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abstract
Animal behavior is highly structured. Yet, structured behavioral patterns – or “sta-
tistical ethograms” – are not immediately apparent from the full spatiotemporal
data that behavioral scientists usually collect. Here, we introduce a framework to
characterize quantitatively rodent behavior during spatial (e.g., maze) navigation, in
terms of movement building blocks or motor primitives. The hypothesis underlying
this approach is that rodent behavior is characterized by a small number of mo-
tor primitives, which are combined over time to produce open-ended movements.
We introduce a machine learning methodology – dictionary learning – which per-
mits extracting motor primitives from rodent position and velocity data collected
during spatial navigation and use them to both reconstruct past trajectories and
predict novel ones. Three main results validate our approach. First, our method
reconstructs rodent behavioral trajectories robustly from incomplete data, outper-
forming approaches based on standard dimensionality reduction methods, such as
principal component analysis. Second, the motor primitives extracted during one
experimental session generalize and afford the accurate reconstruction of rodent
behavior across successive experimental sessions in the same or in modified mazes.
Third, the number of motor primitives that our method associates to each maze
correlates with independent measures of maze complexity, hence showing that the
motor primitives formalism is sensitive to essential aspects of task structure. The
framework introduced here can be used by behavioral scientists and neuroscien-
tists as an aid for behavioral and neural data analysis. Indeed, the extracted motor
primitives enable the quantitative characterization of the complexity and similarity
between different mazes and behavioral patterns across multiple trials (i.e., habit
formation). We exemplify some uses of the method to control for confounding ef-
fects (e.g., of maze complexity on behavior and reward collection), analyze habitual
or stereotyped behavior, classify or predict behavioral choices as well as place and
grid cell displacement in new mazes. Keywords: maze navigation; spatial trajecto-
ries; motor primitives; ethograms
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1 introduction
During cognitive tasks, such as spatial navigation, animals exhibit highly struc-
tured behavior. These behavioral patterns or “motifs” can indicate important latent
dimensions, such as task complexity (e.g., movement variability) or the amount of
training that the animal has received (e.g., movement stereotypy). Yet, a standard
methodology to extract structured behavioral patterns from the set of data (e.g.,
position and velocity) that behavioral scientists usually collect during spatial navi-
gation is still lacking.

Here we present a computational framework that characterizes the latent struc-
ture – or a “statistical ethogram” – of rodent movement dynamics during spatial
navigation, in terms of movement building blocks or motor primitives. The idea
that motor control uses a combination of motor primitives is widely accepted in
computational neuroscience [1, 2, 3, 4, 5, 6] but its application for the study of ro-
dent spatial navigation is less common. An assumption of this approach is that
even sophisticated (e.g., spatial) movements can be characterized in terms of a lim-
ited basis of dynamic motor primitives, which combine over time – such that, for
each time frame, one or more motor primitives can be active. In other words, the
brain may adapt motor primitives as fundamental units to organize complex (spa-
tial or other) movements in time. Therefore, inferring the animal’s motor primitives
during movements can help understanding how the brain organizes complex be-
havioral patterns [7].

There is also a second, more practical reason to use the motor primitives approach
to study animal movements (even if ultimately the brain uses a different organiza-
tion). Characterizing animal behaviour in terms of its underlying motor primitives
can be more practical than using the full spatiotemporal [x(t),y(t)] data and more
indicative of underlying regularities (e.g., behavioural stereotypy), as demonstrated
by the analysis of behavioral motifs in various animal, species such as Caenorhabdi-
tis elegans [8], fruit fly [9] and rat [10]. Although previous work has analyzed behav-
iors such as path stereotypy in terms of path similarity (e.g. [11]), such descriptive
approaches cannot generate novel data. More recent unsupervised learning meth-
ods [12] or related approaches [13, 14, 15, 16] are more similar to our approach, but
have not yet been applied to structured maze data.

In this study, we illustrate a novel computational approach to learn a dictionary
(called V) of motor primitives from rodent trajectory data; and validate the ap-
proach by showing that it affords an accurate reconstruction of (novel) trajectories.
Figure 1 shows a schematic illustration of the modeling methodology used in this
paper. First, we extract spatial (x,y) and velocity (x,y) data from animal trajectories
during spatial navigation, see Figure 1a. Second, we use these data to learn a dictio-
nary (V) of motor primitives, using a dictionary learning [17, 18, 19] approach (see the
Methods section). In this approach, primitives are spatiotemporal patterns that are
recurrent in the animal’s behavior and thus permit reconstructing it in a parsimo-
nious way (e.g., one can reconstruct a large dataset of trajectories as a combination
of a small number of motor primitives). Figure 1b shows a sample dictionary of
12 primitives extracted from data (note that most emerged primitives only last few
seconds, see below). Here, only the spatial (not the velocity) components of the
primitives are shown. These primitives can then be chained to simulate spatial tra-
jectories, see Figure 1c for an example in an open arena. Furthermore, they can be
used to “reconstruct” actual animal trajectories, see Figure 1d. In this latter case,
by varying the parameters of the dictionary learning method – i.e., sparsity and dictio-
nary size – it is possible to search for the best data fit / reconstruction; and therefore
analyze which motor primitives (or their combination) better explain the trajectory
data. The relevant parameters are dictionary size (i.e., how many primitives a dictio-
nary can include) and two kinds of sparsity. The former, dictionary sparsity, implies
that the same motor primitive should only be active for a limited portion of the
whole trajectory – in this study, lasting a maximum of 10 seconds. The second, co-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.967489doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.967489
http://creativecommons.org/licenses/by-nc-nd/4.0/


introduction 3

efficient sparsity, implies that at each time step, movement can be reconstructed by
superimposing at most few primitives – and possibly just one. Please refer to the
Methods section for additional details.

The possibility to model, predict and reconstruct spatial trajectories in terms of
their underlying motor primitives opens the doors to a number of potential appli-
cations of the framework, including the possibility to discover sequential structure,
repeating patterns and stereotypy in behavior, and predict animal choices – which
we discuss and exemplify in the final section.
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Figure 1: Schematic illustration of the approach. Panel 1a: the rodent-centered coordinate
system used in as input for the dictionary learning model. The dotted black line
is the actual animal trajectory. For each time, we extracted from data a 2-D (x, y)
spatial position. Note that our reference system is not anchored to the maze. Rather,
at each time point, x represents the last direction of the animal. The resulting,
animal-centered reference system permits deriving different primitives for different
orientations of the animal. Furthermore, we extracted animal velocity in x and y
dimensions. Panel 1b: Twelve sample motor primitives extracted from navigation
data. Panel 1c: the same motor primitives used to generate (simulate) trajectories in
an open arena. Panel 1d: example reconstruction of real rodent data using motor
primitives (here, only the velocity in x and y axes is reconstructed). Blue is the
actual velocity profile over time, red is the reconstructed profile. See the main text
for explanation.
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2 results

2.1 Dataset

We conducted a series of experiments to validate our methodology, using a dataset
of rodent movements collected in Van der Meer Lab (Dartmouth College). The
dataset includes data from 3 rats (R01, R02, R03). Each rat experienced a different
maze every day, for a total of 8 mazes / days. Maze navigation consisted of shuttling
repeatedly between two goal (reward) locations, placed at the ends of a U-shaped
track. For each maze, data were collected in three different phases. In the first
and second phases, the animal was able to navigate only the U-shaped part of the
track. In the third phase, the animal had access to two new paths in the same maze
– one of which was a shortcut between the two reward locations, and the other a
dead end. Figure 2 shows the eight mazes and the trajectories of animal R01 in the
three phases: green (phase 1), yellow (phase 2) and grey (phase 3). Table 1 shows
the overall duration of the navigation episodes of animal R01 (across multiple trials,
see below) for each phase and day.
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Figure 2: Dataset: trajectories of animal R01 across 8 days, 3 phases every day. See the main
text for explanation.

R01 (min) Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

Phase1 10.08 10.05 8.02 8.13 9.88 8.48 8.41 8.10

Phase2 20.33 20.37 15.02 20.55 20.33 21.12 20.24 20.04

Phase3 25.18 46.10 45.05 42.68 52.21 45.82 40.43 55.04

Table 1: Duration in minutes of the different phases, rat R01
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2.2 Experimental results, animal R01

In all the analyses below, we focus on trajectory data of animal R01 for illustrative
purposes; see the Supplementary Material for data on animals R02 and R03, which
show the same pattern of results as animal R01.

2.2.1 Building the dictionary of Primitives using SRSSD

The methodology to build and select the dictionary of primitives to be used in our
subsequent analyses includes three main steps.

The first (preparation) step of our methodology consists in dividing the database
of rat trajectory data into three sets: a training set, which includes data from phases
1, 2 and 3 of day 1; a validation set and a test set, both including (non-overlapping)
data from phase 3 of days 1 to 8.

To obtain the actual training, validation and test sets, we split the aforementioned
rat trajectories into “patches” (i.e., portions of animal trajectories in x,y), lasting a
maximum of 5 seconds each. Then, we randomly selected 10000, non-overlapping
patches to compose each of the three sets. Patches with missing data (e.g., cases in
which the animal goes out of the video camera frame) were excluded.

The complexity of these trajectory data can be appreciated by considering that a
principal component analysis (PCA) shows that 58 principal components are neces-
sary to explain about 90% of their variance, see Figure 3.
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Figure 3: Explained Variance: In the dataset, 58 principal components are necessary to ex-
plain about 90% of the variance of the data.

SRSSD procedure depends on two parameter of sparsity (dictionary sparsity and
coefficient sparsity) and outputs the best couple V (dictionary of motor primitives)
and U (coefficients) that reconstruct the data (see Algorithm 1). Thus, the second
(learning) step of the methodology consists in deriving candidate SRSSD dictionar-
ies of motor primitives, which reconstruct accurately the training set data. In this
step, we select the best 600 (6x10x10) candidate dictionaries) i.e., the best 600 dic-
tionaries obtained in reconstructing training data by varying 6 different dictionary
sizes (with 25, 50, 75, 100, 125, and 150 motor primitives, respectively), 10 levels of
dictionary sparsity and 10 levels of coefficient sparsity,

To measure how well the 600 candidate SRSSD dictionaries reconstructed the
training set data, we adopted a methodology that is analogous to the missing pixel
method: we canceled out some parts (from 10% to 90%) of the trajectories that com-
pose the training set and evaluated how well the learned dictionaries permit to
reconstruct these missing parts (see the Methods section for an explanation of how
the reconstruction error RMS is calculated). Figure 4(left) shows that the solutions
found by SRSSD (for 100 dictionaries of size 150, i.e., the size that gave the best re-
sults) during this learning phase cover extensively the space of solutions, suggesting
a good choice of parameters.
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Consequently, in the third (validation) step of the methodology we select the
best 30 SRSSD dictionaries V amongst the aforementioned 600 candidates. To do
this we use sparse coding reconstruction (see Algortihm 2) fixing V and obtaining
the couple V and U that better reconstruct the validation set data now varying 5

levels of “noise” and 10 levels of coefficient sparsity. For this, we calculated the
reconstruction error of the dictionaries constructed during the previous (learning)
step and of PCA, on the validation set. While we conducted the validation on all the
600 dictionaries considered above, we show the results of the 100 dictionaries of size
150 (i.e., the size that gave the best results during the learning step). Figure 4(right)
shows the reconstruction results in the validation phase of these 100 dictionaries,
with 10 levels of coefficient sparsity and 5 levels of “noise” (0.1, 0.3, 0.5, 0.7 and 0.9)
– corresponding to the percentage of “missing” trajectory data (10%, 30%, 50%, 70%
and 90%) to be reconstructed.
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Figure 4: SRSSD method applied to navigation data from animal R01. Left: learning phase.
Right: validation phase. Results are shown for the best dictionary (i.e., having
lower RMS in the test set / validation phase) of 150 motor primitives, with 10

values of coefficient sparsity (found during the learning phase) and 5 levels of
noise (0.1, 0.3, 0.5, 0.7, 0.9).

The results of the validation step are shown in Figure 5. In the figures, PCA
results are shown with a horizontal red line, whereas results using various dictio-
naries are shown in blue. The PCA results were computed by comparing the recon-
struction error with various principal components (25, 50, 75, and 100) and selecting
the best (i.e., with 100 principal components). The comparison illustrates that for
each level of noise, various dictionaries have lower reconstruction error (RMS) than
PCA. We found that higher noise levels decrease reconstruction accuracy (which
is expected), but also that SRSSD is more robust and outperforms PCA across all
levels of noise, see Figure 6.

We use the best 30 SRSSD dictionaries for our subsequent analyses.

2.2.2 Reconstruction across consecutive days using the best 30 SRSSD dictionaries

We tested whether the best 30 SRSSD dictionaries V identified using the above pro-
cedure afford an accurate reconstruction of novel data, from the test set. More specif-
ically, we were interested in assessing whether a learning procedure that only con-
sidered data from day 1 (i.e., training set) permitted reconstructing non-overlapping
data from the third phases of days 1-8 in our dataset (i.e., test set). Note that the rea-
son why the test set only includes the third phases of each day is that this is when, in
the rodent experiment, novel portions of the maze appear. Data on the third phases
of each day are this ideal to test whether our approach generalises to novel and un-
foreseen situations. Furthermore, we asked whether the motor primitives required
to reconstruct animal trajectories in a given day capture essential characteristics of
the day’s task, such as maze complexity or stereotypy of behaviour.
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Figure 5: Comparison between the reconstruction (RMS) error of SRSSD (blue dots) and PCA
(red line) across various levels of noise. Each figure shows 100 dictionaries found
during the learning step. We remind that each dictionary has 2 kinds of spar-
sity: dictionary sparsity (which is fixed during the learning phase) and coefficient
sparsity (which is varied here); see the Methods section. Here, each of the 100

dictionaries (with its fixed atom sparsity) is tested with 10 different values of coef-
ficient sparsity. Hence, for each figure, each of the 1000 asterisks corresponds to a
unique combination of dictionary and coefficient sparsity. The reconstruction error
for all the asterisks that appear under the red line is better than PCA.
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Figure 6: Increment of performance using the SRSSD approach over the PCA approach, with
five different levels of noise.
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Figure 7 shows the reconstruction results for the best 30 SRSSD dictionaries.
There are several elements to be appreciated. First, reconstruction error is lower
in days 1, 2 and 8. The low reconstruction error in day 8 indicates that the method
generalises well across distal days. The visual inspection of the eight mazes sug-
gests the importance of spatial similarity between mazes (e.g., mazes 1 and 8 are
rather similar). Furthermore, it emerges from the results that days 4 and 8 are those
with higher coefficient sparsity, implying that less motor primitives are required for
a correct reconstruction.
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Figure 7: Reconstruction across 8 days (after learning only from data of day 1. Noise is 0.5
and the best 30 SRSSD dictionaries found on day 1 are used. (a): RMS Error. (b): co-
efficient sparsity. (c) dictionary sparsity. (d) Baseline performance: reconstruction
of Phase 1.

To understand why this is the case, we conducted a further analysis of task de-
mands and complexity, using various measures, see Figure 8. The first measure we
considered is spatial complexity of the maze, which we assessed by dividing the
maze in bins, counting how many bins the animal occupies for each trial of phase 3,
and then averaging (i.e., dividing this number by the number of trials); see the Sup-
plementary Material for Figures illustrating the results of this process. High spatial
complexity (or entropy) implies that the animal has explored and occupied all the
available positions, while low spatial complexity means that the animal followed
stereotyped trajectories. Note that there are multiple ways to construct spatial com-
plexity [20, 21]. In our approach, complexity depends on behavior (similar to [22]) –
or better, on a graph constructed on the basis of the actual trajectories of the animal,
rather than a fixed graph that only includes spatial dependencies.

As shown in Figure 8a, maze complexity is lower in days 4 and 8. We next consid-
ered how many times the animal collected a reward (Figure 8b), but this measure
does not correlate with measures extracted from SRSSD. Finally, we considered the
mean time the animal needed to complete a trial, see Figure 8c. Required time is
lower in days 8 and 4 – which was expected, given that the previous spatial com-
plexity analysis revealed more stereotyped behavior in the same days. Overall, this
analysis reveals that maze complexity in days 4 and 8 is lower, and the animal be-
havior is faster. It thus supports the idea that the motor primitives formalism we
adopted captures essential task components such as its complexity.
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Figure 8: Measures of task demands and complexity. (a): Spatial complexity of the maze.
(b) Rewards collected. (c) Average time required to complete a trial and secure a
reward.

2.3 Example applications of the method in the generation, description and clas-
sification of behavior

Animal behavior is highly structured. Behavioral scientists and neuroscientists often
deal with complex datasets of behavioral data – e.g., the full spatiotemporal x(t),
y(t) data – that are not convenient for asking questions like: how stereotyped is the
animal’s behavior? How well can future behavior be predicted by past behavior?
How does behavior evolve with experience on the task, within and across sessions?

One appeal of the motor primitive code is that it provides a description of rat
behavior that is more compact than the full spatiotemporal [x(t),y(t)] data yet richer
than a simple mono-dimensional descriptor [e.g., speed(t)] – and lends itself to a
number of applications. Our method based on motor primitives permits estimating
the building blocks of a “computational ethogram” that captures the main behav-
ioral regularities (i.e., repeated spatiotemporal sequences that are highly predictable
within-sequence) and the temporal dependencies between them (e.g., transitions or
contingencies between sequences). This method can be used in a number of ways.

2.3.1 Generating simulated behavior on novel mazes and associated neuronal re-
sponses

One possible application would be generating simulated behavior on various novel
mazes. Simulated trajectories can be helpful in estimating the to-be-expected com-
plexity of behavioral data. Furthermore, they can be fed as input to other compo-
nents to predict hippocampal place cell activity, thus affording power analyses. One
example is shown in Figure 9. We used the computational models of [23, 24] to simu-
late the firing of example grid and place cells during uniform exploration (Panels 9c
and 9e, respectively) versus partial exploration of the environment following a sim-
ulated trajectory (Panels 9d and 9f, respectively). This example illustrates the possi-
bility to use simulated trajectories to predict neuronal firings in novel environments.
Note that in the above examples, the trajectories are generated by chaining motor
primitives randomly, mimicking uniform exploration. Future studies may consider
extensions of this method that learn (flat, hierarchical or context-dependent) transi-
tion probabilities between primitives and can generate more contextually-adequate
trajectories.

2.3.2 Assessing behavioral stereotypy after learning.

Another application is testing stereotypy of behavior (as a possible index of habiti-
zation), by looking at coefficient sparsity during learning. Stereotypy of behavior
can be tested by considering whether coefficient sparsity increases during learning,
indexing the fact that the animal is using fewer primitives (and hence a more re-
stricted and stereotyped behavioral repertoire). As an example of this analysis, we
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Figure 9: Graphical illustration of potential applications of the analysis. Motor primitives
extracted from one maze (e.g., Panel 9a can be used to simulate animal behavior
in novel mazes, e.g. the open arena shown in Panel 9b. Furthermore, one can
simulate grid cells (Panel 9d) and place cells (Panel 9f) that would be expected if
the animal follows the simulated trajectories of Panel 9b, as opposed to those that
would be expected if the animal explores the open arena uniformly (Panels 9c and
9e). See the main text for explanation.
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considered how coefficient sparsity changes while animal R01 learns to navigate the
basic U-shaped maze (i.e., during phase 1 of day 1). For this, we have split data of
phase 1 of day 1 in 5 intervals of the same length, removed the two extremes (1 and
5) and the middle interval (3), and compared intervals 2 vs. 4, corresponding to
initial and final phases of learning, see Figure 10. Our results show that coefficient
sparsity of R01 increases as the animal learns the task – indicating that the ani-
mals are indeed using less primitives and a more stereotyped behavior. Assessing
whether this method is potentially more robust than measures of path stereotypy
[25, 11] or simple descriptions of x(t), y(t) data like Fourier decomposition [26] is
beyond the scope of this work. Yet, in general, describing spatiotemporal data in
terms of (movement) primitives is considered to be more noise-tolerant in motor
control [3, 4, 5, 6].
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Figure 10: Coefficient sparsity of R01 increases in phase 1 of day 1, while the animal learns
navigating the U maze, thus revealing stereotypy of behaviour. We report the
comparison between the 2nd and 4th intervals of the same length, see the main
text for explanation.

2.3.3 Classifying and predicting behavior.

Our approach based on the identification of motor primitives can also be used to
classify and predict animal behavior and choices. To exemplify this, we performed
an experiment aimed to study whether motor primitives extracted during different
trials of phases 3 of each day permit to classify whether in these trials animal R01

follows the U-path or the shortcut. For each day, we randomly select 1000 trajecto-
ries (500 Shortcut and 500 U-path trajectories) and apply the reconstruction method,
for each of the 30 best dictionaries, in order to find sparse coefficients. We then use
the coefficients to classify U-path versus shortcut trajectories (which we had previ-
ously labelled, see examples in the Supplementary Materials). For this, we perform
a classification test on the set of 1000 trajectories, using a linear support vector ma-
chine (SVM) classifier in a k-fold cross validation (with k=5). We compute mean
and standard deviation over the dictionaries the accuracies. Figure 11 shows that
this method affords very accurate classification across all the 8 days. Note that this
result does not trivially depend on the fact that the animal occupies different x-y
coordinates during U-path versus shortcut trajectories. The motor primitives are
agnostic about maze-centered x-y coordinates, as their reference system is centered
on the animal, see Figure 1a.

The last bar of Figure 11 (labelled Day1-8) shows the results of a second experi-
ment, in which we used a single dataset of 8000 samples of trajectories (1000 for
each day, resulting in 4000 U-path and 4000 shortcut trajectories, combined to-
gether). Note that while the U-path remains constant across days, the shortcuts
change every day, making this experiment potentially more challenging than the
former. Again, we performed a k-fold cross validation test using a linear svm clas-
sifier and we computed accuracies over the 30 dictionaries coefficients. Even in
this second experiment, our method affords very accurate classification of U-path
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versus shortcut trajectories. These results illustrate that motor primitives extracted
through our method capture behaviorally relevant regularities that are informative
(for example) about animal trajectories and choices.
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Figure 11: Classification of trajectories (U-path or shortcut) of phase 3, day 1, animal R01

3 discussion
We introduced a domain-general method to extract latent structure – a “statisti-
cal ethogram” – from rodent spatial navigation data (i.e., position and velocity), in
terms of movement building blocks or motor primitives. Our experiments on rodent
trajectories in eight mazes show that the dictionary learning (SRSSD) method out-
performs principal component analysis (PCA) across all the noise levels we tested,
with appreciable results over 0.5 noise, thus speaking in favor of the robustness
of the methods. Furthermore, our results show good generalization across eight
consecutive days. Despite we only used data from day 1 in the training set, the
reconstruction of trajectories was not degraded in the successive seven days, sug-
gesting that the motor primitives approach extracts regularities that are persistent
over time. These regularities correspond to spatiotemporal patterns of movement,
which can include for example rapid forward movements or rotations, which are
repeated multiple times during the maze navigation and may be thus revelatory of
an underlying modular organisation of behaviour.

Our further analysis indicates that our method based on motor primitives char-
acterizes well task regularities such as spatial complexity and movement variance
in terms of (coefficient) sparsity constraints. This makes intuitive sense, as naviga-
tion scenarios in which the animals’ movements had lesser variance (e.g., or days
4 and 8 in animal R01) require less motor primitives (i.e., allow for more sparsity).
It is also reassuring to notice that, although our method allowed the construction
of motor primitives of up to 10 second, the primitives that actually populate the
best dictionaries are of about 1 second, which is a more realistic time constraint for
biological movement.

This is, to the best of our knowledge, the first framework that applies the concept
of motor primitives – which is popular in motor control and computational neuro-
science – to a data-driven analysis of rodent spatial navigation data. The method
introduced here is based on 2D position data, which could be seen as limited com-
pared to more sophisticated (3D camera, accelerometer) approaches [12]. However,
2D data is more widely available in the vast majority of experiments.

The method we have devised can be used by behavioral scientists and neurosci-
entists in behavioral and neural analyses. Some example uses that we have shortly
illustrated in this paper are controlling for confounding effects (e.g., of maze com-
plexity on behavior and reward collection), analyzing habitual or stereotyped be-
havior, classifying and predicting animal choices, and predicting place and grid cell

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.967489doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.967489
http://creativecommons.org/licenses/by-nc-nd/4.0/


materials and methods 13

displacement in novel mazes. The results we reported illustrate the feasibility of
the method, which can be proficuously added to the toolbox of behavioral scien-
tists and neuroscientists to improve their ability to characterize quantitatively and
understand animal behavior.

Besides, the method can be used for other purposes, such as for example to sup-
port the analysis of neuronal data or to design experiments that test the neuronal
underpinning of motor primitives for spatial navigation. In decoding analyses, tun-
ing curves (aka, the encoding model [27]) are typically estimated from those epochs
during which the animal is running, which in turn is estimated using a running
speed cutoff. However, the cutoff cannot clearly distinguish between different situ-
ations, e.g., grooming, directed running towards a goal or performing exploratory
moves. Distinguishing these different behaviors is important as they modulate neu-
ral firings, above and beyond spatial position. The method presented here can dis-
tinguish different movement primitives (or even behavioral patterns or modes) and
has thus the potential to improve our ability to relate neural activity to behavior, as
done e.g. in decoding analyses. Furthermore, the motor primitives extracted from
behavior may be characterized neurally. Studying the potential neuronal correlates
of (spatial) motor primitives remains an important objective for future research.

Finally, the method can be extended to reveal and study more complex patterns of
behavior than those considered here. Note that the method we have described does
not try to estimate sequential dependencies between primitives. However, it would
be trivial to compute those dependencies (e.g., a probability distribution P(pi|pj)
that a primitive pi follows a primitive pj) from training data, in order to estimate
the most likely (or most surprising) transitions. It would be then possible to de-
rive measures of path novelty, which would be related to (relatively) unpredictable
transitions; or to study sequential (possibly, planning-related) patterns of behavior.
These and other potential applications of the method remain to be tested in future
studies.

4 materials and methods
To characterize and extract motor primitives from trajectory data (i.e., position and
velocity) during spatial navigation we adopt a dictionary learning approach [17, 18,
19]. Dictionary learning consists of supervised learning of a set of primitives (or
atoms) that can be linearly superimposed to represent the elements of the dataset
(e.g., rodent spatial trajectories). Starting from this initial idea, our algorithm is
an extension particularly suitable for this kind of data because it incorporates two
assumptions that are particularly useful when modeling spatial trajectories.

Firstly, it enforces sparsity at the level both of atoms and of coefficients: the former
means that the same motor primitive is active just for a limited portion of the whole
trajectory (lasting a maximum of 10 seconds, in this study), while the latter implies
that at each time step, most few superimposing primitives – and possibly just one
– can reconstruct movement. Secondly, dictionary learning assumes that motor
primitives are contiguous; in this way, each motor primitive corresponds to a small
part of a trajectory, and multiple motor primitives can be chained to form a complete
trajectory. These two assumptions are lacking in other widespread methods, such
as Principal Component Analysis (PCA) [28].

Another advantage of our approach over PCA is that the length of the primitives
does not need to be predefined or fixed, but it is automatically determined by the
algorithm, allowing for more flexibility depending on the particular application
case.
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4.1 Dictionary learning and the SRSSD approach

Recent machine learning approaches [29, 30, 31, 32, 33, 34, 35] represent signals as
linear combinations of a large number of elements (primitives or atoms) — usually
collected in sets called dictionaries — whose coefficients are computed using prior
information encoded in penalization terms defining a particular kind of a minimiza-
tion problem. These approaches are informatively grouped into two classes:

(i) Sparse atoms. This is the case when each atom involves just a small number
of the original variables (see, for example, Sparse-PCA [29], sPCA-rSVD [36]
and Structured-Sparse-PCA [37]);

(ii) Sparse coding. In this case, an overcomplete set of atoms is learned from the
data, but the approximation of each signal involves only a restricted number
of atoms. Hence, signals are represented by sparse linear combinations of the
atoms (see, for example, MOD [38], K-SVD [32], and `1-regularized [39]).

Recently, a new algorithm named Structured Sparse Dictionaries for Sparse Rep-
resentation (SRSSD) was presented in [40] and applied to a cognitive science study
[18]; its fundamental characteristics is to search for sparse atoms and sparse cod-
ing simultaneously, reconciling, in this way, the two different dictionary-learning
approaches.

Within the SRSSD method, we denote X ∈ Rn×p as a matrix where rows cor-
respond to experimental observations (e.g., sequences of x and y coordinates that
compose a trajectory, e.g., x1, y1, x2, y2, etc.). Note that n is the number of patches
and p their length. Furthermore, we denote V ∈ Rp×r as a dictionary, whose r
columns Vk represent the atoms learned by the dictionary. Thus, r is the number of
atoms and p their maximum length. Note that given its sparsity, the SRSSD method
can learn dictionary elements having different length, whose maximum we set to p
(e.g., the number of nonzero consecutive elements can be < p). Finally, we define
U ∈ Rn×r as the coefficient matrix.

The aim of SRSSD is finding out the best approximation of X in terms of V and
U (i.e., X ≈ UVT).

This problem can be formulated in terms of a minimization problem as follows:

min
U,V

1

2np
‖X − UVT‖2F + λ

r∑
k=1

Ωv(Vk)

s.t. ∀j,Ωu(Uj) 6 η, ∀k ‖Vk‖2 = 1

(1)

where ‖ · ‖F is the Frobenius norm for matrices, Uj are the rows of U, Ωv(Vk) and
Ωu(Uj) are norms or quasi-norms constraining (regularizing) the solutions of the
minimization problem, with the parameters λ > 0 and η > 0 that control to which
extension the dictionary and the coefficients are regularized, respectively. If one
assumes that both Ωu and Ωv are convex, the problem (1) is convex w.r.t. U for V
fixed, and vice versa.

Following [37], the structured sparsity of the atomsis imposed by setting

Ωv(Vk) =

{
s∑
i=1

‖ dGi ◦Vk ‖α2

} 1
α

(2)

where α ∈ (0, 1), and each dGi is a p-dimensional vector satisfying the condition
dij > 0, with Gi ∈ G where G is a subset of the power set of {1, . . . ,p}, such that
|G| = s and

⋃s
i=1Gi = {1, . . . ,p}. Thus, the vectors di define the structure of the

atoms. More specifically, each dGi individuates a group of variables such that
dij > 0 if j ∈ Gi and dij = 0 otherwise. The norm ‖ dGi ◦Vk ‖α2 penalizes the
variables selected by dij > 0, hence, by this norm, each vector dGi induces non zero
values for the j-th elements of the atom Vk, when j ∈ G.
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The resulting set of selected variables depends on the contribution of each dGi
as described in [41]. For example, if the vectors dGi represent a partition on the set
{1, . . . ,p}, then the penalization term (2) favours atoms Vk composed of non-zero
variables belonging to just one part of the partition and so on: for specific choices
of {Gi}

s
i=1, Ωv leads to standard sparsity-inducing norms.

Nevertheless, the norm Ωv expressed in Equation (2) is not differentiable and,
consequently Equation (1) is not convex with respect to V for U fixed — although
the converse is still true. By using results presented in [37, 42], we can write down
Ωv as a quadratic expression and reformulate the Equation (1) as:

min
U,V,H

1

2np
‖X−UVT‖2F +

λ

2

r∑
k=1

[
(Vk)TDiag(Zk)−1Vk) + ‖Hk‖β

]
s.t. ∀j, Ωu(Uj) 6 η, ∀i ‖Vi‖2 = 1

(3)

where H ∈ Rr×s+ is a matrix satisfying the condition hki > 0 with β = α
2−α and

that minimizes the second term of the previous expression in which Z ∈ Rp×r has

got its own elements defined as zjk =

{∑s
i=1

(
dij

)2
(hki)

−1

}−1

. Notice that, as

shown in [37], for both U and V fixed, the minimizer of (3) can be given in the
closed form h̄ki = |yki |

2−α‖yk‖α−1α , for k = 1, 2, ..., r and i = 1, 2, ..., s, where each
yk ∈ R1×s is the vector yk = (‖d1 ◦Vk‖2, ‖d2 ◦Vk‖2, . . . , ‖ds ◦Vk‖2). Ultimately,
we impose the constraint ‖Vi‖2 = 1 to avoid solutions where V goes towards 0, or
U becomes a sparse matrix, whose non-zero elements have excessively high values.

Since the functional in (3) is separately convex in each variable, we solve the min-
imization problem following the usual approach of alternating optimizations with
respect to the values H, to the coefficients U and to the dictionary V. Most methods
are based on this alternating scheme of optimization [43, 39] and its convergence
towards a critical point of the functional is guaranteed by Corollary 2 of [44].

Algorithm 1 summarises the procedural steps of SRSSD, which comprises three
stages:

S1 Matrix H update. In the first stage, both U and V are fixed and H val-
ues are updated. As said above, one can update H by computing h̄ki =

|yki |
2−α‖yk‖α−1α . However, to avoid numerical instabilities near zero, we

adopt the following smoothed update: Hk ← max{H̄k, ε} with ε� 1.

S2 Sparse Coding. In the second stage, both V and H are fixed and U values are
updated. Note that equation (3) comprises two terms to be minimized, but the
second term does not depend on U. This implies that the optimization prob-
lem of equation (3) can be reformulated as: minU ‖X − UVT‖2F s.t. ∀j, ‖Uj‖0 6
η. There are several well-known “pursuit algorithms” that find approximate
solutions to this kind of problems, such as Basis Pursuit (BP) [45] and Orthog-
onal Matching Pursuit (OMP) [46]. Here, we approximate the `0 norm (a non
convex problem) with its best convex approximation, i.e., `1 norm – which al-
lows us to perform sparse coding by applying an Iterative Soft-Thresholding
(IST) [47]. Note that this stage is equivalent to the application of Algorithm 2,
where we apply only sparse coding with a fixed dictionary.

S3 Structured Atoms. In the third stage, both U and H are fixed and the dic-
tionary V is updated; furthermore, following [37], an atom structured sparse
representation can be found. As both U and H are fixed, the problem of
equation (3) can be reformulated as:

min
V

1

2
‖X − UVT‖2F +

λnp

2

r∑
k=1

(Vk)TDiag(Zk)−1Vk)

∀ i, ‖Vi‖2 = 1

(4)
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In this case, as both terms of Equation (4) are convex and differentiable terms
with respect to V, a closed-form solution for V can be found. However, a
proximal method is considered to avoid p matrix inversions:

Vk ← Πv(Diag(Zk)Diag(‖Uk‖22Zk +npλI)−1·

·(XTUk − VUTUk + ‖Uk‖22Vk))
(5)

where Πv(w) is simply the Euclidean projection of w onto the unit ball, and
the argument of Πv is obtained by composing a forward gradient descent step
on the first term with the proximity operator of the second term of (4).

4.2 Method for reconstructing test trajectories and calculating reconstruction error
(RMS)

To build the dataset to be reconstructed, we split the trajectories into training seg-
ments or patches X ∈ Rn×p, where n is the number of patches (10000 in our test
set) and p/2 is the length in time of the patches. Each row of X includes a sequence
of x and y coordinates that compose a patch, e.g., x1, y1, x2, y2, etc. We split trajec-
tories lasting more than p/2 time steps into two or more rows of X. Then, we use
SRSSD to learn a dictionary V ∈ Rp×r of r atoms, having maximum length p. For
the sake of comparison, we adopt the same procedure using PCA (where the matrix
V represents r principal components; but note that PCA requires all element to be
the same length, which we fix to p).

In general, once learned the Dictionary V , X can be reconstructed by computing
U ∈ Rn×r, where U represents the coefficients of the atoms computed with sparse
coding (see Algorithm 2), or the PCA coefficients U = XV . Using the coefficients, a
new reconstruction matrix Xrec = UVT (with Xrec ∈ Rn×p) can be obtained, which
can be compared with the original X, to calculate a reconstruction error RMS. How-
ever, this method would only measure how well the learned dictionary represents
the learned trajectories, not how well it generalises.

For this, we use a more compelling methodology, inspired by the missing pixel
method: we create “holes” in the original trajectories (by removing consecutive
columns of X) and measure how well our method permits to reconstruct them.
More specifically, we firstly build a restricted matrix X′ ∈ Rn×p

′
, with p′ < p, by

removing p− p′ (consecutive) columns from X. Therefore, we build a restricted dic-
tionary V ′ ∈ Rp

′×r (o r PCA components), by removing p− p′ rows from V . We
then compute the matrix U′ ∈ Rn×r, using X′ and V ′ (instead of X and V as above).
Because U′ has the same matrix dimensions as U, it is possible to use the original
matrix V to compute X′rec = U′VT , with X′rec ∈ Rn×p that has the same dimension
of original matrix X, thus resulting in a “full” trajectory with reconstructed holes.

Finally, we calculate the reconstruction error RMS using a Frobenius norm ‖·‖F,
which considers the difference between a target trajectory X ∈ Rn×p and X′rec.

RMS ≡
∥∥X−X′rec

∥∥
F
=

√√√√ n∑
i

p∑
j

(
xij − x

′
rec,ij

)2
(6)

We adopt the same (missing pixel) procedure for both SRSSD and PCA, for test
and validation. Furthermore, to test the robustness of the method, we use the
learned dictionaries to reconstruct different portions of trajectories, from 10% to
90% – the latter coming closer to reconstructing full trajectories.
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Algorithm 1 SRSDD(X, r,η, λ, stop_criterion)

Require: matrix X, number r of elements in the dictionary,
sparse coding parameter η, sparse atoms parameter λ
a termination condition “stop_criterion”

Ensure: Dictionary V, Coefficients U
1: initialize random V and U
2: while (check stop_criterion is not satisfied) do

———————————————————————————————–
stage S1 – update H

3: compute yk = (‖d1 ◦Vk‖2, ‖d2 ◦Vk‖2, . . . , ‖ds ◦Vk‖2) for k = 1, . . . , r
4: compute h̄ki = |yki | for k = 1, . . . , r and i = 1, . . . , s
5: compute Hk ← max{H̄k, ε} with ε� 1

———————————————————————————————–
stage S2 – sparse coding

6: update U minimizing minU
1
np‖X − UVT‖2F + η

∑n
j=1 ‖Uj‖1 by IST

———————————————————————————————–
stage S3 – structured atoms

7: compute zjk =

{∑s
i=1

(
dij

)2
(hki)

−1

}−1

for k = 1, . . . , r and i = 1, . . . , s

8: compute
Vk ← Diag(Zk)Diag(‖Uk‖22Zk + λI)−1(XTUk − VUTUk + ‖Uk‖22Vk)

9: normalize the columns of V to have unit norm
———————————————————————————————–

10: end while

Algorithm 2 Sparse Coding(X, V,η, stop_criterion)

Require: matrix X, Dictionary V,
sparse coding parameter η, a termination condition “stop_criterion”

Ensure: Coefficients U
1: initialize random U
2: while (check stop_criterion is not satisfied) do

———————————————————————————————–
3: update U minimizing minU

1
np‖X − UVT‖2F + η

∑n
j=1 ‖Uj‖1 by IST

———————————————————————————————–
4: end while
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supplementary material

Maze complexity measures

The figures shows below illustrate the results of maze discretization (binning), as
used to measure maze spatial complexity (Figure 12); occupancy of animal R01 in
the third phase of each day, using this binned space (Figure 13), the time required
to complete a trial and secure a reward (Figure 14), and example trajectories during
phase 3 of day 1 (Figure 15).
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Figure 12: Discretization of mazes into bins used to measure maze spatial complexity

Experimental results, animals R02 and R03

In the main text, we have focused on animal R01 for illustrative purposes. Our
results generalize to the two other two animals (R02 and R03) in our dataset. Figures
16 and 17 shown below illustrate that 1) reconstruction error is lower using SRSSD
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Figure 13: Occupancy of R01 in the third phase of each day, after binning the space.
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Figure 14: Time required for completing a trial (and collecting a reward) for each day, animal
R01
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Figure 15: Eight examples of trajectories classified as U-path, shortcut or dead-end, during
day 1, phase 3, in animal R01
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compared to PCA in both animals R02 and R03; 2) in both animals, coefficient
sparsity correlates with measures of spatial complexity of the mazes (compare to
Figure 7).

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Days

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

R
M

S
 E

rr
o

r

R02

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Days

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
o
d
e
 S

p
a
rs

it
y

R02

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Days

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

D
ic

ti
o
n
a
ry

 S
p
a
rs

it
y

R02

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Days

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

R
M

S
 E

rr
o

r

R02

Figure 16: Reconstruction across 8 days of R02 (after learning only from data of day 1. Noise
is 0.5 and the best 30 SRSSD dictionaries found on day 1 are used. (a): RMS
Error. (b): coefficient sparsity. (c) dictionary sparsity. (d) Baseline performance:
reconstruction of Phase 1.

Figure 18 shows that coefficient sparsity of animals R02 and R03 increases in
phase 1 of day 1, while the animals are learning of the U maze, akin to R01 (dis-
cussed in the main text). Figures 20 and 20 show that classification of (U-path or
shortcut) trajectories is accurate for R02 and R03, respectively, akin to R01 (discussed
in the main text).
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Figure 17: Reconstruction across 8 days of R03 (after learning only from data of day 1. Noise
is 0.5 and the best 30 SRSSD dictionaries found on day 1 are used. (a): RMS
Error. (b): coefficient sparsity. (c) dictionary sparsity. (d) Baseline performance:
reconstruction of Phase 1.
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Figure 18: Coefficient sparsity of animals R02 and R03 increases in phase 1 of day 1, while
the animals learn navigating the U maze, thus revealing stereotypy of behaviour.
We report the comparison between the 2nd and 4th intervals of the same length.
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Figure 19: Classification of trajectories (U-path or shortcut) of phase 3, day 1, animal R02.
The score for day 6 is missing, since on that they R02 always selects the shortcut.
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Figure 20: Classification of trajectories (U-path or shortcut) of phase 3, day 1, animal R03
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