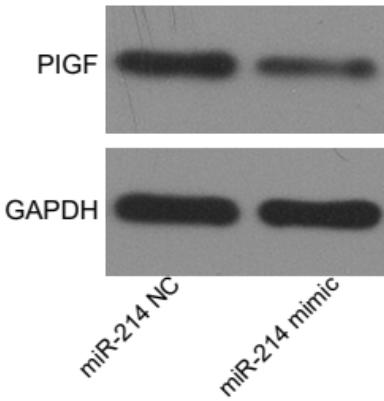
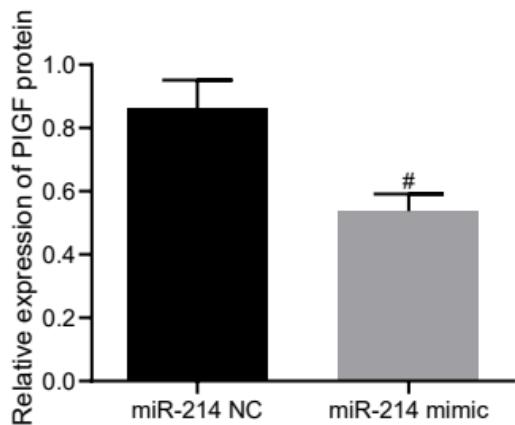
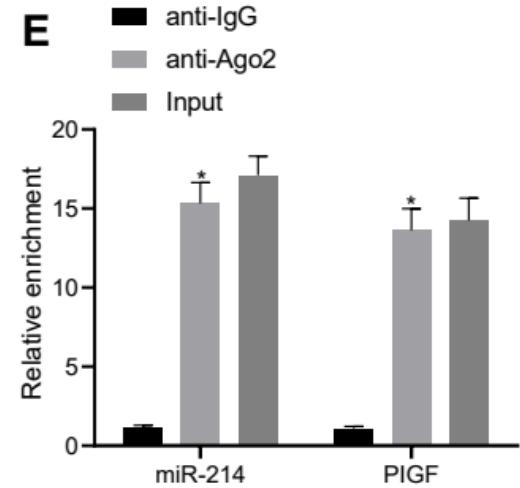
591 exposed to air. # $p < 0.05$ vs. BPD neonatal rats treated with miR-214 NC. Data comparisons among
592 multiple groups were performed using one-way ANOVA and Tukey's for post hoc test, and $n = 12$.
593 **Fig. 4** miR-214 overexpression exerts positive effects on the embryonic pulmonary epithelial cells
594 of rats with BPD. Hyperoxic pulmonary epithelial cells were transfected with miR-214 NC or
595 miR-214 mimic. *A*, The ultrastructure of alveolar epithelial cells under a transmission electron
596 microscope ($\times 10000$). *B-C*, Western blot analysis of Survivin, Bcl-2 and c-myc proteins in
597 embryonic pulmonary epithelial cells. *D-E*, Western blot analysis of E-cadherin and α -SMA
598 proteins in embryonic pulmonary epithelial cells. The data were measurement data and expressed as
599 mean \pm standard deviation. * $p < 0.05$ vs. pulmonary epithelial cells exposed to air. # $p < 0.05$ vs.
600 hyperoxic pulmonary epithelial cells treated with miR-214 NC. Data comparisons were performed
601 by one-way ANOVA, followed by a Tukey's post hoc test for multiple comparisons and the
602 experiment was repeated three times.

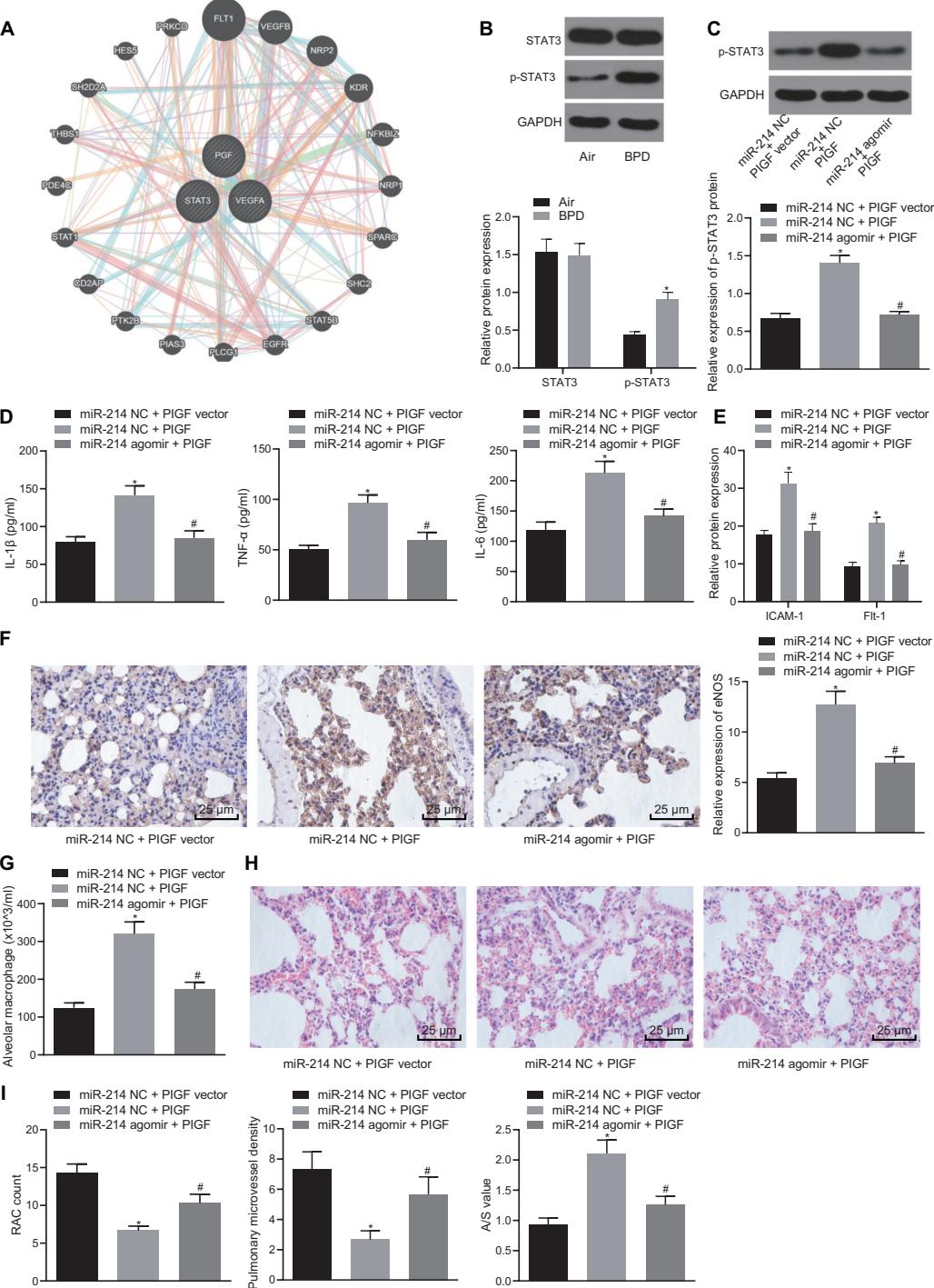





603 **Fig. 5** PIgf is identified to be a target of miR-214. *A*, The predicted binding sites of miR-214 and
604 PIgf. *B*, Dual luciferase reporter gene assay analysis of the binding of miR-214 to PIgf. *C*,
605 RT-qPCR assay detection of mRNA level of PIgf after miR-214 overexpression. *D*, Western blot
606 analysis of PIgf after miR-214 overexpression. *E*, RIP detection of the binding percentage of
607 miR-214 and PIgf to Ago2 normalized to IgG binding. The data were measurement data and
608 expressed as mean \pm standard deviation. * $p < 0.05$ vs. anti-IgG. # $p < 0.05$ vs. cells transfected with
609 miR-214 NC. An independent sample *t*-test was used for comparison between two groups. Data
610 comparisons among multiple groups were performed by one-way ANOVA, followed by a Tukey's
611 post hoc test for multiple comparisons. The experiment was repeated three times.

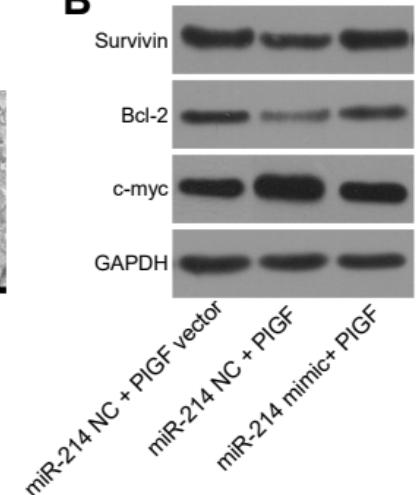
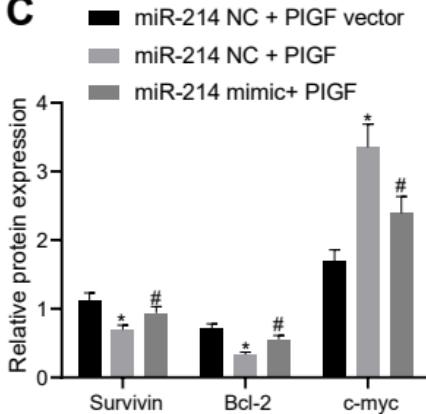
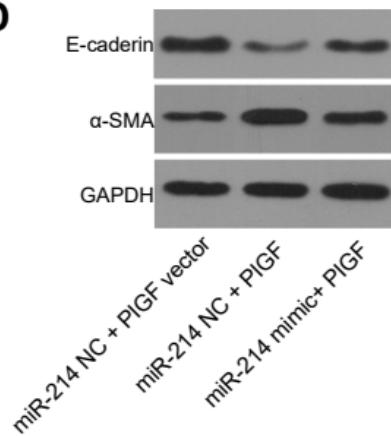
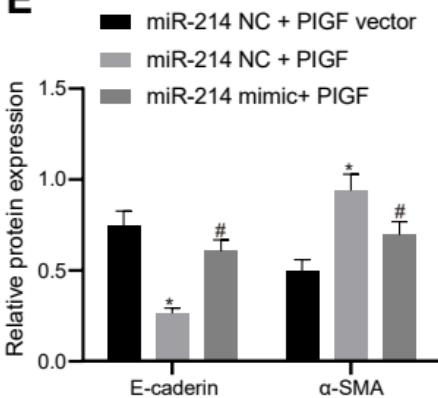





612 **Fig. 6** Overexpressed miR-214 blocked the effect of activated STAT3 signaling pathway on
613 pulmonary angiogenesis and alveolarization by inhibiting PIgf in neonatal rats with BPD. *A*, The
614 KEGG and GeneMANIA database were used to predict the downstream regulatory pathways of
615 PIgf. *B*, Western blot analysis of the activation of STAT3 signaling pathway in BPD neonatal rats
616 normalized to GAPDH. The neonatal rats with BPD were then respectively treated with miR-214

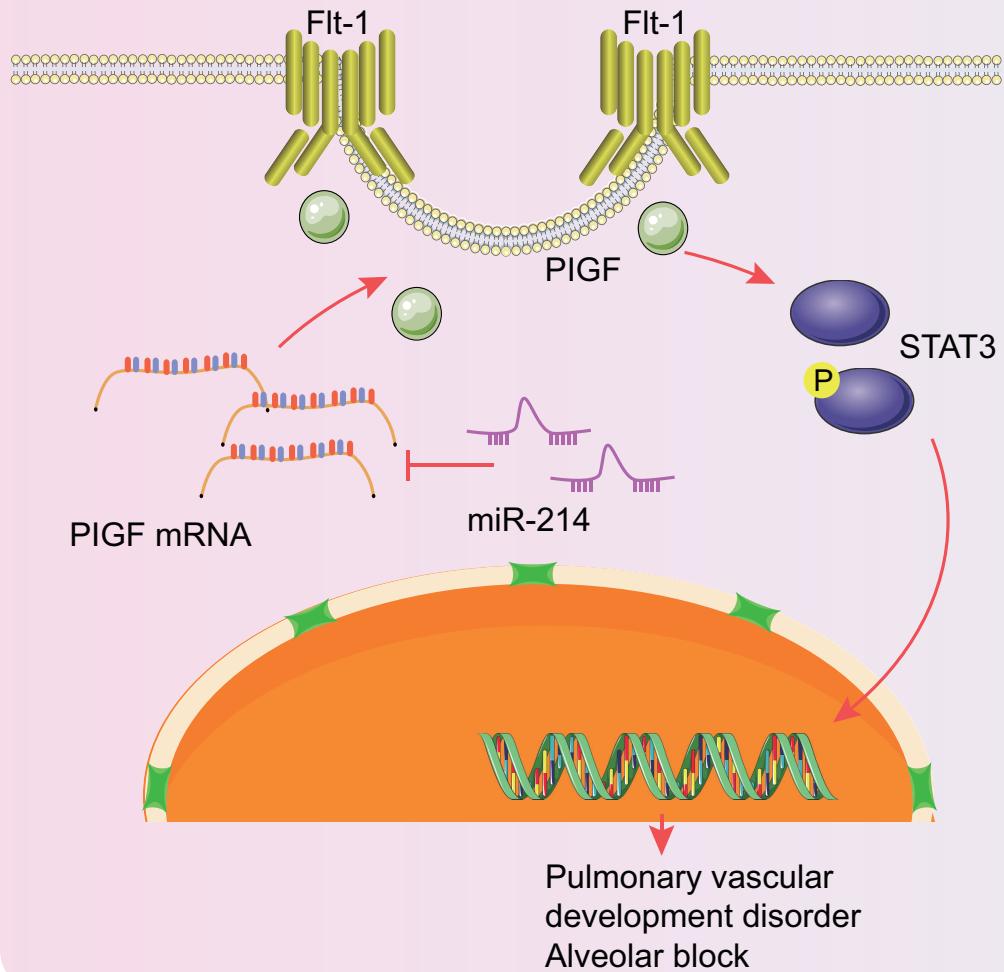

617 NC + PI GF vector, miR-214 NC + PI GF, or miR-214 agomir + PI GF. *C*, Western blot analysis of the
618 expression of phosphorylated STAT3 in BPD neonatal rats normalized to GAPDH. *D*, Detection of
619 the levels of inflammatory factors IL-1 β , TNF- α and IL-6 by ELISA. *E*, Detection of levels of
620 ICAM-1 and Flt-1 by ELISA. *F*, Immunohistochemistry analysis of eNOS expression (\times 400). *G*,
621 Giemsa staining detection of the number of macrophages. *H*, HE staining of the formation of
622 pulmonary microvascular (\times 400). *I*, HE staining of the number of alveoli and pulmonary
623 microvessel, and alveolar growth. The data were measurement data and expressed as mean \pm
624 standard deviation. * $p < 0.05$ vs. BPD rats treated with miR-214 NC + PI GF NC. # $p < 0.05$ vs.
625 BPD rats treated with miR-214 NC + PI GF. An independent sample *t*-test was used for comparison
626 between two groups. Data comparisons among multiple groups were performed by one-way
627 ANOVA, followed by a Tukey's post hoc test for multiple comparisons. n = 12.






628 **Fig. 7** Overexpressed miR-214 blocked the effect of activated STAT3 signaling pathway on the
629 bronchial embryonic pulmonary epithelial cells by inhibiting PI GF. *A*, The ultrastructure of alveolar
630 epithelial cells under a transmission electron microscope (\times 10000). *B-C*, Western blot analysis of
631 the expressions of apoptotic factors Survivin, Bcl-2 and c-myc. *D-E*, Western blot analysis of the
632 expression of E-cadherin and α -SMA in embryonic pulmonary epithelial cells. The data were
633 measurement data and expressed as mean \pm standard deviation. * $p < 0.05$ vs. the rats transfected
634 with miR-214 NC and PI GF NC. # $p < 0.05$ vs. the rats transfected with miR-214 NC and PI GF.
635 Data comparisons were performed by repeated measures ANOVA, followed by a Tukey's post hoc
636 test for multiple comparisons. The experiment was repeated three times. STAT3, signal transducer
637 and activator of transcription 3; PI GF, placental growth factor.







638 **Fig. 8** A schematic diagram illustrating the role of the miR-214-PI GF-STAT3 regulatory network in
639 preterm infants with BPD. miR-214 can inhibit the activation of STAT3 signaling pathway by
640 inhibiting the transcription of its downstream target gene PI GF, ultimately impeding pulmonary
641 angiogenesis and alveolarization in preterm infants with BPD. BPD, bronchopulmonary dysplasia;
642 STAT3, signal transducer and activator of transcription 3; PI GF, placental growth factor.








A**B****C****D**



A**B****C****D****E**

A**B****C****D****E****E**

A**B****C****D****E**

Table 1. Primer sequences of RT-qPCR

Gene	Primer sequences
GAPDH	F: TCTGATTGGTCGTATTGGG
GAPDH	R: GGAAGATGGTGATGGGATT
U6 F	F: CTCGCTTCGGCAGCACA
U6 R	R: AACGCTTCACGAATTCGCGT
hsa-miR-214	F: CACCTTCTCCCTTCCCCTACTCTCC
hsa-miR-214	R: TTTCATAGGCACCACACTCACTTTAC
mmu-miR-214	F: ACACTCCAGCTGGGACAGCAGGCACAGACA
mmu-miR-214	R: TGGTGTCTGGAGTCG
PIGF	F: CGGAATTCCACCATGCCGGTCATGAGGCTGTTCCCT
PIGF	R: CCAGATCTTACCTCCGGGAAACAGCATCGCC
eNOS	F: AGACGGACCCAAGTTTCCTC
Enos	R: TCCCGAGCATCAAATACCTG
Bcl-2	F: TTTCTCCTGGCTGTCTCTGAA
Bcl-2	R: TGTGTGTGTGTGTGTTCTGCT
c-myc	F: ACAGCGTCTGCTCCACCT
c-myc	R: CTGCGTAGTTGTGCTGATGT

Note: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PIGF, placental growth factor (PIGF); eNOS, endothelial nitric-oxide synthase; F, forward; R, reverse.