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Summary 

  

In multicellular organisms, a single zygote develops along divergent lineages to produce distinct 

cell types. What governs these processes is central to the understanding of cell fate 

specification and stem cell engineering. Here we used the protochordate model Ciona savignyi 

to determine gene expression profiles of every cell of single embryos from fertilization through 

the onset of gastrulation and provided a comprehensive map of chordate early embryonic 

lineage specification.  We identified 47 cell types across 8 developmental stages up to the 110-

cell stage in wild type embryos and 8 fate transformations at the 64-cell stage upon FGF-MAPK 

inhibition. The identities of all cell types were evidenced by in situ expression pattern of marker 

genes and expected number of cells based on the invariant lineage. We found that, for the 

majority of asymmetrical cell divisions, the bipotent mother cell shows predominantly the gene 

signature of one of the daughter fates, with the other daughter being induced by subsequent 

signaling. Our data further indicated that the asymmetric segregation of mitochondria in some of 

these divisions does not depend on the concurrent fate inducing FGF-MAPK signaling. In the 

notochord, which is an evolutionary novelty of chordates, the convergence of cell fate from two 

disparate lineages revealed modular structure in the gene regulatory network beyond the known 

master regulator T/Brachyury. Comparison to single cell transcriptomes of the early mouse 

embryo showed a clear match of cell types at the tissue level and supported the hypothesis of 

developmental-genetic toolkit. This study provides a high-resolution single cell dataset to 

understand chordate embryogenesis and the relationship between fate trajectories and the cell 

lineage. 

 

 

Highlights 

  

• Transcriptome profiles of 47 cell types across 8 stages in early chordate embryo  

• Bipotent mother in asymmetric division shows the default daughter fate 

• Modular structure of the notochord GRN beyond the known function of T 

• Invariant lineage and manual cell isolation provide truth to trajectory analysis 
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Introduction 

  

Metazoans possess vastly divergent cell types that develop from a single precursor. Recently, 

droplet-based high throughput scRNA-seq techniques have been applied extensively to a 

variety of model systems to study early embryogenesis (Briggs et al., 2018; Cao et al., 2019b; 

Farrell et al., 2018; Pijuan-Sala et al., 2019; Wagner et al., 2018). These studies inferred 

developmental paths through trajectory analysis and greatly improved our understanding of how 

cells differentiate. However, because in these animals the exact cell lineages are not known, the 

trajectories remain computational hypotheses. Cell barcoding techniques such as those based 

on CRISPR enable cell lineage tracing (Alemany et al., 2018; Raj et al., 2018) but still face 

technical limitation in temporal resolution to capture every cell division. 

  

In this regard, model organisms with invariant cell lineage, such as the Nematode C. elegans 

(Packer et al., 2019) and the protochordate ascidian Ciona, provide a unique opportunity where 

the known lineage underlie the interpretation of developmental trajectories.  In particular, as the 

ascidians are sister group to vertebrates, they possess similar body plan and cell types and are 

crucial to understand how vertebrate developmental programs arose during evolution (Satoh et 

al., 2003). Recently, a high throughput scRNA-seq study examined Ciona intestinalis 

development from 110-cell to the larva stage, revealing the developmental trajectories of main 

embryonic cell types (Cao et al., 2019a). However, by the 110-cell stage, the main tissue 

subtypes, e.g., muscle, heart, etc., have been specified (Figure S1), leaving the questions open 

regarding the trajectories from the totipotent zygote to tissue specification.  

 

Here we use scRNA-seq to systematically examine lineage specification in early chordate 

embryogenesis using the Ciona savignyi model. Employing manual cell dissociation and 

isolation, we obtained a total of 750 single cell expression profiles which corresponds to 47 cell 

types for wild-type and 10 cell types for MEK inhibitor treated embryos. By carefully examining 

every cell from single embryos, we showed that the number of cells identified in each cell type 

agrees with known lineage information. These cell type assignments are consistent with in situ 

based cell type classification. We observed prevalent precursor-progeny relationships where the 

mother cell only possesses the gene signature of one progeny. In particular, we studied the 

asymmetrical segregation of mitochondria genes and found their asymmetry is unaffected by 

FGF-MAPK inhibition. Next, we examined the lineage differentiation of notochord and found that 

two independent lineages contribute to notochord cells through separate gene regulatory 

cascades that converge on the activation of Brachyury. Finally, we performed cross-species 

comparison of Ciona embryonic cell types with those of mouse early embryos and showed that 

conservation is restricted to a few well characterized master regulator genes, consistent with 

predictions from previous evo-devo models. 

  

 

Results 

  

Cell isolation and sequencing 
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To best exploit the invariant cell lineage and low cell numbers in Ciona embryos, we dissociated 

C. savignyi embryos at eight developmental stages (1, 2, 4, 8, 16, 32, 64 and 110-cell) and 

manually collected individual cells from each embryo (Figure 1a). For each embryonic stage, we 

sampled two to eight embryos for a total of 29 wild-type embryos. Furthermore, we collected 

cells from two 64-cell stage embryos that were treated with U0126, a MEK inhibitor. We 

recovered 100% cells from each embryo up to 32-cell stage and more than 90% of cells for 64- 

and 110-cell embryos, totaling 648 wild-type and 125 U0126-treated cells to be sequenced 

(Figure 1a,b and Table S1). 

  

For each isolated cell, we generated single cell transcriptome using a modified Smart2 protocol 

that sequences transcripts at the 3’ end and allows transcript counting and multiplexed library 

preparation. On average, we detected >5,000 genes and a median of 48,340 transcripts per cell 

(Figure 1c). Earlier stage cells, which have larger cell size, have more transcripts and genes 

than later stage cells. A small number of cells have less than 2,000 genes detected, which we 

discarded as low-quality cells. In total, we obtained 750 high quality single cell transcriptomes, 

including 628 from wild-type and 122 from U0126 treated embryos. 

  

Cell type identification 

  

For objective identification of cell types, we undertook an iterative clustering approach (Figure 

1d) and clustered cells at each developmental stage (Figure S3 and S4). Following identification 

of highly variable genes (HVGs) from the scRNA-seq data set (see Methods and Figure S2), we 

used the DBSCAN algorithm (Ester et al., 1996) for unsupervised clustering of cells (see 

Methods), which not only provides objective measures to optimize for but also allows exclusion 

of individual cells as outliers (potentially low quality cells). Each cluster undergoes the next 

round of clustering based on cluster-specific HVGs (Figure 1d). When a cluster is split, we used 

bootstrapping to examine if the newly produced, tentative clusters are significantly different from 

each other. Specifically, we measured the similarity of gene expression between two tentative 

clusters by the accumulating difference of HVG expression (see Methods). If p > 0.01, we 

considered the two groups of cells sufficiently similar and therefore should not be divided. In 

practice, the majority of the clusters produced showed p-value <= 0.001 (Figure 2b and S3).  

Because the p value tends to lose significance on clusters with a small number of cells, we 

accepted some of the smaller clusters with p > 0.01 (Figure 2b) after examining the number and 

quality of different genes expressed in them. The weakest case is the separation of the A-line 

and B-line notochord cells at the 110-cell stage (p=0.036), which is discussed in details below. 

  

A total of 47 cell clusters were defined. These include 2, 2, 4, 7, 14 and 16 clusters for the 4-, 8-, 

16-, 32-, 64- and 110-cell stage (Figure 2a and S4), respectively, based on the iterative 

clustering analysis, while the 1- and 2-cell stage were each accepted as one cluster.  

 

To examine if the assignment of each cell to the corresponding cluster is proper, we performed 

additional verification by comparing the similarity between the gene expression of a cell and the 

average expression profile of its tentative cell cluster. We first computed differentially expressed 

genes (DEGs) for each cluster (see Methods). We then compared gene expression of a cell to 
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the DEGs of its cluster by Pearson’s correlation test (see Methods). A cell is accepted into a 

cluster if p < 10-5. A total of 52 cells were reassigned, including 23 that were rejected from all 

clusters as unclassified cells due to ambiguous gene expression (Figure 2c). 

  

We then determined the blastomere identity of each cluster by examining the expression of 

known markers of different cell types (Figure 2d) from the closely related species Ciona 

intestinalis (Imai et al., 2004; Imai et al., 2006), and generated the average expression profile for 

each cell cluster (Table S4) for ensuing expression analysis.  

 

Finally, we ordered the 47 cell types based on their assigned lineage identity across 

development stages (Figure 2e), which depicts the resolved landscape of lineage differentiation. 

Notably, our result achieves single-cell resolution of the entire B-line lineage. 

  

As a test for the accuracy of cell type calling, we asked if for each cell type, the number of cells 

from each embryo agrees with the expected number from the known cell lineage (Figure 2f and 

Table S2). In all 124 groups of cells from each type and each embryo, the numbers of cells are 

equal to or less than the expected numbers. For 92 (74%) out of the 124 groups, the number of 

cells matches exactly the expected number. 33 (97%) out of 34 groups at the 32-cell stage or 

earlier showed exact match. Most groups with the number of cells less than expected are from 

the 64- or 110-cell stage where cells were lost during isolation. Considering the fact that the 

number of cells in a given cell type was not part of the objectives in our computational analysis, 

the systematic agreement in cell number demonstrates the quality of our cell cluster 

identification and cell type assignment. 

  

Despite the high success rate in cell type identification, some blastomeres that are known to be 

distinguishable in C. intestinalis are not separated by our iterative clustering. These are limited 

to two situations where the differences are known to be subtle with only a handful of markers by 

in situ assays, namely early blastomeres at the 8- and 16-cell stages, and tissue subtypes in 

later embryos (e.g., 110-cell stage a, b-line neuronal subtypes). Several technical issues with 

our scRNA-seq assay likely contribute to the lack of resolution in these cases. First, some 

known C. intestinalis markers do not have homologs in the C. savignyi gene annotation and 

thus were left out from our sequencing data, such as the early 8- and 16-cell stage marker Ci-

Bz1 used to distinguish a-line from b-line cells (Tokuhiro et al., 2017). Second, some markers 

are not differentially expressed between known cell types in our data set. For example, 

Neurogenin is expressed in both A8.15 and A8.16 in our data whereas in situ only detected 

expression in A8.16. Table S3 lists all the cases where known cell types were not separated. 

  

We also compared our results with a recently published high throughput single-cell analysis of 

C. intestinalis (Cao et al., 2019a). The published study used the 10x Genomics platform to 

sample the 110-cell stage at 26x coverage (equivalent of 26 embryos) and reported 14 cell 

types, compared to 16 cell types in our study from 3 embryos. Specifically, we resolved three 

tissue subtypes including the A-line nerve cord, B-line mesenchyme and B-line muscle. The 

separation of these cell types is supported by clear differences in the expression of 11~31 

DEGs and 1~2 known markers (Figure S5a-c). Meanwhile, our clustering did not resolve the A- 
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and B-line endoderm. The high throughput study revealed six genes that are differentially 

expressed between the two types (Figure S5d). In our dataset, two of these genes, EphrinA-a 

and NoTrlc, were detected robustly in the endoderm cells. Based on the expression level of 

these two genes, the endoderm cells in our results can be divided manually into a putative A-

line group and a putative B-line group. Interestingly, each group has the right number of cells 

from each embryo. Thus, it appears that the difference reported by the 10x study was marginally 

detected in our dataset but was not enough to resolve the two cell types by the same statistical 

threshold for other clusters. Overall, our study achieved comparable power of resolution to the 

high throughput approach with a 9x higher coverage.  

 

Identification of DEGs 

 

After identifying the cell types, we characterized the DEGs among them. We took a conservative 

approach in defining the DEGs by requiring relatively stringent cutoffs for expression level 

(mean UMI in a cell type > 0.5, fraction of positive cells >= 0.5), fold difference (> 1.8) between 

expressing and non-expressing cell types, and p-value of Wilcoxon rank-sum test (p < 0.01, 

Figure S6a,b). In total, we identified 306 DEGs across all developmental stages examined 

(Figure 3a, S7-9 and Table S5), including most of the known markers. As expected, many of the 

DEGs are transcription factors (TFs) and signaling molecules (56 and 43, respectively). Among 

the 387 predicted TFs (Charoensawan et al., 2010), 15% were detected as DEGs. Furthermore, 

the DEG list contains genes involved in rich and yet unexplored cell-cell interactions (adhesion 

and other membrane proteins) and context-specific cell biology (cytoskeleton and motor 

proteins, vesicle trafficking) as well as chromatin related pathways.  

  

We then characterized the features of DEGs. The variance of expression level of individual 

DEGs among the expressing cell types is smaller than and cleanly separated from the variance 

between the expressing and non-expressing cell types (Figure 3b), demonstrating clear 

differences in expression levels between the expressing and non-expressing cell types. The 

number of DEGs per cell type increases over time (Figure 3c), correlating with increased zygotic 

expression over time and differentiation. In terms of specificity, the DEGs on average are 

expressed in 25% of the cells at any stage (Figure 3d). Interestingly, the DEGs exhibit complex 

combinatorial expression patterns. For example, at the 64-cell stage, only 20 out of 147 DEGs 

are specific to a cell type and 25 are shared by lineage, tissue type or germ layer, while the 

remaining 102 genes show complex patterns (Figure 3e).  

 

As a comparison of our definition of DEGs, when we applied our DEG-selection thresholds to a 

mouse E8.25 scRNA-seq dataset (Ibarra-Soria et al., 2018), only 15-33% of the published 

DEGs passed our thresholds (Figure S6c). Thus, our DEG identification process is more 

stringent. We reason that a more conservative approach would generate a smaller gene set with 

clear and reliable patterns, which can in turn serve to nucleate more sensitive searches based 

on one’s questions and needs. 

 

In situ hybridization experiments provide rich and orthogonal information on gene expression 

patterns. To this end, we compared our results with published in situ data of 51 genes in the 
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early C. intestinalis embryo (Imai et al., 2006) that have clear homologs in C. savignyi (referred 

to as Imai genes below). We evaluated two aspects of our data: DEG calling and consistency of 

expressed sites.  

 

First, among the 37 genes that showed differential expression by in situ, 23, or 62%, are 

identified as DEGs in our data (Figure 3f, gene names in red). Among the 14 genes that did not 

show differential expression by in situ, 12, or 86%, are not defined as DEGs in our data.  

Second, we compared the consistency of expression sites between the two datasets. Taking 

each gene in each cell type as an expression site, only 8% of expression sites of our defined 

DEGs show discrepancy with those of in situ (Figure 3f, gene names in red). We then focused 

on 51 Imai genes at the 64-cell stage, among which 33 genes show largely consistent patterns 

(Figure 3f and S10, HQ/ high-quality), including TTF-1, Brachyury, MyoD in the endoderm, 

notochord and muscle lineages. Slight differences also exist, such as for Lhx3, which is 

detected by scRNA-seq but not by in situ in B7.5, the TVC precursor. Similarly, Lhx3 is detected 

in A7.6 by scRNA-seq but not by in situ. We observed the opposite pattern as well, such as 

E(spl)/hairy-a being detected by in situ but not by scRNA-seq in B7.5. Interestingly, Lhx3 was 

reported to be required for TVC specification (Christiaen et al., 2009a), which supports the 

detection by scRNA-seq. For all stages, about 60% of the Imai genes show high degree of 

agreement between the two detection methods (Figure 3g). Among these high-quality genes, 

78% display <10% unmatched sites between in situ and scRNA-seq (Figure 3h). Orthogonal 

evidence, such as genetic analysis in the case of Lhx3 in B7.5, is needed to resolve the 

discrepancy. About 40% of the Imai genes show relatively large inconsistency (Figure 3f), which 

can be further divided into three situations. At 64-cell stage, 14 Imai genes showed 

predominantly false-positive sites (Figure 3f, LQ-1) in our data, which show cell-type specificity 

by in situ but were ubiquitously detected by scRNA-seq in almost all cell types. These could be 

due to errors in the gene models used for C. savignyi or erratic RT-PCR. Two Imai genes 

(GATA-b and SoxB2, Figure 3f, LQ-2) were not detected by scRNA-seq in any cell type, likely 

resulted from low sensitivity. Lastly, two Imai genes (SoxC and Tbx2/3, Figure 3f, LQ-3) showed 

large fraction of both false positive and false negative detections compared to in situ data 

across different cell types.  

 

Altogether, the systematic comparison between the scRNA-seq and in situ data shows 

moderate sensitivity in DEG detection by scRNA-seq, but high specificity in those detected. 

 

Insights on differential gene regulation in early ascidian embryo 

  

Initiation of zygotic transcription in the early embryo is a significant step during development. 

Ascidian embryogenesis does not display global maternal-to-zygotic activation. The earliest 

detected zygotic expression includes FoxA-a and SoxB1 at the 8-cell stage (Lamy et al., 2006; 

Miya and Nishida, 2003). We used the scRNA-seq data to systematically examine the earliest 

zygotic transcription. Specifically, we analyzed the expression level of DEGs between each 

mother-daughter pair to identify presumptive de novo transcription from 1-cell to 16-cell stage 

(Figure 4a), using the following criteria: a) not detected in mother or ancestors (average UMI in 

cell type < 0.2 OR total UMI in cell type <=2); b) robust detection in self (average UMI > 0.5 
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AND fraction of positive cells in type >= 0.5), or present in self (average UMI > 0.25) but robust 

detection in one of its daughters. We detected extensive de novo transcription at the 16-cell 

stage (Figure 4b and S11), which includes 11 zygotic genes in all three somatic lineages, 

including the known cases of SoxB1 and FGF9/16/20 (Figure S11). However, it is a cell cycle 

later than the reported initiation at the 8-cell stage. We did detect a putative de novo 

transcription event at the 8-cell stage in the B4.1 cell, which turned out to be a mitochondrial 

tRNA gene (asterisk in Figure 4b), a likely false positive classification of a maternal gene. The 

delayed detection in our analysis may result from a combination of our stringent cutoffs and the 

lack of sensitivity in scRNA-seq. 

 

Before the start of zygotic transcription, the early Ciona blastomeres nevertheless display 

differential gene expression through asymmetric localization/inheritance of maternal mRNA. We 

detected 26 and 37 DEGs at the 4- and 8-cell stage, respectively (Figure S7).  The majority of 

them show higher number of average UMIs in the germline (B and B4.1), including known cases 

like Eph1, Wnt5 and Cs-pem (Yamada et al., 2005). However, at each stage there is also a 

group of genes showing the opposite pattern, such as FoxJ2 and in2/Ci-ZF487 with higher level 

in A and Ci-ZF087 higher in (the unresolved) A4.1/a4.2/b4.2. 

  

We further examined genes associated with the germline lineage. In ascidian embryo, a group 

of maternal RNAs called postplasmic/PEM are preferentially localized to the posterior 

blastomeres and contribute to the development of the germline lineage (Prodon et al., 2007). 

We examined how well the known postplasmic/PEM genes can be detected by the pattern of 

elevated levels in the germline, using a threshold of > 2 fold higher expression level in the 

germline than its sister lineage across all stages. Of the 44 C. savignyi genes that have been 

annotated as postplasmic/PEM (Prodon et al., 2007), 20 can be identified (Figure 4c and S12). 

In particular, at the 8-cell stage, 10 known postplasmic/PEM genes are among the 102 genes 

enriched in B4.1 (Figure 4d). Previous work showed that some postplasmic/PEM genes are 

both ubiquitously expressed in the cytoplasm of all cells and enriched in a specialized 

cytoplasmic region (called the CAB) in the posterior cell. Such a pattern may not be reflected as 

a simple whole-cell elevation in the germline. For the remaing 92 of the 102 genes enriched in 

B4.1, it is difficult to say if all of these are postplasmic/PEM genes without further evidence such 

as localization to the CAB. 

 

More broadly, we examined asymmetric cell fate specification in general where sister cells 

become different. In total, we identified 12 types of asymmetric cell divisions where daughter 

cells were clustered into distinct cell types (Figure 4a, boxes). The daughter pairs showed 10-70 

DEGs with >2 fold difference in expression level (Figure 4e). We then asked for each case 

whether the mother cell, which is in theory bipotent, exhibits characteristic gene expression of 

the two daughter fates (Figure 4f). The DEGs with >2 fold difference in one daughter compared 

to the other is considered the characteristic gene expression of the former. We found that the 12 

cases fell in two groups. In 3 of the 12, namely A6.1/3, B4.1, B6.3, the mother cell possesses 

about equal number of characteristic genes of each daughter. In contrast, in the other 9 cases 

(Figure 4f, asterisk, Chi-squared test p value < 0.01), the mother cell is heavily biased towards 

one daughter. Among these, two are influenced by maternal determinants of the germline (B, 
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B5.2). The remaining 7 cases except B7.3 are known cases of FGF-induced differentiation. 

Interestingly, the favored daughters are uniformly the default fate. In the most extreme case of 

C32 animal cells (a6.7), the mother showed none of the characteristic genes from the induced 

neural daughter (a7.13). This bias suggests that in the induced daughter the FGF-MAPK 

signaling would need to suppress the characteristic genes of the default fate, which have 

already been established in the biased mother. However, not every FGF-dependent induction 

follows this pattern. In the A6.3 division where FGF-MAPK signaling is required to suppress the 

A7.6 mesenchymal fate in the A7.5 endoderm, both daughters express comparable number of 

DEGs inherited from the mother. Thus, FGF-MAPK induction of cell fates may act through 

different modes of gene regulation. 

 

The molecular lineage and temporal dynamics of differentiation 

  

Combining the invariant cell lineage and the DEGs in each cell type, we constructed a molecular 

lineage (Figure 5a), which reveals a global view of how gene expression underlies lineage 

differentiation, i.e., emergence and turnover of DEGs along lineages. We focused on two 

interesting cases of lineage differentiation: the divergence of the epidermal lineage and the 

convergence of the notochord lineages. 

  

The a-line and b-line epidermal cells remain as one cell type up to the 64-cell stage but become 

two distinct types by the 110-cell stage (Figure 2e). To further examine the divergence of cell 

fates, we used pseudo-time analysis (see Methods) to reconstruct the bifurcation of cellular 

state toward the a-line and b-line epidermal fates and the accompanying changes of DEG 

expression (Figure 5b,c). The result showed that the divergence occurs during the 64-cell stage. 

Furthermore, the analysis showed a leap of cell state from the 32-cell stage to the 64-cell stage, 

which is followed by gradual transition during the 64- and 110-cell stage (Figure 5b). 

Consistently, the expression level of DEGs changes rapidly between the 32- and 64-cell stages, 

but less so between 64- and 110-cell stages (Figure 5c). The leap is not an artifact of smaller 

number of cells at the 32-cell stage since there is comparable number of cells in each of the 

gradually changing branches at the 64-cell stage. This pattern is also not an artifact of embryo 

age variation: cells from individual embryos do not display biased ordering along the pseudo-

time (Figure S13a). The abrupt change of cell state indicates rapid gene expression and 

turnover, which may be dictated by the short cell cycle and continuous differentiation in an 

invariant cell lineage. 

 

The notochord is considered a chordate invention in evolution (Annona et al., 2015). A key 

regulator in the gene regulatory network (GRN) is Brachyury, which drives notochord 

differentiation (Satoh et al., 2012).  In Ciona, the notochord comes from two distinct lineages: 

the primary notochord from the A-line neural/notochord precursor (A6.2/4) and the secondary 

notochord from the B-line mesenchyme/notochord progenitor (B7.3). The two notochord 

lineages become fate restricted at different times: 64-cell stage for the A-line and 110-cell stage 

for the B-line. The heterochrony raises interesting questions as to if and how the GRN can be 

launched in different manners. 
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First, we asked if the temporal dynamics of notochord fate-specific genes are more associated 

with the embryonic stage or the timeline of notochord fate restriction in each lineage. We 

identified 23 notochord fate-specific genes, which are defined as genes that are expressed in 

the notochord lineage and show specificity (>2 fold difference) compared to its non-notochord 

sister lineage (A7.3/7 vs A7.4/8, A8.5/6/13/14 vs. A8.7/8/15/16, and B8.6 vs B8.5). These 

notochord fate-specific genes showed three patterns of temporal dynamics (Figure 5d and 

S13b). The first and predominant pattern is associated with the embryonic stage, where 17 

genes are turned on at the same stage in both lineages (Figure 5d, blue). The second pattern is 

associated with the timeline of fate restriction (Figure 5d, red), where 3 genes are turned on at 

the notochord fate restriction point (64-cell A-line and 110-cell B-line) and 1 gene in their 

mothers. Not surprisingly, this pattern identifies the key TFs in regulating the notochord fate, 

including Brachyury and FoxA-a. The third pattern is neither associated with embryonic stage 

nor notochord fate restriction (Figure 5d, grey).  These 2 genes are interestingly turned on 

earlier in the B-line. 

  

Out of the 17 genes associated with embryonic stage, 13 (Figure 5d, asterisk) are expressed in 

the multipotent progenitors of notochord. Since these genes are turned on before Brachyury, 

they are unlikely to be regulated by Brachyury. Furthermore, because these genes are turned 

on in the multipotent progenitors and show higher expression in the notochord than their sister 

fates, functionally they are likely permissive factors in establishing the notochord fate. Thus, 

these results suggest multiple modules in the GRN: the permissive module(s) is/are 

independent of Brachyury and coupled to the embryonic stage; while the timing of fate 

restriction is achieved by regulating the timing of Brachyury expression. 

  

Second, we examined the extent of different gene expression between the A-line and B-line 

notochord, and asked if the difference reflects their lineage history or diversification of subtypes 

(Darras and Nishida, 2001; Tanaka et al., 1996). Although A-line and B-line notochord are both 

restricted to the notochord fate by the 110-cell stage, there are still 21 DEGs that are specific to 

A-line or B-line (>2 fold difference in A8.5/6/13/14 vs. B8.6). To distinguish between the two 

models, we examined whether these differences are also present in their progenitors prior to 

notochord fate restriction. We found most of these differences come from lineage background, 

with 5 genes including known marker ZicL (Yagi et al., 2004) in the A-line vs. 9 genes in the B-

line (Figure S13c). In contrast, four genes appear to be newly activated in either the A- or B-line. 

These genes may contribute to notochord subtype differentiation. Therefore, at this early stage 

of notochord differentiation, difference in lineage background remains strong between the A-line 

and B-line notochord but subtypes could be emerging. 

 

Modes of FGF-MAPK signaling and asymmetric cell division in Ciona embryo 

  

Distinct cell types are generated by the interplay between signaling pathways and cellular 

determinants. The FGF pathway plays broad roles in metazoan development. In Ciona, the 

Fgf9/16/20 dependent MAPK pathway is the major inductive signal for cell fate specification 

across multiple lineages (Imai et al., 2002a; Kim and Nishida, 2001). We inhibited FGF-MAPK 
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signaling with the MEK inhibitor U0126 (Sakabe et al., 2006) and performed single-cell analysis 

for two 64-cell embryos (Figure S14 and Table S1).   

 

First, we examined fate transformation upon U0126 treatment. We performed iterative clustering 

of U0126-treated cells using DEGs from wild-type 64-cell embryo and identified 10 cell types 

(Figure 6a and S14a,b). Among these, we identified 8 fate transformation events including all 7 

known cases such as notochord to nerve cord, and mesenchyme to muscle (Figure S14c). 

SplitsTree (Huson and Bryant, 2006), which was originally developed for evolutionary phylogeny 

construction, was used to visualize the similarities of cell types between wild-type and U0126-

treated embryos (Figure 6b). Interestingly, we noticed that for the case of notochord and 

mesenchyme induction, whereas the corresponding FGF-MAPK targets are diminished by 

U0126 treatment, the presumptive notochord and mesenchyme blastomeres do not adopt a 

complete fate transformation. They are still separable from the sibling nerve cord and muscle 

fates by 4 or 5 retained DEGs (Figure S14b), although the differences are much reduced 

compared to more than 30 DEGs in the WT (Figure 4f). In addition, our analysis revealed a 

novel fate transformation event in which the presumptive TVC (B7.5) is transformed to a 

muscle-like fate B7.4/B7.8 (Figure S14c). This is consistent with the previous observation that 

the expression of Mesp in B7.5, a key TF of the TVC fate, is partially dependent on Fgf9/16/20 

(Christiaen et al., 2009a). Our result further revealed that upon loss of MAPK signaling B7.5 

adopts a muscle fate. 

 

Next, we examined gene regulation by the FGF-MAPK pathway. U0126 treatment caused broad 

changes in DEG expression across cell lineages at 22% of the expression sites (Figure 6c and 

Table S5). Specifically, known FGF-MAPK targets including Brachyury, Twist-like and Otx were 

diminished from the corresponding cell types, confirming the specificity of the inhibitor. Our 

analysis also identified novel FGF-dependent gene expression. For example, Lefty, which 

belongs to the TGF-β superfamily, is normally expressed in notochord, B-line mesenchyme and 

TVC in WT embryos (Figure 6d). Upon U0126 treatment, the expression is completely 

diminished in the embryo, suggesting that Lefty is a novel target for FGF-MAPK. In addition, we 

found that ZicL, an early specifier for mesoderm lineages, is under FGF-MAPK regulation in a 

context dependent manner. In U0126-treated embryos, ZicL is specifically lost in the posterior 

muscle and mesenchyme lineage (B7.7/B7.8) but unaffected in the anterior muscle and 

mesenchyme (B7.3/B7.4) or the A-line blastomeres (Figure 6d). The regulation of Lefty and ZicL 

by the FGF-MAPK pathway on was further confirmed by our in situ experiments (Figure 6e). 

 

Finally, we examined the interplay between FGF-MAPK signaling and asymmetric inheritance of 

cytoplasmic determinants during lineage differentiation. Among the asymmetric cell divisions 

that depend on FGF induction, 3 cases, namely A7.3/7 vs A7.4/8, B7.3 vs B7.4 and B7.7 vs 

B7.8, are accompanied by transport of mitochondria (MT) towards the marginal daughter 

(Negishi and Yasuo, 2015), which is reminiscent of asymmetric MT inheritance in mammalian 

embryonic development and stem cell differentiation (Katayama et al., 2006; Van Blerkom et al., 

2000). This pattern can be robustly detected in our scRNA-seq dataset by examining MT-coded 

genes (Figure S14d). We identified 78 genes during these divisions whose mRNA show 

enrichment in the marginal daughters compared to their medial sisters. In addition to 25 MT-
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coded genes, this gene list also contains genes encoding signaling pathways and TFs (Figure 

6f). We then asked if the asymmetry of MT and the co-segregating genes requires FGF-MAPK 

signaling. After U0126 treatment, 24 of the 25 MT-coded genes remain asymmetric (Figure 6g), 

which suggests that MT segregation does not require FGF-MAPK signaling and another polarity 

cue exists. Similarly, 31 non-MT genes remain asymmetric. Further experiments are required to 

determine if these mRNAs are transported by the same mechanism as the MT. Finally, 22 non-

MT genes become symmetric (Figure 6h), which are consistent with being conventional target 

genes of the FGF-MAPK pathway. Taken together, these results suggest that multiple polarity 

pathways function in these asymmetric cell divisions, and may involve transport of mRNA in 

addition to MT. 

 

Systematic comparison of cell types in early chordate embryogenesis 

  

As the sister group to vertebrates, the ascidians provide a critical node in evolution to 

understand how the vertebrate developmental programs arose. To this end, we conducted a 

pairwise comparison between Ciona and mouse embryonic cell types using our data and a 

recently published single-cell transcriptomic dataset for the E8.25 mouse embryo (Ibarra-Soria 

et al., 2018). Ciona embryonic tissue specification occurs before gastrulation with the 7 major 

tissue types emerging by the 110-cell stage, while in vertebrates, such tissue specification 

events do not happen until after gastrulation (E6.5). Many master transcription factors 

determining cell fate are expressed commonly in 64- to 110-cell Ciona embryos and E6.5 to 

E8.5 mouse embryos, such as Nkx2.1/TTF-1 in the endoderm, Brachyury in notochord, MyoD in 

muscle and Mesp in cardiac lineages. Thus, the 64- and 110-cell Ciona embryo is generally 

comparable to E6.5 to E8.5 mouse embryo in terms of tissue specification, despite the 

heterochrony in gastrulation. 

 

To perform cross-species comparison, we first filtered the published mouse DEGs for each cell 

type with our more stringent thresholds (Figure S6c), reducing the number of DEGs from 3252 

to 1788. Globally, we found that comparable fractions of TFs in the Ciona and mouse genomes 

are expressed as DEGs (Figure 7a), and the E8.25 mouse shows a larger fraction of genes in 

DEGs (Figure 7a). DEGs with orthologs, which are defined by mutual best BLASTP hits (Table 

S7), are used for further cell type comparison. Surprisingly, only 10% of the mouse DEGs with 

Ciona orthologs have their orthologs detected as DEGs in Ciona (Figure 7b). Nevertheless, in 

terms of gene function, the two sets of DEGs show similar fractions in GO terms that are 

important for development (Figure 7c). In summary, the two species may activate different 

genes in the same functional categories for tissue differentiation and morphogenesis. 

 

By scoring the type and number of orthologs in DEGs, we were able to match cell types 

between the 64-/110-cell stage Ciona and E8.25 mouse for the majority of the cell lineages 

(Figure 7d, Table S7, Methods). Six pairs of cell types match with high-similarity and 10 out of 

11 Ciona cell types have high or moderate similarity to mouse cell types. In all matched pairs, 

mouse and Ciona cell types are derived from the same germ layer. All matched pairs with high-

similarity reflect known homologous relationships at sub-tissue level (such as Ciona nerve cord 

and mouse neural tube), except that mouse cardiac tissue has slightly higher similarity to the 
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body wall muscle of Ciona than cardiac muscle. Interestingly, the Ciona endoderm matches the 

mouse foregut, but is less similar with hindgut. This is consistent with the previously reported 

deep conservation of bilaterian foregut gene expression programs (Arendt et al., 2001). Notably, 

the similarity between cell types is limited to a small number of TFs and signaling molecules 

(Figure 7e), which is congruent with the hypothesis of developmental-genetic toolkit (Carroll, 

2008) and further validates the quality of biological information in scRNA-seq datasets. 

 

 

Discussions 

 

Single-cell technologies have revolutionized the developmental biology field and provide an 

unprecedented opportunity to reveal the role of individual cells in the developing embryo. For 

most model systems, the lineages are variable, making trajectories as theoretical assumptions. 

We utilized the invariant lineage of the Ciona system to provide a single-cell atlas of early 

embryogenesis and revealed complex patterns of gene expression and cell fate specification. 

The expression profiles of Ciona embryonic cell types provide valuable resources not only for 

the study of lineage differentiation but also for the assessment of trajectory reconstruction 

methods. 

 

Mouth pipette picking was used to prepare single-cell libraries. Each embryo was dissociated 

separately with cells being carefully checked and counted under microscope before picking, 

which eliminated the possibility of doublets and consequent false-positive cell types, and the 

bias of capturing diverse cell types as well. More importantly, accurate cell numbers can be 

used as the benchmark for cell-type identification, empowering us to study gene dynamics along 

true differentiation paths defined by the invariant lineage. 

 

One consequence of the manual picking method is a relatively small sample size, limited by the 

difficulty of capturing every cell of a late-stage embryo and the labor intensity of Smart2 library 

preparation. However, our de novo, unsupervised and objective clustering results turned out to 

be quite convincing, taking cell numbers of each type as a post-hoc validation. Comprehensive 

quality controls, including controlling the statistical significance of identified cell types (Figure 

2b) and the distance of distribution of DEG expression between expressing and non-expressing 

cells (Figure 3b), also indicate that our small sample size did not impair the identification of 

clusters or the definition of DEGs. Compared with the published 110-cell stage dataset with a 9-

fold greater sample size (Cao et al., 2019a), our data provides a comparable and perhaps better 

clustering result (16 vs. 14 cell types). The weakest separation case in our cell types (A- and B-

line notochord) is still supported by 21 DEGs including 2 known markers (Figure S13c). For all 

the known 63 “cell types”, 37 “types” are successfully resolved as separate clusters whereas 26 

“types” are collapsed into 10 clusters which are mainly limited to “possible types” of the same 

biological identity albeit with 1~3 differential genes (Table S3). Therefore, a relatively small 

sample size could provide high resolving power. 

 

We systematically evaluated the sensitivity and specificity of our scRNA-seq data. Taking Imai’s 

in situ results as a reference, our scRNA-seq data shows an acceptable level of sensitivity 
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(62%) and a fairly good specificity (86%) at DEG calling (Figure 3f), which means the detection 

of DEGs is more likely to be true signal rather than noise despite that some DEGs may be 

missed. Furthermore, the expression patterns of DEGs match well by cell type with those of in 

situ, with only 8% of the sites show discrepancy between two approaches (Figure 3f). It should 

be pointed out that one of the discrepancies was validated by genetic experiments, where Lhx3 

is detected in the TVC precursor. However, scRNA-seq by design cannot capture all transcripts 

in the cell especially transcripts in the nuclei. That is part of the reason that our data cannot 

detect zygotic gene activation at the 8-cell stage, which is still largely nascent transcripts in the 

nucleus (Figure 4b). Besides, for transcripts with subcellular preference, scRNA-seq shows a 

poor performance, compared to those methods with cellular structure preserved (Figure 4d). We 

only observed asymmetrical patterns for a quarter of the postplasmic/PEM genes, probably 

because gene expression levels are averaged out by the whole-cell.  

 

Single-cell analysis allows us to discover new knowledge of expression. Previous genetic study 

observed that the anterior and posterior endoderm display different properties in experimental 

perturbation where NoTrlc, a previously known specific determinant for A7.6 mesenchyme fate, 

is expanded into the anterior but not posterior endoderm cells upon FGF-MAPK inhibition (Shi 

and Levine, 2008). Our analysis, as well as the recently published C. intestinalis single-cell 

study, both detected NoTrlc expression at low levels in the anterior endoderm at the 110-cell 

stage. Thus, it appears that NoTrlc is actually expressed in both the endoderm and 

mesenchyme daughters of the A6.3 precursor cell, but will subsequently be lost in the 

endoderm lineage while becoming specific to the mesenchyme lineage. This is an example of 

the classical binary fate choice model whereas both daughters initially express a TF but one cell 

subsequently loses its expression and the TF becomes highly expressed in its sibling cell. 

 

Asymmetric cell division is a major mechanism of cell fate diversification. By comparing patterns 

of shared DEGs between the mother-daughter trio, we noticed that in the majority of asymmetric 

divisions (9/12) the mother cell is heavily biased towards one daughter where one daughter 

expresses 7-30 fold more mother DEGs than its sibling cells (Figure 4f). Particularly, 6 biased 

pairs are FGF-MAPK dependent and we found that part of the asymmetrical genes in these 

divisions became symmetrical upon U0126 treatment, suggesting that FGF-MAPK is required 

for the patterning of these genes. Further experiments are needed to determine if the 

mechanism of FGF-MAPK dependent asymmetry is molecular transport in the mother cell or 

transcriptional repression in the induced daughter. Additionally, there was one group of 

asymmetrical genes unaffected by U0126, including MT genes and non-MT genes, suggesting a 

different polarity pathway. Therefore, our results indicate that there are multiple polarity 

pathways involved in transcriptional regulation and possibly post-transcriptional regulation in 

asymmetrical cell divisions. 

 

Convergent differentiation, which means one cell type develops from multiple precursor 

lineages, is seen in the primary and secondary notochord, primary and secondary muscle in 

Ciona embryo development. Interestingly, Ciona notochord comes from two distinct lineages 

that become fate restricted at different embryo stages. The heterochrony allows us to 

distinguish notochord fate-coupled gene module from stage-coupled gene module. We found 
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there is a permissive module with a stage-coupled activation pattern besides the key Brachyury 

module determining notochord fate. The permissive module could be preparing the restriction of 

notochord fate. Thus, in this case, we show convergent differentiation is not simply driven by a 

core fate-restricted program (like Brachyury module for notochord). Multiple gene modules were 

also found in the convergent differentiation of myogenesis in mouse embryo (Cao et al., 2019b). 

However, without the clear stage information we have in Ciona, it is not feasible to infer their 

relationship. 
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Methods 

 

Animals and embryology 

 

Fecund C. savignyi animals were collected from the Jiaozhou Bay in Qingdao, Shandong and 

kept in 18°C circulation sea water tank. Fertilization, dechorionation and embryo cultures were 

done as previously described (Christiaen et al., 2009b). For FGF-MAPK drug inhibitor 

experiments, embryos were grown in sea water containing 2ug/ml U0126.  

 

For embryo dissociation, staged embryos were transferred to Ca2+/Mg2+ free artificial sea water 

(Christiaen et al., 2009b) containing freshly prepared 0.1% trypsin (MP Biomedicals). Single 

embryos were gently pippeted using a mouth pippet until all blastomeres dissociated. All 

blastomeres from a single embryo were transferred to a new dish of fresh sea water at 4°C, after 

which cells were individually transferred using a glass capillary needle attached to a mouth 

pippet to PCR tubes containing the Smart-seq2 lysis buffer (Picelli et al., 2014). The tubes were 

flash frozen in liquid nitrogen and temporarily stored at -80°C before library preparation.  

 

Single-cell RNA library preparation and sequencing 

 

A modified Smart-seq2 protocol with 8bp barcode and 9bp UMI in RT-primers was used to 

allow sample pooling and amplification bias removing. Reverse transcription and pre-

amplification were processed as the Smart-seq2 protocol. Briefly, cells in lysis buffer were 

thawed on ice, put on 72 °C thermal cycler for 3 min to denature and immediately put on ice for 

annealing. RT mixture with LNA TSO primer was added and proceeded using the following 

PCR steps: 42 °C for 90 min, then ten cycles of: 50 °C for 2min, 42 °C for 2min, and finally, 

70 °C 15min. cDNA pre-amplification was performed for 12, 13, 14, 15, 16 and 17 cycles 

respectively for 1/2-cell, 4-cell, 8-cell, 16-cell, 32-cell and 64/110-cell stage samples.  

 

cDNA libraries from different cells were pooled and purified for subsequent sequencing library 

construction. 500 pg cDNA of each pooled sample was fragmented, tagged, and the 3’end 

amplified according to the Nextera XT instructions except that a custom P5 primer was used for 

amplification. Libraries were sequenced on Illumina HiSeq X10 platform with a custom read1 

sequencing primer. We used pair-end 150bp and an 8bp index read, consistent with default X10 

machine settings. Each cell was sequenced for an average depth of 500,000 paired-end reads. 

 

In situ hybridization 

 

We performed in situ hybridization in both wild-type and U0126-treated embryos at the 64-cell 

stage. Embryos were hybridized in situ with probes for ZicL (Imai et al., 2002b) and lefty (Imai, 

2003) using standard protocols described previously (Yasuo and Satoh, 1994). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.966440doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.966440
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene classification 

 

1. Ortholog mapping between C. savignyi and C. intestinalis 

Ciona savignyi gene model (CSAV2.0; Ensembl) was first compared against the gene models 

from Ciona intestinalis (KH2012; Aniseed) by BLASTP in order to transfer the functional 

annotation of the genes in C. intestinalis by orthology. Mutual best hit with identity > 30% and 

e-value < 1e-3 were considered as orthologs.  

 

2. Transcription factors (TFs)   

TFs (n = 387) in Ciona savignyi were downloaded from DBD (database of predicted 

transcription factors) (Charoensawan et al., 2010). TFs (n = 1506) in Mus musculus were 

downloaded from TcoF-DB v2 (Schmeier et al., 2017). 

 

3. Ortholog mapping between C. savignyi and mouse   

Ciona and mouse orthologous genes were downloaded from Ensembl. In addition, DEGs in Ciona 

that do not have Ensembl orthologs were matched to mouse genes based on sequence similarity. 

Specifically, top BLASTP hits (maximal n = 3) with e-value < 10-10 and alignment length > 30% 

were considered as orthologs. Among the DEGs in Ciona, 158 genes have Ensembl-assigned 

orthologs and 45 have orthologs upon further mapping (Table S7). 

 

4. Gene Ontology (GO) term   

GO annotations for each gene were downloaded from Ensembl. Thirteen categories of GO terms 

were sequentially matched to GO terms of each DEG in the following order, transcription factor, 

chromatin, RNA binding/splicing, protease/ubiquitin, signaling pathway, adhesion, extracellular 

matrix, cytoskeleton/microtubule, myosin/kinesin/dynein, vesicle, mitochondrion, metabolism, 

and membrane. Each gene is only assigned to one category. Genes whose GO annotation do not 

matched to any category were assigned to “other”. Genes without any GO annotation were 

assigned to “unknown”. 

 

Data processing of scRNA-seq 

 

1. Reads alignment 

Drop-seq software (Macosko et al., 2015) was used for data de-multiplexing, reads alignment 

and cellular-molecular barcodes processing. Barcodes (9-16bp) and UMI (17-25bp) extracted 

from read1 were added to read2 as tags. PolyA tail sequence and template switch oligo sequence 

were trimmed. Only read2 were mapped to the C. savignyi genome (CSAV2.0; Ensembl). A 

“GE” tag was added onto reads when the read overlaps the exon of a gene. Reads of used exact 

barcodes were counted to get the raw count matrix. The raw and processed data were deposited 

into GEO (GSE113788). 

 

2. Filtering of low-quality results 

Low-quality cells with number of detected genes less than 2000 were removed. Genes with per-

embryo effect were considered systemic errors and removed from downstream analysis. Per-
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embryo effect was defined as greater than 2-fold difference on average UMIs between any pair 

of embryos at the same developmental stage. 

 

3. Normalization of gene expression 

Normalization were performed by DESeq2 (Anders and Huber, 2010) in cells at each 

developmental stage. 

 

Definition of clusters and DEGs through iterative clustering 

 

1. Selection of HVGs (highly variable genes)  

We used two methods to select HVGs at each developmental stage as described below. The 

hypothesis is that HVGs do not conform Poisson distribution as the majority of genes. Genes 

from both methods were then merged as the HVGs at each stage. 

1.1 Method 1 (Figure S2a). 

1.1.1 Theory: 𝑝𝑖(𝑘 = 0) = 𝑦𝑖 = 𝑛 ∙ 𝑒−𝑥𝑖 in Poisson distribution, x: mean, y: number of 0-

count 

1.1.2 Plot 0-count against log2 mean for each gene 

1.1.3 Tentative outliers on this plot were detected by k-nearest-neighbors distance (R 

package DDoutlier, k=3-6, distance < 15). The boundary between inliers and outliers 

was further smoothed by local polynomial regression fitting on maximal inliers on 

each value on y-axis. Final outliers were considered as genes out of the smooth 

boundary. 

1.1.4 To exclude genes with low expression, HVGs were defined as outliers with mean > 

0.1 and number of 0-count > 10%×n, where n is total number of cells at each stage.  

1.2 Method 2 (Figure S2b). 

1.2.1 Theory: 𝐶𝑉2 =  
𝜎2

𝜇2 =
1

𝜇
 , 𝜎2 = 𝜇 in Poisson distribution 

1.2.2 Plot CV2 against log2 mean 

1.2.3 Outliers on this plot were detected by confidence line (p=0.999) of linear regression. 

1.2.4 Same with 1.1.4, to exclude genes with low expression, HVGs were defined as 

outliers with mean > 0.1 and number of 0-count > 10%×n, where n is total number 

of cells at each stage. 

 

2. Initial clustering of cells 

2.1 Dimension reduction 

Dimension reduction at each developmental stage was performed by t-SNE using HVGs (R 

package Seurat, parameters were set according to cell number, as listed below). 

 

number of cells (0,10] (10,20] (20,40] (40,60] (60,100] n>100 

PCA dim 5 10 10 15 20 30 

t-SNE dim 5 5 8 10 15 20 

perplexity 1 3 5 10 10 20 

 

2.2 Clustering  
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Clustering was performed in t-SNE space with local density clustering (R package dbscan). 

To optimize parameters of dbscan, we enumerate the combination of parameter k (minimal 

number of points required to form a dense region: 2-6) and parameter eps (size of 

neighborhood: range from the minimal pairwise distance to the maximum pairwise distance 

in a step of 0.1). The objective function for the parameter search is to minimize the global 

Davies–Bouldin index 𝐷𝐵 =
1

𝑛
∑ max𝑖≠𝑗  (

𝑆𝑖+𝑆𝑗

𝑀𝑖𝑗
)

𝑛

𝑖=1

, where Si is the average distance of 

all points in cluster i to its centroid, Mij is the distance between the centroids of cluster i and 

cluster j, and n is the number of clusters. The table below lists the optimized parameters of 

dbscan and DB index of clustering. 

 

Stage k eps DB index 

C4 3 38.8 0.31 

C8 4 39.3 0.38 

C16 4 13.8 0.52 

C32 3 4.2 0.38 

C64 4 1.8 0.50 

C110 2 1.6 0.59 

 

3. Iterative clustering of cells 

To obtain high resolution on cell types, we applied iterative clustering to resolve nested cell types 

(Figure S3). 

3.1 Further division of a given cluster 

3.1.1 Clustering of cells is based on the same t-SNE and dbscan-based method. HVGs used 

are updated to avoid technical noise by filtering HVGs with average UMI > 0.5 in 

the starting cluster. 

3.1.2 Each tentative cluster produced is evaluated for the difference to its closest cluster, 

and will only be accepted as a cluster if it is significantly different.  The closest 

cluster is defined by the local Davies–Bouldin index, i.e., cluster j in 

argmax { 𝑗 ≠ 𝑖|
𝑆𝑖+𝑆𝑗

𝑀𝑖𝑗
} is the closest cluster for cluster i. To evaluate the difference 

between cluster i and j, we first identify genes from the HVGs whose expression is 

significantly different between the two groups of cells. For each gene, a p-value is 

calculated based on the Wilcoxon rank-sum test, where cells are ranked by the UMI 

of the given gene. A gene is considered significantly different if p < 0.01.  The 

cumulative difference for two clusters, dij, is defined as Σ𝑘=1
𝑛 (−𝑙𝑜𝑔2(𝑝𝑘)), where pk 

is the p value of significant gene k and n is the number of significant genes.  The 

significance of dij is further evaluated by a background distribution.  This background 

is calculated by randomly sampling two groups of cells from the whole dataset, with 

one group matching the number of cells in cluster i and the other cluster j.  A d value 

is calculated for the two groups.  The distribution of d is compiled by repeating the 

random sampling 1000 times. 

3.1.3 Iterative clustering was applied on each cluster until it reached any of the following 

4 terminal conditions. 1) Number of cells less than 4; 2) no partition by dbscan; 3) 

dbscan identified a sub-cluster from one embryo (residual per-embryo effect as 
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systemic errors in sequencing becomes locally dominant); 4) significance of 

difference between the tentative clusters show p > 0.01 as calculated above. 

3.2 Merge clusters 

3.2.1 Check whether any cluster can be merged after initial clustering, as well as after all 

clusters meet the termination condition. Merge clusters to its closest cluster if their 

significance of difference > 0.01.  

 

4. Definition of tentative DEGs (differentially expressed genes) 

The expression of DEGs has statistical difference between some cell types with high expression 

and other cell types with low/no expression. Wilcoxon test was used to reveal the statistical 

difference. 

4.1 Method 

4.1.1 For each gene, sort cell types by mean expression in each type. 

4.1.2 To define high and low/no groups, we divided the sorted list of cell types into two 

groups at every split between two adjacent types and calculate their significance by 

Wilcoxon test. The split with minimal p value was used to define high and low/no 

group 

4.2 Thresholds 

4.2.1 Mean count in high expression group > 0.5 

4.2.2 Fold difference between high and low/no group > 1.8 

4.2.3 Wilcoxon p value cutoffs at all stages (higher cell number gives more significant p 

value, see below) 

 

C4 C8 C16 C32 C64 C110 

0.01 0.01 10-3 10-5 10-7 10-9 

 

4.3 Special case 

4.3.1 C16 has the lowest detection ratio of known markers, which may indicate its 

sequencing quality is relatively low. So we did manual curation on tentative DEGs 

at C16 defined as above. The idea is to nucleate groups of expression patterns with 

confident DEGs. First, tentative DEGs with Wilcoxon p value less than 10-5 were 

kept as confident DEGs. Second, for other tentative DEGs, genes whose expression 

pattern in cell types do not match expression pattern of any confident DEG were 

filtered out. 

 

5. Reclassification of individual cells (Figure S3) 

To account for the classification of each sequenced cell, we reclassified the cell type of each cell 

by tentative DEGs after iterative clustering.  

5.1 Method 

5.1.1 Calculate mean expression of tentative DEGs in each cell type. 

5.1.2 To measure the similarity between an individual cell and a given cell type, Pearson’s 

correlation was calculated based on genes with non-0 expression (UMI in individual 

cell > 4 or UMI in cell type > 0.5) and p value of correlation was calculated using 

Student's t-distribution with degrees of freedom n-2 (n is the length of vector). 
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5.1.3 Assign the cell type with p value less than 10-5 as the identity of individual cell. If 

there are more than one cell type with p value < 10-5, assign the cell type with 

minimal p value. 

5.2 Reject vague cells 

5.2.1 For each cell type in each embryo, sort cells by p value per cell type per embryo and 

remove cells with large p value. The p value cutoff was defined as the p value of cell 

that has a 50-fold or greater increase compared to the p value of next cell on the 

sorted list. 

 

6. Final list of cell types and DEGs 

After re-assignment, we updated the list of cells belonging to each cell type (Table S5). Final DEGs 

(Table S5) were computed based on final cell types using the same method of defining tentative 

DEGs. DEGs of a given cell type were defined as final DEGs that have this cell type in high 

expression group. Final cell types were visualized by t-SNE using final DEGs (Figure S4). 

 

7. Assignment of lineage identity 

Assignment of canonical cell types/lineage identity was based on known markers (Imai et al., 

2006). The relationship between cell clusters and canonical cell types was documented in Table 

S6 

7.1 Special cases 

7.1.1 B at 4-cell stage and B4.1 at 8-cell stage: when we proceeded to assign ID and define 

DEGs, we found B and B4.1 subdivided into two clusters violating expected cell 

number per embryo. So we rejected the sub-division and took the super-clusters that 

correspond to B and B4.1. 

7.1.2 The A- and B- notochord at 110-cell stage showed the weakest separation (p=0.036 

between the two groups).  The legitimacy of their difference is systematically 

documented in Figure S13c and related text. ZicL-3 expression was used to assign 

lineage identity between the two groups (Imai et al., 2006).  

 

Analysis of scRNA-seq data in drug-treated embryos 

 

Data preprocessing and iterative clustering of scRNA-seq data in drug-treated embryos were 

performed as described above (Figure 1d). 

 

1. Matching cell types between drug-treated and WT embryo 

For cell types in drug-treated embryos without fate transform, we considered WT cell type with 

the most similar expression of DEGs as its cell type. For cell types transforming cell fate, the 

expression of retained DEGs could be used to infer its presumptive cell type. The numbers of cells 

per cell type per drug-treated embryo agree with expected number of cells. 

1.1 Method 

1.1.1 Calculate non-zero (mean of count > 0.5) correlation of mean expression of DEGs 

at 64-cell stage between clusters of drug-treated embryos and WT cell types (Figure 

S14b). 

1.1.2 The most similar cell type in WT type is considered as the cell type for each cell 

cluster of drug treated embryos. 
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1.1.3 DEGs at 64-cell stage were used to distinguish cell types in a mixture cluster caused 

by fate transformation (Figure S14b). 

1.2 B7.5 fate transformation 

1.2.1 B7.4/5 is a mixture of B7.4 and B7.5. No retained DEG could distinguish B7.5 from 

B7.4. Because the probability of losing all 4 B7.5 cells is very low (𝑝 = 𝐶6
4/𝐶128

6 =
1.8 × 10−9, 6 cells were lost in total 128 cells from two drug-treated embryos), we 

concluded that B7.5 is transformed to B7.4. 

2. The global hierarchy of cell type similarities 

The similarity between cell types in WT and drug treated embryos was visualized by SplitsTree 

(Huson and Bryant, 2006). As input for SplitsTree, pairwise distances between cell types used in 

SplitsTree were computed as 1-Jaccard index of the overlap of their DEGs. 

 

MT co-segregating genes 

 

To search for genes that have similar asymmetric expression as mitochondrion-encoded genes, we 

required uneven gene expression in all three pairs of asymmetrical divisions (A7.4/8 > A7.3/7, 

B7.4 > B7.3, and B7.8 > B7.7). Specifically, in WT embryos, genes with fold differences in three 

pairs greater than 1.5 and average UMI greater than 0.5 in high-expression cells (A7.4/8, B7.4, 

and B7.8) were defined as mitochondrion co-segregating genes. In drug treated embryos, 

mitochondrion co-segregating genes with 1.5 or higher fold differences in A7.4/8 vs. A7.3/7 and 

B7.4/8 vs. B7.3/7 were considered as remaining asymmetrical, and with 1.2 or lower fold 

differences in those two pairs were considered as losing asymmetrical. 

 

Comparison of cell types between Ciona and mouse 

 

We measured the similarity of cell types between species by shared DEGs, especially TFs.  

 

1.1 Cell types and their DEGs 

1.1.1 Cell types at 110-cell stage in Ciona were used except B7.6 and epidermis, which 

do not have homologous cell type in mouse E8.25 embryos. DEGs of close-related 

cell types were merged, i.e., merging DEGs of A8.5/6/13/14 and B8.6 as 

notochord, A8.7/8 and A8.15/16 as nerve cord. 

1.1.2 Cell types in E8.25 mouse embryos (Ibarra-Soria et al., 2018) were used except blood, 

endothelial, and placodes. DEGs of mouse cell types were obtained from the 

accompanying database (https://marionilab.cruk.cam.ac.uk/organogenesis/) and 

further filtered with our thresholds in Ciona, i.e., fold difference > 1.8 and mean of 

count > 0.5. 

1.2 Score similarity 

1.2.1 The sum of scores from overlapped genes is the score of pair of cell types between 

mouse and Ciona. The score of individual overlapped gene is given as following, 

Specific TF (# of expressed Ciona cell types < 2): 6; 

TF (2 <= # of expressed Ciona cell types < 5): 4; 

TF (5 <= # of expressed Ciona cell types): 3; 

Muscle effector genes: 1; 

Other genes: 0.5.  
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1.2.2 Match cell types between mouse and Ciona based on scores. The principle of 

threshold design is that cell type pair with high similarity have a score equivalent to 

score of two or more TFs. High similarity is defined as, for each mouse cell type, the 

best matched Ciona cell type has a score > 10. Moderate similarity is defined as, for 

each mouse cell type, the matched Ciona cell types have a score > 10 and the 

difference to best score <= 4. 
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Figure 1. Overview of single-cell RNA-seq assay and cell type classification. 
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d) Computational pipeline for iterative clustering to identify cell types and DEGs.
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Figure 2. Cell type identification and cell identity assignment. 
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Methods). 
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d) Heatmap of gene expression level for known cell type-specific markers at the 110-cell stage. Each row is a 
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Figure 3. Characterization of DEGs. 
a) GO term classification of the 306 identified DEGs. 
b) Variance of expression level among expressing cells (red) and between expressing and low/no expressing 
cells (black) for the 306 identified DEGs. 
c) Number of DEGs per cell type across developmental stages. Each dot is a defined cell type.
d) Specificity of DEGs as measured by the percentage of expressing cells at each developmental stage. 
e) Expression pattern of DEGs at the 64-cell stage. Color discs represent cell types, colored as in Figure 2e. 
From the left, they represent A7.1/2/5, A7.6, A7.3/7, A7.4/8, B7.1/2, B7.3, B7.4, B7.5, B7.6, B7.7, B7.8, 
a7.9/10/13, a/b epidermis, and b7.9/10, respectively. Black circles around each cell type denote cell type-specific 
DEGs. Lines underneath denote lineage-specific DEGs. The extent of the lines mark expressing cell types. Arcs 
link pairs of cells that share DEGs. If a DEG is shared by cells in the same tissue type or germlayer, the arcs are 
drawn below the cell types. For other DEGs, which have complex combinatorial patterns, are drawn above the 
cell types. Thickness of lines and circles is proportional to DEG number. DEG numbers in each category in 
parenthesis.
f) Comparison of expression sites for known cell type-specific markers at the 64-cell stage between published in 
situ results (Imai et al., 2006) and detection in this study. Black squares show in situ sites. Red squares show 
detected expression levels by single-cell RNA-seq. Gradient of red (upper right) shows log2 of the mean UMI 
among cells of the corresponding type. HQ: high quality; LQ: low quality. See main text for details.
g) Summary of in situ and scRNA-seq comparison across embryonic stages. HQ and LQ: see panel f.
h) Degree of site discrepancies between in situ and scRNA-seq for high quality genes (HQ).  Histogram sums 
genes across embryonic stages.
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Figure 4. Differential gene regulation in the early embryo. 
a) 12 asymmetric divisions (boxes, 3 degenerate pairs for A5.1/2, A6.1/3, A6.2/4) resolved by cell type 
identification. For an enlarged version of the lineage, see Figure S1.
b) Number of genes predicted to be zygotically expressed in cells up to the 16-cell stage. Circles, lines and colors 
follow the scheme in Figure 2e. Numbers next to circles show the number of predicted genes in that cell type. * 
denotes a false positive prediction (see main text). 
c) Number of known PEM genes detected by germline enrichment analysis across different stages. 
d) Overlap between known PEM genes and genes enriched in the B4.1 cell type. 
e) Histogram of the number of daughter pairs in the 12 asymmetric divisions based on the number of DEGs with 
>2 fold difference in expression level between each daughter pair. 
f) Number of DEGs with >2 fold difference in expression level between each daughter pair in each daughter that 
are detected in the mother cell (orange) or not (grey). Blastomere identities denote the mother cell and each pair 
of bars represent the two daughters as ordered in the lineage in a.
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Figure 5. The molecular lineage and temporal dynamics of lineage differentiation. 
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blastomere in the cell lineage. Embryonic stages start at the center at 4-cell stage. Identity of the A cell, B cell and 
cells in the germline lineage are shown as examples. Long lines across stages trace DEGs shared by mother and 
daughter cells. Colors are based on where a gene is most prominently expressed. Color scheme follows Figure 
2e.
b) Pseudotime analysis of epidermal fate differentiation at the 32-, 64- and 110-cell stages. Each dot is a cell. C32 
a/b: cell type corresponding to the a-line and b-line cells at the 32-cell stage; C64 a/b-ep: cell type corresponding 
to the a-line and b-line epidermal cells at the 64-cell stage; C110 a-ep: cell type corresponding to the a-line 
epidermal cells at the 110-cell stage; C110 b-ep: cell type corresponding to the b-line epidermal cells at the 110-
cell stage. 
c) Change of DEG expression level from C32 a/b to C110 b-ep cells (color scheme, see panel b). Cells in C32 a/b, 
C64 a/b-ep before the bifurcation in panel b, and in C110 b-ep are ordered based on their coordinates on 
Dimension 1 in panel b to create the x-axis here.
d) Comparison of temporal dynamics of notochord-specific DEGs in A-line and B-line. The horizontal range of 
each rectangle represents the generations of cells (32-, 64- and 110-cell stage). Each pair of rectangles denote 
the expression pattern of a gene in A-line and B-line (robust expression in which generation). Numbers in 
between show the number of genes with the corresponding pattern. Brachyury expression falls into the pattern 
colored in red (robust expression starting in A64 and B110). Blue marks the stage-coupled pattern. Grey marks 
other patterns with 1 or more genes. Asterisks mark permissive modules independent of Brachyury.
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Figure 6. Analysis of FGF-MAPK signaling in fate specification and asymmetric cell divisions.
a) Display of 10 identified cell types in 64-cell stage U0126-treated embryos. See Figure 2a for convention.
b) SplitsTree showing similarity of DEG profiles among wild-type and U0126 treated cell types. U0126-treated 
cells are denoted by red dots; wild-type cells colored as in Figure S1. Arrows denote examples of fate 
transformation.
c) Changes of DEG expression at the 64-cell stage after U0126 treatment. See Table S5 for the list of genes and 
expression levels.
d) Summary of detected expression sites at the 64-cell stage by scRNA-seq (red) and in situ (black) for Cs-ZicL
and Cs-lefty in wild-type and U0126-treated embryos.
e) Representative in situ hybridization results of Cs-lefty and Cs-ZicL in wild-type (Ctrl) and U0126-treated 
embryos. Cs-lefty shows total loss of expression, while Cs-ZicL is lost in the posterior most mesodermal lineages 
(arrow). 
f) GO term classification of genes co-segregating with mitochondrion (MT)-coded genes in three FGF-dependent 
sister pairs.
g) Asymmetric enrichment of MT-coded genes between sister pairs in wild-type and U0126-treated embryos. 
h) Comparison of asymmetric enrichment for MT-coded and co-segregating genes between the wild type and 
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Figure 7. Comparison of single-cell transcriptomes of Ciona and mouse embryogenesis. 
a) Fraction of TFs (left) and all genes (right) that are detected as DEGs in Ciona and mouse. 
b) Number of DEGs with and without orthologs in the other species. 
c) GO term classification of orthologous DEGs in Ciona and mouse. Upper panel: All DEGs with orthologs in the 
other species; lower panel: Non-overlapping DEGs as in b.
d) Matching of cell types based on similarity of DEGs. Red: high similarity; pink: moderate similarity.
e) Classification of shared DEGs between matched pairs of cell types in d.



Supplementary Materials: 

This contains all the legends for Supplementary Tables (S1-S7) and Figures (S1-S15). Table S1-S3 

are provided in pdf format.  

 

Supplementary Tables 

Table S1. Number of expected, lost, low quality and unclassified cells per embryo per stage. 

Table S2. Number of detected (numerators) vs. expected (denominators) cells for each identified cell 

type across embryonic stages. 

Table S3. Examination of unresolved cell types. 

Table S4. Cell_type_average_expression.xlsx 

Table S5. Cell_type_DEGs.xlsx 

Table S6. Cell_cluster_to_lineage.xlsx 

Table S7. Ciona_Mouse_comparison.xlsx 

 

Supplementary Figures 

Figure S1. The cell lineage of the early Ciona embryo with blastomere names. 

Figure S2. Detection of highly variable genes (HVGs). 

Figure S3. Computational analysis at the 64-cell stage to define cell types and classify individual cells. 

Figure S4. Cell clustering at each stage. 

Figure S5. Comparison of Levine’s cell types at 110-cell stage. 

Figure S6. Quality control of identified DEGs. 

Figure S7. List of DEGs at the 4-, 8-, 16- and 32-cell stage. 

Figure S8. List of DEGs at the 64-cell stage. 

Figure S9. List of DEGs at the 110-cell stage. 

Figure S10. Comparison of expression sites for known cell type-specific marker genes between 

published in situ results in C. intestinalis (Imai et al., 2006) and detection in this study. 

Figure S11. Prediction of zygotic expression. 

Figure S12. Enrichment analysis of known postplasmic/PEM genes. 

Figure S13. Gene expression dynamics in notochord lineage differentiation. 

Figure S14. Fate transformations and asymmetry of MT genes upon U0126 treatment. 

Figure S15. Comparison of DEG expression between wild-type and U0126-treated embryos. 



Table S1. Number of expected, lost, low quality and unclassified cells per embryo per stage.

Stage Total high quality Embryo Lost Low-quality Unclassified cells

1-cell 8

E01 0 0 -

E02 0 0 -

E03 0 0 -

E04 0 0 -

E05 0 0 -

E06 0 0 -

E07 0 0 -

E08 0 0 -

2-cell 10

E01 0 0 -

E02 0 0 -

E03 0 0 -

E04 0 0 -

E05 0 0 -

4-cell 12

E01 0 0 0

E02 0 0 0

E03 0 0 0

8-cell 24

E01 0 0 0

E02 0 0 0

E03 0 0 0

16-cell 32
E01 0 0 2

E02 0 0 0

32-cell
65 E01 -2* 1 1

E02 0 0 0

64-cell

173 E01 2 2 3

E02 1 2 2

E03 10 2 1

110-cell

304 E01 10 3 5

E02 0 9 7

E03 3 1 2

Drug
64-cell

122 E01 0 1 1

E02 3 2 1

Total 750 31 29 23 25

*Harvested 2 more cells than expected at 32-cell stage



Stage No. of 
embryos

No. of cell types 
(detected/known)

-cell types mixed together

No. of cells per type
(cell types--detected/expected)

1-cell 8 1/1 Total: 8/8

2-cell 5 1/1 Total: 10/10

4-cell 3 2/2 Total: 12/12

A 6/6

B 6/6

8-cell 3 2/4

1) A4.1,a4.2,B4.2 (A4.1; a4.2; B4.2)

Total: 24/24

A4.1,a4.2,B4.2 18/18

B4.1 6/6

16-cell 2 4/5

1) animal (a5.3/4; b5.3/4)

Total: 30/32

A5.1/2 6/8

animal 16/16

B5.1 4/4

B5.2 4/4

32-cell 2 7/7 Total: 64/64

A6.1/3 8/8

A6.2/4 8/8

Animal 32/32

B6.1 4/4

B6.2 4/4

B6.3 4/4

B6.4 4/4

64-cell 3 14/19

1) A7.4/8 (A7.4; A7.8)
2) a7.9/10/13 (a7.9/10; a7.13)
3) epidermis (a7.11/12/15/16; a7.14; 

b7.11/13/14; b7.12/15/16)

Total: 167/192

A7.1/2/5 18/18 B7.5 3/6

A7.3/7 8/12 B7.6 3/6

A7.4/8 11/12 B7.7 5/6

A7.6 6/6 B7.8 6/6

B7.1/2 10/12 a7.9/10/13 13/18

B7.3 6/6 b7.9/10 10/12

B7.4 6/6 epidermis 62/66

110-cell 3 16/24

1) A8.15/16 (A8.15; A8.16)
2) B8.15/16 (B8.15; B8.16)
3) anterior neu (a8.17/19; a8.18/20; 

a8.25; a8.26)
4) posterior neu (b8.17/19; b8.18/20)
5) anterior ep (a8.21/22; 

a8.23/24/27/28; a8.29/30/31/32)

Total: 290/330

endoderm 28/30 B7.5 5/6

A8.5/6/13/14 20/24 B7.6 3/6

A8.7/8 12/12 B7.7 4/6

A7.6 6/6 B8.15/16 12/12

A8.15/16 10/12 anterior neu 26/36

B8.5 6/6 posterior neu 24/24

B8.6 4/6 anterior ep 53/60

B8.7/8 12/12 posterior ep 65/72

Table S2. Number of detected (numerators) vs. expected (denominators) cells for each identified cell 
type across embryonic stages.



Table S3. Examination of unresolved cell types.

Stage Cell type Known sub-
types

Genes that 
are known 
to have 
different 
expression 
between 
sub-types

Global
high-quality 
genes

Number of 
cells that 
match 
expression
pattern of 
high-quality 
genes in 
sub-types

C8 A4.1, a/b4.2 A4.1
a4.2
b4.2

KH.C11.570
KH.L7.6
KH.C7.226
FoxA-a

- -

C16 a5.3/4, 
b5.3/4

a5.3/4
b5.3/4

KH.C11.529
KH.C9.541, 
FoxA-a

- -

C64 a7.9/10/13 a7.9/10
a7.13

AP-2-like2,
Otx

Otx -

C64 A7.4/8 A7.4
A7.8

Irx-B Irx-B -

C64 epidermis a7.11/12/15/16
a7.14
b7.11/13/14
b7.12/15/16

E(spl)/hairy-
a, Emc,
SoxB2, C3H

E(spl)/hairy
-a, Emc,
C3H

6 out of 62
(see below)

C110 A8.15/16 A8.15
A8.16

E(spl)/hairy-
b,
Neurogenin

Neurogenin -

C110 B8.15/16 B8.15
B8.16

Otx, PPAR, 
SoxF

- -

C110 a-line neural
cells

a8.17/19
a8.18/20
a8.25
a8.26

FoxC, Otx, 
ZicL-3,
C3H, AP-2-
like2

ZicL-3 -

C110 b-line neural 
cells

b8.17/19
b8.18/20

E(spl)/hairy-
a, FoxH-b, 
RAR, 
SoxB1, 
ZicL-3

FoxH-b, 
RAR, 
SoxB1, 
ZicL-3

3 out of 26
(see below)

C110 a-line
epidermis

a8.21/22
a8.23/24/27/28
a8.29/30/31/32

E(spl)/hairy-
a, C3H

- -

total 10 26 10

*C8 markers are form Aniseed database *C16 markers are from Ilsley 2017 bioRxiv
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Figure S1. The cell lineage of the early Ciona embryo with blastomere names.
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Figure S2. Detection of highly variable genes (HVGs).
(a) The first filter for HVGs examines the relationship between log2 of the mean UMI of a gene across all cells and 
the number of cells with 0 UMI for each gene. The red curve is calculated based on a chosen level of deviation 
from a Poisson distribution. Genes (black dots) above the red curve are selected. (b) The second filter for HVGs 
examines the relationship between log2 of the mean UMI of a gene across all cells and log2 of CV2 of its UMI 
across all cells for each gene. The red line is calculated based on a chosen level of deviation from a Poisson 
distribution. Genes (black dots) above the red line are selected. (c) Number of HVGs per embryonic stage.
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Figure S3. Computational analysis at the 64-cell stage to define cell types and classify individual cells.
(a) Flow chart showing the results at each step of clustering, iterative clustering and cell classification. Each box 
represents a cluster of cells (numbered with a C prefix).  Outlier is the collection of individual cells that were not 
assigned to any clusters by DBSCAN. Numbers in parenthesis in each box show the number of cells in the 
corresponding cluster. p-values in black above each box show the significance of the cluster. Red text below 
boxes show the reason that the corresponding cluster was not further divided. “<=4” denotes the situation where 
the number of cells in the cluster <=4 and there too small to be further divided; “no sub” denotes the situation 
where no division by DBSCAN; p-values denotes the situation where the putative sub-clusters by DBSCAN were 
not statistically significant (p>=0.01), with the p-value reported. Green lines and associated numbers show the 
number of cells reassigned from one cluster to another based on DEG similarity. Blue lines and associated 
numbers show the number cells rejected from a cluster but not re-assigned to any other. Blastomere names 
assigned at the end are in bold, with the number of cells in the corresponding cell type in parenthesis. ep: 
epidermis. (b) Initial clustering of cells based on the HVGs (left) before iterative clustering and cell classification 
and the final clusters based on the final defined DEGs (right). Conventions follow Figure 2a.
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Figure S4. Cell clustering at each stage.
(a-f) Defined cell clusters at the 4-cell (a), 8-cell (b), 16-cell (c), 32-cell (d), 64-cell (e) and 110-cell (f) stage. Cells 
from different embryos are represented by different symbols. Black symbols represent rejected/unclassified cells 
from corresponding embryos. (g) Display of cell clusters across all embryonic stages. For visual clarity, cells from 
the early stages (4-, 8-, 16-cell) are shifted by 28, 16, 4 in t-SNE1 and 18, 16, 12 in t-SNE2, respectively. The 
coordinates of B-line mesodermal cells at the 64- and 110-cell stages are scaled by 2 in t-SNE1. 
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Figure S5. Comparison of Levine’s cell types at 110-cell stage.
(a-c) For each pair of cell types not resolved in (Cao et al., 2019a), the corresponding heatmap shows DEGs with 
significantly different expression levels between the two groups of cells (rank statistics p<0.01). Red boxes 
indicate known in situ markers that distinguish the corresponding cell types. (d) Manual sorting of endoderm cells 
based on the expression of six genes reported in (Cao et al., 2019a) to distinguish A-line and B-line endoderm. 
Red, green and blue bars at the top denote cells from each of the three embryos. These numbers are consistent 
with the expected numbers, indicating that this sorting may be reasonable.
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Figure S6. Quality control of identified DEGs.
(a) Fold difference of DEG expression levels between expressing and low/no expressing cells. Each dot 
represents a DEG. (b) p-value of Wilcoxon rank-sum test of DEGs. (c) Filtering of published DEGs for Mouse 
E8.25 (Ibarra-Soria et al., 2018) with thresholds in this study. Red: DEGs passed the thresholds.
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Figure S7. List of DEGs at the 4-, 8-, 16- and 32-cell stage.
Heatmap convention follows Figure 2d. See Table S5 for details.
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Figure S8. List of DEGs at the 64-cell stage.
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Figure S9. List of DEGs at the 110-cell stage.
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Figure S10. Comparison of expression sites for known cell type-specific marker genes between published 
in situ results in C. intestinalis (Imai et al., 2006) and detection in this study.
(a-c) Comparison at the 16-cell (a), 32-cell (b) and 110-cell (c) stage. Convention follows Figure 3g. 
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Figure S11. Prediction of zygotic expression.
Mother, self and daughter denote the cell named in the first column, its mother cell, and one of its daughter cells 
with higher average UMI of the corresponding gene. “From self” denote cell types where significant expression 
was detected in itself. “From daughter” denote cell types where expression was detected in itself and significant 
expression was detected in its daughter. Circle size shows the fraction of cells in the corresponding type with 
UMI>0. Shade of color shows average UMI in the type.
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Figure S12. Enrichment analysis of known postplasmic/PEM genes.
Comparison of PEM genes in B4.1 vs. b4.2 for PEMs enriched in B4.1, enriched in other germline stages or not 
identified by enrichment analysis. Table convention follows Figure S11.
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Figure S13. Gene expression dynamics in notochord lineage differentiation.
(a) Order of cells along Dimension 1 in Figure 5b. Each symbol is a cell. Each embryo is shown as a row. The p-
value is the probability of the orders observed in the corresponding embryo being a random ordering among 3 
embryos of the same embryonic stage (C64: 64-cell stage; C110: 110-cell stage). (b) Expression of the 23 
notochord-specific genes in the A-line and B-line notochord lineage ordered according to shared expression 
between A-line and B-line notochord cell stage. Heatmap follows convention in Figure 2d. Horizontal black lines 
separate genes of the different patterns depicted in Figure 5d. (c) Expression of genes that show >2 fold 
difference in expression levels between the A-line and B-line notochord lineage at different stages. Heatmap 
follows convention in Figure 2d. For the categories on the right, see main text.
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a7.9/10/13 epidermis See arrow in Fig. 6c.

B7.1/2 ?? Previously reported to adopt muscle fate. Mixed fate with part 
of endoderm DEGs and a small number of muscle genes.

B7.3 B7.4-like Losing part of B7.4-specific DEGs.

B7.5 muscle-like Novel transformation. See arrow in Fig 6c.

B7.7 B7.8-like Losing part of B7.8-specific DEGs.

b7.9/10 epidermis See arrow in Fig. 6c.
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Figure S14. Fate transformations and asymmetry of MT genes upon U0126 treatment.
(a) Defined cell clusters in U0126-treated embryos. Convention follows Figure 2a. (b) Blastomere identity 
assignment process for defined cell clusters. (c) List of detected fate transformations with complications 
discussed in comments and main text. (d) Lineage asymmetry of MT-coded genes. Cell with above background 
level of MT-coded genes are colored orange. Thickness of the line above an orange cell proportional to the 
relative expression level of MT-coded genes in the cell (fold over background of its generation). Cell names shown 
for 64-cell stage and earlier.
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Figure S15. Comparison of DEG expression between wild-type and U0126-treated embryos.
Heatmap convention follows Figure 2d. Genes for comparison are DEGs defined in the wild type 64-cell embryo.


